JP

Events

Category
Date
Title
Presenter/Location
Details
2026/03/27 Fri
16:30〜18:00
日本の都市化の源流:前近代における都市の発展、規模と分布
高島正憲(関西学院大学)
京都大学経済研究所本館1階 106 会議室
2026/02/27 Fri
16:30〜18:00
Optimal minimum wages (with G. Ahlfeldt, T. Seidel, and D. Roth)
Jens Wrona(University of Duisburg-Essen)
京都大学経済研究所本館1階 106 会議室
2026/02/05 Thu
17:00〜18:30
TBA
Lester Chan (SUSTech Business School)
本館1階会議室またはオンライン開催
2026/01/29 Thu
17:00〜18:30
TBA
Filippo Massari (University of Bologna)
本館1階会議室またはオンライン開催
2026/01/23 Fri
16:30〜18:00
TBA
朱連明(大阪大学)
京都大学経済研究所本館1階 106 会議室
2026/01/08 Thu
17:00〜18:30
Accountable Voting (with Takako Fujiwara-Greve, Yoko Kawada, and Yuta Nakamura)
Noriaki Okamoto (Meiji Gakuin University)
本館1階会議室またはオンライン開催
2025/12/11 Thu
15:45〜17:15
Directors Discussing Diversity
[経済学研究科経営学セミナーと共催]
Renée B Adams (Oxford Saïd Business School)
本館1階会議室またはオンライン開催
2025/12/04 Thu
17:00〜18:30
TBA
Kim-Sau Chung (Hong Kong Baptist University)
本館1階会議室またはオンライン開催
2025/11/28 Fri
10:30〜12:35
Yuta Toyama (Waseda University)
Katalin Springel (HEC Montréal)
本館1階会議室

10:30-11:30 Yuta Toyama (Waseda Univesity), “Designing Nonlinear Electricity Pricing with Misperception: Evidence from Free Electricity Policy” (with Ngawang Dendup)
11:35-12:35 Katalin Springel (HEC Montréal)), “Pass-through and Incidence of U.S. Electric Vehicle Purchase Incentives” (with David Scolari and Jing Li)

2025/11/26 Wed
16:45〜18:15
Semiparametric Bayesian Difference-in-Differences (with Christoph Breunig and Ruixuan Liu)
Zhengfei Yu (筑波大学) 
第一共同研究室(4F 北側)

Abstract: This paper develops semiparametric Bayesian methods for estimating the average treatment effect on the treated (ATT) in difference-in-differences (DiD) designs. We propose two Bayesian procedures with frequentist validity. The first places a Gaussian process prior on the conditional mean function of the control group. The second is a double-robust Bayesian approach that adjusts the prior on the conditional mean function and then corrects the posterior distribution of the ATT. We establish a semiparametric Bernstein¨Von Mises theorem, showing the asymptotic equivalence between our Bayesian procedures and efficient frequentist estimators. For the second approach, the result holds under double-robust smoothness conditions: the lack of smoothness in the conditional mean function can be compensated by high regularity of the propensity score, and vice versa. Monte Carlo simulations and an empirical application demonstrate strong finite-sample performance of our Bayesian DiD methods. We also extend the Bayesian framework to staggered DiD designs.

TOP