JP

Events

Category
Date
Title
Presenter/Location
Details
2020/07/31 Fri
15:00〜16:30
Full information maximum likelihood estimation of quantitative spatial economics model
瀬木俊輔(京都大学)
オンライン開催

要旨:本研究は定量的空間経済モデル(quantitative spatial economics models)のパラメータを完全情報最尤推定(full information maximum likelihood, FIML)によって推定する新しい手法を提案する。内生変数の観測値から外生的な構造的残差(structural residuals)を一意に求められるモデルに対して、提案手法は適用可能である。構造的残差が確率分布に従うという仮定の下で、対数尤度関数を構築できる。提案手法は操作変数を必要としない。提案手法は、クロスセクションデータとパネルデータの双方に適用可能である。提案手法は、多くの場合において、パラメータの推定値を空間均衡が安定になる範囲に制約すると考えられる。本研究は、提案手法を二種類のデータに対して適用することにより、その有効性を確認する。一つ目は、既知のパラメータを有するモデルから発生させた実験データであり、二つ目は、1975年から2015年にかけての日本国内の観測データである。

2020/07/30 Thu
17:00〜18:00
Diversification and Decentralization (with Ming Li)
Hitoshi Sadakane(Kyoto University)
オンライン開催

Econometric Society World Congress 報告練習会

2020/07/09 Thu
17:00〜18:30
Social discount rate: spaces for agreement
Can we have a sensible definition of collective risk aversion?
Takashi Hayashi (University of Glasgow)
オンライン開催
2020/07/02 Thu
17:00〜18:30
Value of Middle Managers
Shintaro Miura (Kanagawa University)
オンライン開催
2020/06/25 Thu
17:00〜18:30
The Equilibrium Existence Duality
Alex Teytelboym (Oxford University)
オンライン開催
2020/05/21 Thu
17:00〜18:30
Competitive Equilibria in Matching Models with Financial Constraints (with P. Jean-Jacques Herings)
Yu Zhou (Kyoto University)
オンライン開催
2020/05/07 Thu
17:00〜18:30
Bruno Strulovici (Northwestern University)
オンライン開催
2020/03/11 Wed
10:20〜16:45
(開催中止) Workshop on Recent Developments in Econometric Theory and Its Applications 2020
北館1階N101講義室

AY2019

2020/03/04 Wed
16:30〜18:00
Large Sample Justifications for the Bayesian Empirical Likelihood
末石 直也 (神戸大学)
第一共同研究室(4F北側)
2020/02/14 Fri
16:30〜18:00
General equilibrium theory of land
藤田昌久(京都大学)
京都大学経済研究所本館1階 第二共同研究室

要旨:Land is everywhere, being the substratum of our existence. In addition, land is intimately linked to the dual concept of location in human activity. Together, land and location are essential ingredients for the lives of individuals as well as for national economies. Today, there exist two different approaches to incorporating land and location into a general equilibrium theory. Dating from the classic work of von Thünen (1826), a rich variety of land-location density models have been developed. In a density model, a continuum of agents is distributed over a continuous location space. Given that simple calculus can be used in the analysis, these density models continue even today to be the “workhorse” of urban economics and location theory. However, the behavioral meaning of each agent occupying an infinitesimal “density of land” has long been in question. Given this situation, a radically new approach, called the σ-field approach, was developed in the mid 1980s for modeling land in a general equilibrium framework. In this approach: (i) the totality of land, L, is specified as a subset of R^2, (ii) all possible land parcels in L are given by the σ-field of Lebesgue measurable subsets of L, and (iii) each of a finite number of agents is postulated to choose one such parcel . Starting with Berliant (1985), increasingly more sophisticated σ-field models of land have been developed. Given these two different approaches to modeling land within general equilibrium framework, several attempts have thus far been proposed for bridging the gap between them. But while a systematic study of the relationship between density models and σ-field models remains to be completed, the clarification of this relationship could open a new horizon toward a general equilibrium theory of land.

TOP