EN

イベント

カテゴリ
日時
タイトル
報告者/場所
詳細
2022/04/14 (木)
17:00〜18:30
Efficient Allocations under Ambiguous Model Uncertainty (with Sujoy Mukerji, Frank Riedel and Jean-Marc Tallon)
Chiaki Hara (Kyoto University)
本館1階会議室/オンライン開催
2022/04/07 (木)
17:00〜18:30
Efficiency and strategy-proofness in the tie-breaker-augmented object allocation problem with discrete payments (with Shigehiro Serizawa)
Ryosuke Sakai (Kyoto University)
本館1階会議室/オンライン開催
2022/03/23 (水)
16:30〜18:00
坂口 翔政(Brown University)
オンライン開催 (Online Seminar)

応用ミクロ経済学セミナーと共催
https://www.econ.kyoto-u.ac.jp/about/seminars/seminars-cat/seminar-micro/
(登録者のみ参加可能)

2022/03/17 (木)
17:00〜18:30
Cheap Talk with Outside Options (with Kaiwen Leong)
Saori Chiba (Kyoto Sangyo University)
本館1階会議室/オンライン開催
2022/03/16 (水)
16:30〜18:00
Time varying partial adjustment model with application to intraday price discovery
大屋 幸輔(大阪大学)
オンライン開催 (Online Seminar)

(登録者のみ参加可能)

2022/02/24 (木)
17:00〜18:30
Inácio Bó (Southwestern University of Finance and Economics)
オンライン開催
2022/02/18 (金)
13:30〜18:50
都市群及び都市内集積に関する構造モデル分析
高山雄貴(金沢大学)
森知也(京都大学)
オンライン開催
テーマ:都市群モデル及び都心形成モデルを用いた構造モデル分析
  1. 13:30-14:30:「都市集積に関する事実と理論開発の現状・統計予測モデルの応用可能性」森知也(京都大学)

  2. 14:40-16:40:「都市群モデルを用いた構造モデル分析」高山雄貴(金沢大学)

  3. 16:50-18:50:「通勤を含む都心形成モデルを用いた構造モデル分析」高山雄貴(金沢大学)

2022/02/17 (木)
17:00〜18:30
Yuta Takahashi (Hitotsubashi University)
オンライン開催
2022/02/09 (水)
18:30〜20:00
Xiaohua Yu (Georg-August-University Göttingen)
オンライン開催 (Online Seminar)

主催 TEDS (TRANSDISCIPLINARY ECONOMETRICS & DATA SCIENCE SEMINAR)
https://teds-datascience.github.io/seminars/
共催 共同利用・共同研究拠点プロジェクト研究 (Joint Research Program of KIER, Kyoto University)
共催 計量経済学セミナー(Econometrics Seminar of KIER, Kyoto University)
(登録者のみ参加可能)

2022/02/04 (金)
16:30〜18:00
Scalable spatiotemporal regression model based on Moran's eigenvectors (with Y. Asami, H. Baba, C. Shimizu)
西颯人(東京大学・院)
オンライン開催

要旨:We propose a scalable regression model with spatially and temporally varying co- efficients based on Moran’s eigenvectors and efficient computation algorithms. Regression models that consider spatiotemporal non-stationarity are important because many real-world datasets, such as housing prices, are tied to geographical and tempo- ral locations. Although geographically weighted regression (GWR) and its variants are widely used to model spatially varying coefficients, they cannot handle large datasets. We employ an alternative modelling method of spatially varying coefficients based on Moran’s eigenvectors and extend it to handle large spatiotemporal datasets. Additionally, we introduce a scalable learning algorithm that exploits the model structures based on the Kalman filter and the expectation—maximisation algorithm. Our scalable algorithm is efficient even for large datasets that cannot be handled by GWR. To evaluate the performance of the proposed model, we applied it to a housing market dataset collected in Tokyo, Japan. The results show that the predictive performance of the proposed model is comparable to that of GWR while increasing the computational speed. Moreover, larger datasets can accelerate the algorithm convergence.

TOP