EN

イベント

カテゴリ
日時
タイトル
報告者/場所
詳細
2023/04/21 (金)
16:30〜18:00
未完の産業都市京都
有賀健(京都大学)
京都大学経済研究所本館1階 第二共同研究室/オンライン開催
2023/04/20 (木)
17:00〜18:30
Measure of Ambiguity Aversion for Twice Peano Differentiable Utility Functions
Chiaki Hara (Kyoto University)
本館1階会議室/オンライン開催
2023/04/20 (木)
13:15〜14:45
Randall Morck (Stephen A. Jarislowsky Distinguished Chair in Finance and Distinguished University Professor, University of Alberta)
京都大学 法経東館 8階リフレッシュルーム

(お問い合わせ)
経営管理大学院・経済学研究科 教授 チョルパン・アスリ
colpanasli[at]hotmail.com

 

経済学研究科・経営管理大学院 准教授 安達貴教
adachi.takanori.8m[at]kyoto-u.ac.jp

 

経済研究所 教授 原千秋
hara.chiaki.7x [at] kyoto-u.ac.jp

2023/04/14 (金)
16:30〜18:00
Agglomeration in purely neoclassical and symmetric economies
Marcus Berliant (Washington University in St. Louis)
京都大学経済研究所本館1階 第二共同研究室/オンライン開催

【論文】※4/14差替版

2023/04/14 (金)
15:00〜16:30
John Stachurski (Australian National University)
京都大学 経済研究所 北館202講義室
2023/04/13 (木)
17:00〜18:30
Strategic default in financial networks
Nizar Allouch (University of Kent)
本館1階会議室/オンライン開催
2023/04/06 (木)
17:00〜18:30
Buy price auctions with a resale opportunity
Yusuke Inami (Tohoku Gakuin University)
本館1階会議室/オンライン開催
2023/04/03 (月)
08:55〜17:00
Todd Keister(Rutgers University)他
本館1階会議室(Room 106, KIER main building, Kyoto University)
2023/03/24 (金)
16:30〜18:00
ベイズ的モデル統合による時空間予測
菅澤翔之助(東京大学)
京都大学経済研究所本館1階 第二共同研究室/オンライン開催

【論文】

要旨:Spatial data are characterized by their spatial dependence, which is often complex, non-linear, and difficult to fully capture with a single model. Significant levels of model uncertainty– arising from these characteristics– cannot be resolved by model selection or simple ensemble methods, as performances are not homogeneous. We address this issue by proposing a novel methodology that captures spatially-varying model uncertainty, which we call Bayesian spatial predictive synthesis. Our proposal is defined by specifying a latent factor spatially-varying coefficient model as the synthesis function, which enables model coefficients to vary over the region to achieve flexible spatial model ensembling. We show that our proposal is derived from the theoretically best approximation of the data generating process and that it provides a finite sample theoretical guarantee for its predictive performance, specifically that the predictions are exact minimax. Two MCMC strategies are implemented for full uncertainty quantification, as well as a variational inference strategy for fast point inference. We also extend the estimation strategy for general responses. Through simulation examples and two real data applications, we demonstrate that our proposed Bayesian spatial predictive synthesis outperforms standard spatial models and ensemble methods, and advanced machine learning methods, in terms of predictive accuracy, while maintaining interpretability of the prediction mechanism.

2023/03/23 (木)
17:00〜18:30
Takashi Kunimoto (Singapore Management University)
本館1階会議室またはオンライン開催
TOP