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Abstract

In this paper, we define additive dyadic social interactions games (ADG),
in which each player cares not only about the selected action, but also about
interactions with other players, especially those who choose the same action.
This class of games includes alliance formation games, network games, and dis-
crete choice problems with network externalities. While it is known that games
in the ADG class admit a pure strategy Nash equilibrium that is a maximizer of
the game’s potential, the potential approach does not always apply if all coali-
tional deviations are allowed. We then introduce a novel notion of a strong
landscape equilibrium, which relies on a limited scope of coalitional deviations.
We show the existence of a strong landscape equilibrium for a class of basic
additive dyadic social interactions games (BADG), even though a strong Nash
equilibrium may fail to exist. Somewhat surprisingly, a potential-maximizing
strong landscape equilibrium is not always a strong Nash equilibrium even if
the set of the latter is nonempty. We also provide applications and extensions
of our results.
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1 Introduction

In this paper we conduct an equilibrium analysis of games with social interactions
where actions taken by each player affect not only their own outcome but also that
of other players. ! The impact of social interactions is evident in a wide range
of individual decisions. These include making residential choices (Schelling, 1969),
deciding to become a member of a club (Dixit, 2003), quitting smoking (Harris and
Lopez-Varcarcel, 2004), engaging in criminal activities (Glaeser et al. 1996), joining
a side in international conflict (Altfeld and Bueno de Mesquita, 1979, Axelrod and
Bennett, 1993), or considering acquiring a non-native language (Brock et al., 2025).
A collective action problem has been examined by Schelling (1978), who considered
a setting where the participation of an individual in a protest action depends on the
fraction of the population engaged in the action.

More specifically, we consider a society with n individuals and a set of m feasible
actions. When an individual i selects an action k, her payoff is given by the sum of

n terms: -

e (1)

J#i

where the first term v}, represents the intrinsic payoff derived by i from selecting action
k, and U;]l is the benefit to player ¢ from her interaction with j when j selects action
[. We further impose a standard symmetry assumption: for each pair of players ¢ and
j, and two actions k and [, the benefit that ¢ choosing k derived from j choosing [, is
equal to the dyadic interaction payoff of j choosing k derives from ¢ when she selects
[.

Note that if the payoff contained only the first term in (1), every individual would
simply choose an action that maximizes her intrinsic payoff. However, in general, the
presence of n — 1 other terms that represent the benefit to individual 7 derived from
her social interactions with other players could alter i’s action choice. To reflect the
additive and dyadic nature of our payoff structure that relies on pairwise interactions,
we shall call the class of these social interactions games Additive Dyadic Games and
refer to it as ADG.

We would like to point out that most of the contributions cited in this paper
address the existence and characterization of pure-strategy Nash equilibria for several
subclasses of ADG (Ballester et al., 2006; Axelrod and Bennett, 1993; Soetevent and
Kooreman, 2007), and even for the entire set of ADG (Le Breton and Weber, 2011).
In many cases, the existence proof relies on the construction of a potential function
on the set of profiles of actions whose local maximizers are Nash equilibria of the
game (Monderer and Shapley, 1996). However, the number of pure-strategy Nash
equilibria could be very large. For example, Dower et al. (2024) identified 86 pure-
strategy Nash equilibria in an ADG game with 46 players and two feasible actions.

I'Thus, while players obviously care about the chosen action, they are also mindful of externalities
imposed by other players on a bilateral basis, including the composition of the group of players
choosing the same action.



Thus, following Monderer and Shapley (1996), several researchers use the potential-
maximizing Nash equilibrium as a natural refinement selection from the equilibrium
set. Another refinement route utilized in this paper is based on allowing action
coordination, which plays an important role in social externality settings.

As we alluded to above, the ADG class contains the family of network games
examined in Ballester et al. (2006). They assume that a player’s payoff function is
quadratic:

u'(zh, ..., a") = a'z" + %b(:zci)2 + Zpijxixj,
J#i
where 2 € R, is player i’s effort level, and a’, b, and p¥ are parameters. Here,
the matrix (p¥ )i,jzl,‘..,n is a symmetric matrix that describes the strength of social
interaction for each pair of players i and j. The sign of p” can be positive or negative.
Ballester et al. (2006) show that if an interior Nash equilibrium of this game exists, it
is unique and is described by a set of linear equations.? Now, letting actions k and [
represent the levels of effort e, e; € R, exerted by players ¢ and j choosing actions k

and [, respectively, we can treat their network game as an ADG with payoff function
(1) with:

vi = d'ey+ %bei,
’U]chl = pijekel.

Thus, the fact that their game belongs to the class of ADG implies that the existence
of a Nash equilibrium of the game does not rely on the continuous single-dimensional
action space.

Another subclass of ADG is represented by a discrete choice problem, where social
interactions are generated by the impact of players choosing the same alternative (see
Brock and Durlauf, 2001, 2002, and Soetevent and Kooreman, 2007), who study
a two-stage game on networks that assigns links between players. In their setting,
action k corresponds to an activity (alternative) each player can choose, and the
dyadic social interaction vzjl is local in the sense that it is in effect only within the
same activity:

kit 0  otherwise.
., 1s a propensity matriz that describes how well each pair
i and j get along. Again, p” can be positive or negative, but is symmetric p¥ = p’’.
Thus, in selecting their activities, players care not only about preferences over activ-
ities, but also about the composition of those players who choose the same activities.
In the one-player setting with n = 1, our model corresponds to the celebrated random
utility model used extensively in the standard econometrics of discrete choice models
(McFadden, 1981, Manski, 2000). In that respect, the ADG class can just be viewed

Ly

where the matrix (p¥). ;

2Under further assumptions on the parameters, Ballester et al. (2006) explore the properties of
equilibrium as a function of the matrix (plj),_,_



as an n-player extension of the random utility model with Nash equilibrium and its
refinements replacing utility maximization.

Last but not least, note that various facets of international alliances such as bloc
formation in a conflict (Altfeld and Bueno de Mesquita, 1979) or voting behavior
in the UN Assembly (Russett, 1966) constitute potential applications of the ADG
framework. In fact, Axelrod and Bennett (1993), and Bennett (2000) modeled an
international alliance game as a local ADG, with players choosing one of the two
existing blocs, and examined the stability of nations’ alliance structure. The key
ingredient in Axelrod and Bennett’s landscape theory of aggregation is the propen-
externality between each pair of players ¢ and j. The sign of a matrix entry again
indicates the nature of the externality (negative for foes and positive for allies) and
is symmetric, while the absolute value represents the intensity of this negative or
positive interaction.

While the reliance on potential functions has been useful in the examination of
Nash equilibria, an attempt to apply the maximization of the potential function to
coalitional deviations has been unsuccessful. As our Example 2 indicates, the po-
tential maximization is inconsistent with coalitional deviations. We offer a two-part
approach to rectify this inconsistency issue. First, noting that a strong Nash equi-
librium with no restriction on coalitional deviations (Aumann 1959) may fail to exist
for games in ADG (Banerjee et al., 2001, and Example 2 in this paper), we define
the notion of a strong landscape equilibrium, which is immune to limited coalitional
deviations with some restrictions based on communication/coordination costs across
groups, and is weaker than a strong Nash equilibrium. In addition, we identify sub-
classes of the ADG that admit our equilibrium selection. These subclasses satisfy
various uniformity conditions on individuals’ intrinsic preferences and the values of
their social interactions. It turns out these two modifications allow us to demonstrate
the existence of a strong landscape Nash equilibrium for a wide class of games.

This paper is organized as follows. Following the introduction, in Section 2 we pro-
vide a review of the relevant literature. In Section 3, the existence of Nash equilibrium
within the ADG class is discussed. In Section 4, we introduce various equilibrium
concepts (including a novel notion of a strong landscape equilibrium) are introduced.
We demonstrate that the distinction between the three sets of landscape, strong
landscape and strong equilibria is not vacuous, and, in general, they do not coincide
(Examples 2 and 3). In Section 5, we focus on basic additive social interactions games
and prove our main result on the existence of a strong landscape equilibrium within
this class of games (Theorem 2). In Section 6 we impose another restriction, neutral-
ity (vi, = 0 for all 7 and all k) on the game to show that there is a strongly Pareto
optimal strong landscape equilibrium (Proposition 1), although there may not be a
Pareto efficient Nash equilibrium without neutrality (Example 4). We also show that
a potential-maximizing strong landscape equilibrium is not necessarily a strong Nash
equilibrium even if there is a strong Nash equilibrium (Example 5), and a game may
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have two Pareto-ranked strong landscape equilibria (Example 6) even under neutral-
ity. In Section 7 we consider a class of basic games that allow for an outside option.
While the existence of a strong landscape equilibrium is no longer guaranteed (Ex-
ample 8), the existence of a strong landscape equilibrium is shown under neutrality
(Proposition 2). Moreover, there exists a strong Nash equilibrium when dyadic social
interactions are non-negative and m = 2 (Proposition 3). However, unlike in Dower et
al. (2024), the potential-maximizing strategy profile is not necessarily a strong Nash
equilibrium with two feasible actions (Example 9). Section 8 introduces population
externalities. Example 10 shows that a strong landscape equilibrium may fail to exist
within the class BADG, but under a special form of population externality the exis-
tence of a strong landscape equilibrium can be recovered (Proposition 5). In Section 9
we address the question of when a game admits an ADG payoff representation. This
question is a difficult challenge and we offer a partial answer (Proposition 6), whereas
Example 11 illustrates the difficulties in assuring the symmetry in this setting. Fi-
nally, Example 12 demonstrates that a monotone transformation of a game in the
NBADG class, may alter the set of potential maximizers. Section 10 concludes the
paper with some remarks, including an application to a class of matching problems
with peer interactions.

2 The Literature Review

One of the primary applications of our ADG was the study of international alliances
by Axelrod and Bennett (1993), who analyzed the alliance game where players face
a choice of joining one of the two existing blocs. The Axelrod-Bennett analysis is
based on their landscape theory of aggregation and uses the energy landscape (the
inverse of the potential function) as a theoretical tool to evaluate the level of stability
of nations’ alliance structure. They apply their model to the empirical study of the
alignment of 17 European nations with the Allies and Axis during World War II. To
do so, Axelrod and Bennett (1993) presented a method for the empirical identification
of the propensity matrix. Following the Axelrod-Bennett contribution, Florian and
Galam (2000) generalized the landscape theory to more than two blocs and extended
their analysis to the break-up of Yugoslavia more than thirty years ago. Kijima (2001)
applied this extended framework to analyze alliance formation in the civil aviation
industry.

It is worth pointing out that the notion of dyadic affinities (the terminology coined
by Kuperman et al., 2006), which is central in the ADG framework, is a key feature
of academic research in international politics. As we alluded to earlier, Bueno de
Mesquita (1975, 1981) was the first to transform the notion of structural affinity into
an empirical measure via the similarity of alliance portfolios. Signorino and Ritter
(1999) offer an alternative way of deriving the propensity matrix. Kuperman et
al. (2006) discuss the properties and limitations of these two measures of structural
affinity and offer an alternative one.

Additive dyadic social interactions games have been used for empirical research



of social interactions under the common term v“ in (1). For every player i, v} is
the sum of a deterministic part observed by all players and a player-specific random
term, and social interactions depend on ny, which is the number of players choosing
action k. In Brock and Durlauf (2001, 2002), players are assumed to make their
action choice based on their expected memberships of actions, (ny)j-;, computed
from the distributions of player-specific random terms. Brock and Durlauf (2001,
2002) and Blume et al. (2015) analyze the equilibrium of the game with rational
expectations. In contrast, Soetevent and Kooreman (2007) assume that player-specific
random terms are common knowledge and use Nash equilibrium as a solution concept
when m = 2. They prove existence of a Nash equilibrium, provide bounds on the
number of equilibria, and explore the econometric side of the model, offering an
empirical illustration.

A number of papers analyze network games with dyadic social interactions, in-
cluding the quadratic-utility continuous action choice game of Ballester et al. (2006)
and Bramoullé and Kranton (2007). Bramoullé et al. (2014) show that there is a po-
tential function for this game and examine various applications of social interactions
games, including R&D competition and societal crime patterns.

Some papers examine equilibrium stability and the robustness of equilibria as a
refinement concept. Ui (2001) provides support for such an equilibrium selection by
showing its robustness in the sense of Kajii and Morris (1997). Carbonell-Nicolau and
McLean (2014) show that the set of potential maximizers contains a Kohlberg and
Mertens (1986) stable set of pure-strategy Nash equilibria. Blume (1993) shows that
the potential maximizers correspond to stochastically stable states under log-linear
dynamics such as the logit choice rule. Bramoullé et al. (2014) demonstrate the
stability of the potential-maximizing Nash equilibrium.

Newton and Sercombe (2020) consider coalitional deviations as well as unilateral
deviations in analyzing the diffusion of an innovation on a network using a two-action
symmetric coordination game with a potential function. They compare the graph-
theoretic properties under which potential-maximizing strategy profiles are evolution-
arily stable with unilateral (stochastic) and coalitional (coordinated) deviations. Le
Breton et al. (2021) extend the analysis of Axelrod and Bennett (1993) by allowing
for landscape coalitional deviations to show that the potential-maximizing Nash equi-
librium is immune to landscape deviations and is strongly Pareto efficient. Dower et
al. (2024) analyze the two paths (Western and Eastern) of the post-war development
strategies chosen by African countries and estimate a propensity matrix, similarly to
Axelrod and Bennett (1993). They show the existence of a strong Nash equilibrium
and compute a potential-maximizing strong Nash equilibrium of the game between
African countries. They identify a large number of Nash equilibria, only one of which
is a strong Nash equilibrium and a potential maximizer.



3 Potential Functions and Nash Equilibria in the
Additive Dyadic Games

Here, we introduce a class of additive dyadic social interactions games. There are
a finite set of players N = {1,2,....,n}, and a finite set of feasible actions M =
{1,2,...,m}, where each player in N chooses an action s’ from M. The resulting strat-
egy profile s = (s'),_ partitions players over the set of actions G(s) = (G(S)) e
where Gy(s) = {j € N : s/ = (} is the set of players who chose the same action /.

Let pife € R denote player i’s dyadic propensity from player j when player ¢ chooses
action k and player j chooses action ¢, and let 67 > 0 be an influence parameter—it
indicates the impact of player j on others.

The propensities described here are represented by the following matrices:

11 14 1j 1n
pk-k o« o o pkk o o . pkk o« o o pkk
il i ij in
pk’k “ .. pk‘k PR pkk “ .. pk'k:
Pk:k — . E . .
v L & R |
Pk Diok Pk Pk
nl ni nj nn
pkk “ .. pkk RS pkk “ .. pkk
and
11 11
Pre Drx
- | Phe ) - P
Py = . ;& Ppo= =1 .
1] .. D J
P : Ck
nn nn
Pre Py

Here, Py is a symmetric matrix for any k£ € M, but across action propensity matrices
Py¢ and Py, are not necessarily symmetric (meaningless diagonal terms satisfy pi, =
P = 0)-

Then the payoff specification (1) for player ¢ who chooses an action k € M under
strategy profile s yields

u(G)=vi+ > phed = v+ > phol+ > > phol,

leM jeGy JEGy teM\{k} jeG,

where vi, € R is, to recall, an intrinsic benefit derived by player ¢ from choosing action
k.

Note that if we multiply the right-hand of expression (2) by ¢?, then we obtain a
new game that is strategically equivalent to the original game.

We further impose the straightforward normalization conditions: (i) pf}, = 0 for
all i € N and all k € M, and (ii) p, = 0 for all i € N and all k,¢ € M with k # (.
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Note the symmetry condition pge = p%c forall 7,7 € N and all k, ¢ € M, simply means
that propensities are symmetric as the dyadic interactions are symmetric.

A game that belongs to this class is called an additive dyadic game, and the
set of additive dyadic games is denoted by ADG.

While Le Breton and Weber (2011) have shown that every game in the ADG
class admits a Nash equilibrium in pure strategies, in order to make our presentation
self-contained, we present here a shorter proof of the existence result and underline
the importance of the potential functions technique (Monderer and Shapley, 1996))
whose local maximizers are Nash equilibria of the game. For this end, we define
the following function, which will be shown to be a weighted potential of the game
I'e ADG.

o 1 Sy
=2 2 ity ) ) T )

LeM jeGy(s) LeM jeGy(s) 'eM j'€Gy(s)

To see that F(s) is a weighted potential, we let s = (s7);cn with s/ = k, and consider
a potential of a reduced game without player i and strategy profile s=*. Then, we

have
F(s) —F(s™) =c'vi+ > > o'pho’,
LeM jeGy(s)

since there are two cases k = ¢ and k = (' with p, = pl; (and pi, = 0). Let
§ = (§',s7") with § = h. Similarly we have

F(8) —F(s™)=o'vj,+ > > o'pio’.

LeM jeGy(3)

This implies

F(8) — F(s —th+z Z o'pi ol —aiv,i—z Z o'piol

LeM jeGy(S) LeM jEGy(s)

If any player i € N switches her strategy from s = k to §° = h unilaterally, then

we have
Au' = u'(3) — u'(s) = v}, + Z Z piol — vl — Z Z po?

LeM jeGy(8) LeM jeGy(s)

and we conclude o
F(8) —F(s) = o'Au'.

Therefore, F(s) is a weighted potential of the game I'. In contrast with the weighted
Benthamite social welfare function, the second term of F(s) has the coefficient %
That is, when player ¢ switches from k to h to join player j, the i’s net welfare gain
from the relation with a player j is the same as welfare gain derived by player j from
the relation to i. The following is a variation of the result by Le Breton and Weber
(2011).



Theorem 1: (Le Breton and Weber, 2011). Every game I' € ADG admits a
Nash equilibrium.?

Proof. Let § € argmaxsF(s). Suppose that § is not a pure strategy Nash equi-
librium. Then, there is player i« € N and strategies k # h such that s° = k and
§' = h with Au’ = v*(5°,57") — u'(§) > 0. However, this implies F(5",57%) > F(§), a
contradiction.[]

Note that Theorem 1 covers the finite versions of the existence results in Ballester
et al. (2006) and Bramoullé et al. (2014). Moreover, it is more general than the equi-
librium result in Axelrod and Bennett (1993). While Brock and Durlauf (2001, 2002)
use a different equilibrium notion, Soetevent and Kooreman (2007) Nash equilibrium
existence result in that setting is also covered by Theorem 1.

It is important to point out that the relationship between the set of potential
maximizers and the set of equilibria breaks down if we allow for coalitional deviations
rather than individual switches of action. It is shown by the following example:

Example 1. Let N = {1,2,3,4} and M = {a,b} with v; = 0 for all i € N and
all ¢ € M. Let game I' € ADG be local: i.e., off-diagonal propensity matrices are
Py, =P,=0. Weseto' =1foralli e N. Let

0 15 0 0 0 3 0 -1
15 0 0 0 3 0 -1 0
Pa=1 "0 0o 0 15 Po=1 0o 1 o 3
0 0 15 0 -1 0 3 0

In this case, potential-maximizing allocations are s = (a,a,b,b) (or s’ = (b,b,a,a)).
Consider a coalitional deviation by {1,2} moving to action b. With this deviation,
players 1 and 2 improve their payoffs from 1.5 to 2 each, but the value of potential
goes down from 1 {(1.5+1.5) + (3+3)} =45t0 3 {2+2+2+2} =41

Thus, in order to guarantee the existence of equilibria immune against coalitional
deviations, we need to limit the scope of permissible deviations and/or restrict the
subset of the ADG games under consideration. It is done in the following section.

4 Coalitional Deviations and Subclasses of the ADG

In this section, we first identify several subclasses of ADG, We then define various
equilibrium concepts that allow for coalitional deviations.

Definition 1.

3Since in our paper we refer only to pure strategies Nash equilibria, without any confusion, we
will use the term of Nash equilibrium rather than Nash equilibrium in pure strategies.



1. A game I' € ADG is local if Py, = (0),,,, for all k,¢ € M with k # ¢: ie.,
social interactions take place only within groups of players who chose the same
action.

2. A game I' € ADG is uniform if diagonal propensity matrices are the same for
all actions: i.e., Py, = P for all k € M.

3. A game I is basic if it is local and uniform. The set of basic games is denoted
by BADG.

4. A game T is neutral if it is basic, and, moreover, vi = 0 for all i € N and all
k € M. The set of neutral games is denoted by NBADG.

Naturally, we have the following inclusion
NBADG C BADG C ADG.

We introduce some solution concepts for our games. First, a strategy profile is a
Nash equilibrium if and only if for all i € N, u’(s) > u*(5%,s7%) holds for all 5' € M.
While Nash equilibrium is based on individual players’ unilateral deviations is the
most fundamental solution concept, we are interested in exploring the framework
that allows for coalitional deviations.

For every two strategy profiles s and 8, denote by S(s,S) the set of players who
choose different strategies at s and s, i.e.,

S(s,8)={ieN:5#s'}.

A coalitional deviation from a strategy profile s via § is strictly improving if u*(8) >
u'(s) for all i € S(s,§). Without placing any restrictions on the set of coalitional
deviations, we obtain the notion of strong Nash equilibrium (Aumann 1959).

Definition 2. A strategy profile s is a strong Nash equilibrium if there is no
strictly improving coalitional deviation S(s,S). The set of all strong Nash equilibria
is denoted by SN E.

While being an attractive solution concept, a strong Nash equilibrium may often
fail to exist for BADG games, too.*

Example 2. Let N = {1,2,3} and M = {a,b, ¢, d}. Suppose that game I € BADG
has the following propensity matrix,

0 3 1
P=13 0 =2
1 =2 0

4While Banerjee et al. (2001) show that SN E may fail to exist even within the NBADG class.
our simple Example 2 clearly illustrates the type of coalitional deviations that rule out the SNFE
existence.
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and intrinsic preferences over actions,

keM| a b c d
vy 0 | —-10| —=3.5 | —10
v? —10| 0 | —0.5] —10
v} —10 | —10 0 -0.5

We set o' =1 for all i € N. Players 1, 2, and 3 will choose their actions from {a, c},
{b,c}, and {c, d}, respectively. Player 1 may choose ¢ only when both players 2 and
3 choose c. The following profiles are candidates for a strong Nash equilibrium.

ut u? u® | potential
(a,b,c) | 0 0 0 0
(c,e,e) | 05 | 05 | —1 —2
(c,e.d) | —05| 25 | —05| —15
(a,e,d)| 0 | =05] —=0.5 -1
(@bd| 0 | 0 |-05] —05

Notice that there is a unique Nash equilibrium s = (a, b, ¢). However, it is not a strong
Nash equilibrium, since players 1 and 2 will jointly move to c¢. Thus, a strong Nash
equilibrium does not exist. The reason is as follows. At strategy profile s, players 1
and 2 are choosing different actions, but they both shift to ¢. This coordinated action
generates benefits which are internal for players 1 and 2, where no outsider benefits
from this move. Thus, the change in the value of our potential function caused by
this coalitional deviation does not corresponds to the joint benefit of the coalition.Hl

The above example shows that a coalitional deviation that involves coordinated
moves by two players choosing different actions in the original strategy (action) profile,
a potential function approach may threaten the existence of an equilibrium. Thus,
we will limit the scope of coalitional deviations. Let s and s be two different profiles
of actions, and k£ and h be two different actions. Let

Sin(s,8) = {i € S(s,8) : s' =k and §' = h}

be the set of players who switched their strategy from k to h at s. Clearly, the
collection of (not necessarily nonempty) sets {Syu(s,8)}, pcrrnzn 1S @ partition of
S(s,s), which is the set of all players whose chose different strategies at s and §.

We consider the following two types of coalitional deviations:

Definition 3. Two types of coalitional deviations are defined as:

1. We say that a coalitional deviation S(s,§) = Uj.,Skn (s, 8) is of Type 1 if there
is at most single k& with |Sg(s,8)| > 0. This condition means that if there
are players who switch their action, they choose the same action k& under s. A
strategy profile s is a landscape equilibrium if it is immune to all coalitional
deviations of Type 1. The set of those equilibria is denoted by LFE.

11



2. We say that a coalitional deviation S(s,§) = Uy, Skn(s,S) is of Type 2 if for
any h € M, there is at most one single k with |Sks(s,8)| > 0. That is, if there
are players who choose newly adopted action A under s, all such players must
have been choosing the same action k& under s. A strategy profile s is a strong
landscape equilibrium if s is immune to all deviations of Type 2. The set of
those equilibria is denoted by SLE.

The requirements imposed by coalitional deviations of Types 1 and 2 can be
illustrated on a directed graph over the set of actions M. The changes of actions by
the coalition members of deviation S(s,S) are summarized by a directed graph on
action set M, (M,G(s,§)), such that kh € G(s,8) if and only if Sy, (s,§) # 0. The
definition of a Type 1 deviation implies that G(s, §) is an out-tree that stems out from
a single node k& where the branches are restricted to the unit length only. In contrast,
Type 2 condition says that each component of G(s, S) is a cycle, an out-tree, or a cycle
with out-trees stemming out of it.> Thus, the Type 2 deviation covers much wider
class of directed graphs, thus, yields allows for a wider range of coalitional deviations
than that of Type 1. It is easy to see that the unique NE of Example 2 is also LE
and SLE, while SN E does not exist.

The deviations of Type 1 are allowed only for a group of players who choose the
same action at the original profile s. The deviations of Type 2 are less restrictive
and require that only those members of the deviating group who choose the same
action at S, also share the same action at s. Thus, the set of landscape equilibria
immune to Type 1 deviations contains the set of strong landscape equilibria immune
to Type 2 deviations. We have the following relationship between the sets of equilibria:
Naturally, we have the following inclusion:

SNE C SLEC LE C NE,

where N E denotes the set of pure strategies Nash equilibria. Example 2 shows that
the sets SNE and SLE do not always coincide. Example 3 demonstrates that, in
general, SLE, LE, and N FE are different from each other.

Example 3. Let N = {1,2,3,4,5} and M = {a,b,c}. Suppose that in game
I' € BADG with o' =1 for all i € N, players’ payoff information is summarized by
the following table and propensity matrix P:

k a b c

vi| 0 | 15 | —10 (1) (1) 8 _1 _1
w20 | 1.5 | =10 o
k P=] 0 0 0 0 -1
3

vi| 0 [ =10 0.5 11 0 0 o0
410 0 [ =10

Yk 1 -1 -1 0 0
v | 05 [ —10] 0

°A path {(k1,k2), (ka,k3),..., (kq—1,kq)} can form a trivial cycle by including (kg, k1) with
Skaks (8,8) = 0.
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The relevant strategy profiles and their payoff vectors are:

7 1 2 3 4 5 potential
s = (a,a,a,b,c) | 1 1 0 0 0 NE 1
2= (b,a,a,b,c) | 05| 0 0O |—-1] 0 no 0.5
= (a,a,c,b,a) | 0 | 0 | 05 | 0 | =15 no -1
T=(b,babec) |15|15] 0 |—2| 0 LE 2
"= (,bc,ba) |15|15] 05 | —2| 05 |SLE=SNE| 3
s® = (b,a,a,b,a) [ 0.5 -1 | =05 1| 0.5 no -3

Note that players 1 and 2 are symmetric. In this game, there are three Nash equilib-
ria, s!, s*, and s°. From Nash equilibrium s!, players 1 and 2 can move together to b
through a Type 1 coalitional deviation, generating s*. Although player 4 is negatively
affected by the deviation by players 1 and 2, the new strategy profile s* is immune to
any further Type 1 coalitional deviations. Thus, s* is a landscape equilibrium. How-
ever, from s, a Type 2 coalitional deviation composed by players 3 and 5 swapping
their actions generates s°, and s® is a strong landscape equilibrium. Note that s can
be brought directly from s! by a three-group Type 1 coalitional deviation involving
players 1, 2, 3, and 5 as well. As we saw earlier, the values of the potential of the
game for s!, s*, and s® are 1, 2, and 3, respectively. Thus,Type 2 coalitional devia-
tions allow the value of the potential to raise without being stuck at a local maximum
potential Nash equilibrium. Note that s° is also a strong Nash equilibrium.H

In the next section, we will confine our attention to basic additive social interac-
tions games BADG and prove our main result on the existence of a strong landscape
equilibrium in the BADG class.

5 Existence of Strong Landscape Equilibria in the
BADG class

In order for F(s) to be a potential function for coalitional deviations, we need to
restrict the set of admissible coalitional deviations. The following lemma proves the
desired result for a coalitional deviation that forms a single cycle.

Lemma 1. Suppose that game I' € BADG. Consider a coalitional deviation S(s, §)
which forms a single cycle {ki, ks, ..., kq, kg1 } with kg1 = Ky in its graph represen-
tation (M,G(s,S)). Then, we have F(s) as a weighted potential function for such a
class of coalitional deviations S(s, §).

Proof. Suppose that a coalitional deviation S(s, §) which forms a single {k1, ..., k¢, ..., kg, kg+1}
with kg1 = k1. Then, {ki,..., kg, ... kg, kgt1} = S(s,8), and for all k, € S(s,§),
Gy(8) = Gy(s) + S4—1,4(s,8) — Sy 4+1(s,8), where G, and S, ,+1 are abbreviations of
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G, and Sy k,,,- Then, we have

Q Q
F(s) —F(s) = Z Z Uiv,i—z Z o',

a=1i€S4-1,4(s3) a=1 Sg,4+1(s,8)

DD SR VR

q=1 i€85_1,4(s,8) jEGK(s)\Sg,q+1(s;8)

SIS D S

9=1i€54,4+1(s,8) J€Gk(s)\Sq,q+1(s:3)

since the benefits or losses the group remaining at action k; (G,(s)\Ssq+1(s,8))
receives is exactly the same as the benefits or losses the relevant departing group
Sq.q+1(s,§) and arriving group S,_14(s,8) obtaining from action k,. Rewriting this,
we obtain

F(s) —F(s) = Z Z o'u'( Z Z olu'(

1 i€Sq—1,4(s:8) q=1 Sq,q11(s,8)

— Z Z o' (u'(8) — u'(s)) .

q=1i€S;_1,4(s,5)

Thus, if all 7 € S(s,§) is improving by joining the coalition S(s, §), then F(§) > F(s)
must hold.H

Note that the statement of Lemma 1 holds for coalitional deviation S(s,§) which
forms a path {ki, ko, ..., k,} in its graph representation (M, G(s,s)) (since it can be
seen as a trivial cycle), by simply setting Sg o+1(s,8)(= Sg.a(s,8)) = 0.

The next lemma follows from Lemma 1.

Lemma 2. Suppose that game I' € BADG. Consider a profitable Type 2 coalitional
deviation S(s,§). Then, there is a subset T' C S(s, §) such that "= S(s, (§7,s_r)) is
a profitable coalitional deviation that forms a cycle (or a path).

Proof. Since S(s,§) is a landscape coalitional deviation, any component of G(s, §)
is composed of a cycle, an out-tree, or a combination of cycles and out-trees in a
directed graph. Suppose that there is a terminating node h: i.e., Sgx(s,8) # 0, but
She(s,8) = 0 for all £ # h. Then, Siu(s,§) itself is a profitable coalitional deviation
since I' is local. Thus, {k,h} forms a trivial cycle (a path). Suppose that there is
no terminal node. Then, G(s,§) is composed of a cycle, or non-overlapping cycles.
In the latter case, pick a cycle. Such a cycle forms a profitable coalitional deviation,
since I" is local. We have completed the proof.l

Lemmas 1 and 2 yield our main existence result:
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Theorem 2. Every game ' € BADG admits a strong landscape equilibrium. In
particular, a weighted-potential-maximizing strategy profile is a strong landscape
equilibrium.

Proof of Theorem 2. Let § € arg maxs F(s). Suppose that § is not immune to a
Type 2 coalitional deviation S(8,S) # (). By Lemma 2, there is a profitable coalitional
deviation that forms a cycle or a path. By Lemma 1, there is a strategy profile s with
F(s) > F(8), a contradiction.[]

In the next section we analyze the implications of the neutrality assumption.

6 Strong landscape Equilibria in the NBADG Class

The importance of the neutrality assumption is reinforced by Example 4 below, that
in absence of neutrality, a potential-maximizing strategy profile is not-necessarily
Pareto-efficient. Thus, we focus the analysis in this section to the NBADG class.

First, note that Theorem 2 generalizes Le Breton et al. (2021) and Dower et al.
(2024) who considered the games in the NBADS class that allow various types of
coalitional deviations. Their results continue to hold without neutral preferences over
actions.

Corollary 1 (Le Breton et al., 2021). For every game in BADG, a weighted-
potential-maximizing strategy profile is a landscape equilibrium.

Consider a game with two actions |M| = 2.° Then, a directed graph (m,G(s,§))
of any coalitional deviation S(s,§) has either a single edge out-tree or a cycle, and
belongs to Type 2 class. Thus, in this special case, the sets of strong Nash equi-
libria and strong landscape equilibria coincide, while both are a subset of the set of
landscape equilibria. Thus, we have:

Corollary 2 (Dower et al., 2024). For every game in BADG with two feasible
actions, a weighted-potential-maximizing strategy profile is a strong Nash equilibrium.

We now turn to a further examination of strong landscape equilibria in the
NBADG class. Now, consider a oi-weighted Benthamite social welfare:

e = Y| X o (s X e
keM | icGi(s) JEGL(s)
BD S Do TR Sl sp
keM _iGGk(S) 1€G(s) JEG(s)

®Note that in the case where p;; < 0 for all i and j, the potential maximization for a NBADG
game is equivalent to the celebrated MAXCUT problem in combinatorial optimization (Goemans
and Williamson, 1995) which is known to be NP-hard.
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Under neutrality, we have v, = 0 for all k € M and i € N, and F(s) becomes:

W(s) = Z Z Z o'pial

keM |ieGy(s) jEGk(s)

The potential IF in this case becomes:

1 S 1
=3 3 | Y o] - ot
keM LieN jeN
Thus, we have F(s) = :W(s), we have an SLE version of Le Breton et al. (2021).
Proposition 1. For every game I' € NBADG, a strategy profile s that maximizes
potential function F(s) is a strongly Pareto optimal strong landscape equilibrium.

Although Proposition 1 shows that the potential-maximizing strategy profile is not
only a strong landscape equilibrium but also is a strongly Pareto efficient one under
neutrality, the next example shows that a potential-maximizing strategy profile may
not be Pareto-efficient when neutrality is dropped. In fact, the constructed game does
not admit a strongly Pareto efficient Nash equilibrium.

Example 4. Suppose that game I' € BADG has four players N = {1,2,3,4} and
three actions M = {a, b, ¢} with the following payoff information:

vl 1T [ 2] 37 4 0 -1 15 15
a 2626 -10[-10] , | -1 0 15 15

~10| =10 | 2.6 | 2.6 15 15 0 -1
cl 00 0] o0 15 15 -1 0

We set o' = 1 for all i € N. In this example, there are four relevant strategy profiles:

s', 82, s%, and s*:

s (u', u? w3 ut) | F(s)

"= (a,a,0,0) | (1.6,1.6,1.6,1.6) | 8.4
2= (c,c,c,0) (2,2,2,2) 4
3= (a,c,c,c) | (2.6,3,0.5,0.5) | 4.6
st = (a,c,b,c) | (2.6,1.5,2.6,1.5) | 6.7

The potential-maximizing strategy profile is s', achieving u(s') = (1.6,1.6,1.6,1.6)
and F(s') = 8.4. This is a strong landscape equilibrium, Pareto dominated by s
which is not even a Nash equilibrium. In fact, s' is unique Nash equilibrium of this
game.ll

The next example shows that the Benthamite-welfare-maximizing strong land-
scape equilibrium is not necessarily a strong Nash equilibrium, even if the game
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belongs to NBADG and admits a strong Nash equilibrium. This example is a di-
chotomous, where p¥/ € {—1,1}, and there are only (equally desirable) allies and
(equally undesirable) foes for all players. This negative result is quite robust.

Example 5. Suppose that game I' € NBADG has twelve players and five feasible
actions. The game is dichotomous and we set o = 1 for all i € N. Let propensity
matrix P be:

o,1}1}j1 -1 -11 -1 -1 1 -1 -1
1 0 1{-1r -1 -1 -1 -1 -1 -1 -1 -1
1
1

1 o}j-1 -1 -1 -1 -1 -1 -1 -1 -1
-1 -1, 0 1 1 1 -1 -1 1 -1 -1
-1 -1 —-1]1 0 1 /-1 -1 -1 -1 -1 -1
-1 -1 -1/ 1 1 o}-1 -1 -1 -1 -1 -1

1 -1 -1 1 -1 —-1]0 1 1 1 -1 -1
-1 -1 -1 -1 -1 —-1]1 0 1 {-1 -1 -1
-1 -1 -1 -1 -1 —-1] 1 1 0o |]-1 -1 -1

1 -1 -11 -1 -1 1 -1 —-1,0 1 1
-1 -1 -1 -1 -1 -1 -1 -1 —-1] 1 0 1
-1 -1 -1 -1 -1 -1 -1 -1 -1/ 1 1 0

The Benthamite social welfare is maximized under s which generates three groups

G(s) = ({1,2,3},{4,5,6},{7,8,9}, {10, 11, 12}) with its payoff vector (2,2, 2,2,2,2,2,2,2,2,2,2),
and this partition is a potential-maximizing strong landscape equilibrium (F(s) = 12).

However, players {1,4,7,10} can deviate from s to create s’ which generates G(s') =
({2,3},{5,6},{8,9},{11,12},{1,4,7,10}) with its payoff vector (3,1,1,3,1,1,3,1,1,3,1,1).
Thus, s is not a strong Nash equilibrium. In contrast, s’ is not Benthamite-welfare-

maximizing (F(s") = 10), but it is a strong Nash equilibrium.l

The following example shows that there may also be a strictly Pareto-dominated
strong landscape equilibrium, even though Le Breton et al. (2021) show that a
potential-maximizing partition is always a strongly Pareto-efficient landscape equi-
librium under neutrality.

Example 6. Suppose that game I' € NBADG has six players, and six actions with
the following propensity matrix P:

0 1 1 {15 -1 -1
1 0 0O -1 -1 -1
1 0 0o -1 -1 -1

P=19s =1 170171
-1 -1 —-1] 1 0 0
-1 -1 —-1] 1 0 0
We set ¢ = 1 for all i € N. The Benthamite social welfare is maximized un-

der s which generates two groups G(s) = ({1,2,3},{4,5,6}) with its payoff vector
(2,1,1,2,1,1), and this partition is a strong landscape equilibrium. Actually, s is a
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strong Nash equilibrium. However, G(s') = ({1,4},{2}, {3}, {5}, {6}) with its payoff
vector (1.5,0,0,1.5,0,0) is also a strong landscape equilibrium.Hl
Finally, we show that there may be multiple strong Nash equilibria, while only

one of them is potential-maximizing. In other words, there may be a strong Nash
equilibrium that is not potential-maximizing even under neutrality.

Example 7. Suppose that game I' € NBADG with six players, and six actions in a
neutral basic game with propensity matrix P:

0 2.5 1 =10 1 2

2.5 0 2 1 -10 -10

p_ 1 2 0 2 —=10 -10
—-10 1 2 0 2.5 1

We set 0 = 1 for all i € N. There are two strong Nash equilibrium group struc-
tures under s and S, which generate G(s) = ({1,2,3},{4,5,6}) with its payoff
vector (3.5,4.5,3,3.5,4.5,3), and G(8) = ({2,3,4},{5,6,1}) with its payoff vector
(3,3,4,3,3,4), respectively. The former is a potential-maximizer, but the latter is
not.H

7 Strong Landscape Equilibria in Local ADG Class
with an Outside Option

In this section we consider the possibility of having an outside option: players can
choose their action from an augmented action set M = M U {0}. We regard an
outside option 0 as a special action with a n X n propensity matrix Fyy = (O)Me N
all of whose elements are zero. We naturally set vy = 0 for all © € N. We call a
local ADG game with an outside option M-uniform if Py, = P for all £ € M, and
Poo = (0), jen- Note that such a game does not necessarily satisfy uniformity and
Theorem 2 may not be applicable in this domain. Moreover, the following simple
example demonstrates a possibility of nonexistence of a strong landscape equilibrium
in presence of an outside option.

Example 8. Suppose that game I' € ADG with three players N = {1,2,3} and
a single action M = {a} and an outside option 0 available for all players. The
propensity matrix is given by

0o —
P=1 -1 0
2 3

1

O W N

and v! = —0.5, 02 =03 = —2.5. Set ' =1 foralli € N. Weset o' =1 foralli € N.
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The payoff of each player i is determined by
s) = v + Z p"
JEN

for all i € N and k € M, while v}, = 0 for all i € N irrespective of who are choosing
0. There are five relevant strategy profiles:

s (ul, u?, u?)
T=(0,0,0) 0,0,0)
2=1(0,a,a) | (0,0.5,0.5)
*=(a,a,a) | (0.5,—0.5,2.5)
T—(4,0,a) | (1.5,0,-0.5)

= (4,0,0) | (=0.5,0,0)

As is clear from the table, s' is a unique Nash equilibrium. But it is not immune to
a joint deviation by players 2 and 3. Thus, there is no strong landscape equilibrium
in this game.l

There are two factors that contributed to this negative result: Non-neutral pref-
erences and negative externalities generated by a player joining the existing group.
To remove the first obstacle, we impose the neutrality of preferences: i.e., v, = 0 for
all k € M and all i € N, and u(Gy) = 0 for any i € Gy C N.”

Proposition 2. For every neutral, local and M-uniform game in ADG with an out-
side option 0, a potential-maximizing strategy profile over M = M U {0} constitutes
a strong landscape equilibrium.

Proof. Let s* € argmaxg F(s), where

XY Y Ay Y

keM icGy(s) jeGk(s) 1€Go(s)

XY T e

keM icG(s) jeGk(s)

F(s)

Note that by Theorem 2, there is no profitable Type 2 coalitional deviation (S, §)
with (i) s # 0 and (ii) §' # 0 for all 4 € S. Thus, if there is a profitable deviation
(S,8), there has to be a player who violates either (i) or (ii). Suppose that there
is 7 € S with s* = k and § = 0. This implies that player i had a negative payoff
under s™: 35 o) o'pad < 0. This implies that all members of Gy (s) other than i
together benefit — > J€GK(s) o'pol > 0 by player i’s departure to the outside option
0. Thus, P(s™™*,0) > F(s*) holds, which is a contradiction. Now, suppose that there

TProposition 2 offers an extension of Dower et al. (2024) to the case, where in addition to
the Estern and Western modes of development, each Aftrican country can select an independent
non-alignment path.
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is a group of players S with s”* = 0 and §' = k for all : € S with «*(§) > 0. Since
s* € argmaxg F(s), F(S) < F(s*). Thus, noting u'(s*) = 0 for all i € S, we have

F(s) —F(s*) = Z Z o'piol — Z Z o'pUo’l

i€Gr(8) je€GL(8) i€Gy(s*) JEGK(s*)
_ Lont] ~J _ Lo ~J
= DX oo vex gy 30 o
i€S jeS 1€S jeG(s*)

= Zai Zpijaj—k Z pol :ZOiui(§)>0,

= jes JEGK(s¥) ics
a contradiction. Hence, neither case can happen, which completes the proof.[]
The next example show, that in contrast to Corollary 2, even if there are only

two feasible actions (|M| = 2), the potential-maximizing strategy profile is not, in
general, a strong Nash equilibrium with an outside option.

Example 9. Suppose that game I' € NADG with eight players and two actions
M = {a,b} and an outside option 0, is local and M-uniform, and has the following
propensity matrix P:

0 |—-10| 3 25 | —-10 —-10 05 0.5
—10| O 2.5 3 05 05 —-10 -10

3 2.5 o (-10}] -1 -1 -10 -10
2.5 3 |-10} 0 |-10 —-10 -1 -1
-10 05 -1 —=10| O 2 | =10 | —10
-10 05 -1 —=10| 2 0 | —-10] —10
05 -10 -10 -1 |—-10|—-10| O 2
05 -10 -10 -1 |-10|—-10| 2 0

We set o' = 1 for all i € N. In this game, players 1 and 2 will never be in the
same group. Similarly, the same statement applies for players 3 and 4. Players 5
and 6 cannot be in the same group with players 1, 4, 7, and 8. The same argument
applies for players 7 and 8 with regard to players 2, 3, 5, and 6.. Three relevant
strategy profiles are (since the game is neutral except the outside option, a and b are
interchangeable):

Ga Gy Go
s* | {1,3} {2,4} [ {5,6,7,8}
s' [ {2,3,5,6} | {1,4,7,8} 0
s"| {2,5,6} | {1,7,8} {3, 4}

The resulting payoffs and the values of the potential are:

1 2 13| 4 15678
s3] 3] 3|3 0 0
s [35[135[05]05] 1 1
s" | 1 1 0] 0 3 3

NN IR =S|
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Note that all members of the group S(s*,s") = {1,2,5,6,7, 8} are strictly better off by
this deviation, while F (s*) > F (s’) holds. Thus, the potential-maximizing strategy
profile is not a strong Nash equilibrium.H

To remove the second obstacle to the existence of a strong landscape equilibrium
outlined in Example 7, we consider the case with non-negative externalities only,
where p” > 0 holds for any i, j € N. Although the logic of the proof does not use our
functional specification, we show the existence of strong Nash equilibrium without
neutrality in the case of |M| = 2.

Proposition 3. Suppose that p” > 0 holds for any 4, j € N in a local and M-uniform
ADG with an outside option. If |M| = 2, there is a strong Nash equilibrium, and,
generically, there are at most two strong Nash equilibria.

Proof. In this case, even if p”/ = 0, there is no negative impact from other players
joining an existing group. Thus, this case can be considered as a (weakly) positive
externalities case. With an outside option, maximizing F(s) may not be useful, since
the resulting action is not necessarily individually rational. In what follows, it is
more convenient to use group structures G = (G,, Gy, Go) instead of s, where G}, C N
denotes the set of players at action k € {a,b,0}. We consider the following algorithm.

1. Let GO = (G, G9, GY) = (0, N, 0).

2. Suppose that G* = (G, GY,GY) has been defined for all ' = 0,...,t. Let
G = (GIF, G G with GiY = (i€ Gy (GY) > 0} and GET o=
{i € Gy : u'(GE) <0} UGE.

Due to positive externalities, G C G? for all t = 0,1, ..., and there is T such
that G* = G” for all t > T due to finiteness of N. Let G = G”. If G is a strong Nash
equilibrium, we are done. Thus, suppose that G is not a strong Nash equilibrium.
Then, a subgroup of S C Gy UG} wants to join a together. Let S, = SNG), and Sy =
SNGy. Let S move to a. That is, there is G' = (G, G}, Gy) where G/, = G,U S, U Sy,

= Gy\Sh, and Gj = G\ Sy such that v'(G') > u'(G) for all i € S. Let G’ =
(G, G}, Gy) with G}, = {i € G} 1 uj(G}) > 0} and Gy = {i € Gy : u(G,) < 0} U Go.
If G’ is a strong Nash equilibrium, we are done. Otherwise, there are S' C G} U
Gy and G” = (G", G, Gy), where G = G/ U S, U S, G = G}\S;, and G =
G\ S) such that u'(G") > u'(G') for all i € S". Let G” = (G",GY,Gl) with G} =
{i € G} : uj(GY) > 0} and G = {i € G}, : uj(G}) < 0} UG, In this procedure, G, C
G!, C G7 C ..., and the members’ payoff ., does not decline. In contrast, G, 2 G} 2
C_Jg D ..., and the members’ payoff u; does not rise. If we continue the process until
there is no further deviations, we arrive at a strong Nash equilibrium. Similarly, we
can launch our algorithm with G° = (G2 GY,G}) = (N, 0,0), instead. The same
procedure converges to a strong Nash equilibrium. Thus, generically, there are at
most two strong Nash equilibria.[]

A corollary of the above result relates to games with a single action.

21



Corollary 3. Suppose that p” > 0 holds for any 7,7 € N in a local and M-uniform
ADG with an outside option. If M = {a} and p* > 0 holds for any i,j € N, there
is a strong Nash equilibrium. Naturally, there are multiple Nash equilibria where a
group of players chooses a, whereas the union of those groups constitutes a strong
Nash equilibrium.

8 Nonlinear Population Externalities

Here, we introduce nonlinear population externalities on the size of groups in the
BADG class. Let ny, € Z, be the population of action k, and let ¢, (ny) be anonymous
population interactions at action k. We do not place any condition on population
interactions function ¢, : Z; — R except for ¢, (0) = 0 for all k. One interpretation of
¢y, function is that of a (negative) congestion cost function. Another is a finite analog
of the Beckmann (1957) who considered a finite set of locations M on a line, one of
which is to selected by each player. Players interact with all other players, producing
knowledge from these bilateral interactions. The bilateral knowledge production is
discounted by the distance between each pair of players. Assuming homogeneous
players, Beckmann (1957) analyzed patterns of population agglomerations over the
line.
Formally, each player i’s payoff function from u’ (Gy(s)) is given by

W(G(s) = v+ Y o'p + o (|Gi(s)). (3)
JEGK(s)

In the case of uniform influence, i.e., o' = 1 for all i € N, Theorem 1 can be extended
to include the population externality.

Proposition 4 (Le Breton and Weber, 2011). Suppose that we have o' = 1 for all
i € N. Then, there is a Nash equilibrium for an ADG with population externalities.

We have a few remarks here:

Remark 1. Chakrabarti et al. (2025) prove the existence of a Nash equilibrium
under a more general structure of the last term in (4). They considere a general
externality term H'(s) instead of ¢, (|G1(s)|), and investigate under what conditions
on H'(s), the existence of a Nash equilibrium is preserved. Proposition 4 is a special
case of their result.

Remark 2. If there is no dyadic social interaction term in the payoff function,
Proposition 4 represents an extension of Proposition 4.1 of Konishi et al. (1997a).
When in addition anonymous population externalities are negative, Konishi et al.
(1997b) show that a game without dyadic social interactions possesses a strong Nash
equilibrium without assumptions on the functional form of the payoff functions. In
fact, the study of games without the interaction term goes back to Rosenthal (1973)
who considered a congestion game and showed that there exists a Nash equilibrium
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in pure strategies when congestion is anonymous—players care about their route
choice and the number of commuters who use the same route. See also Holzman
and Law-Yone (1997), Milchtaich (1996), Quint and Shubik (1994) for further results
on the existence of Nash and strong Nash equilibria in group formation games with
anonymity and either positive or negative externalities.

Remark 3. The above game can be extended further by introducing a pair of
locations (residential and work) as each player’s action, along with commuting costs.
Konishi and Osawa (2025) consider a commuter-worker location choice model in an
urban landscape with both production- and residential-externalities (see Fujita and
Ogawa 1982; Tabuchi 1986; Akamatsu and Osawa, 2020).

Now we show that with nonlinear population externalities, a BADG in general
does not admit a strong landscape equilibrium.

Example 10. Suppose that game I' € BADG with three players N = {1,2,3},
three actions M = {a,b,c}, with ¢ = 1 for all i € N, and ¢, (1) = ¢,(2) = 0
and ¢, (3) = 1.5 for all k € M Players preference information is summarized by
vl =02=0.2 v} =0v}=-10,0! =02 =0, v3=-10, v} =0, v = 0.3, and
0 1 -1
P = 1 0 -1
-1 -1 0

In this example, players 1 and 2 choose either actions a or ¢, and player 3 chooses
either actions b or c¢. Thus, the following actions are feasible:

1. G, ={1,2}, G, =0, G. = {3}: (u},u2,u?) = (1.2,1.2,0.3)
2. Go=0,Gy=0, G, ={1,2,3}: (u',u? ) = (1.5,1.5,—-0.2)
3. Go=0, Gy = {3}, Go = {1,2}: (u',u2 ) = (1,1,0)

4. Gy ={1,2}, Gy = {3}, G. = 0: (u",u?ud) = (1.2,1.2,0)

5. Go = {1}, Gy = {3}, G. = {2} (u!,u?,u?) = (0.2,0,0)

6. Gy = {1}, G, = ={2,3}: (u!,u2,u?) = (0.2,—1,—0.7)

Strategy profiles 1 and 3 are the only Nash equilibria, but they are not strong land-
scape equilibria, since the pair {1,2} can conduct a profitable coalitional deviation.l

The existence of a strong landscape equilibrium can however be shown by extend-
ing Theorem 2 for the case where the population externalities are weighted by the
influence parameters o’s. The externalities can be positive or negative, but they must
be same for all actions & € M.

Proposition 5. Consider the game with population externalities that are written
by @(Gr) = a .., 0 where o is a real number (negative or positive). Then, the
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game can be described as a game G € BADG, and G admits a strong landscape
equilibrium.

Proof. Let pii = pii + o for all i, j € N, and let P be a propensity matrix with pis.
Then, since p(Gr) = @ icq, 07, u'(s) = vy + X ca ) P07 + @ icq, )0 holds
for s* = k, thus we have

olu'(s) = o'vl+o' E plol + o' E o’
JEGK(s) JEG(s)
= J’ﬁ},i—k Z a'piol
JEG(s)

Using the same potential function F and replacing p” with p¥, we have a modified
strong potential function:

1 i
IF(S)EZ Z alv,i—l—iz Z Z o'po’.

keM ieGy(s) keEM ieGy(s) j€Gi(s)

The rest of the proof is the same as the one of Theorem 2.[]

9 Re-scaling Payoffs

We have demonstrated that any game BADG class is a weighted potential game. If
the propensity matrix is not symmetric, could it be the case that the game is part
of the BADG class once the payoffs of each player i are transformed by a monotone
affine transformation f’. In the two player case, a simple sign symmetry condition is
sufficient.

Proposition 6. Suppose that |N| = 2 with payoffs: @'(s) = 0, + w" if s' = s/ = k,
and @'(s) = 0, if s" =k # &/ for all k € M, and all i,j € N with ¢ # j. If either
wl? x w?' > 0 or w'? = w*' = 0, then affine transformations of the payoff functions
exist such that the new game is in the BADG class.

Proof. If w' = w®' = 0, let u'(s) = @'(s), and we are done. If w' x w?" > 0, let
u'(s) = lwl—,”ﬂ@(s) = % + % Let p¥ = ﬂj‘ Then, p” is either 1 or —1. Since

wl? x w2 > 0, p¥¥ = p/* holds, which completes the proof.[]

However, in the game with more than two players, the following example shows
that the situation is more complicated,

Example 11. Suppose that game I' has three players |N| = 3 with neutral quasi-
linear utility function @' = icGy w?j , where w% denotes player i’s benefit from player
J in the same group Gy. We set o' = 1 for all i € N. Now, suppose further that
0 <w® <w? 0<w? <w? and 0 < w*? < w3, Then, there is no symmetric
propensity matrix P. If these three players’ preferences are respected, by symmetry,
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we have 0 < p'? < p'2 = p? < p?3 = p32 < p3! = p!3. It is impossible to satisfy these
inequalities, similarly to the nonexistence of stable matching in a roommate problem.
This example illustrates the necessity of a common ranking over all pairs of players
consistent with players’ preferences (see the common-ranking property in Banerjee et
al. 2001).1

Example 11 refers to preferences over single partner players, but there may be
multiple partners in a group in our additive social interactions game. Finding a
common ranking over all subsets of players is harder than the issue described above. A
single ranking over all subsets of players is not necessarily consistent, even if we could
find a single ranking over all pairs of players. This issue becomes more complicated
as the number of players increases. It is hard to identify an additively separable
preference profile that has a weighted potential function F(s).

Profiles that maximize a weighted potential of a game of the BADG class occupy
a central place in this paper. If a weighted potential game admits several weighted
potentials, then as stated by Monderer and Shapley (1996), the potential maximizers
remain the same. In contrast to the affine case, if the new game with transformed
payoff functions is an ordinal potential game, the set of potential maximizers in the
transformed game may be different if all f? are simply monotone transformations.

Example 12. Suppose that game I' € NBADG has six players N = {1,2,3,4,5,6}
and six neutral actions M = {a,b,c,d, e, f} with a propensity matrix:

0 —-10 18 —-10 06 2
—10 O 2 06 -10 04
1.8 2 0 —-10 04 -10
—-10 06 —-10 O 2 1.8
0.6 —-10 04 2 0 -10

2 04 -10 18 —-10 O

P =

We set 0! = 1 for all i € N. Under this P, each agent’s preferences over relevant
coalitions are:

—~
[a—y
w
Ot
=~

1{1,6} =1 {1,3} = {1,5} =, {1}

2.4, 61 -5 (2,4} =5 {2,6} =5 {2}

3{2,3} =5 {1,3} =5 {3,5} =3 {3}

2{4,5} =4 {4,6} =4 {2,4} =4 {4}

HL.3. 5} 5 (1,5} =5 {3,5} =5 {5}

= 6{1,6} ¢ {4,6} =¢ {2,6} =¢ {6}

Thus, in this game, there are two (equivalent-class) strong Nash equilibria (thus,

landscape equilibria): G ={{1,3,5},{2,4,6}} and G’ = {{1,6},{2,3},{4,5}}. The
propensity matrix P yields the following values of potential under G and G’ are:

= ==

R R PN

| (o] N

o O W
et B

Y Y Y Y Y

=
N
N
o Ot
M~

1 1
F(G) = W(G) =5 {24+1+22+24+1+22} =56,
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and
1 1
F(G’):§W(G’):5{2+2+2+2+2+2}:6.

Thus, G’ is the potential-maximizing strong Nash equilibrium. Now, we re-scale
propensity matrix P slightly.

0 -10 18 —-10 06 1.85
-10 0 185 06 —-10 04
18 18 0 -10 04 -10
-10 06 —-10 O 185 1.8
06 —-10 04 18 0 10
18 04 -10 1.8 —-10 O

5
Il

This modification does not alter agents’ preference orderings. However, we have:
1
Fp(G) = 5 {24+1+22+24+1+422} =5.6,

and

1
Fp(G) = 5 {1.85+ 1.85 + 1.85 + 1.85 + 1.85 + 1.85} = 5.55.

This means that G is the weighted potential-maximizing strong Nash equilibrium
under P. Thus, potential-maximizing equilibrium selection is sensitive to the cardinal
form of the payoff function even if players’ ordinal preferences over coalitions remain
the same. It is worth noting that while both functions are ordinal potentials, the
second is not a weighted potential, which explains the emergence of different potential-
maximizers in these two games. Wl

10 Concluding Remarks

In this paper, we examine non-cooperative games with additive dyadic social inter-
actions and focus on strategy profiles that are immune to various classes of group
deviations. We show that there exists a strong landscape equilibrium in basic (local
and uniform) social interactions games and investigate the link between potential-
maximizing strong landscape equilibria and strong Nash equilibria in various settings.
We also consider some extensions of our results.

We conclude this paper by illustrating how our potential function approach could
be applied to a class of matching problems. Since we have been considering coalitional
deviations, it is natural to explore applications of our approach to matching problems
with a quota for each action. As long as a potential function is well-defined for
admissible coalitional deviations, a profitable swapping of players’ actions will increase
the potential of the matching problem. The existence of quotas in fact limits feasible
coalitional deviations. For example, consider a student assignment problem for sports
activities, each having a capacity limit, and where students have dyadic preferences
over their peers. We could then apply a potential-improving cyclical swapping of
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students, respecting quotas, to find a landscape stable assignment from an arbitrary
initial assignment. Afacan et al. (2025) consider a seat assignment problem in public
transportation with passengers possessing symmetric preferences for those sitting next
to them. We can apply our approach to this problem as well.®
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