EN

イベント

カテゴリ
日時
タイトル
報告者/場所
詳細
2025/07/30 (水)
16:45〜18:15
TBA
海道宏明(ボストン大学)
第一共同研究室(4F 北側)
2025/07/24 (木)
17:00〜18:30
TBA
Hülya Eraslan (Rice University)
本館1階会議室またはオンライン開催
2025/07/10 (木)
17:00〜18:30
TBA
Daisuke Hirata (Doshisha University)
本館1階会議室またはオンライン開催
2025/07/03 (木)
17:00〜18:30
TBA
Chengsi Wang (Monash Universituy)
本館1階会議室またはオンライン開催
2025/07/02 (水)
16:45〜18:15
TBA
小池 祐太(東京大学)
第一共同研究室(4F 北側)
2025/06/27 (金)
16:00〜18:00
Connecting to electricity: Technical change and regional development
小谷厚起(東京大学・院)
京都大学経済研究所本館1階 106 会議室
2025/06/12 (木)
17:00〜18:30
Takashi Kunimoto (Singapore Management University)
本館1階会議室またはオンライン開催
2025/05/30 (金)
10:30〜12:00
[応用ミクロ経済学セミナーと共催]
TBA
Juan Pantano (University or Arizona)
TBA
2025/05/29 (木)
17:00〜18:30
TBA
Patrick DeJarnette (Waseda University)
本館1階会議室またはオンライン開催
2025/05/28 (水)
16:45〜18:15
Causal inference with auxiliary observations
太田 悠太(慶應義塾大学)
第一共同研究室(4F 北側)

要旨: In the evaluation of social programs, it is often difficult to conduct randomized controlled experiments due to non-compliance; therefore the local average treatment effect (LATE) is commonly applied. However, the LATE identifies the average treatment effect only for a subpopulation known as compliers and requires the monotonicity assumption. Given these limitations of the LATE, this paper proposes a nonparametric strategy to identify the causal effects for larger populations (such as the ATT and ATE) and to remove the monotonicity assumption in the cases of non-compliance. Our strategy utilizes two types of auxiliary observations, one is an outcome before assignment and the other is a treatment before assignment. These observations do not require specially designed experiments, and are likely to be observed in baseline surveys of the standard experiment or panel data. We show the results for the random assignment and those of multiply robust representations in the case where the random assignment is violated. We then present details of the GMM estimation and testing methods which utilize over-identified restrictions. The proposed strategy is illustrated by empirical examples which revisit the studies by Thornton (2008), Gerber et al. (2009), and Beam (2016), as well as the data set from the Oregon Health Insurance Experiment and that from an experimental data on marketing in a private sector.

TOP