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“Therefore, it follows that if assumptions a1-a4 are upheld, there exists either

a trivial solution, or no (price taking) competitive equilibrium. In short, the

spatial impossibility theorem says that the smooth market mechanism alone

cannot generate spatial agglomeration of activities.” (Fujita [Fuj86], pp. 113-

114).

1 Introduction

Here we examine the circumstances underlying equilibrium population agglomeration in

the context of a completely standard economy, namely without externalities or imperfect

competition, but with ordinary utility functions and constant returns to scale production.

Whatever equilibria there are will clearly be Pareto efficient. And symmetric equilibria

will be present. In such a situation, what force can possibly cause population to agglom-

erate, and importantly, can this force complement or substitute for the agglomerative

forces more commonly used in the literature, such as the New Economic Geography or

externalities?

As we shall explain, it is a bit puzzling and surprising that agglomeration can be

generated in such a simple neoclassical model, starting with a completely symmetric

situation. In fact, transportation cost can be zero or positive; the results are identical. In

equilibrium, the regions or locations are autarkic, but the population distributions can be

asymmetric. Next, we detail the strategy for our analysis.
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Our focus is on a very specific example for tractability and expository reasons. We

adopt and then adapt the example of Kehoe [Keh85]. This classical example is aspatial,

so it is best to imagine it to have only one region. There are four commodities and four

consumers with different Cobb-Douglas utilities, but two different producers with con-

stant returns to scale technologies. Constant returns to scale simplifies matters, since

equilibrium profits must be zero. Thus, there is no need to worry about profit distri-

bution and the zero profit conditions yield restrictions on equilibrium prices, useful for

computational purposes. The key properties of this example are that it is quite simple

but features 3 equilibria. Heterogeneous income effects play a big role both in Kehoe’s

example and in our work.

Next, we adapt Kehoe’s model to the spatial context. There will be 2 identical regions

or locations. There will be measure 1 of each of the four types of consumer. The same

production technologies are available in each region. There are now 8 commodities, 4

in each region. Consumers can move between regions at no cost, as is standard in the

literature.

We consider two versions of the model with differing portability of endowments. In

the first version, endowments move with the consumers. An example of a mobile en-

dowment is labor. In the second, endowments are immobile but income derived from

endowments moves with the consumers. The differences between the two are in the mar-

ket clearing conditions and possibly in the income derived from endowments. The latter

turns out to be irrelevant in equilibrium. Notice that land is an example of an endowment

that is not portable.

Our model and results are perfectly consistent with the spatial impossibility theorem

as stated by Fujita and Thisse ([FT13], p. 39), even though we have a continuum of agents:

The Spatial Impossibility Theorem. Assume a two-region economy with a

finite number of consumers and firms. If space is homogeneous, transport is

costly, and preferences are locally nonsatiated, there is no competitive equilib-

rium involving transportation.

The remainder of the paper proceeds as follows: In the following section, we lay

out the model. Whereas section 3 presents the equilibria when endowments are mobile,

section 4 presents the equilibria when they are not. We then discuss the possibility of

inter-regional trade in section 6. Section 8 concludes.

2 The Model

We build our model on the production economy analyzed by Kehoe [Keh85]. His model

features a single region with four commodities i = 1, · · · , 4, four consumers j = 1, · · · , 4,
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and linear technology. We add one more region to it and examine if agglomeration takes

place in the absence of scale economies.

There is a unit mass of each of four types of consumers, who take up residence in

either region a or b. Their relocation incurs no cost. We denote the population distribution

by λ =
�

λ1 λ2 λ3 λ4

�

, where λ j ∈ [0, 1] is a fraction of type- j consumers who live in

region a. In what follows we use a superscript to denote a row and commodity i, and a

subscript to denote a column and consumer type j or region a or b.

A consumer of type j maximizes u j

�

x j

�

=
∏4

i=1

�

x i
j

�αi
j subject to π · x j ≤ π ·4 j , where

x j =
�

x1
j x2

j x3
j x4

j

�⊤
is his consumption bundle, 4 j =

�

41
j 4

2
j 4

3
j 4

4
j

�⊤
is his en-

dowment, and π =
�

π1 π2 π3 π4
�⊤

is a price vector. As we will show below, the

equilibrium price vector will be the same in both regions. Expenditure share α and

endowment 4 are specified as

α=











.52 .86 .5 .06

.4 .1 .2 .25

.04 .02 .2975 .0025

.04 .02 .0025 .6875











and 4=











50 0 0 0

0 50 0 0

0 0 400 0

0 0 0 400











. (1)

For instance, type-4 consumer’s expenditure share of commodity 1 is .06, and his endow-

ment of commodity 1 is zero.

Technology is linear and specified by technological process

A=











−1 0 0 0 6 −1

0 −1 0 0 −1 3

0 0 −1 0 −4 −1

0 0 0 −1 −1 −1











. (2)

The supply is A2, where 2 is a 6×1 nonnegative vector indicating how much of each

column of A a firm deploys in production.

Inter-regional trade does not occur in equilibrium, no matter transport cost. That

is because equilibrium prices equate across regions. This is similar to the Factor Price

Equalization Theorem. Here, utility levels play the role of product prices, and goods

prices play the role of factor prices.

A region is in intra-regional equilibrium when each consumer maximizes his utility

level subject to his budget and each commodity market clears. Namely, excess demand

(xa−4)λ⊤−A2a = o in region a; similarly, (xb−4)(1−λ)⊤−A2b = o in region b.1 Further-

more, two regions are in inter-regional equilibrium if 1) every region is in intra-regional

equilibrium, and 2) utility levels are the same in both regions type by type.2 Whereas the

1A number in script font denotes a column or row vector (whichever is appropriate) consisting of repeated

entries of a same number, e.g., o=
�

0 0 0 0
�⊤

and 1=
�

1 1 1 1
�

in the preceding equations.
2A type might not be present in a region at equilibrium, but that won’t happen in this example.
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first requirement guarantees that the gains from trade are exhausted region by region, the

second requirement guarantees that the utility gains from relocation are exhausted across

regions.

A firm earns zero profit in equilibrium because of constant returns to scale. Thus, the

intra-regional equilibrium price vector must be orthogonal to the column space of A. In ad-

dition, Walras’ law enables the normalization of prices,
∑

πi = 1. Combined, these imply

that the intra-regional equilibrium price vector πmust be of the form
�

π1 1
4

7π1−1
3

−10π1

3 + 13
12

�⊤
,

π1 ∈
�1

7 , 13
14

�

in intra-regional equilibrium. Let Π⊥ be a set of all such price vectors. Note

that four units of commodity 2 function as a numéraire in our economy. Also note that

π2, π3 and π4 are a linear and thus monotone function of π1 over Π⊥. Moreover, non-

numéraire commodity prices π3 and π4 are strictly monotone in π1, rendering them

interchangeable when evaluating the monotonicity of a function. In what follows we say

a function is monotone over Π⊥ to mean that within the restricted domain Π⊥(⊂ R4
++) a

function is monotone in terms of a non-numéraire price π1, π3 or π4.
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Figure 1. Value functions

The value functions or utility levels of

type 3 and 4 are strictly monotone over

Π⊥ (cf. figure 1. We picked π1 for illustra-

tive purposes). In inter-regional equilib-

rium, consumer j achieves the same util-

ity level regardless of his residency thanks

to free mobility. If a price differs be-

tween the regions the utility level will not

equate among type 3, nor among type 4.

Therefore, in inter-regional equilibrium, π

must be identical in both regions. Fur-

thermore, since consumers face the same

prices wherever they live and the individ-

ual endowments are independent from λ,

the individual consumption levels are the

same in both regions. The next proposition summarizes this observation:

Proposition 2.1 Inter-Regional Equilibrium

Suppose that at least one type of consumer has a strictly monotone value function over Π⊥. If an
inter-regional equilibrium exists, πa = πb and xa = xb.

Proof. Suppose that a type- j consumer has a strictly monotone value function over Π⊥,

and that πa , πb. Then his utility level changes depending on where he is: u j

�

x j

�

πa, 4 j

��

,

u j

�

x j

�

πb, 4 j

��

, and thus πa and πb do not make an inter-regional equilibrium price vec-

tor. Therefore, if an inter-regional equilibrium exists, πa = πb. Accordingly, x (πa, 4) =

x (πb, 4). □
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Regardless, region-wide consumption xλ⊤ and x(1− λ)⊤ will differ from each other

because the population will not necessarily split evenly between two regions.

3 Mobile Endowments

3.1 Equilibria

We begin with the case where endowments are mobile, in other words they move with

consumers. There are many inter-regional equilibria (see appendix A.2 for details). We

present below three of them for example. The equilibrium specification includes the

inter-regional equilibrium price vector π (= πa = πb), population distribution λ, total

population in each region
∑

λ j and
∑

(1− λ j), individual demand x (= xa = xb), utility

level u (= ua = ub), and activity levels 2a and 2b along with the region-wide excess demand

(x−4)λ⊤−A2a in region a and (x−4)(1−λ)⊤−A2b in region b. We begin with the equilibria

in Kehoe [Keh85] mirrored across the two regions. Whereas this is not part of our inter-

regional equilibria, we place Kehoe’s value of 2 side by side with corresponding 2a and

2b in each equilibrium. The subsequent section will draw a comparison between them.

What is crucial is the value of λ, representing agglomeration.

Equilibrium #1

π =
�

0.15942 0.25000 0.03865 0.55193
�⊤

λ =
�

0.70481 0.49341 0.82233 0.87084
�

�

∑

λ j
∑

(1−λ j)
�

=
�

2.8914 1.1086
�

x =











26.000 67.431 48.490 83.089

12.754 5.000 12.368 220.771

8.249 6.468 119.000 14.280

0.578 0.453 0.070 275.000











u =
�

16.039 44.880 47.411 240.484
�

2a =
�

0 0 0 0 33.822 74.345
�⊤

2b =
�

0 0 0 0 8.879 6.853
�⊤

2 =
�

0 0 0 0 42.701 81.198
�⊤
(= 2a + 2b)

(x −4)λ⊤ − A2a =
�

−2.34E − 8 1.34E − 7 9.65E − 8 −6.05E − 8
�⊤
≈ o

(x −4)(1−λ)⊤ − A2b =
�

2.34E − 8 −1.34E − 7 −9.65E − 8 6.05E − 8
�⊤
≈ o
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Equilibrium #2

π =
�

0.25000 0.25000 0.25000 0.25000
�⊤

λ =
�

0.83914 0.88410 0.25217 0.22671
�

�

∑

λ j
∑

(1−λ j)
�

=
�

2.2021 1.7979
�

x =











26.000 43.000 200.000 24.000

20.000 5.000 80.000 100.000

2.000 1.000 119.000 1.000

2.000 1.000 1.000 275.000











u =
�

19.067 29.832 140.802 181.909
�

2a =
�

0 0 0 0 14.182 11.342
�⊤

2b =
�

0 0 0 0 37.818 57.658
�⊤

2 =
�

0 0 0 0 52 69
�⊤
(= 2a + 2b)

(x −4)λ⊤ − A2a =
�

3.32E − 8 −1.33E − 8 −3.32E − 8 1.33E − 8
�⊤
≈ o

(x −4)(1−λ)⊤ − A2b =
�

−3.32E − 8 1.33E − 8 3.32E − 8 −1.33E − 8
�⊤
≈ o

Equilibrium #3

π =
�

0.27514 0.25000 0.30865 0.16621
�⊤

λ =
�

0.26713 0.92389 0.16127 0.10549
�

�

∑

λ j
∑

(1−λ j)
�

=
�

1.4578 2.5422
�

x =











26.000 39.072 224.362 14.499

22.011 5.000 98.768 66.485

1.783 0.810 119.000 0.539

3.311 1.504 1.857 275.000











u =
�

20.123 27.581 155.792 159.122
�

2a =
�

0 0 0 0 42.663 46.348
�⊤

2b =
�

0 0 0 0 10.517 18.800
�⊤

2 =
�

0 0 0 0 53.180 65.148
�⊤
(= 2a + 2b)

(x −4)λ⊤ − A2a =
�

−5.51E − 7 1.19E − 7 4.91E − 7 −1.79E − 7
�⊤
≈ o

(x −4)(1−λ)⊤ − A2b =
�

5.51E − 7 −1.19E − 7 −4.91E − 7 1.79E − 7
�⊤
≈ o

Not only the size but also the composition of types differ between the regions in
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equilibrium. For instance, in Equilibrium #2, most consumers of type 1 and 2 are found

in region 1, and most consumers of type 3 and 4 are found in region 2. Thus, each region

consists of a different mix of types even in the same equilibrium. We explain the reason

behind the spatial sorting in appendix A.2.

3.2 Comparison between Single- and Two-Region Economies

All the inter-regional equilibria we found in section 3.1 are closely related to the three

equilibria in Kehoe [Keh85] in several ways. Let us call our two-region economy E2R

and Kehoe’s single-region economy E1R. Before establishing an association between the

two, we first point out that it is only the economy-wide demand that is influenced by λ.

Production simply scales up or down as needed in an attempt to fill the demand both

large and small regardless of the price. The demand is non-linear over Π⊥. In contrast,

the supply does not depend on π in the sense that so long as π ∈ Π⊥ the firms always

earn zero profit whatever 2a and 2b they choose. If A2a and A2b happen to square with

(x − 4)λ⊤ and (x − 4)(1− λ)⊤, then that is an inter-regional equilibrium; or else there is

no inter-regional equilibrium at the π ∈ Π⊥ and λ under consideration.

In E1R the aggregate net demand for commodity i is a simple sum of the individual

net demand, (x i − 4i)1. It appears as a vertical sum of each type’s net demand (quantity

is on the vertical axis), the black line in figure 2. By contrast, in E2R the economy-wide

net demand for commodity i becomes a weighted sum of the individual net demand,

(x i−4i)λ⊤ and (x i−4i)(1−λ)⊤. It appears as a vertical sum of each type’s net demand in

figure 2 with an uneven weight of λ in region a and 1−λ in region b. E1R can be thought

of as a special case of E2R in this sense, where λ = o or 1, with the requirement ua = ub

removed.

With this added degree of freedom, one may be tempted to speculate that E2R takes a

different equilibrium price than E1R, and that there are more than three equilibrium prices

possible. For instance, whereas the aggregate net demand for commodity 1 (the black line

in figure 2(a)) is monotone increasing in π1, with the right mix of λ the economy-wide

net demand for commodity 1 may no longer be increasing or monotone. However, this

turns out not to be the case:

Proposition 3.1 Equilibrium Prices in Single- and Two-Region Economies

Suppose that at least one type of consumer has a strictly monotone value function over Π⊥. The
set of inter-regional equilibrium price vectors Π2R in E2R is a subset of its counterpart Π1R in E1R.

Proof. Suppose that π2R ∈ Π2R but < Π1R. Recall from proposition 2.1 that πa = πb in

inter-regional equilibrium. Since π2R(= πa = πb) clears all four markets in each region of

E2R, there exists such 2a, 2b ≥ o that
�

x
�

π2R
�

−4
�

λ⊤ = A2a, and
�

x
�

π2R
�

−4
�

(1−λ)⊤ = A2b.
(3)
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Figure 2. Individual net demand for each commodity by type in color, and aggregate net demand
in black.

Aggregate them to obtain the countrywide market clearance in E2R:

�

x
�

π2R
�

−4
�

1= A(2a + 2b). (4)

On the other hand, since π2R < Π1R, there is no 2≥ o such that

�

x
�

π2R
�

−4
�

1= A2 (5)

in E1R. Since the left-hand sides of (4) and (5) are identical, A(2a + 2b) = A2. Then

2a + 2b = 2. (6)

Whereas equilibrium 2a + 2b exists, equilibrium 2 does not, contradicting each other.

Therefore, if π2R clears the regional markets in E2R, it also clears the markets in E1R.

Hence Π2R ⊆ Π1R. □
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Remark. This proposition pertains only to the prices. There are only three equilibrium

prices in E2R, π1 = .2500, .1594 and .2751. However, E2R does come with many inter-

regional equilibria in terms of distribution λ.

The proposition capitalizes on the fact that the individual demand does not depend

on λ. The individual net demand x − 4 will be the same in inter-regional equilibrium

no matter where the person lives, how many regions there are, or how the population is

divided, because the individual endowment 4 does not depend on λ. Namely, a type- j

consumer does not change his demand based on how many consumers of type j (or of

any type for that matter) there are in his region. Rather, λ only changes the equilibrium

quantity by way of changing the region-wide (not individual) endowment 4λ⊤ and 4(1−
λ)⊤. The individual net demands are x (πa, 4)−4 in region a and x (πb, 4)−4 in region

b. Since πa = πb from proposition 2.1, they are the same. In conjunction with the fact that

there is a unit mass of each type, when we add them together to obtain the countrywide

demand in E2R it will come to the same as the aggregate demand in E1R. On the flip

side, the sum of activity levels 2a + 2b in E2R comes to 2 in E1R as well (cf. corollary 3.1 to

follow).

Depending on the weight λ, one of the regions can and does feature an intra-regional

equilibrium whose price vector falls outside Π1R thanks to the added degree of freedom

mentioned above. However, these equilibria will not make an inter-regional equilibrium

because the inter-regional equilibrium price vector has to be a member of Π1R as proved

above. We present one such example in figure 3.3 Observe that region a features one

intra-regional equilibrium price vector in Π1R and two intra-regional equilibrium price

vectors outside Π1R. The latter two will not make the list for inter-regional equilibria

because there is no corresponding intra-regional price vectors found in region b. Thus,

as we discussed earlier in this section, the expansion of a set of λ from {o, 1} of E1R to

[0, 1]4 of E2R does unleash lots of price vectors outside Π1R, but these are only intra-

regional equilibrium price vectors. In inter-regional equilibrium, the price vector still has

to be selected from Π1R. See appendix A.1 for more on net demand.

Note also that the zero-profit condition further implies Π2R ⊆ Π1R ⊆ Π⊥.

We derive two equivalencies from proposition 3.1:

Corollary 3.1 Supply and Demand in Single- and Two-Region Economies

The countrywide demand in E2R is identical to its corresponding aggregate demand in E1R in
equilibrium. Furthermore, the countrywide activity level 2a+2b in E2R is equal to its corresponding
2 in E1R in equilibrium.

3As mentioned earlier in this section, 2a and 2b are not a function of π ∈ Π⊥. We compute excess demand
(x − 4)λ⊤ − A2a with the midpoint between 2a that clears the even-numbered markets and 2a that clears
the odd-numbered markets in figure 3 for illustrative purposes. These 2a’s are equal to each other only in
intra-regional equilibrium, turning excess demand zero. The same goes for region b as well.
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(a) Excess demand in region a.
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(b) Excess demand in region b.

Figure 3. Regional excess demand when λ =
�

.9723 .1262 .5688 .6412
�

. A region is in intra-
regional equilibrium when all four excess demands are zero. Two regions are furthermore in
intra-regional equilibrium when they share the same intra-regional equilibrium price vector. In
this case, region a has three intra-regional equilibria and region b has one; E2R as a whole has one
inter-regional equilibrium.

Proof. Immediate from (4) and (5). □

Remark. This explains why 2a+2b = 2 in all three equilibria we listed in section 3.1. Indeed

in any inter-regional equilibrium, 2b = 2 − 2a and this is why the right two columns in

figure 7 in appendix A.2 to follow are flipped images of each other: Whereas there are

many inter-regional equilibrium 2a and 2b depending on λ, 2 remains the same because

there is only one 2 each for three price vectors in Π1R in E1R. Put differently, there is a

wide range of equilibrium 2a and 2b because the possible range of λ is [0, 1]4 in E2R, but

the sum of 2a and 2b has to be equal to one of only three 2’s because the possible range

of λ in E1R is {o, 1}(⊂ [0, 1]4).

In short, the demand has to keep to ua = ub, and the supply has to keep to 2a + 2b = 2

in inter-regional equilibrium.

3.3 Scalable Equilibria and Spatial Sorting

Whereas a sample of inter-regional equilibria listed in section 3.1 involves an uneven

presence of each type in a region, heterogeneous preferences do not necessarily lead to

regional sorting. This section will establish that λ of the form
�

c c c c
�

(c ∈ [0, 1])

constitutes an inter-regional equilibrium. In particular, c = .5 indicates that spatial sorting

is not a requisite of inter-regional equilibria.

Evidently, such distributions constitute an intra-regional equilibrium because linear

technology allows firms to rescale their production by a factor of c and 1− c in respective
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regions to meet the smaller, but proportionally down scaled net aggregate demand. In

contrast, it is not all too obvious whether they further constitute an inter-regional equi-

librium. We verify that each region will achieve the same utility level regardless of the

value of c selected.

Consider any equilibrium in E1R. Material balance implies
�

x1R −4
�

1 = A21R. Multi-

ply both sides by c to obtain
�

x1R −4
�

(c1) = A(c21R). Given the equilibrium price in E1R,

the optimal bundle xa in E2R coincides with x1R in E1R because the individual demand

is independent of c. In addition let 2a = c21R. Then the equation can be rewritten as

(xa −4) (c1) = A2a, which is none other than the material balance in region a itself. There-

fore, region a reaches an intra-regional equilibrium, as does region b. Furthermore, there

is no inter-regional migration of consumers of any type. Since individual demand is inde-

pendent of c, each type achieves the same utility level in either region under π1R selected.

On the supply end, 2a+2b = c2+(1− c)2= 2, in keeping with corollary 3.1. Therefore, any

c constitutes an inter-regional equilibrium, with any equilibrium price inherited from E1R.

Put differently, equilibria in E1R are scalable: any equilibrium in E1R can be implemented

as an inter-regional equilibrium in E2R with arbitrary c ∈ [0, 1]. In this case, both regions

are simply a miniature copy of E1R with the identical composition of types. Consequently,

spatial sorting can but does not have to take place in inter-regional equilibrium.

This observation draws on two features of the model. On the one hand, supply is

linear. If A21R is in the production set, so are A2a = cA21R and A2b = (1 − c)A21R. On

the other hand, πa and πb aside, there is no channel through which individual demand

matrices xa and xb respond to c. Thus, net aggregate demands in E2R are simply a

scalar multiple of (x1R − 4)1 in E1R. Since the equilibrium price in E1R clears markets

in E2R as shown above, the resultant allocation constitutes an inter-regional equilibrium.

All combined, an equilibrium in E1R can be scaled down by an arbitrary factor without

changing the level of utility, which in turn guarantees an existence of (infinitely many)

corresponding inter-regional equilibria in E2R.

4 Immobile Endowments

We have so far assumed that transport cost is prohibitively high. The only time the

endowment makes a cross-border transfer is when it relocates with its owner, who him-

self is perfectly mobile. Labor is a good example. This assumption effectively rules out

inter-regional commuting. Therefore, unless λ =
�

.5 .5 .5 .5
�

, the distribution of en-

dowments is not uniform.4

In fact, inter-regional equilibria exist whether 4 is mobile or not. This section considers

the case where the endowment cannot move at all. Land is a good example. We call

the previous economy with mobile endowments EMO and the economy with immobile

4As shown in section 3.3, λ=
�

.5 .5 .5 .5
�

is one of the inter-regional equilibrium values.
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4 currently in question E I M . Let us further denote the distribution of endowments by

µ ∈ [0, 1]4. Up until now µ = λ. Suppose instead that µ is independent from λ and

exogenously given. Income from the endowments moves with consumers

There are many equilibria in E I M (see figure 4). We present one of them below:

π =
�

0.15942 0.25000 0.03865 0.55193
�⊤

λ =
�

0.2699 0.2397 0.6296 0.5140
�

�

∑

λ j
∑

(1−λ j)
�

=
�

1.6532 2.3468
�

µ =
�

0.5 0.5 0.5 0.5
�

x =











26.000 67.431 48.490 83.089

12.754 5.000 12.368 220.771

8.249 6.468 119.000 14.280

0.578 0.453 0.070 275.000











u =
�

16.039 44.880 47.411 240.484
�

2a =
�

0 0 0 0 18.5378 39.8117
�⊤

2b =
�

0 0 0 0 24.1635 41.3863
�⊤

2 =
�

0 0 0 0 42.701 81.198
�⊤
(= 2a + 2b)

xλ⊤ −4µ⊤ − A2a =
�

0.4772E − 8 −0.7825E − 8 −0.8252E − 8 0.4345E − 8
�⊤
≈ o

x(1−λ)⊤ −4(1−µ)⊤ − A2b =
�

−0.4772E − 8 0.7825E − 8 0.8252E − 8 −0.4345E − 8
�⊤
≈ o.

Therefore, agglomeration is not necessarily caused by the way 4 is geographically dis-

tributed. Note that π, x , u, and 2a + 2b in any equilibrium in E I M are identical to the

equilibria listed in section 3.1 by construction.

As with c in section 3.3, the individual consumption remains the same whatever µ is.

Even if a consumer of type j resides in region a but his endowment is located in region

b, his income πb ·4 j credited in region b can be cashed in in region a through a bank. He

does not incur any transport cost because there is no transport of physical goods involved

with this transfer. Therefore, his income remains intact. Moreover, since the location

of 4 j does not alter his income, proposition 2.1 still applies so that πb = πa(= π). His

income is simply π · 4 j whether his endowment location coincides with his residence or

not. Therefore, the individual consumption x(π, 4) is identical as well whether µ is equal

to λ or given otherwise.

On the regional level, the markets clear when

x(π, 4)λ⊤ −4µ⊤ = A2a, and

x(π, 4)(1−λ)⊤ −4(1−µ)⊤ = A2b.
(7)
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(a) π1 = .159422. (b) π1 = .250000.

(c) π1 = .275136.

Figure 4.

On the countrywide level, aggregate (7) to derive

[x(π, 4)−4]1= A(2a + 2b). (8)

Then if π clears the regional markets, it also clears its corresponding markets in E1R. Let

ΠI M be the set of inter-regional equilibrium price vectors in E I M .

Proposition 4.1 Equilibrium Prices When Endowments Are Immobile

Suppose that at least one type of consumer has a strictly monotone value function over Π⊥. ΠI M

is a subset of its counterpart Π1R in E1R.

Proof. Same as proposition 3.1. The only difference is between equations (3) and (7). What

ensues is identical. □

In summary, E I M compares to EMO as follows:

• region-wide net demand: different (does involve µ)

• countrywide net demand: same (µ and 1−µ cancel each other out).

Then we can infer from the above that

13



• region-wide supply: different (should involve µ)

• countrywide supply: same (should be independent from µ)

in inter-regional equilibrium. Therefore, for a given equilibrium price vector π ∈ ΠMO ∩
ΠI M in E2R (if exists), 2MO

a + 2MO
b = 2I M

a + 2I M
b = 21R, but not necessarily 2MO

a = 2I M
a or

2MO
b = 2I M

b .

Comparing (3) to (7), A2I M
a = A2MO

a + 4(λ − µ)⊤. This implies that an inter-regional

equilibrium in E I M may or may not have a corresponding inter-regional equilibrium in

EMO. It does as long as firms in region a are capable of producing the difference 4(λ−µ)⊤,

and similarly, the ones in region b are capable of producing the difference 4(−λ+µ)⊤ to

be made up for, while keeping to 2a + 2b = 2 as a whole.

Whether its counterpart exists in EMO or not, inter-regional equilibria in E I M them-

selves exist. One of them presented above features µ =
�

.5 .5 .5 .5
�

so that there is

no spatial inhomogeneity at play. Therefore, agglomeration in the current model is not

necessarily due to an uneven spatial distribution of endowments.

We can trivially and retroactively set µ equal to one of λ’s found in section 3.1 to

ensure an inter-regional equilibrium even when 4 is immobile. With that, in the following

sections, we assume that 4 is mobile with its owner for simplicity and for the ease of

notation. We do so with the understanding that there are at least as many equilibria in

E I M as in EMO by simply setting µ= λ.

5 Mixed Mobility of Endowments

We have discussed the economy where endowments are mobile (section 3) and immobile

(section 4). A more realistic setup is where the first two endowments are mobile and the

remainder are not. Given technological process A in (2), the last two commodities can

only be an input such as land. Land is not mobile.

In this section, we set µ =
�

λ1 λ2 .5 .5
�

to this effect. The first two endowments

accompany their owner, type 1 and 2; the last two endowments are evenly allocated to

each region regardless of where type 3 and 4 migrate to. What can be produced instead of

endowed with (i.e., endowment 1 and 2) can cross the border; what cannot be produced

and only be endowed with (i.e., endowment 3 and 4) cannot cross the border.

As in sections 3 and 4, equilibria exist. We present one of them below:
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π =
�

0.25000 0.25000 0.25000 0.25000
�⊤

λ =
�

0.9350 0.3152 0.5140 0.4860
�

�

∑

λ j
∑

(1−λ j)
�

=
�

2.2502 1.7498
�

µ =
�

0.9350 0.3152 0.5 0.5
�

x =











26.000 43.000 200.000 24.000

20.000 5.000 80.000 100.000

2.000 1.000 119.000 1.000

2.000 1.000 1.000 275.000











u =
�

19.067 29.832 140.802 181.909
�

2a =
�

0 0 0 0 24.1740 39.4699
�⊤

2b =
�

0 0 0 0 27.8260 29.5301
�⊤

2 =
�

0 0 0 0 52.0000 69.0000
�⊤
(= 2a + 2b)

xλ⊤ −4µ⊤ − A2a =
�

−1.0023E − 09 −2.0064E − 09 −4.1382E − 10 5.9035E − 10
�⊤
≈ o

x(1−λ)⊤ −4(1−µ)⊤ − A2b =
�

1.0023E − 09 2.0064E − 09 4.1382E − 10 −5.9035E − 10
�⊤
≈ o.

See figure 5 for a collection of equilibria in this economy.

6 Transportation Cost and Inter-Regional Trade

Let t ≥ 1 be the units of commodity required to be shipped from one region to receive

one unit of it in the other region. In the previous section, we assumed that t →∞ so

that there is no point in engaging in inter-regional trades. Trading beyond the regional

boundaries is effectively equivalent to deploying first four columns of A, i.e., disposal of

commodities for free. Let us now consider two other cases: t > 1, and t = 1.

When t > 1, the inter-regional equilibria remain the same as above. No one engages

in inter-regional trades in this case either. Such trades only incur transport costs with no

gain in return. Technology is not heterogeneous by region to warrant comparative advan-

tages, nor does it exhibit increasing returns to scale to warrant exclusive production in

a particular region. Consequently, imported goods are always priced higher than locally

produced goods and thus no one buys them.

By the same token, no one ships his endowment outside his residence even if it is

mobile. If he did, it would only reduce his income and consumption level for nothing in

return. Unlike transfer of earnings through a bank, transfer of physical endowments does

incur costs.
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(a) π1 = .159422. (b) π1 = .250000.

(c) π1 = .275136.

Figure 5.

When t = 1, E2R reduces to E1R in effect, with a token presence of λ. The location of

production or consumption is of no consequence due to perfect mobility. As such, any λ

constitutes an inter-regional equilibrium. Moreover, endowment mobility as previously

discussed in section 4 makes no difference, as there is no way to tell regions apart, which

become purely ornamental in the absence of transport cost.

7 Agglomeration and Consumer Types

7.1 Economy with Two Types

We have demonstrated that agglomeration occurs in a four-commodity, four-type setting.

Let us denote the number of commodities by I and the number of types by J . This

section examines the role I and J play in forming agglomeration. We will start with a

downscaled version with I = 2, J = 2 and rank(A) = 1. In particular, we isolate two

commodities and two types from the preceding economy, and replace A with a 2 × 1

vector Â with one positive and one negative entry. As in section 2, firms earn zero profit
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so that π⊤a Â= π⊤b Â= 0.5 Consequently, πa = πb. Since π does not differ by region, neither

does x − 4 =·· z, a 2 × 2 individual net demand matrix, nor does u j(x j) for any j. The

argument so far does not involve any λ. As such, inter-regional utility equalization does

not impose any restrictions on λ.

Material balance implies zλ⊤ = Â2a and z(1− λ⊤) = Â2b in respective regions. Com-

bined,
�

z −Â o

z o Â

��

λ⊤

Y

�

=

�

o

z1

�

, (9)

where Y ··= [2a 2b]⊤ (note that z is independent from λ). If the first matrix was invertible,

distribution λ would be unique. However, it is not full rank. Thus, there are infinitely

many solutions to (9). Intuitively, constant returns to scale enable firms to counter any

distribution λ by simply rescaling their production level to meet the regional demand zλ⊤

and z(1−λ⊤) with no footprints on the price.

The individual budget constraint is simply π · z = 0. Consumers do not receive any

dividends from firms because they do not make any profit. Therefore, the budget con-

straints do not impose any restrictions on λ either.

All in all, this economy supports any λ ∈ [0, 1]2 in equilibrium. Linear production

plays two contrasting roles in this. On the one hand, it adds rigidity to the economy: it

single-handedly dictates what the equilibrium price is. It does not require any involve-

ment of demand (and by extension, λ) because Â alone determines the unique direction

of the price vector. On the other hand, it adds flexibility to the economy: because it is

linear, firms can easily scale up or down their production to meet the regional demand

that varies with λ, without affecting the price, which itself is of linear technology’s own

making as explained above.

The original example with I = J = 4 compares to the current example with I = J = 2

as follows: In section 2, zero-profit condition only narrows the candidate prices down

to infinitely many vectors in Π⊥. Here, in contrast, such π is unique (up to a scalar

multiple). As described above, once Â is given, z is uniquely determined, as does π(=
�

1
7

6
7

�⊤
). Moreover, since Â does not differ by region, neither does z.

By contrast, section 2 cannot be written as a linear system because Â alone cannot

narrow π down to a single vector and thus z involves π in it rather than being treated

as a constant as in (9). This in turn helps reduce the degree of freedom to pin down λ.

Distribution
�

Σλ j Σ(1−λ j)
�

thus obtained features agglomeration.6

5Consumers are free to trade directly with each other at a rate of exchange different from such π, but one
of the parties involved in such exchange will be better off trading with a firm at π anyway.

6Except few instances referred to in section 3.3.
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7.2 Economy with Many Types

Now let us consider a general case with I(≥ 3), J ≥ I , and R(≥ 2) regions. Preferences are

represented by u j

�

x j

�

=
∑I

i=1α
i
jlog x i

j , with
∑I

i=1α
i
j = 1 for any j. As before, denote the

set of orthogonal price vector by Π⊥ ··=
�

π ∈ RI
++ : π⊤A= o
	

. Since A is not location variant,

neither is Π⊥. If the equilibrium price vector differs by region, that is due exclusively to the

difference in the composition of consumer types in each region. Firms do not have ability

to break symmetry, nor do they benefit from a thicker market, because their production is

simply scalable. Thus, they cannot and do not initiate or promote agglomeration. Rather,

they will unassumingly meet the net aggregate demand whatever λ turns out to be. In

essence, they exist simply 1) to set the rate of exchange, that is, to narrow the set of

price vectors from RI
++ down to Π⊥ without consumers’ involvement; and 2) to convert

commodity i into i′ as needed to align every type’s marginal rate of substitution with one

of π ∈ Π⊥ selected.

First, we consider the case where inter-regional transport of commodity is prohibitively

expensive, namely t →∞, and endowments are not mobile. Absent inter-regional trade,

each market clears region by region so that there are IR market-clearing conditions. In

addition, free mobility of consumers implies J(R− 1) utility-equalization conditions, un-

less λ j, r = 0 in some region. That is, 3 j
�

πr , 4 j

�

··=
∑I

i=1α
i
jlog

�

αi
jπr ·4 j

πi
r

�

= 3 j
�

πs, 4 j

�

for each j in any region r and s. Since α is not location variant, this condition can be

written simply as

log
�

πr ·4 j

�

−
∑

i

αi
jlogπi

r = 3̄, (10)

where 3̄ is a countrywide constant.

An increase in π1 unfolds 2I distinct effects that combined determine the change in

3 j(·). The first I effects manifest through the first term in (10). The consumer’s income

π ·4 j changes with π1. His income from 41
j increases, whereas his income from 4i

j (i ≥ 2)

may or may not increase, depending on whether πi increases or decreases with π1 inside

Π⊥. In total, there are I income effects to track.

The remaining I effects manifest through the second term in (10). The consumer will

shift his consumption of commodity 1 to other commodities, say i = 2, to deflect the price

increase. Nevertheless, x1
j may increase in the end. Prices π2, · · · ,πI change as well to

keep π inside Π⊥. If π2 is increasing in π1, he may shift his consumption from commodity

2 back to 1. In total, there are I substitution effects to track.

Take Kehoe’s model for example. In this case, income effects are simpler than the case

in general because type j’s only source of income is endowment i = j. Thus, each type

experiences one income effect rather than I(= 4) of them. Consequently, their income is

simply monotone in π1 as shown in figure 6(b). Along with substitution effects, in total,

each type registers five effects rather than 2I(= 8) effects.
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Furthermore, 33(·) and 34(·) are strictly monotone in π1 (cf. figure 1). Since π3 is

increasing in π1, type 3’s income is increasing in π1. Thus, its utility level will increase

with π1 for income effect. In particular, its income effect on commodity 1 exceeds its

substitution effect (cf. figure 2(a)). For type 4, 34(·) is decreasing in π1 because its only

source of income is 44
4, whose price is decreasing in π1. In contrast, a change in π1 does

not produce income effect for type 2 because she is endowed with a numéraire: Unlike

other types, her income is always π242
2 regardless of the value π1 takes. Nevertheless, her

utility level changes with π1 for various substitution effects combined.

In general, the overall change in 3 j(·) is indeterminate without imposing further as-

sumptions. Appendix A.3 presents one specific environment where every region shares

the same price for example.

Material balance in region r implies

x (πr , 4)λ
⊤
r = 4µ

⊤
r + A2r , (11)

where x(πr , 4) is a Marshallian demand matrix whose i- j entry is
αi

jπr ·4 j

πi
r

, λr ··=
�

λ1, r · · · λ j, r · · · λJ , r

�

is a fraction of each type who resides in region r, 4 is a ma-

trix whose i- j entry denotes the amount of commodity i that type j is endowed with, and

µr ··=
�

µ1, r · · · µ j, r · · · µJ , r

�

is a fraction of type j’s endowments allocated to region

r. If µ j, r =
1
R for any j and r, then endowments are evenly allocated. As in section 3.3, if

E1R has an equilibrium, there is at least one class of equilibria in R-region economy of the

scalable form λr = λ̄r1 with
∑

λ̄r = 1. This trivially includes agglomeration if λ̄r ,
1
R in

at least two regions out of R regions.

Outside this, non-scalable equilibria may exist depending on whether A and µ can

meet the net regional demand in (11) in every region. If there is λr(, λ̄r1) that satisfies

xλ⊤r = xλ̄r1 in every region, then there is an equilibrium that features an uneven presence

of each type. Take some region r for instance. If λ1, r is lower than λ̄r by ∆λ1, r , so long

as λ2, r is above λ̄r to make up for lost x1, r∆λ1, r with x2, r∆λ2, r , this will be an intra-

regional equilibrium. The difference ∆λ1, r and ∆λ2, r will be transferred to λ1, s and λ2, s

in another region s.7 If the same compensation above can take place in region s as well,

then this will furthermore be an inter-regional equilibrium.

In general, x2, r is not equal to x1, r . Therefore ∆λ2, r may not be equal to −∆λ1, r .

For instance, if x1, r is small for most of the commodities and x2, r is large, ∆λ2, r may

be smaller than −∆λ1, r while still keeping to the same xλ⊤r in aggregate. Consequently,

λ may feature, not trivially, an unequal proportion of each type. The variance stems

exclusively from the heterogeneity in preferences among different types rather than re-

gional difference in productivity (which is nonexistent in our model). Convex preferences

require the presence of a similar portion of each commodity. This is aided by having the

7Or split and resettled in multiple regions depending on where λ̄r′ stands in regions r ′ , r.
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right combination of types.8

As in section 3, rendering 4 mobile makes little difference. Mobile 4 only augments

A in effect: demand x is served through A and 4, with the second source of supply

now endogenized. Since supply is not a motivating force behind agglomeration (it only

narrows down the set of equilibrium prices), the storyline above remains intact with or

without mobile endowments.

Now consider the case where inter-regional trade is not prohibitively expensive. If

π ∈ Π⊥ can be written as a function of one of the prices (cf. appendix A.3) and 3 j(·) is

strictly monotone for at least one type, no trade will occur among regions where the said

type is present because each region will have an identical price vector. Otherwise, it may

differ from region to region.

8 Conclusions

Agglomeration is conventionally thought of as a production-driven phenomenon. Scale

economies favor a concentration of inputs within a close proximity.

Barring scale economies, can there still be agglomeration? To examine whether ag-

glomeration can be driven by consumption rather than production, we worked on a

general equilibrium model with constant returns to scale proposed by Kehoe [Keh85].

We established that agglomeration does not necessitate the presence of scale economies.

Heterogeneity among consumers creates asymmetry in population distribution.

We are not intent on overriding the existing knowledge about production-oriented

agglomeration. Rather, we cast light on the role consumption plays in generating ag-

glomeration, which combined should illustrate a more realistic mechanism behind ag-

glomeration.

As did Kehoe [Keh85], we worked on a specific class of preferences in the interest of

tractability. We defer to future research to reproduce our results in a general setting.

8This would be further aided by having the right combination of endowments that complement the com-
modities in short supply if endowments were mobile.
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A Appendix

A.1 Net Demand

To further understand net demand in figure 2 let us consider consumer 3 in detail for

example. He is endowed with 43
3 = 400 units of commodity 3, whose price is increasing

in π1 (cf. figure 6(a)). As such, his income increases with π1 (cf. figure 6(b)). His net

demand for commodity 1, x1
3 − 4

1
3 is traced by the green line in figure 2(a). His income

effect on commodity 1 exceeds the substitution effect. His net demand for commodity 1

grows with π1 as a result. On the contrary, his net demand for commodity 4, as appearing

in figure 2(d), diminishes with π4 (which itself is decreasing in π1). In this case, his

income effect on commodity 4 falls behind the substitution effect. Indeed his expenditure

share of commodity 4 is only α4
3 = .0025 and thus the effect of income growth is easily

trumped by realignment of his consumption towards commodity 1 and 2. On the other

hand, his net demand for commodity 3, as depicted by the flat green line in figure 2(c),

remains invariable. His only source of income is commodity 3 and thus the effect of a

change in π3 on his demand for commodity 3 is exactly offset by the associated change in

his income. The same argument goes for commodity 1 for consumer 1, commodity 2 for

consumer 2, and commodity 4 for consumer 4. E1R features more than one equilibrium in

part because of the conflicting gradients in figures 2(a) and 2(b).
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Figure 6.

A.2 List of Inter-Regional Equilibria

A complete list of inter-regional equilibria found is available here , three of which we

have already described in section 3.1. An inter-regional equilibrium takes one of three

prices: π1 = .250000, .159422 or .275136 ∈ Π1R. Figure 7 sorts the equilibria according to
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these prices and plots population distribution λ, and activity level 2a and 2b under each

price.

In general, a similar proportion of type 3 and 4 sort into the same region. This is

due in part to a large excess supply of commodity 3 that type-3 consumers have, and

similarly to a large excess supply of commodity 4 that type-4 consumers have, which

heavily drags down the excess demand for these commodities. Without co-presence of

two types, either commodity 3 or 4 will have a large excess in supply. They both can be

used as an input to produce commodity 1 or 2.9 However, commodity 3 cannot be used

to produce commodity 4, and neither can commodity 4 be used to produce commodity

3. Thus, a region can even out the supply of commodity 1, 2 and 3; or 1, 2 and 4; but

not all four of them at once through production activities. Since preferences are convex,

imbalance between commodity 3 and 4 (and by extension, type 3 and 4) does not last

and will be rectified through inter-regional migration. Therefore, each region tends to

have a roughly equal portion of type 3 and 4. Indeed, 25 and 26 are positively correlated

in order to produce both commodity 1 and 2 with the aim of providing a full range of

commodities in proportion.

As for type 1 and 2, their distribution depends on the equilibrium price. When π1 =

.159422, they tend to avoid each other, but co-locate with type 3 and 4. When π1 =

.250000, they tend to co-locate with each other, but avoid type 3 and 4. When π1 =

.275136, they tend to co-locate with type 3 and 4, but they neither co-locate with nor

avoid each other. As such, their pattern of distribution is not as definitive as type 3 and

4 as above. This is in part because type 1 and 2 are endowed with commodities that can

be produced. Their lack of presence can easily be made up for by other types through

production of commodity 1 and 2. In addition, their excess demand x1
1 − 4

1
1 and x2

2 − 4
2
2

are smaller in magnitude than x3
3 − 4

3
3 and x4

4 − 4
4
4 (cf. figure 2). Thus their presence, or

the lack thereof, does not have as significant a bearing as type 3 and 4. This renders their

distribution more fluid and sensitive to the price than type 3 and 4’s.

A.3 Conditions for a Universal Price

Let us consider a specific example of economy discussed in section 7.2, where every region

shares a single price. Assume that rank(A) = I − 2. This enables us to write π ∈ Π⊥ as a

function of one of the non-numéraire prices, say π1, as in Kehoe’s example. Let us further

assume that 31
�

π1, 41

�

is strictly monotone in π1. In what follows we consider an interior

solution λ1, r > 0 for any r, i.e., type 1 is present in all regions.

In equilibrium, 31(π1
r , 41) = 3̄. Since 31(·) is strictly monotone in π1

r , π1
r = 3

−1
1 (3̄, 41).

The right-hand side is independent of region. Therefore, π1 has to be the same in any

region, or else 31(·) would differ from region to region. Note that we only require one

9Note that activity level 2a and 2b do pick up where type-3 and -4 consumers are in figure 7.
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type to have a strictly monotone value function and be present in every region in order

to have a location-invariant price: Type 2 may have 32(π1
r , 42) = 32(π1

s , 42) with some

π1
r , π

1
s , but this will induce migration among type 1 and thus will not be supported in

equilibrium. Type 2 may also be absent in some regions as well without any substantive

influence on the equilibrium price. Furthermore, the equilibrium price will be the same

as its single-region counterpart E1R as established in proposition 3.1. We will suppress r

from πr and xr unless necessary because the price and the corresponding demand will

be uniform across regions.
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(a) π1 = .159422.

(b) π1 = .250000.

(c) π1 = .275136.

Figure 7. Equilibrium distribution λ and activity level 2 under each price. The figure farthest
to the left plots vector

�

λ1 λ2

�

and the figure next to it plots remaining entries
�

λ3 λ4

�

. Each
equilibrium is colored according to its λ4 value in order to show correspondence among four
figures. The remaining two figures to the right plot a vector of activity levels

�

25a 26a

�

in region a

and
�

25b 26b

�

in b. For instance, in figure 7(b), a low λ4 (in blue) is associated with a low λ3, and
a high λ1 and λ2. In this case, type 1 and 2 sort into region a, and type 3 and 4 sort into region b.
Production levels are low in region a and high in region b; region a deploys the fifth column of A

more than the sixth, and vice versa in region b.
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