EN

イベント

カテゴリ
日時
タイトル
報告者/場所
詳細
2024/01/18 (木)
17:00〜17:30
[修士論文報告会 / Master's Papers Presentations]
Dynamic Many-to-One Matching under Constraints
Rui He (Kyoto University)
本館1階会議室
2024/01/12 (金)
13:00〜17:00
Chia-Hui Chen (Kyoto University), Tetsushi Horie (Gakushuin University), Tomohiro Iguchi (MOF), Taro Ohno (MOF), Yukiko Saito (Waseda University), Naoki Tani (Kyoto University)
Room 105, KIER main building, Kyoto University(京都大学 経済研究所 本館105第二共同研究室)
2024/01/11 (木)
17:00〜18:30
Compensation vs. Reinforcement: using an RCT to estimate Parental Aversion to Inequality in Offspring
Hyunjae KANG (Kyoto University)
本館1階会議室
2023/12/28 (木)
17:00〜18:30
Product Line and Multi-homing
(Co-authored with Akifumi Ishihara)
大木 良子 (法政大学)
本館1階会議室/オンライン開催
2023/12/21 (木)
17:00〜18:30
Takeharu Sogo (SKEMA Business School)
本館1階会議室
2023/12/14 (木)
17:00〜18:30
Costly Advertising and Information Congestion: Insights from Pigou's Successors
Ryoji Jinushi (Seikei University)
本館1階会議室
2023/12/07 (木)
15:00〜16:30
In Hwan Jo (National University of Singapore)
京都大学経済研究所 北館N202講義室
2023/11/30 (木)
17:00〜18:30
Good biases in misspecified learning
Jonathan Newton (Kyoto University)
本館1階会議室またはオンライン開催
2023/11/29 (水)
16:45〜18:15
Self-normalization for time series with complex structures
Stanislav Volgushev (University of Toronto)
第一共同研究室(4F北側)

Abstract:
Self-normalization if a tuning free inference method for time series that avoids long-run variance estimation. This talk will introduce the basic idea behind self-normalization and give intuition on when this method is applicable. We will also discuss the usage of self-normalization in two specific settings: change-point detection in the mean of high-dimensional time series and testing relevant hypotheses in functional time series.

2023/11/22 (水)
16:30〜18:00
FINITE SAMPLE INFERENCE IN INCOMPLETE MODELS
Marc Henry (The Pennsylvania State University)
第一共同研究室(4F北側)

Abstract. We propose confidence regions for the parameters of incomplete models
with exact coverage of the true parameter in finite samples. Our confidence region
inverts a test, which generalizes Monte Carlo tests to incomplete models. The test
statistic is a discrete analogue of a new optimal transport characterization of the
sharp identified region. Both test statistic and critical values rely on simulation
drawn from the distribution of latent variables and are computed using solutions
to discrete optimal transport, hence linear programming problems. We also pro-
pose a fast preliminary search in the parameter space with an alternative, more
conservative yet consistent test, based on a parameter free critical value.

TOP