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Abstract

We give a general equilibrium model of incomplete asset markets in which in-

vestors care not only about risk and return but also have ESG concerns. We con-

sider two notions of equilibrium, a market value maximization equilibrium and a

Dreze equilibrium. While the firms simply maximize profit with respect to common

state prices at a market value maximization equilibrium, each firm maximizes profit

with respect to the weighted average of its shareholders’ subjective state prices at

a Dreze equilibrium. We take the difference in social welfare between the two as

the impact of shareholder engagement. We establish the existence of these equi-

libria. We give an equivalent condition for the two to coincide, which means that

shareholder engagement makes no difference. We show, moreover, that even when

it makes a difference, it is at most of second order, hence negligible, in a sense that

can be made precise.

Keywords: ESG, CAPM, incomplete markets, shareholder engagement, rep-

resentative investor, Grassmann manifold

1 Introduction

ESG (Environment, Social, and Governance) attracts a lot of attention in the global

economy. On the first one, environment, it is often argued, most notably Kölbel

et al (2020), that investors, institutional or individual, should actively engage in

the firm’s production decision making to induce its managers to employ greener

∗Kyoto University
†University of Zurich
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technologies. While it seems nice, at first glance, to encourage green activists to

engage in firms’ management, the social value of such engagement should ulti-

mately be judged by its welfare consequences. Since such consequences, in turn,

depend on how the investors and the asset markets react to the firms’ production

changes, any sound theoretical analysis would require a general equilibrium model

that takes all repercussion effects into consideration. The purpose of this paper is

to provide a general equilibrium model of asset markets where shareholders’ views

on environment are respected in firms’ decision making.

Let us take a moment to elaborate on the findings of Kölbel et al (2020). They

surveyed 64 contributions to identify what kind of mechanisms would make a sig-

nificant difference in greenness of firms’ production activities. They singled out

shareholders engagement as the most effective mechanism, while the effectiveness

of capital allocation, whereby investors shift their capital from less to more green

firms, is only partially supported. In particular, when it comes to the extent to

which capital allocation affects asset prices and, then, asset prices incentivize firms

towards greener production activities, the conclusions in the literature are rather

mixed. They also emphasized, as topics of future research, the importance of quan-

tifying the impact of shareholder engagement and clarifying the nature of firms’

reactions to changes in asset prices caused by capital allocation. In this paper, we

give theoretical answers to these question: We quantify the impact of engagement

as the representative investor’s utility function and derive production plans at equi-

librium where investors maximize their ESG-sensitive utility functions. All these

results are made possible by our general equilibrium model with ESG-conscious

investors and endogenous production decisions.

In our model, investors have the same mean-variance utility functions as in the

Capital Asset Pricing Model, except that they have possibly heterogeneous views

on environment, embedded in their utility functions. We use two notions of equilib-

rium. One is a market-value maximization equilibrium, where the firms maximize

their profit without paying special attention to the shareholders’ ESG concerns.

The other is Dreze equilibrium, named after Jacques Dreze (1974), where the firms

maximize profit with respect to the weighted average of its shareholders’ utility gra-

dients. This latter criterion respects the shareholders’ environment concerns and

can thus be considered as a proper, albeit condensed, formulation of shareholder

engagement in this context.

While there are many ways to introduce ESG concerns into a general equilibrium

model, we employ the following assumptions to capture the equilibrium implications

of shareholder engagement in the simplest possible manner.

First, we opt for the notion of an equilibrium due to Dreze (1974) rather than

that due to Grossman and Hart (1974). The two notions differ as regards to who

can determine the firm’s production plan. Dreze’s notion assumes that ex-post (af-
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ter trade) shareholders can determine the firm’s production plan, while Grossman

and Hart’s notion assumes that ex-ante (before trade) shareholders can do so. We

use Dreze’s notion because we would like to model a situation where environmen-

tally conscious investors buy shares, being aware of the possibility that they could

overturn, whenever necessary, the existing production decision (made, presumably,

by ex-ante shareholders) in their favor. We also assume that they bear the cost of

production.

Second, we allow for short sales and, moreover, assume that short-sellers are

also involved in the firm’s decision making. The second assumption is admittedly

unrealistic and deviates drastically from Dreze’s original formulation, who assumed

that no short sales is allowed (and, hence, there was no need to specify whether

short-sales are involved in the firm’s decision making). Yet, we can justify our

inclusion of short-sellers on the normative ground: To attain an efficient allocation,

the firm’s objective needs to take not only shareholders’ welfare but also short-

sellers’ welfare into consideration.

Third, we assume that the risk-free lending is in fixed supply and the risk-free

interest rate is endogenously determined at equilibrium. In the finance literature,

it is often assumed that the risk-free interest rate is exogenously given and there

is no limit on the risk-free lending. While this assumption may be plausible espe-

cially where the analysis is based on the CAPM, it blurs the welfare comparison

between Dreze equilibrium and market value maximization equilibrium because the

advantage of one over the other may be due to a larger supply of risk-free lending

at equilibrium, rather than shareholder engagement.

With these model specifications, we present three results in this paper.

First, we prove that both a market value maximization equilibrium and a Dreze

equilibrium exist. The mathematical techniques needed to prove their existence

are quite different. To establish the existence of a market-value maximization equi-

librium, it suffices to use the well known fact that every continuous function on a

compact set attains a maximum. For the existence of a Dreze equilibrium, we need

to introduce an auxiliary notion of an equilibrium, called a pseudo Dreze equilib-

rium, and construct a vector bundle whose base space is a Grassmann manifold and

apply a theorem on its mod 2 Euler number. Our existence theorem of a (pseudo)

Dreze equilibrium is particularly noteworthy because most papers in general equi-

librium theory with incomplete asset markets and production, such as Dreze (1974)

and Geanakoplos, Magill, Quinzii, and Dreze (1990), assumed that no short sales

are allowed, thereby circumventing some discontinuity problems that can only be

dealt with by using Grassmann manifolds.

Second, we give an equivalent condition for the two equilibria to coincide. We

also give a novel interpretation to this equivalent condition in terms of ESG in-

tegration. ESG integration stipulates that ESG concerns should be taken into
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investment decisions. In our model, the integrated part of ESG concerns is noth-

ing but the deviation of investors’ portfolios from the mutual fund theorem. The

non-integrated part of ESG concerns is left in the heterogeneity in shareholders’

subjective state price density (or marginal rates of substitution) due to market in-

completeness. The equivalent condition is that the integrated and non-integrated

parts of ESG concerns must be uncorrelated. It means, in particular, that the

knowledge of shareholders’ portfolios gives no information on their view on which

production activity they would like the firm to implement. Thus, shareholder en-

gagement makes a difference if and only if the integrated and the non-integrated

parts of ESG concerns are (positively or negatively) correlated. For this condition

to hold, two things are necessary. First, shareholders’ ESG concerns are heteroge-

nous; that is, some shareholders need to be more environmentally conscious than

others, possibly in different dimensions. Second, asset markets are incomplete in

the sense that the investors’ ESG concerns cannot be fully diversified via asset

trades. This result tells us that any model that assumes homogenous ESG concern

or complete markets cannot capture the impact of shareholder engagement.

Third, we show that shareholder engagement has at most a second-order impact

on social welfare. More precisely, starting at a profile of investors’ ESG concerns

under which the market value maximization equilibrium and Dreze equilibrium

coincide, we change the profile to induce the two to diverge. We prove that the

induced difference in the sum of investors’ utilities between the two equilibria is of at

most second order with respect to the size of the change, formulated as probability

distortions, in ESG profiles. We can thus say that shareholder engagement may

make a difference in social welfare, but the magnitude is negligible. An important

implication of this result is that a shareholder may be able to increase his own

welfare, in the magnitude of first order, by engaging himself in the firm’s decision

making, but he can do so only at the sacrifice of some other investors. This tradeoff

seems to have been left unnoticed in the literature. In our accompanying paper

(Hara, Hens, and Trutwin (2024)), we give numerical examples for these effects to

happen.

This paper is organized as follows. We present the setup, the notions of equilib-

rium, and some technical results in Sections 2 through 5. We prove the existence of

a market value maximization equilibrium in Section 6 and the existence of a Dreze

equilibrium in Section 7. We give an equivalent condition for a market value max-

imization equilibrium and a Dreze equilibrium to coincide in Section 8. We show

in Section 9 that there is no first-order impact of shareholder engagement on social

welfare. We conclude in Section 10. Proofs and some supplementary materials are

gathered in the appendices.
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2 Setup

There are two time periods, 0 and 1. There is a state space S = {1, . . . , S}, endowed
with a probability measure p = (p1, . . . , pS) ∈ RS

++, that describes uncertainty on

period 1. Denote by Λ(p) is the S ×S diagonal matrix with its s-th diagonal entry

equal to ps.

Denote the vector of 1’s in RS by 1, and also by D0.

An economy of the ESG-inclusive CAPM is defined by the pairs of Arrow-Pratt

measure of absolute risk aversion and ESG scores, (ψi, γi), for i = 1, . . . , I, and the

production possibility sets, Y k, for k = 1, . . . ,K.

To accommodate ESG concerns, as we assume that investor i’s utility function

over stochastic consumption on period 1 is

U i(ci) = E[ci]− ψi

2
Var[ci]− γi · ci. (1)

This utility function differs from the mean-variance utility function in that it has

a third term −γi · ci. We can assume without loss of generality that 1 · γi = 0,

because, otherwise, we can replace γi by γi−E[γi]1 and change ψi to represent the

same utility function. Thus, the ESG score γi can be thought of as a probability

distortion: the distorted probability distribution assigns probability 1− γis to state

s. Write δi = Λ(p)−1γi. The utility gradient is ∇U i(ci) = Λ(p)πi(ci), where

πi(ci) = 1− ψi(ci − E[ci]1)− δi.

Since ∇U i(ci)z = E[πi(ci)z] for every z ∈ RS , πi(ci) is the density, also known

as the Riesz representation, of the linear function defined by ∇U i(ci). Here and

throughout this paper, we identify a vector in RS with a random variable defined

on S, by dividing each coordinate of the former by the probability. The former is

useful when we use Hessians, while the latter is useful when we take expectations.

Note that E[πi(ci)] = 1. Write τi = ψ−1
i , τ̄ =

∑
i τi, ψ̄ = τ̄−1, and δ̄ =∑

i(τi/τ̄)δ
i. Then, τ i is investor i’s risk tolerance and, as we will later see, τ̄ is the

representative investor’s risk tolerance and δ̄ is her ESG score.

The production set of firm k is given by

Y k = {(−F k(Dk), Dk) ∈ R×RS
+ | Dk ∈ RS

+} − (R+ ×RS
+)

where F k : RS
+ → R+ is strictly increasing, continuous, and convex, and satisfies

F k(0) = 0. It is nothing but the cost function: F k(Dk) is the amount of input

at period zero that is needed to produce Dk
s units in each state s on period one.

The continuity and convexity imply that for every w > 0, the set {Dk ∈ RS
+ |

F k(Dk) ≤ w} is closed and convex. Indeed, if it were not bounded, then its
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asymptotic cone has a vector z ∈ RS
+ \ {0}. But, then, w ≥ F k(Dk) = F k(Dk + z),

which contradicts the assumption that F k is strictly increasing. Hence, the set

{Dk ∈ RS
+ | F k(Dk) ≤ w} is bounded. Note also that by definition, Y k satisfies

free disposal. Hence, the profit maximization conditions, to be defined later, imply

that the equilibrium state prices are non-negative.

The aggregate production set Ȳ is defined as the sum
∑K

k=1 Y
k of the firms’

production sets. Define F̄ : RS
+ → R+ by letting

F̄ (D̄) = min

{∑
k

F k(Dk) | Dk ∈ RS
+ ∩M for every k and

∑
k

Dk = D̄

}

for every D̄ ∈ RS
+. Then,

Ȳ = {(−F̄ (D̄), D̄) ∈ R×RS
+ | D̄ ∈ RS

+} − (R+ ×RS
+).

That is, F̄ is the cost function that represents the aggregate production set Ȳ .

Example 1 Imagine that each state s corresponds to a global average temperature

ts and assume that t1 < · · · < tS . That is, the state with a larger index s is the

state where the global average temperature is higher.

We take any investor i with γis = 0 for every s as environmentally neutral. When

it comes to evaluating expected utility levels, an environmentally conscious investor

would assign probabilities lower than the reference (natural) probability ps to high

temperatures and probabilities higher than the reference (natural) probability ps

to lower temperatures. The idea behind this restriction is that an environmentally

conscious investor would feel guilty of consumption in environmentally bad states

and this tendency is reflected by a reduction of probabilistic assessments on such

states in evaluating expected utility levels. In particular, the lower probabilities

assigned to environmentally bad states should not be interpreted as the investor’s

probabilistic assessments of environmentally bad states being lower than the refer-

ence probabilities. Indeed, the reality of environmental activism seems to suggest

the contrary.

To formalize this idea, we rely on the notion of monotone likelihood ratio prop-

erty. We could alternatively use the notion of first-order stochastic dominance,

but we skip its formalization to simplify the exposition. We say that investor i is

environmentally conscious if
ps − γis
ps

,

is decreasing in s, or, equivalently, δis is increasing in s, because, having known

that either one of two temperatures will be realized, investor i puts a higher condi-

tional probability on the higher temperature than is calculated from the reference
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probabilities.

We can extend the notion of environmental consciousness to the notion of more-

environmentally-conscious-than relation. We say that investor i is more environ-

mentally conscious than investor j if

ps − γis

ps − γjs
,

is decreasing in s or, equivalently,

1− δis

1− δjs

is decreasing in s.

Example 2 As for the firms, a firm is green if it produces less in higher temper-

atures. Equivalently, a firm is brown if it produces more in higher temperatures,

thereby contributing to the higher temperatures. To formalize this idea, we impose

a particular functional form on the cost functions. Assume that for each firm k,

there is a νk = (νk1 , . . . , ν
k
S) ∈ RS

++ such that

F k(Dk) =
∑
s

ps
2νks

(Dk
s )

2 = E

[
(Dk)2

2νk

]
.

It can be shown that if π is the state price density, then the profit-maximizing

(state-contingent) output under π is a positive multiple of νk. Thus, in line with

the more-environmentally-conscious-than relation for investors, we can say that

firm k is greener than firm h if νks /ν
h
s is decreasing in s.

More generally, let Rf and π be the risk-free rate and the state price density. Let

Dk and Dh maximize profit under (Rf , π) for firms k and h, the precise definition

of which will be introduced later. Then, by its first-order condition, π⊤Λ(p) =

Rf∇F k(Dk) and π⊤Λ(p)π = Rf∇F h(Dh). Thus, ∇F k(Dk) = ∇F h(Dh). Hence,

we can say that firm k is greener than firm h if Dk
s/D

h
s is decreasing in s, whenever

∇F k(Dk) = ∇F h(Dh).

3 Stocks, bond, and portfolios

Assume that, besides the stocks, the risk-free bond with payoff 1 is tradable in

period zero. We take the risk-free bond as the numeraire, so that its price is equal

to one.

For each i, investor i has initial endowments of the bond and the stocks,

(θ̄i0, θ̄i1, . . . , θ̄iK) and non-financial (such as labor) income wi on period zero. We

can think of θ̄i0 as investor i’s endowment in the risk-free consumption in period 1

7



and wi as his endowment in input in period 0. Assume, as a normalization, that∑
i θ̄

ik = 1 for every k ≥ 1 (but we impose no such condition on θ̄i0 as we want to

allow for both
∑

i θ̄
i0 = 0 and

∑
i θ̄

i0 > 0). We write w̄ =
∑

iw
i, θ̄0 =

∑
i θ̄

i0.

The stock entitles its ex-post (after trade) holder the output Dk it generates on

period one. As regards to who pays for the input F k(Dk), there are two possibilities:

the ex-post (after trade) holder versus the ex-ante (before trade) holder. We will

formulate, in Appendix B, these two possibilities in turn and show that they are,

in fact, equivalent. For the simplicity of exposition, however, we shall assume in

Section 4 that the ex-post shareholders pay for the input.

4 Two notions of equilibrium

Denote the bond and stock prices by q = (q0, q1, . . . , qk) ∈ R1+K and the (one-plus)

risk-free rate by Rf . We take the bond as the numeraire so that q0 = 1. Then, the

price of the period-0 input is Rf . To define two notions of equilibrium, we, first,

give the following two conditions.

Since the after-trade ownership of the stock come with the obligation of paying

for the input F k(Dk) on period zero in proposition to her stock holding, the utility

maximization problem of investor i is

max
(θi0,θi1,...,θiK)

U i

(
K∑
k=0

θikDk

)

subject to

K∑
k=0

qkθik +Rf

K∑
k=1

F k(Dk)θik ≤
K∑
k=0

qkθ̄ik +Rfw
i.

At the solution of the utility maximization problem, the weak inequality holds as

an equality.

The market clearing condition is that
∑

i θ
i0 = θ̄0,

∑
i θ

ik = 1 for every k ≥ 1,

and
∑

k F
k(Dk) = w̄.

Remark 1 It is often assumed, in the finance literature, that the risk-free rate

Rf is exogenously given and the market-clearing condition is not required for the

risk-free bond. Such a formulation is possible in our setting but would require us

to introduce a non-standard notion of an efficient allocation.

We say that a state price density π is consistent with the asset price vector q

under (D1, . . . , DK) if qk = E
[
πDk

]
−RfF

k(Dk) for every k.

Definition 1 Suppose that ((θik)i,k, Rf , q) satisfies the utility maximization con-

dition and the market-clearing condition are met under (D1, . . . , DK). Suppose, in

addition, that there is a consistent state price density π under (D1, . . . , DK) such
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that for every k, Dk is a solution to the problem of maximizing

E
[
πDk

]
−RfF

k(Dk).

Then, we say that ((D1, . . . , DK), (θik)i,k, Rf , q) is a market-value-maximization

equilibrium (MVE for short).

Definition 2 Suppose that ((θik)i,k, Rf , q) satisfies the utility maximization con-

dition and the market-clearing condition are met under (D1, . . . , DK). Suppose, in

addition, that for every k, Dk is a solution to the problem of maximizing

E

[(∑
i

θikπi(ci)

)
Dk

]
−RfF

k(Dk),

where ci =
K∑
k=0

θikDk. Then, we say that ((D1, . . . , DK), (θik)i,k, Rf , q) is a Dreze

equilibrium (DE for short).

The two definitions differ in terms of the state price densities with respect

to which the profit maximization condition is defined. At the MVE, the state

price density π is required to be consistent with the stock prices q and all the

firms maximize profit with respect to the common π. As for DE, by the utility

maximization condition, the πi(ci) all coincide on the market span ⟨1, D⟩, which
is defined as the linear subspace of RS spanned by (1, D1, . . . , DK). Outside the

market span, however, they may differ from each other. Thus, different firms may

maximize profit with respect to different state price densities.

The notion of Dreze equilibrium can be justified by the following fact, which

differs from Proposition 31.5 of Magill and Quinzii (1996), only in that short sales

are allowed, and can be similarly proved. If Dk did not satisfy the Dreze criterion,

then there would be a D̂k and (θ̂10, . . . , θ̂I0) with
∑

i θ̂
i0 =

∑
i θ

i0 such that for

every i with θik ̸= 0,

U i

 ∑
h≥1,h ̸=k

θihDh + θ̂i01+ θik
(
D̂k −Rf

(
F k(D̂k)− F k(Dk)

)
1
) > U i

(
K∑
k=0

θikDk

)
.

(2)

This can be understood as saying that if the Dreze criterion is not met, then, at the

shareholders’ assembly, via proxy fight, they would unanimously vote in favor of D̂k

over Dk, thereby kicking out the incumbent managers. Thus, the Dreze criterion

is a necessary condition for the production plan Dk to be carried out.

Remark 2 Some caveats are in order on the inclusion of short sellers in the firm’s
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profit maximization problem of a Dreze equilibrium. First and foremost, it is nec-

essary (but not sufficient) to include short sellers (θik < 0) for this criterion to

achieve a Pareto-efficient allocation. Instead of defining a Pareto improvement by

the inequality (2) for every i with θik ̸= 0, it is possible, and, in fact, more realistic,

to require the inequality (2) to hold only for the shareholders (θik > 0). In this

alternative criterion, the short sellers’ welfare is still impacted by the change of

production plans from Dk to D̂k, but the change in their welfare is not taken into

consideration. Thus, even if the shareholders do not find any Pareto-improving

production plan among themselves, there may well be a Pareto-improving produc-

tion plan once the short sellers are included and transfers in terms of the risk-free

bond are feasible between shareholders and short sellers. Second, Dreze (1974)

himself assumed that investors cannot short-sell (θik ≥ 0 for every k ≥ 1), thereby

excluding short sellers from the firm’s maximization problem, and this assumption

seems reasonable given the associated complex transactions in reality, but it is in-

consistent with the theory of optimal portfolios and asset pricing, especially in the

CAPM, which has been developed mainly under the assumption that short sales

are possible with no extra transaction costs. Third, it is possible to allow for short

sales and, yet, involve only long buyers in the firm’s maximization problem. One

such example is to assume that firm k maximizes

E

[(∑
i

ηikπi

)
Dk

]
−RfF

k(Dk),

where Θk =
∑

imax {θik, 0} and

ηik =
max{θik, 0}

Θk
.

The corresponding equilibrium could be called a truncated Dreze equilibrium, as

the short sales are truncated to zero. This criterion was used by Momi (2002)

and can be justified by assuming that stocks cannot be sold short but there are

derivatives that have the same payoffs as the stocks except that they do not come

with the voting right and can be sold short. Appendix C formalizes this fact.

Remark 3 Grossman and Hart (1979) introduced an alternative objective of the

firm by which the profit is maximized with respect to the weight average of the

before-trade shareholders’ utility gradients. This means, in our notation, that the

firm maximizes

E

[(∑
i

θ̄ikπi(ci)

)
Dk

]
−RfF

k(Dk).

While this criterion would be more compelling in a dynamic model of multiple trad-

ing periods, we opt for Dreze criterion, as we would like to formulate the situation
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where investors (activists) buy shares to affect firms’ production decision making.

5 Constrained equilibrium

In this section, we give an auxiliary notion of equilibrium, called a constrained

equilibrium, that covers both MVE and DE and, yet, allows us to make the differ-

ence between the two mathematically tractable. It is given in terms of consump-

tion plans and state price densities, rather than portfolios and stock prices. In

the sequel, we explore the existence, uniqueness, and characterization of the con-

strained equilibrium. Recall that the condition
∑

k F
k(Dk) ≤ w̄ is equivalent to

(−
∑

k F
k(Dk),

∑
kD

k) ∈ Ȳ .

Definition 3 LetM be a linear subspace of RS that contains 1. Let ((Dk)k, (c
i)i)

be a profile of output and consumption plans. We say that it is M -constrained

feasible if Dk ∈ M for every k, ci ∈ M for every i,
∑

k F
k(Dk) ≤ w̄, and

∑
i c

i =

θ̄01+
∑

kD
k.

Note thatRS-constrained feasibility is nothing but the standard (unconstrained)

feasibility.

Definition 4 LetM be a linear subspace ofRS that contains 1. Then, ((Dk)k, (c
i)i, Rf , π)

with E[π] = 1 is an M -constrained equilibrium if

1. ((Dk)k, (c
i)i) is M -constrained feasible.

2. For every i, ci is a solution to

max
ci

U i(ci)

subject to E[πci] ≤ θ̄i0 +

K∑
k=1

(E[πDk]−RfF
k(Dk)θ̄ik +Rfw

i,

ci ∈M.

3. For every k, Dk is a solution to

max
Dk

E
[
πDk

]
−RfF

k(Dk)

subject to Dk ∈M.

The second condition is the utility maximization condition under the spanning

constraint ci ∈M in addition to the (standard) budget constraint. The third con-

dition is the profit maximization condition under the spanning constraint Dk ∈M .

Note that an RS-constrained equilibrium is nothing but a standard (unconstrained)

equilibrium in terms of consumption plans and state prices.

The next lemma shows that MVE’s and DE’s are constrained equilibria.
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Lemma 1 Let ((D1, . . . , DK), (θik)i,k, Rf , q) be a MVE or a Dreze equilibrium. For

each i, write ci =
∑K

k=0 θ
ikDk. Let π be a state price density that is consistent with

q. Then, ((Dk)k, (c
i)i, Rf , π) is a ⟨1, D⟩-constrained equilibrium.

Remark 4 It is true thatM ⊇ ⟨1, D⟩ for everyM -constrained equilibrium ((Dk)k, (c
i)i, Rf , π).

By construction, the ⟨1, D⟩-constrained equilibrium in Lemma 1 satisfies this in-

clusion as an equality. There are, however, M -constrained equilibria for which M

is strictly larger than ⟨1, D⟩.

We now define a notion of constrained efficiency.

Definition 5 LetM be a linear subspace of RS that contains 1. Let ((Dk)k, (c
i)i)

be M -constrained feasible. We say that it is M -constrained efficient if there is no

other profile that is M -constrained feasible and improves upon (ci)i in the sense of

Pareto.

Note that RS-constrained efficiency is nothing but standard (unconstrained) effi-

ciency.

Thanks to the quasi-linearity of the U i, the M -constrained efficient allocations

can be characterized as the maximum of the (unweighted) sum of utilities. The

next characterizes the maximum.

Lemma 2 Let M be a linear subspace of RS that contains 1. If ((Dk)k, (c
i)i) is

M -constrained efficient, then∑
i

U i
(
ci
)
= θ̄0 + E[D̄]− 1

2τ̄
Var[D̄]− E[δ̄D̄] +

∑
i

τi
2
Var[Ai

M ], (3)

where D̄ =
∑K

k=1D
k and, for each i, Ai

M is the p-orthogonal projection of δi − δ̄

onto M .

The following lemma characterizes constrained efficient allocations and their

uniqueness in two senses that will be clarified after its statement.

Lemma 3 Let M be a linear subspace of RS that contains 1. Let ((Dk)k, (c
i)i) be

an M -constrained efficient allocation.

1. For every i,

ci − E[ci]1 =
τ i

τ̄
(D̄ − E[D̄]1)− τ iAi

M . (4)

Moreover, if ((Dk)k, (c
i)i, Rf , π) is an M -constrained equilibrium, then π co-

incides with

1− 1

τ̄
(D̄ − E[D̄]1)− δ̄. (5)

on M .

12



2. For any other M -constrained efficient allocation
(
(D̂k)k, (ĉ

i)i

)
,
∑

k≥1D
k =∑

k≥1 D̂
k and

∑
i≥1 c

i =
∑

i≥1 ĉ
i.

3. For every k ≥ 1, if F k is strictly convex, then Dk = D̂k. If F k is strictly

convex and differentiable for some k and if ((Dk)k, (c
i)i, Rf , π) is an M -

constrained equilibrium, then Rf = R̂f and c
i = ĉi for every i.

Part 1 of this lemma characterizes the M -constrained efficient allocations and

the associated state price densities. (4) implies that the mean-zero part of each

investor’s consumption plan is uniquely determined, and (5) implies that the state

price density is uniquely determined up to the residuals of its p-orthogonal pro-

jection on the market span M . Part 2 establishes the uniqueness relative to the

weaker notion, which claims that the aggregate production plan and the aggregate

consumption plan are uniquely determined. Together with part 1, it implies that

between any two M -constrained efficient allocations, each investor’s consumption

plans differ only in the direction of 1 and, since the aggregate consumption plan is

uniquely determined, these differences add up to zero. Part 3 gives sufficient condi-

tions for a firm’s output plan, an investor’s consumption plan, and the risk-free rate

to be uniquely determined. Note that if K = 1, then part 2 implies that D1 = D̂1,

without relying on these conditions.

Remark 5 Since a DE is also a constrained equilibrium, an important corollary of

Lemma 3 is that whenever two DE’s involve different aggregate output plans, the

corresponding market spans are different. Recall that Dreze gave three examples

to illustrate possible inefficiency of Dreze equilibrium allocations. The examples

involve two states, two investors, and two firms, and, yet, production plans (state-

contingent outputs) depend on who owns the firms. Lemma 3 seems to contradict

his examples, because the market span is unchanged in his examples. In fact, it

does not, because our setting allows consumption levels to be negative (that is, the

consumption set is the entire RS , rather than the non-negative orthant RS
+) and

our notion of a Dreze equilibrium requires all the investors’ subjective state price

densities, πi(ci)’s, to be always equated on the entire market spanM , which Dreze’s

own notion does not require when the consumption levels for some states are zero.

The following lemma is the first welfare theorem for constrained equilibrium

allocations. It can be proved by applying the first welfare theorem (Proposition

16.C.1 of Mas-Colell, Whinston, and Green (1995), for example) to the constrained

consumption sets R+ ×M and the constrained production possibility sets Y k ∩
(R×M).

Lemma 4 LetM be a linear subspace of RS that contains 1. If ((Dk)k, (c
i)i, Rf , π)

is an M -constrained equilibrium, then ((Dk)k, (c
i)i) is M -constrained efficient.

13



Since both MVE and DE are M -restricted equilibria, the above lemma implies

that they are M -restricted efficient.

The following lemma is the second welfare theorem for constrained efficient

allocations. It can be proved by applying the first welfare theorem (Proposition

16.D.1 of Mas-Colell, Whinston, and Green (1995), for example) to the constrained

consumption sets R+ ×M and the constrained production possibility sets Y k ∩
(R×M), and noting that R+ ×M is not bounded from below.

Lemma 5 Let M be a linear subspace of RS that contains 1. If ((Dk)k, (c
i)i) is

M -constrained efficient, then there is a (Rf , π) with Rf > 0 and E[π] = 1 such that

((Dk)k, (c
i)i, Rf , π) is an M -constrained equilibrium.

While this lemma is also a consequence of the separating hyperplane theorem, to

guarantee that Rf > 0 and E[π] = 1, we need a modification to one of the two sets to

which the theorem is applied. Yet, we can only guarantee that ((Dk)k, (c
i)i, Rf , π)

is an M -constrained equilibrium: it need not be a MVE or a DE.

The last lemma of this section establishes the existence of an M -constrained

equilibrium.

Lemma 6 For every linear subspace M of RS that contains 1, there is an M -

constrained equilibrium.

This lemma can be proved by applying the equilibrium existence theorem (Propo-

sition 17.BB.2 of Mas-Colell, Whinston, and Green (1995), for example) to the

constrained consumption sets

R+ × {ci ∈M | U i(ci) ≥ U i(θ̄i0)}.

and the constrained production possibility sets Y k ∩ (R ×M). Note that U i(θ̄i0)

is the utility level that consumer i attains when not trading any asset or input.

Hence, at any constrained equilibrium, she attains a utility level that is at least as

high as this level, which justifies the use of the above constrained consumption set

with the additional benefit of being bounded from below.

6 Canonical market value maximization equi-

librium

In this section, we prove that there always exists a MVE with the state price density

under which all the firms maximize profit admits an easy-to-grasp expression.

14



Proposition 1 There is a market value maximization equilibrium at which the

consistent state price density under which the firms maximize profit is

1− 1

τ̄
(D̄ − E[D̄]1)− δ̄. (6)

Definition 6 A MVE ((D1, . . . , DK), (θik)i,k, Rf , q) is called the canonical MVE if

all firms maximize profit under the state price density (6).

The notion of a MVE puts no restriction, outside the market span M , the state

price density π with respect to which all the firms maximize profit. In particular,

the definition of a MVE (Definition 1) does not even require the state price density

to be a convex combination of the density of the investors’ utility gradients. In

this respect, we follow Duffie and Shafer (1986), and they, in fact, gave an example

of a single-firm economy having a continuum of equilibria, some of which are even

Pareto-ranked. In Appendix D, we show that the multiplicity may as well persist

in our setting.

Yet, the state price density (6) is the most natural candidate among the mul-

tiple MVE state price densities. To see this point, suppose, for simplicity, that all

investors have the same (p-discounted) ESG score δ̄. In this homogeneous case, the

social welfare is measured by the representative investor’s utility function

Ū(c̄) = E[c̄]− 1

2τ̄
Var[c̄]− E[δ̄c̄], (7)

and the canonical state price density (6) coincides with the (p-discounted) gradient

of the above utility function. In the aggregate, therefore, the firms would not

maximize social welfare whenever they maximize profit under any non-canonical

state price density. Thus, any improvement of Dreze equilibrium allocations over

MVE allocation may then be attributed to this erroneous choice of the state price

density. In other words, by focusing on the canonical state price density (6), we are

being most demanding when it comes to assessing whether shareholder engagement

may lead to Pareto-superior allocations.

Since the utility function (7) is strictly quasi-concave, even when there are multi-

ple MVE’s, the aggregate output plan D̄ is uniquely determined. Under conditions

similar to those in parts 2 and 3 of Lemma 3, the uniqueness of the canonical MVE

is guaranteed, which justifies our terminology of “the canonical MVE” rather than

“a canonical MVE”.

Remark 6 Although Proposition 1 is concerned with a single economy, it has an

important implication when comparing the canonical MVE’s of two economies. The

proof of Lemma 6 and Proposition 1 together reveal that the aggregate output plan

D̄ and the state price density π depend on the aggregated parameters Ȳ , w̄, θ̄0,
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τ̄ , and δ̄ but not directly on the individual parameters Y k, wi, θi0, and τ i, or δi.

Underlying this fact is the quasi-linearity of the utility functions U i in the direction

of the payoff 1 of the risk-free bond, which implies that there is no income effect

on the demand for the shares.

7 Existence of a Dreze equilibrium

In this section, we establish the existence of a Dreze equilibrium. Unlike some

earlier contributions, such as Dreze (1974) and Geanakoplos, Magill, Quinzii, and

Dreze (1990), we do not impose exogenous bounds on portfolios. Duffie and Shafer

(1986) imposed no such constraint but only established the existence of a MVE. A

notable exception is Momi (2001), who gave a robust example of the non-existence

of a Dreze equilibrium. We will elaborate on the difference between our formulation

and his formulation towards the end of this section.

7.1 Additional assumptions

We use the following assumptions in this section. For each k, F k is twice con-

tinuously differentiable at all points except for 0. ∇F k(Dk) ∈ RS
+ \ {0} and

∇2F k(Dk) is positive definite (even along the direction of Dk) for every Dk ∈
RS

+ \ {0}. ∇F k(Dk) ∈ RS
++ for every Dk ∈ RS

++. Then, the positive multiples of

(1,∇F k(Dk)) are the normal vectors of Y k at (−F k(Dk), Dk). Write

ξk(Dk) = Λ(p)−1∇F k(Dk),

where Λ(p) is the S×S diagonal matrix of which the s-th diagonal element is equal

to ps. Then, (F k(Dk), Dk) maximizes profit under (Rf , π) (a risk-free rate Rf > 0

and a state price density π satisfying E[π] = 1) if and only if (1, ξk(Dk)) is a positive

multiple of (Rf , π), which is equivalent to π − Rfξ
k(Dk) = 0. More generally, for

every linear subspace M of RS that contains 1, (F k(Dk), Dk) maximizes profit

under (Rf , π) on Y
k ∩ (R×M) (the M -constrained profit maximization condition)

if and only if π −Rfξ
k(Dk) ∈M⊥.

7.2 Pseudo Dreze equilibrium

Recall that E[δi] = 0 for every i and E[δ̄] = 0. For each linear subspace M of

RS that contains 1, write δi − δ̄ = Ai
M + Bi

M with Ai
M ∈ M and Bi

M ∈ M⊥,

where the orthogonality is defined with respect to the probability p on RS . Write
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AM = (A1
M , . . . , A

I
M ) ∈ RS×I and BM = (B1

M , . . . , B
I
M ) ∈ RS×I . Moreover, write

AM =

(
ÃM

ǍM

)
,

where ÃM ∈ RK×I and ǍM ∈ R(S−K)×I .

For any give profile (Dk)k of state-contingent outputs, write D̂k = Dk−E[Dk]1

for every k, and, then, D̂ = (D̂1, . . . , D̂K) ∈ RS×K . Moreover, write

D̂ =

(
D̃

Ď

)
,

where D̃ ∈ RK×K and Ď ∈ R(S−K)×K .

Definition 7 LetM be a linear subspace ofRS that contains 1 and ((Dk)k, (c
i)i, Rf , π)

with E[π] = 1 be an M -constrained equilibrium. It is a pseudo Dreze equilibrium

if, in addition,

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
D̃⊤ = −BMΛ(τ)Ã⊤

M , (8)

where
(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
∈ RS×K .

A Dreze equilibrium is a pseudo Dreze equilibrium, as the following proposition

shows.

Proposition 2 Suppose that ((Dk)k, ((θ
i0, θi))i, Rf , (q

0, q1, . . . , qK)), with q0 = 1,

is a Dreze equilibrium. LetM be the linear subspace of RS spanned by (1, D1, . . . DK).

Let ci =
∑

k≥0 θ
ikDk for each i and

π = 1− 1

τ̄

(
D̄ − E

[
D̄
]
1
)
− δ̄,

where D̄ =
∑

k≥1D
k. Then, π is consistent with q (that is, q0 = 1 and qk =

E[πDk] − RfF
k(Dk) for every k ≥ 1) and ((Dk)k, (c

i)i, Rf , π) is a pseudo Dreze

equilibrium.

The following proposition gives the converse of Proposition 2 under the addi-

tional assumption that (1, D1, . . . , DK) is linearly independent. The two proposi-

tions, together, mean that when (1, D1, . . . , DK) is linearly independent, (8) is a

necessary and sufficient condition for a Dreze equilibrium.

Proposition 3 Let M be a linear subspace of RS that contains 1. Suppose that

((Dk)k, (c
i)i, Rf , π) is the M -constrained equilibrium that satisfies

π = 1− 1

τ̄

(
D̄ − E

[
D̄
]
1
)
− δ̄,
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where D̄ =
∑

k≥1D
k, and that it is also a pseudo Dreze equilibrium. Assume

that rank D̂ = rank D̃ = K. Let q be the asset price vector with which π is con-

sistent (that is, q0 = 1 and qk = E[πDk] − RfF
k(Dk) for every k ≥ 1). Then,

for each i and k ≥ 0, there is a θik such that ci =
∑

k≥0 θ
ikDk for every i and

((Dk)k, (θ
ik)i,k≥0, Rf , q) is a Dreze equilibrium.

This proposition states that under the additional assumption that rank D̂ =

rank D̃ = K, the converse of Proposition 2 holds. Of the two equalities in the

assumption, only the first one, rank D̂ = K, which means that (D̂1, . . . , D̂K) is

linearly independent, is critical. The other assumption, rank D̃ = K, means that

the first K rows of D̂ constitute a basis of its row space, but choosing the first K

rows is apparently ad hoc. In fact, we could dispense with this latter assumption

by modifying Definition 7 as follows: there is a K×K submatrix D̃ of D̂ such that

rank D̂ = rank D̃ and

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
D̃⊤ = −BMΛ(τ)Ã⊤

M ,

where the K × I submatrix ÃM consists of the same K rows as D̃ does. In this

proposition, then, we would only need to assume that rank D̂ = K. Indeed, take a

K×K submatrix D̃ of D̂ as stipulated in the modified definition. Since rank D̂ = K,

rank D̃ = K and the above equality holds for this D̃; and the proof below is

still valid. This modification, therefore, provides an alternative (but not stronger)

notion of a pseudo Dreze equilibrium, and, at the same time, a weaker sufficient

condition for it to be a Dreze equilibrium.

7.3 Vector bundle approach

In this subsection, we prove that there is a pseudo Dreze equilibrium. As we saw in

Proposition 3, a pseudo Dreze equilibrium is a Dreze equilibrium if (1, D1, . . . , DK)

is linearly independent. We will later give a sufficient condition for this linear

independence condition to be met.

Theorem 1 There is a subspace M that contains 1 such that the M -restricted

equilibrium is a pseudo Dreze equilibrium.

To prove Theorem 1, write N ≡ {z ∈ RS | E[z] = 0} and L be the set of all K-

dimensional linear subspaces of N . Then, L can be identified with the Grassmann

manifold G J,S−1, and endowed with the topology induced by the topology of G J,S−1.

Denote by L⊥ the p-orthogonal complement of L in M0. By Proposition 6, for each

L ∈ L , there is a unique (up to the p-orthogonal projection of π onto the p-

orthogonal complement of ⟨1⟩ + L) (⟨1⟩ + L)-constrained equilibrium, which we
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denote by
(
(Dk

L)k, (c
i
L)i, RfL, πL

)
. Among the multiple πL, we take

πL = 1− ψ̄(D̄L − E[D̄L]1)− δ̄.

By a sight abuse of notation, we write AL and BL for A⟨1⟩+L and B⟨1⟩+L. Define

η : L → (RS)K by

η(L) =
(
πL −RfLξ

1(D1
L), . . . , πL −RfLξ

K(DK
L )
)
D̃⊤

L +BLΛ(τ)Ã
⊤
L .

By definition, the (⟨1⟩+ L)-constrained equilibrium is a pseudo Dreze equilibrium

if and only if η(L) = 0. Thus, the problem of establishing the existence of a

pseudo Dreze equilibrium is nothing but showing that there is an L ∈ L such that

η(L) = 0.

Define σ : L → L × (RS)K by letting σ(L) = (L, η(L)) for every L ∈ L .

Define

Ξ = {(L, z1, . . . , zK) ∈ L ×NK | zk ∈ L⊥ for every k}.

This is a vector bundle with the base space L and fiber (L⊥)K above each L ∈ L .

Both have dimension K(S − 1−K).

Lemma 7 The mapping σ is a section on Ξ. That is, σ(L) ∈ Ξ for every L ∈ L .

Then, the (⟨1⟩ + L)-constrained equilibrium is a pseudo Dreze equilibrium if

and only if the section σ intersects the zero section at L. Thus, the problem of

establishing the existence of a pseudo Dreze equilibrium is nothing but showing

that σ intersects the zero section at some point in L .

Lemma 8 The section σ is continuous.

We can now prove Theorem 1 as follows. By Hirsch, Magill, and Mas-Colell

(1990, page 100), the mod 2 Euler number of Ξ is nonzero. Hence, every continuous

section on Ξ intersects the zero section at least once. By Lemma 8, therefore, there

is an L ∈ L such that the section σ intersects the zero section at L. The (⟨1⟩+L)-
constrained equilibrium is a pseudo Dreze equilibrium.

When the rank condition in Proposition 3 is not met, the pseudo Dreze equilib-

rium need not be a Dreze equilibrium. Hence, we fall short of proving the existence

of a Dreze equilibrium. We will give a (much less general) sufficient condition for

the existence of a Dreze equilibrium towards the end of Section 9, as we need a

theorem and a lemma that will appear in Sections 8 and 9.

Remark 7 Momi (2001) gave an example of an economy where there is no Dreze

equilibrium. The notion of a Dreze equilibrium he employed is, in fact, the trun-

cated Dreze equilibrium, which we introduced in Remark 2. Moreover, his non-
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existence example is robust with respect to perturbations of endowments. We now

argue that the nature of non-existence of his example is quite different from the

nature of non-existence of a Dreze equilibrium of our model.

Recall that when defining a pseudo Dreze equilibrium in (8) of Definition 7, we

used the first K-coordinates Ãi
M of the diversifiable part Ai

M of ESG scores. The

diversifiable part can be written as D̂aiM where aiM is, in essence, the deviation of

investor i’s portfolio θi from the mutual fund theorem, (τ i/τ̄)1. To define a pseudo

truncated Dreze equilibrium, we need to replace aiM by the deviation of the positive

part of investor i’s portfolio, θi ∨ 0 = (max {θik, 0})k≥1. This modification may

induce discontinuity of the section σ. To see this point, suppose that there are two

firms and two investors. LetM0 be a market span such that the profile (D1
M0
, D2

M0
)

of output plans at the M0-constrained equilibrium is linearly dependent, spanning

just a line. Unless the Ai
M happen to lie on this line, at any other market span M

near M0 with a linearly independent profile (D1
M , D

2
M ), one investor takes a large

long position and the other investor takes a large short position of the share of each

firm. Hence, with the truncated shareholdings, max {θik, 0}, each firm’ production

plan is determined solely by one investor. Moreover, there may well be a sequence

of market spans converging toM0 along which the sole owner of each firm alternates

between the two investors; and this was the case in Momi’s (2001) example. Then,

the modified diversifiable part would be fluctuating as M converges to M0, and

the section σ fails to be continuous at M0, in whatever way σ(M0) is defined.

This discontinuity does not occur in our model because the diversifiable part Ai
M

changes continuously with respect to M . This also explains why his example is

robust: a small perturbation of endowments would not eliminate the possibility

that there is a sequence of market spans along which the sole owner of each firm

alternates between the two investors. On the other hand, since the diversifiable

part Ai
M changes continuously with respect to M in our model, we conjecture that

the non-existence of a Dreze equilibrium cannot be robust.

In concluding this remark, we mention that the robust non-existence may oc-

cur for modified Dreze equilibria in the model of long-only shares and derivatives,

mentioned in Remark 2 and formulated in Appendix C. This is because a modified

Dreze equilibrium in the markets of shares and derivatives (and the risk-free bond)

is a truncated Dreze equilibrium in Momi’s (2001) example, which robustly fails to

exist.

8 When a MVE is also a Dreze equilibrium

The following theorem gives necessary and sufficient conditions for the canonical

MVE to coincide with a Dreze equilibrium. This is the case where shareholder
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engagement makes no difference to social welfare.

Theorem 2 Let ((Dk)k, (θ
ik)i,k≥0, Rf , q) be the canonical MVE. LetM is the linear

subspace spanned by (1, D1, . . . , DK).

1. If ((Dk)k, (θ
ik)i,k≥0, Rf , q) is also a DE, then B⊤

MΛ(τ)AM = 0.

2. Suppose that (1, D1, . . . , DK) is linearly independent. If B⊤
MΛ(τ)AM = 0,

then ((Dk)k, (θ
ik)i,k≥0, Rf , q) is also a DE.

Theorem 2 shows that the key condition for the canonical MVE to be also a DE

is the equality B⊤
MΛ(τ)AM = 0. Denote the s-th coordinate of Ai

M by Ai
Ms and

the t-th coordinate of Bi
M by Bi

Mt. Then, the equality is equivalent to

∑
i

τ i

τ̄
Ai

MsB
i
Mt = 0. (9)

for all s and t. Since
∑

i(τ
i/τ̄)Ai

Ms = 0 and
∑

i(τ
i/τ̄)Bi

Mt = 0, it can be con-

sidered as the zero covariance condition between the coordinates of the Ai
M and

Bi
M with respect to the weights τ i/τ̄ . As the proof of this theorem shows, when

(1, D1, . . . , DK) is linearly independent, this is equivalent to

∑
i

τ i

τ̄
aikBi

Mt = 0. (10)

for every k = 1, 2, . . . ,K and t = 1, 2, . . . , S. Since
∑

i(τ
i/τ̄)aik = 0, it can be

considered as the zero covariance condition between the coordinates of the ai and

Bi
M with respect to the weights τ i/τ̄ .

These equalities are best interpreted in terms of ESG integration. ESG inte-

gration stipulates that ESG concerns should be taken into investment decisions. In

our setting, this means that the investors’ portfolios deviate from what they would

choose in the standard CAPM without ESG concerns. The latter is equal to τ i/τ̄ ,

because the mutual fund theorem would then hold and the investor holds each stock

in proportion to his own risk tolerance. In contrast, the investor’s optimal portfolio

in our setting is θik, and the difference

θik − τ i

τ̄
= −τ iaik (11)

can be attributed to his integrated ESG concern, multiplied by his risk tolerance.

On the other hand, Bi
M represents the part of his ESG scores that cannot be hedged

or diversified and can be addressed only by shareholder engagement, as embodied

by the notion of a Dreze equilibrium. As such, it can be interpreted as his non-

integrated ESG concerns. Therefore, the equalities (9) and (10) can be considered
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as the zero correlation between the integrated and the non-integrated ESG con-

cerns. In other words, the ESG scores may not be fully integrated, but, on average,

the non-integrated parts cannot be inferred from the (presumably observable) in-

vestment decisions.

There are two special, easier-to-interpret, cases where (9) and (10) hold. The

first case is where Bi
M = 0 for every i. In this case, the ESG scores are fully

diversifiable and the asset markets are (effectively) complete. The second case

is where all investors’ ESG scores are the same, which implies that aik = 0 and

Bi
M = 0 for all i and k. Putting these two conditions together, we can conclude

that for shareholder engagement to matter, markets must be incomplete and ESG

scores must be heterogeneous. Neither condition is dispensable, but even when

these two conditions are met, shareholder engagement is irrelevant if the integrated

and non-integrated parts of ESG scores are uncorrelated.

9 No first-order impact on social welfare

In this section, we show that the difference in social welfare between the canonical

MVE and DE is of at most second order with respect to ESG scores. The lesson to

be learned from this result is that shareholder engagement may make a difference

in firms’ production plans, but the difference it makes in social welfare may well be

small.

For each i, write δi − δ̄ = Ai(D, δ) + Bi(D, δ), the projections onto the linear

subspace spanned by (1, D1, . . . , DK) and its p-orthogonal complement, to make

its dependence on the profile D ≡ (D1, . . . , DK) of output plans and the profile

δ ≡ (θi)i of ESG scores explicit. We define the portfolio ai(D, δ) that generate

Ai(D, δ) in the analogous manner. Denote the right-hand side of the social welfare

function (3) by URE(D, δ). Then,

URE(D, δ) =
∑
i

θ̄i0 + E[D̄]− 1

2τ̄
Var[D̄]− E[δ̄D̄] +

∑
i

τi
2
Var[Ai(D, δ)].

As we will see in Lemma 11, this is differentiable at (D, δ) if (1, D1, . . . , DK) is

linearly independent, but not even continuous otherwise, because so is Var[Ai(D, δ)]

at (D, δ).

We also define the representative investor’s utility function URI by

URI(D̄, δ) =
∑
i

θ̄i0 + E
[
D̄
]
− 1

2τ̄
Var

[
D̄
]
− E

[
δ̄D̄
]
.

As the name suggests, it is equal to the representative investor’s utility level (7)
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when the aggregate output plan is D:

Ū
(
θ̄01+ D̄

)
= E

[
θ̄01+ D̄

]
− 1

2τ̄
Var

[
θ̄01+ D̄

]
− E

[
δ̄
(
θ̄01+ D̄

)]
= URI(D̄, δ).

Note that URI(D̄, δ) is different from URE(D, δ) in that it misses the welfare eval-

uation
∑
i

τi
2
Var[Ai(D, δ)] arising from the hedging opportunities provided by the

stocks. As such, the former depends only on the aggregate output plan D̄, while the

latter depends also on how it is distributed among the K firms, D = (D1, . . . , DK).

The first-order necessary and sufficient condition to the problem of maximizing

URI

(∑
kD

k, δ
)
subject to the constraint that

∑
k F

k(Dk) ≤ w̄ is that there is a

Rf > 0 such that

1− 1

τ̄
(D̄ − E[D̄]1)− δ̄ −Rfξ

k(Dk) = 0 (12)

for every k. The next lemma shows that this equality is equivalent to the condition

that (Dk) is the profile of output plans at the canonical MVE.

Lemma 9 Let D ≡ (D1, . . . , DK) be a profile of output plans. Write D̄ =
∑

k≥1D
k.

Then, the following two conditions are equivalent.

1. There is a profile ((θik)i,k≥0, Rf , q) of portfolios, risk-free rate, and stock prices

such that ((D1, . . . , DK), (θik)i,k, Rf , q) is the canonical MVE.

2.
∑

k F
k(Dk) = w̄ and there is a Rf > 0 such that (12) holds for every k.

The next lemma characterizes a Dreze equilibrium.

Lemma 10 Let D ≡ (D1, . . . , DK) be a profile of output plans. Write D̄ =∑
k≥1D

k. Then, the following two conditions are equivalent.

1. There is a profile ((θik)i,k≥0, Rf , q) of portfolios, risk-free rate, and stock prices

such that ((D1, . . . , DK), (θik)i,k, Rf , q) is a DE.

2.
∑

k F
k(Dk) = w̄. Moreover, there is a Rf > 0 and, for each i, an ai =

(aik)k≥1 ∈ RK such that Ai(D, δ) =
∑

k≥1 a
ik(Dk − E[Dk]1),

∑
i τ

iai = 0,

and

1− 1

τ̄
(D̄ − E[D̄]1)− δ̄ +

∑
k≥1

τ iaikBi(D, δ)−Rfξ
k(Dk) = 0 (13)

for every k.

The following lemma relates the first-order condition for the problem of maxi-

mizing URE(D,δ) to the profit maximization condition (13) of a Dreze equilibrium.
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Lemma 11 For every δ ∈ N I and D ≡ (D1, . . . , DK), if (1, D1, . . . , DK) is lin-

early independent, then, for every i, Var[Ai(D, δ)] is a differentiable function at D

and

d

dDk
Var[Ai(D, δ)] = 2aik(D, δ)Bi(D, δ)⊤Λ(p)

for every k.

By Proposition 1, for each profile δ ∈ N I of ESG scores, there is a canonical

MVE. We also stated after the proposition that conditions similar to Parts 2 and

3 of Lemma 3 are sufficient to guarantee its uniqueness. The next lemma shows

that under these assumptions, the profile of output plans at the canonical MVE is

a continuously differentiable function of the ESG profile δ.

Lemma 12 Assume that for every k, F k is twice continuously differentiable and

∇2F k(Dk) is positive definite at every Dk ̸= 0. Let δ0 ∈ N I and D0 ∈ RSK
+ be

the output profile at the canonical MVE under δ0. Then, there is a continuously

differentiable mapping DMVE of some neighborhood of δ0 into some neighborhood

of D0 such that for every pair (D, δ) in the product of these two neighborhoods,

DMVE(δ) = D if and only if D is the profile of output plans at the canonical MVE

of δ.

While no equally general result is available for the continuous differentiability of

DDE, the following lemma guarantees it under the additional assumptions of linear

independence and effective completeness.

Lemma 13 Assume that for every k, F k is twice continuously differentiable and

∇2F k(Dk) is positive definite at every Dk ̸= 0. Let δ0 ∈ N I and D0 ∈ RSK
+ be the

output profile at a DE under δ0. Suppose that (1, D1
0, . . . , D

K
0 ) is linearly indepen-

dent and Bi(D0, δ0) = 0 for every i. Then, there is a continuously differentiable

mapping DDE of some neighborhood of δ0 into some neighborhood of D0 such that

for every pair (D, δ) in the product of these two neighborhoods, DDE(δ) = D if and

only if D is the profile of output plans at the DE of δ.

For a given profile δ0 of ESG scores, Lemma 12 showed that the profiles of

output plans at the canonical MVE under profiles δ close δ0 can be written as a

continuously differentiable mapping of δ, which we denote by DMVE(δ). As for

DE, if the assumptions of Lemma 13 are satisfied, then the profiles of output plans

at the DE under profiles δ close δ0 can be written as a continuously differentiable

mapping of δ, which we denote by DMVE(δ). If these assumptions are violated,

however, we simply assume that the profiles of output plans at DE under profiles

δ close δ0 can also be written as a differentiable mapping of δ, which we denote by
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DDE(δ). Then, define UMVE(δ) = URE(DMVE(δ), δ) and UDE(δ) = URE(DDE(δ), δ).

They are the levels of social welfare attained at the canonical MVE and the DE

under the ESG score δ.

Theorem 3 Assume that for every k, F k is twice continuously differentiable and

∇2F k(Dk) is positive definite at every Dk ̸= 0. Let δ ∈ N I and suppose that

DMVE(δ) = DDE(δ), which we denote simply by D ≡ (D1, . . . , DK). Assume that

(1, D1, . . . , DK) is linearly independent. If DDE are differentiable at δ, then UMVE

and UDE are differentiable at δ and ∇UMVE(δ) = ∇UDE(δ).

The equality DMVE(δ) = DDE(δ) means that the profiles of output plans at

MVE and DE are the same. It is, thus, no surprise that they attain the same social

welfare, UMVE(δ) = UDE(δ). What is surprising is that the first-order change in

social welfare caused by changes in the ESG profiles, ∇UMVE(δ) and ∇UDE(δ), are

also the same. To see that this theorem implies that shareholder engagement can

only make a small difference in social welfare, let’s take an arbitrary profile δ of

ESG scores. We would like to determine the sign and size of the difference UDE(δ)−
UMVE(δ). If the sign is positive, it means that shareholders’ engagement does good

to the economy, while if it is negative, then it means that their engagement does

harm to the economy. The size also makes economic sense, because U is quasi-

linear in the direction of the risk-free bond, and, thus, the difference is equal to

the gain from or loss by shareholder engagement in terms of certainty equivalents.

The quasi-linearity also guarantees that the difference is equal to both compensated

variation and equivalent variation before and after shareholder engagement.

Among other possibilities to evaluate the difference UDE(δ)−DMVE(δ), one way

is to take an “initial” or “reference” profile of ESG scores, denoted by δ0, under

which shareholder engagement makes no difference, and then use linear approxima-

tion

UDE(δ)− UMVE(δ)

= (UDE(δ0)− UMVE(δ0)) + (∇UDE(δ)−∇UMVE(δ)) (δ − δ0) + o(∥δ − δ0∥),

where ∥δ − δ0∥ be equal to the L2 norm

(∑
i

τ i

τ̄
Var

[
δi − δi0

])1/2

or any other

norm on N I that converges to zero whenever all the Var
[
δi − δi0

]
converge to zero.

The following corollary formalizes the idea that shareholder engagement has no

first-order impact on social welfare.

Corollary 1 Let δ0 ∈ N I and suppose that DMVE(δ0) = DDE(δ0). If DDE are
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differentiable at δ0, then, as δ → δ0,

UDE(δ)− UMVE(δ)

∥δ − δ0∥
→ 0.

This corollary only gives a limit result on the difference UDE(δ)−UMVE(δ). How

small it really is hinges on two aspects. First, how much nonlinear the difference

UDE(δ)−UME(δ) is with respect to the ESG profile δ. Second, how much different

the two profiles δ and δ0 are.

The second point, in our view, deserves more serious consideration than the first.

To see this point, notice that to apply the theorem, we need to find, for any given

ESG profile δ, another profile δ0 that satisfiesDMVE(δ0) = DDE(δ0). The most obvi-

ous candidate is the homogeneous profile δ0 = (δi0)i where δ
i
0 = δ̄ for every i. Then,

by Theorem 2, DMVE(δ0) = DDE(δ0) and, by Theorem 3, UDE(δ) − DMVE(δ) =

o (∥δ − δ0∥) (because, then, Bi
M = 0 for δi0). We could, instead, take δi0 = δ̄ + Bi

M

for every i to guarantee that DMVE(δ0) = DDE(δ0). The second choice has the ad-

vantage over the first because, for every i, Var[δi−δi0] is equal to Var[Ai
M ]+Var[Bi

M ]

in the first case, but to Var[Bi
M ] in the second. Yet another possibility is to

take δi0 = δ̄ + Ai
M for every i, but Var[δi − δi0] would then be equal to Var[Ai

M ],

which may be larger or smaller than Var[Bi
M ]. If the degree of non-linearity of

UDE −UMVE were constant on N I we would choose the δ0 that minimizes ∥δ− δ0∥
small among all δ0’s that satisfy DMVE(δ0) = DDE(δ0). We saw in Theorem 2 that

DMVE(δ0) = DDE(δ0) if and only if
∑

i τ
iai(DMVE(δ0), δ0)B

i(DMVE(δ0), δ0) = 0. It

is, therefore, necessary to find how prevalent the set of the ESG profiles δ0 in N I

is that satisfy
∑

i τ
iai(DMVE(δ0), δ0)B

i(DMVE(δ0), δ0) = 0. However, there seems

to be no systematic study to answer this question. We note, also, that in all three

cases above, δ̄0 = δ̄ and, hence, DMVE(δ0) = DMVE(δ). Thus, UDE(δ)−UMVE(δ) =

UDE(δ)−UDE(δ0). That is, by restricting ESG profiles to those which satisfy δ̄ = δ̄0,

the difference UDE(δ)−UMVE(δ) can be derived from DDE(δ), a fact that may well

facilitate our calculation.

As we will see in the following proof, the crux of the theorem lies in the fact

that the coincidence of DE and MVE implies not only the coincidence of output

plans but also the coincidence of the (firms’, and, then, the society’s) objectives

embedded in the notions of DE and MVE. Since the common output plans at DE

and MVE then satisfies the same first-order condition, any divergence between

the two generated by a deviation from the initial ESG profile (under which DE

and MVE coincides) has no first-order impact. The consequence of this fact is

that ∇UMVE(δ) = ∇δURE(D, δ) = ∇UDE(δ), which is reminiscent of the envelope

theorem, but Theorem 3 is not a consequence of the envelope theorem, because the

Dreze equilibrium DDE(δ) need not maximize the social welfare URE(D, δ).
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Remark 8 Theorem 3 and Corollary 1 concerned with the sum of all investors’

utilities, not with individual investors’ utilities. It is, thus, conceivable that share-

holders’ engagement has a positive first-order impact on a particular shareholder’s

utility. They imply that whenever there is such a shareholder, some other investors

who suffer from negative first-order impacts. In other words, any first-order util-

ity gain from shareholders’ engagement is attained only at the sacrifice of other

investors.

Remark 9 Theorem 3 (and Corollary 1) compares social welfare in two case, one

where all firms maximize market value and the other where all firms follow the Dreze

criterion. We could consider the intermediate case where some firms maximize

market value and other firms follow the Dreze criterion. In this case, this theorem,

as well as the existence theorem (Theorem 1) and the coincidence theorem (Theorem

2), is still valid.

In concluding this section, we give a sufficient condition for the existence of a

Dreze equilibrium. In Theorem 1, we only showed that there is a pseudo Dreze

equilibrium. We now give a sufficient condition, in the special case of Example 1,

under which the existence of a Dreze equilibrium is guaranteed. The proof relies

on Theorem 2 and Lemma 13.

Proposition 4 In Example 1, suppose (1, ν1, . . . , νK) is linearly independent. Let

δ0 = (δi0)i be a profile of ESG scores. Let ((Dk)k, (θ
ik)i,k≥0, Rf , q) be a MVE under

δ0 and let M = ⟨1, D1, . . . , DK⟩. If Bi
M = 0 for every i under δ0, then, for every

ESG profile δ close to δ0, there is a Dreze equilibrium under δ.

Since (1, ν1, . . . , νK) is linearly independent, (1, D1, . . . , DK) is linearly inde-

pendent. The assumption of effectively complete markets, Bi
M = 0 for every i,

implies that the MVE is also a Dreze equilibrium, and that the Dreze equilibria

under δ close to δ0 can be written as a continuously differentiable function of δ,

which, in turn, implies its existence. The assumption of effectively complete mar-

kets is met when the ESG scores are homogeneous, that is, δ10 = · · · = δI0 , but, even

in that case, we do not require δ1 = · · · = δI as long as δ is close to δ0.

10 Conclusion

In this paper, we presented a variant of the Capital Asset Pricing Model that incor-

porates the investors’ ESG consciousness to study whether shareholder engagement

may make a difference in social welfare. Our model is a minimal deviation from

the CAPM, but investor heterogeneity and market incompleteness turned out to be

crucial for the role of shareholder engagement. In this sense, our model sits nicely
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at the juncture of the CAPM and general equilibrium theory with incomplete asset

markets.

We formulated shareholder engagement as a Dreze equilibrium, and its absence

as a market value maximization equilibrium. We proved the existence of a market-

value-maximization equilibrium and a Dreze equilibrium. While the proof of the

former was elementary, the proof of the latter relied on a suitably constructed vector

bundle and its mod 2 Euler number. We then identified an equivalent condition

for the two equilibria to coincide. The equivalent condition can be interpreted

as the zero correlation between the investors’ integrated ESG concerns (which are

reflected by their optimal portfolios) and non-integrated ESG concerns (which can

be reflected om the firms’ production activities only by shareholder engagement).

Necessary conditions for this equivalent condition are investor heterogeneity and

incomplete markets. While the literature tends to impose at least one of these

two conditions on their models, our result shows that such models cannot capture

the impact of shareholder engagement. Last but not least, we showed that while

shareholder engagement may make a difference, it has no first-order impact on

social welfare. This justifies the subtitle of our paper, “Much ado about nothing.”

Here are some suggested topics for future research. First, we should look into

how prevalent the set of ESG profiles under which MVE and DE coincide is, as

the size of the residual term of the first-order approximation hinges on how far the

(heterogenous) profile of ESG scores under consideration is from this set of ESG

profiles. Second, while we dealt with the two polar cases where all firms employ the

Dreze criterion or no firm employs the Dreze criterion, we should extend the analysis

to the case the case where some, but not all, firms employ the Dreze criterion. By

doing so, we can see whether a firm has an incentive to unilaterally shift from

the market value criterion to the Dreze criterion. Third, while we concentrate

on the social welfare, we should clarify the impact of shareholder engagement on

individual investors’ (shareholders’) welfare, and also on the share prices and the

cost of capital. A companion paper (Hara, Hens, and Trutwin (2024)) conducts

some numerical analysis on portfolios, output plans, cost of capital, and individual

welfare, as well as social welfare. It shows that while a quantitative difference

in social welfare between MVE and DE which is, indeed, small, there may be

large difference in portfolios and individual welfare. Analytical results that would

underlie these numerical results are much needed.
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Appendices

A Proofs

Proof of Lemma 1 The market-clearing condition is met by construction. The

constrained utility maximization condition follows from the consistency of π. In

the case of a MVE, π coincides, on M , with the state price density with respect to

which all the firms maximize profit at the MVE. In the case of a Dreze equilibrium,

since πi coincide with π onM for every i,
∑

i θ
ikπi coincides with π onM for every

k. The restricted profit maximization condition follows from these facts. ///

Proof of Lemma 2 Since the U i are quasi-linear in 1, an M -restricted feasible

allocation is M -restricted efficient if and only if it maximizes the sum
∑

i U
i(ci) of

utilities subject to the M -constrained feasibility. As for its maximized value, by

Lemma 3,

Var[ci] =

(
τ i

τ̄

)2

Var[D̄]− 2
(τ i)2

τ̄
Cov

[
D̄, Ai

M

]
+ (τ i)2Var[Ai

M ],

E[δici] = E

[(
δ̄ +Ai

M

)(τ i
τ̄
D̄ − τ iAi

M

)]
=
τ i

τ̄
E[δ̄D̄]− E

[
δ̄
(
τ iAi

M

)]
+ E

[
D̄

(
τ i

τ̄
Ai

M

)]
− τ iVar[Ai

M ],

where D̄ =
∑

kD
k. Hence,

U i(ci) =E[ci]− τ i

2(τ̄)2
Var[D̄] +

τ i

τ̄
Cov

[
D̄, Ai

M

]
− τ i

2
Var[Ai

M ]

− τ i

τ̄
E[δ̄D̄] + E

[
δ̄
(
τ iAi

M

)]
− E

[
D̄

(
τ i

τ̄
Ai

M

)]
+ τ iVar[Ai

M ]

=E[ci]− τ i

2(τ̄)2
Var[D̄]− τ i

τ̄
E[δ̄D̄] + E

[
δ̄
(
τ iAi

M

)]
+
τ i

2
Var[Ai

M ].

Since
∑

iE[ci] = θ̄01 + E[D̄],
∑

i τ
i = τ̄ , and

∑
i τ

iAi
M = 0, by summing the left-

and right-hand sides of this equality over i, we obtain (3). ///

Proof of Lemma 3 1. Thanks to (1), this characterization can be derived in the

same way as the characterization of the equilibrium of the CAPM with incomplete

markets for the aggregate endowment θ̄01+D̄ as in Koch-Medina and Wenzelburger

(2018) and Hara (2022).

2. Since F k is convex for every k, the allocation
(
((1/2)Dk + (1/2)D̂k)k, ((1/2)c

i + (1/2)ĉi)i

)
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is M -constrained feasible. Since U i is concave,

U i

(
1

2
ci +

1

2
ĉi
)

≥ 1

2
U i
(
ci
)
+

1

2
U i
(
ĉi
)

(14)

for every i. Summing each side over i, we obtain

∑
i

U i

(
1

2
ci +

1

2
ĉi
)

≥
∑
i

(
1

2
U i
(
ci
)
+

1

2
U i
(
ĉi
))

=
1

2

∑
i

U i
(
ci
)
+

1

2

∑
i

U i
(
ĉi
)
.

(15)

By Lemma 2, the left-hand side is less than or equal to each of the two terms on

the far right-hand side. Hence, (15) holds as an equality. Thus, the weak inequality

≥ in (14) holds as an equality for every i. By (1), for every i, there is a ρi ∈ R

such that ci − ĉi = ρi1. Hence,

0 =
∑
i

U i(ci)−
∑
i

U i(ĉi) =
∑
i

(
U i(ci)− U i(ĉi)

)
=
∑
i

ρi.

Thus,
∑

i≥1 c
i =

∑
i≥1 ĉ

i. Since
∑

i≥1 c
i = θ̄01 +

∑
k≥1D

k and
∑

i≥1 ĉ
i = θ̄01 +∑

k≥1 D̂
k,
∑

k≥1D
k =

∑
k≥1 D̂

k.

3. Since F k is convex for every k,

F k

(
1

2
Dk +

1

2
D̂k

)
≥ 1

2
F k
(
Dk
)
+

1

2
F k
(
D̂k
)
, (16)

and if F k is strictly convex and Dk ̸= D̂k, then the weak inequality ≥ holds as a

strict inequality. Summing each side over k, we obtain

∑
k

F k

(
1

2
Dk +

1

2
D̂k

)
≥
∑
k

(
1

2
F k
(
Dk
)
+

1

2
F k
(
D̂k
))

=
1

2

∑
k

F k
(
Dk
)
+

1

2

∑
k

F k
(
D̂k
)
.

(17)

By constrained feasibility, the left-hand side is less than or equal to w̄. By con-

strained efficiency, each of the two terms on the far right-hand side is equal to w̄.

Hence, (17) holds as an equality. Thus, the weak inequality ≥ in (16) holds as an

equality for every k. Hence, for every k, if F k is strictly convex, then Dk = D̂k.

Suppose that F k is strictly convex and differentiable. By the profit maximization

condition of eachM -constrained equilibrium, π and RfΛ(p)
−1∇F k(Dk) coincide on

M , and π̂ and R̂fΛ(p)
−1∇F k(D̂k) coincide onM . Since π = π̂ onM and Dk = D̂k,
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this implies that Rf = R̂f . Thus,

E[πci] = θ̄i0 +
∑
k≥1

(
E[πDk]−RfF

k(Dk)
)
θ̄ik +Rfw

i

= θ̄i0 +
∑
k≥1

(
E[π̂D̂k]− R̂fF

k(D̂k)
)
θ̄ik + R̂fw

i = E[π̂ĉi]

for every i. Since π = π̂ coincide on M and ci − ĉi is a scalar multiple of 1, this

equality implies that ci = ĉi for every i. ///

Proof of Lemma 5 For each k ≥ 1, define Y k
M = Y k ∩ (R ×M) and ȲM =∑

k≥1 Y
k
M . Define

X =

(
R+ ×

{∑
i

ĉi ∈ RS | ĉi ∈M and U i(ĉi) > U i(ci) for every i

})
+ ({0} ×M⊥),

Z = ȲM +
{(
w̄, θ̄01

)}
.

where M⊥ is the p-orthogonal complement of M . Then, X ∩ Z = ∅. Hence,

by the separating hyperplane theorem, there is a (Rf , π) ∈ R × RS such that at

least one of Rf and π is not zero and separates X and Y at
(
0, θ̄01+

∑
kD

k
)
,

because
∑

k F
k(Dk) = w̄ by constrained efficiency. Since X ⊇ X + ({0} ×M⊥),

(Rf , π) ∈ R ×M . Since the U i are strictly increasing in the direction of 1, the

(relative) interior of X in R ×M is nonempty, and E[π] > 0. If Rf ≤ 0, then, by

replacing the production plan D̄ by D̄ + 1, the firm would increase its profit by 1

or more (because E[π] > 0), which is a contradiction. Thus, Rf > 0. Hence, by

dividing Rf and π by E[π], we obtain (Rf , π) as needed. ///

Proof of Lemma 6 For each k ≥ 1, define Y k
M = Y k ∩ (R ×M) and ȲM =∑

k≥1 Y
k
M . Consider the auxiliary economy in which there is only one firm with the

production possibility set ȲM and only one investor with the utility function

Ū(c̄) = E[c̄]− ψ̄

2
Var[c̄]− γ̄ · c̄

and endowments for the assets θ̄ik and for the period-zero input w̄.

The Pareto-efficient allocations of this auxiliary economy are nothing but the

solutions to the following problem:

max
(c̄0,c̄)∈R+×RS

Ū(c̄)

subject to (c̄0, c̄) ∈ ȲM +
{(
w̄, θ̄01

)}
.

(18)

In this formulation, we included the consumption level c̄0 on period 0 so that the

consumption set of the representative investor is R+ ×RS , not just RS , although

33



the period-0 consumption does not affect utility. Since Ū is strictly monotone in

the direction of 1, at every solution (if any) of this problem, c̄0 = 0. Hence, this

maximization problem can be rewritten as

max
D̄∈RS

+

Ū
(
D̄ + θ̄01

)
subject to (−w̄, D̄) ∈ ȲM .

Since the objective function is continuous in D̄ and the set of D̄ that satisfy the

constraint (−w̄, D̄) ∈ ȲM is nonempty and compact, the problem has a solution.

Since Ū is strictly quasi-concave and the set of D̄ that satisfy the constraint (−w̄, D̄)

is convex, the solution is unique. By an abuse of notation, we denote it by D̄. Write

c̄ = D̄+ θ̄01. By Lemma 5, there is a vector (Rf , π) with Rf > 0 and E[π] = 1 such

that (D̄, c̄i, Rf , π) is an M -constrained equilibrium of the auxiliary economy. Thus,

π coincides, on M , a positive multiple of the density of the utility gradient (in RS)

of the representative investor,

π̄ ≡ ∇Ū
(
D̄ + θ̄01

)
Λ(p)−1 = 1− 1

τ̄

(
D̄ − E[D̄]1

)
− δ̄.

Since E[π̄] = 1, π = π̄ on M .

Since ȲM =
∑

k Y
k
M , for each k, there is a Dk ∈ RS

+∩M such that Dk maximizes

profit in Y k
M under (Rf , π) and

∑
kD

k = D̄. For each i, define

ci = ρi1+
τ i

τ̄
(D̄ − E[D̄]1)− τ iAi

M ,

where ρi is chosen to satisfy

E[πci] = θ̄i0 +

K∑
k=1

(
E[πDk]−RfF

k
M (Dk)

)
θ̄ik +Rfw

i.

We now prove that ((Dk)k, (c
i)i, Rf , π) is an M -constrained equilibrium. By

definition, ci ∈ M (by Ai
M ∈ M) for every i and Dk ∈ M for every k. By the

definition of the ρi and E[πc̄] =
∑

iE[πci],
∑

i ρ
i = E[D̄] + θ̄0. This, together with∑

i τ
iAi

M = 0, implies that the market clearing condition,
∑

i c
i = c̄ = D̄ + θ̄01,

is met. The profit maximization condition is met by the definition of Dk. By the

definition of ci, πi(ci) = π̄ − Bi
M for all i. Since they all coincide on M (because

Bi
M ∈M⊥), the utility maximization condition is met. ///

Proof of Proposition 1 By Lemma 6, there is an RS-constrained (uncon-

strained) equilibrium ((Dk)k, (c̃
i)i, Rf , π). By Lemma 3,

c̃i − E[c̃i]1 =
τ i

τ̄
(D̄ − E[D̄]1)− τ i(δi − δ̄)
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for every i, and

π = 1− 1

τ̄
(D̄ − E[D̄]1)− δ̄.

For each k ≥ 1, write qk = E[πDk]−RfF
k(Dk). Write M = ⟨1, D⟩. For each i, let

ci = ρi1+
τ i

τ̄
(D̄ − E[D̄]1)− τ iAi

M ,

where ρi is chosen to satisfy

E[πci] = θ̄i0 +
K∑
k=1

(
E[πDk]−RfF

k
M (Dk)

)
θ̄ik +Rfw

i.

Then, πi(ci) = π − Bi
M . Thus, πi(ci) = π on M . Moreover,

∑
i c

i = θ̄01 + D̄.

Hence, for each i and k ≥ 0, there is a θik such that
∑

k≥0 θ
ikDk = ci for every

i,
∑

i θ
i0 = θ̄0, and

∑
i θ

ik = 1 for every k. Then, ((Dk)k, (θ
ik)i,k, Rf , q) is a

MVE. Indeed, the market-clearing condition is met by construction. The profit

maximization condition follows from that of the RS-constrained equilibrium. The

utility maximization condition follows from that of the RS-constrained equilibrium

and πi(ci) = π on M . ///

Proof of Proposition 2 Since ((Dk)k, (θ
i0, θi)i, Rf , (q

0, q1, . . . , qK)) is a Dreze

equilibrium, if we define ci as in the statement of this proposition but let π coincide

with πi onM for any i, then, by Lemma 1, ((Dk)k, (c
i)i, Rf , π) is theM -constrained

equilibrium.

By Lemma 6,

ci − E[ci]1 =
τ i

τ̄
(D̄ − E[D̄]1)− τ iAi

M ,

for every i. Thus,

πi(ci) = 1− ψ̄(D̄ − E[D̄]1)− δ̄ −Bi
M

for every i. Since this coincides with 1 − ψ̄(D̄ − E[D̄]1) − δ̄ on M , we can, in

fact, take π = 1 − ψ̄(D̄ − E[D̄]1) − δ̄. Then, π is consistent with q; that is, qk =

E[πDk] − RfF
k(Dk) for every k ≥ 1, and ((Dk)k, (c

i)i, Rf , π) is an M -constrained

equilibrium (which is unique up to the p-orthogonal projection of π onto M⊥).

Since ci =
∑

k≥0 θ
ikDk,

∑
k≥1

θik(Dk − E[Dk]1) =
τ i

τ̄
(D̄ − E[D̄]1)− τ iAi

M ,
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Define ai = (ai1, . . . , aiK) ∈ RK by letting, for each k ≥ 1,

aik =
1

τ i

(
τ i

τ̄
− θik

)
,

then

∑
k≥1

aik(Dk − E[Dk]1) =
1

τ i

τ i
τ̄
(D̄ − E[D̄]1)−

∑
k≥1

θik(Dk − E[Dk]1)

 = Ai
M .

By the profit maximization condition of a Dreze equilibrium, Rfξ
k(Dk) =∑

i θ
ikπi(ci). Since

∑
i τ

iaik = 0 and
∑

i τ
iBi

M = 0,

∑
i

θikπi(ci) =
∑
i

(
τ i

τ̄
− τ iaik

)
(π −Bi

M ) = π +
∑
i

τ iaikBi
M .

Hence,

π −Rfξ
k(Dk) = π −

∑
i

θikπi = −
∑
i

τ iaikBi
M = −BMΛ(τ)


a1k

...

aIk

 ∈ RS .

(19)

Write a = (a1, . . . , aI) ∈ RK×I , then, by gathering the above equality over all k,

we obtain

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
= −BMΛ(τ)a⊤.

By multiplying D̂⊤ to each side of the above equality from right, we obtain

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
D̂⊤ = −BMΛ(τ)(D̂a)⊤ = −BMΛ(τ)A⊤

M .

By eliminating the last S −K columns of each side, we complete the proof. ///

Proof of Proposition 3 Since ((Dk)k, (c
i)i, Rf , π) is the M -constrained equilib-

rium that satisfies

π = 1− 1

τ̄

(
D̄ − E

[
D̄
]
1
)
− δ̄,

Lemma 6 implies that

ci − E[ci]1 =
τ i

τ̄
(D̄ − E[D̄]1)− τ iAi

M ,

πi(ci) = 1− ψ̄(D̄1 − E[D̄1]1)− δ̄ −Bi
M = π −Bi

M

for every i.
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Since rank D̂ = K, for each i and k ≥ 0, there is a unique θik such that

ci =
∑

k≥0 θ
ikDk; and they together satisfy

∑
i θ

i0 =
∑

i θ̄
i0 and

∑
i θ

ik = 1 for

every k ≥ 1. Moreover, as we saw in the proof of Proposition 2, if we define

aik =
1

τ i

(
τ i

τ̄
− θik

)
,

then
∑

k≥1 a
ikD̂k = Ai

M .

We need to show that ((Dk)k, (θ
ik)i,k≥0, Rf , (q

0, q1, . . . qK)) is a Dreze equilib-

rium. It follows from the standard equivalence on equilibria in terms of asset

prices and portfolios versus state price densities and consumption plans that the

utility maximization condition is met. By the definition of (θik)i,k≥0, the mar-

ket clearing condition is met. We shall prove the profit maximization condition

by using the definition of a pseudo Dreze equilibrium and the assumption that

rank D̂ = rank D̃ = K.

Define a = (a1, . . . , aI) ∈ RK×I . Since rank D̃ = K, there is an H ∈ R(S−K)×K

such that Ď = HD̃. Thus,(
ÃM

ǍM

)
= AM = D̂a =

(
D̃a

Ďa

)
=

(
D̃a

HĎa

)
.

Thus, ǍM = HÃM .

By the definition of a pseudo Dreze equilibrium,

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
D̃⊤ = −BMΛ(τ)Ã⊤

M ,

By multiplying H⊤ each side from right, we obtain

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
Ď⊤ = −BMΛ(τ)ǍM

⊤
,

By combining these two equalities together, we obtain

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
D̂⊤ = −BMΛ(τ)A⊤

M .

Again by AM = D̂a, this equality can be rewritten as

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
D̂⊤ = −BMΛ(τ)a⊤D̂⊤.

Since rank D̂ = K, this equality is equivalent to

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
= −BMΛ(τ)a⊤,
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that is,

π −Rfξ
k(Dk

1) = −BMΛ(τ)


a1k

...

aIk

 = −
∑
i

τ iaikBi
M

for every k ≥ 1. Finally, as we saw in the proof of Proposition 2,

∑
i

θikπi =
∑
i

(
τ i

τ̄
− τ iaik

)
(π −Bi

M ) = π +
∑
i

τ iaikBi
M .

Hence,
∑

i θ
ikπi = Rfξ

k(Dk). The profit maximization condition of a Dreze equi-

librium is thus met. ///

Proof of Lemma 7 Since πL − RfLξ
k(Dk

L) ∈ L⊥ for every k by the profit

maximization condition of the (⟨1⟩+L)-constrained equilibrium and since the first

term consists of K linear combination of these K vectors, it belongs to (L⊥)K .

Since Bi
L ∈ L⊥ and since the second term consists of K linear combination of these

I vectors, it belongs to(L⊥)K as well. Thus, η(L) ∈ (L⊥)K and, hence, σ(L) ∈ Ξ

for every L ∈ L . ///

Proof of Lemma 8 Since the mapping defined on L , L 7→ ÃL, is continuous, it

suffices to show that L 7→
(
(Dk

L)k, (c
i
L)i, RfL, πL

)
is continuous. For each L, define

F̄L : RS
+ ∩ (⟨1⟩+ L) → R+ by letting

F̄L(D̄) = min

{∑
k

F k(Dk) | Dk ∈ RS
+ ∩ (⟨1⟩+ L) for every k and

∑
k

Dk = D̄

}

for every D̄ ∈ RS
+ ∩ M . It can be shown that F̄L is the cost function of the

(⟨1⟩ + L)-constrained aggregate production set Ȳ⟨1⟩+L; that is, Ȳ⟨1⟩+L coincides

with

{
(−F̄L(D̄), D̄) ∈ R×RS

+ | D̄ ∈ RS
+ ∩ (⟨1⟩+ L)

}
− (R+ × (RS

+ ∩ (⟨1⟩+ L))).

Then, the maximization problem (18), where M = ⟨1⟩+ L, can be rewritten as

max
D̄∈RS

+∩(⟨1⟩+L)
Ū(D̄ + θ̄01)

subject to F̄L(D̄) ≤ w̄.

Write D̄L =
∑

k≥1D
k
L. Then, D̄L is the solution to this maximization problem.

Since the set RS
+ ∩ (⟨1⟩ + L) depends continuously on (is an upper and lower

hemicontinuous correspondence of) L, the mapping L 7→ D̄L is continuous.

Since the Hessians of F k are positive definite for every k, F̄L is continuously
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differentiable. Since D̄L maximizes profit E[πLD̄] − RfLF̄L(D̄) on RS
+ ∩ (⟨1⟩ + L)

under (RfL, πL), the first-order condition implies that RfL is a continuous func-

tion of L. As for πL, since πL = 1 − ψ̄(D̄L − E[D̄L]1) − δ̄, πL is a continuous

function of L. Thus, by the constrained profit maximization condition, Dk
L is

a continuous mapping of L for every k. Hence, the wealth level of investor i,

θ̄i0 +
∑

k≥1(E[πLD
k
L] − RfLF

k(Dk
L))θ̄

ik + RfLwi, is a continuous function of L for

every i. By the utility maximization condition, ciL is a continuous mapping of L for

every i. ///

Proof of Theorem 2 1. The profit maximization condition for the MVE implies

that π − Rfξ
k(Dk) = 0 for every k. Since π = 1 − ψ̄(D̄ − E[D̄]1) − δ̄, as was

shown in the proof of Proposition 2, the profit maximization condition for the

Dreze equilibrium implies that

(
π −Rfξ

1(D1), . . . , π −Rfξ
K(DK)

)
D̂⊤ = −BMΛ(τ)A⊤

M .

Hence, BMΛ(τ)A⊤
M = 0.

2. For each k ≥ 1, write D̂k = Dk − E[Dk]1 and D̂ = (D̂1, . . . , D̂K) ∈ RS×K .

As in the proof of Proposition 2, define ai = (ai1, . . . , aiK) ∈ RK by letting, for

each k ≥ 1,

aik =
1

τ i

(
τ i

τ̄
− θik

)
,

and a = (a1, . . . , aI) ∈ RK×I . Then, D̂a = AM . Since BMΛ(τ)A⊤
M = 0, this

implies that
(
BMΛ(τ)a⊤

)
D̂⊤ = 0. Since (1, D1, . . . , DK) is linearly independent,

the row vectors of D̂⊤ (the column vectors of D̂) constitute a linearly independent

set. Hence, BMΛ(τ)a⊤ = 0, that is,
∑

i τ
iaikBi

M = 0 for every k ≥ 1. As we

showed in the proof of Proposition 2,∑
i

θikπi = π +
∑
i

τ iaikBi
M .

Hence, π =
∑

i θ
ikπi for every k. Since the profit maximization condition for the

MVE is met under π, the profit maximization condition for a Dreze equilibrium is

met as well. ///

Proof of Lemma 9 Suppose, first, that Condition 1 is met. Then, π ≡
1− 1

τ̄
(D̄ −E[D̄]1)− δ̄ is the (canonical) state price density under which Dk max-

imizes profit E[πDk] − RfF
k(Dk) for every k. The first-order condition for profit

maximization is nothing but (12). The equality
∑

k F
k(Dk) = w̄ follows from the

utility maximization condition and the positivity of Rf . Suppose, conversely, that
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Condition 2 is met. Let π = 1− τ̄−1(D̄−E[D̄]1)− δ̄ and qk = E[πDk]−RfF
k(Dk)

for each k ≥ 1. For each i, write δi − δ̄ = Ai(D, δ) + Bi(D, δ), the projections

onto the linear subspace spanned by (1, D1, . . . , DK) and its p-orthogonal comple-

ment. Let ai(D, δ) ∈ RK satisfy Ai(D, δ) =
∑

k≥1 a
ik(D, δ)(Dk − E[Dk]1) and∑

i τ
iaik(D, δ) = 0. Then, define (θik)i,k≥1 by letting θik = τ i/τ̄ − τ iaik(D, δ) for

each i and k. Define

θi0 = θ̄i0 +
∑
k≥1

qkθ̄ik +Rfw
i −

∑
k≥1

qkθik +Rf

K∑
k=1

F k(Dk)θik

 .

Since the after-trade shareholders bear the costs RfF
k(Dk) for production, θi =

(θik)k≥0 satisfies the budget constraint for each i. The feasibility
∑

i θ
ik = 1 is

met by construction for every k ≥ 1, and the feasibility
∑

i θ
i0 =

∑
i θ̄

i0 is met

by
∑

k F
k(Dk) = w̄. Write ci =

∑
k≥0 θ

ikDk and his p-discounted utility gradient

(density) ∇U i(ci)Λ(p)−1 by πi. Then,

ci − E[ci]1 =
τ i

τ̄
(D̄ − E[D̄]1)− τ iAi(D, δ),

πi = π −Bi(D, δ)

for every i. Since π and πi coincide on the subspace spanned by (1, D1, . . . , DK), the

utility maximization condition is met. By (12), the profit maximization condition

is met under π for every k. Hence, Condition 1 is met. ///

Proof of Lemma 10 Suppose, first, that Condition 1 is met. Denote the

canonical state price density by π:

π = 1− 1

τ̄
(D̄ − E[D̄]1)− δ̄.

Then, k ≥ 1, let qk = E[πDk] − RfF
k(Dk) for each k ≥ 1. For each i, write ci =∑

k≥0 θ
ikDk and denote its p-discounted utility gradient (density) ∇U i(ci)Λ(p)−1

by πi. By the utility maximization and feasibility conditions,

ci − E[ci]1 =
τ i

τ̄
(D̄ − E[D̄]1)− τ iAi(D, δ),

πi = π −Bi(D, δ)

for every i. Define ai ∈ RK by letting aik = 1/τ̄ − θik/τ i for each k ≥ 1. Then,

Ai(D, δ) =
∑

k≥1 a
ik(Dk − E[Dk]1),

∑
i τ

iai = 0, and

∑
i

θikπi =
∑
i

(
τ i

τ̄
− τ iaik

)
(π −Bi(D, δ)) = π +

∑
i

τ iaikBi(D, δ). (20)
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The first-order necessary necessary condition for profit maximization is that∑
i

θikπi = Rfξ
k(Dk)

for every k. By (20), this is equivalent to (13). Hence, Condition 2 is met.

Suppose, conversely, that Condition 2 is met. For each k ≥ 1, let qk = E[πDk]−
RfF

k(Dk). For each i and k ≥ 1, define

θik =
τ i

τ̄
− τ iaik.

Then, define

θi0 = θ̄i0 +
∑
k≥1

qkθ̄ik +Rfw
i −

∑
k≥1

qkθik +Rf

K∑
k=1

F k(Dk)θik

 .

We now prove that ((D1, . . . , DK), (θik)i,k, Rf , q) is a DE. Since the after-trade

shareholders bear the costs RfF
k(Dk) for production, θi = (θik)k≥0 satisfies the

budget constraint for each i. For every k ≥ 1, the feasibility
∑

i θ
ik = 1 is met by

construction. For k = 0, the feasibility
∑

i θ
i0 =

∑
i θ̄

i0 is met by
∑

k F
k(Dk) = w̄.

Write ci =
∑

k≥0 θ
ikDk and his p-discounted utility gradient (density)∇U i(ci)Λ(p)−1

by πi. Then,

ci − E[ci]1 =
τ i

τ̄
(D̄ − E[D̄]1)− τ iAi(D, δ),

πi = π −Bi(D, δ)

for every i. Since π and πi coincide on the subspace spanned by (1, D1, . . . , DK),

the utility maximization condition is met. As for the profit maximization condition,

∑
i

θikπi =
∑
i

(
τ i

τ̄
− τ iaik

)
(π −Bi(D, δ)) = π +

∑
i

τ iaikBi(D, δ),

Hence, by (13), ∑
i

θikπi = Rfξ
k(Dk)

for every k. Thus, the profit maximization condition under
∑

i θ
ikπi is met for

every k. ///

Proof of Lemma 11 We will prove this lemma by applying the envelope theorem

to a constrained maximization problem to which Bi(D, δ) is a solution. Write
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D̂k = Dk − E[Dk]1 ∈ N and D̂ =
(
D̂1, . . . , D̂K

)
∈ NK . Then, consider

max
(B,a)∈RS×RK

−B⊤Λ(p)B,

subject to δi − δ̄ −B − D̂a = 0.

Since the objective function is quadratic and strictly concave, the constraint func-

tions are affine, and D̂ has full rank (K), there is a unique solution to this problem.

Moreover, the first-order condition for a solution is necessary and sufficient, which

is that there is a λ = (λs)s ∈ RS such that

−2B⊤Λ(p)− λ⊤ = 0, (21)

−λ⊤D̂ = 0.

We write, for a moment, the solution as (B(D̂), a(D̂)), taking it as a function

of D̂. By the envelope theorem, the value function D̂ 7→ −B(D̂)⊤Λ(p)B(D̂) is

differentiable and its partial derivative with respect to D̂k
s is equal to −λsak(D̂).

Thus,
d

dD̂k

(
−B(D̂)⊤Λ(p)B(D̂)

)
= −2ak(D̂)λ⊤,

which is, by (21), equal to 2ak(D̂)B(D̂)⊤Λ(p).

If (B, a) ∈ RS ×RK satisfies the constraint, then B = (δi − δ̄)− D̂a. Since δi,

δ̄, and all the D̂k belong to N , B ∈ N . Thus, the objective function is equal to

−Var[(δi−δ̄)−D̂a]. Hence, if (B, a) is the solution, then D̂a and B constitute the p-

orthogonal projection of δi−δ̄. Thus, in fact, a(D̂) = ai(D, δ) and B(D̂) = Bi(D, δ)

according to the notation of the proof of Lemma 9. Moreover, since Var[Bi(D, δ)]

is differentiable with respect to D in all the directions on N and addition to or

subtraction from Dk of any scalar multiple of 1 does not affect Ai(D, δ) or Bi(D, δ),

Var[Bi(D, δ)] is, in fact, differentiable with respect to D in all the directions on RS .

Since z − E[z]1 = (IS − 11⊤Λ(p))z ∈ N for every z ∈ RS ,

d

dDk

(
−Var[Bi(D, δ)]

)
=

d

dD̂k

(
−B(D̂)⊤Λ(p)B(D̂)

)
(IS − 11⊤Λ(p))

= 2aik(D, δ)Bi(D, δ)⊤Λ(p)(IS − 11⊤Λ(p))

= 2aik(D, δ)Bi(D, δ)⊤Λ(p),

where the last equality follows from Bi(D, δ)⊤Λ(p)1 = 0 (that is, Bi(D, δ) ∈ N).

Finally, since Var[Ai(D, δ)] + Var[Bi(D, δ)] = Var[δi − δ̄] for every D,

d

dDk
Var[Ai(D, δ)] =

d

dDk

(
−Var[Bi(D, δ)]

)
= 2aik(D, δ)Bi(D, δ)⊤Λ(p).

///
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Proof of Lemma 12 Define Π0 : R++ ×RSK
+ ×N I → R by

Π0(Rf , D, δ) = w̄ −
∑
k≥1

F k(Dk).

For each k ≥ 1, define Πk : R++ ×RSK
+ ×N I → RS by

Πk(Rf , D, δ) = Λ(p)

(
1− 1

τ̄
(D̄ − E[D̄]1)− δ̄ −Rfξ

k(Dk)

)
(22)

= p− 1

τ̄
HD̄ − Λ(p)δ̄ −Rf∇F k(Dk),

where H = Λ(p) − Λ(p)11⊤Λ(p) ∈ RS×S . Then, ∇DkΠ0(Rf , D, δ) = −∇F k(Dk)

for each k and ∇Rf
Π0(Rf , D, δ) = 0. Moreover,

∂Πk

∂Dℓ
(Rf , D, δ) =


−1

τ̄
H −Rf∇2F k(Dk) if k = ℓ,

−1

τ̄
H otherwise,

∂Πk

∂Rf
(Rf , D, δ) = −∇F k(Dk)

Define Π : RSK
+ ×R++ ×N I → R×RSK by Π(Rf , D, δ) = (Πk(Rf , D, δ))k≥0. We

now show that

∂Π

∂(Rf , D)
(Rf , D, δ) ∈ R(1+SK)×(1+SK) (23)

is invertible. By the above derivations, by suppressing the variables (Rf , D, δ), we

can write

∂Π

∂(Rf , D)
(Rf , D, δ)

=



∂Π0

∂Rf

∂Π0

∂D1
· · · ∂Π0

∂DK

∂Π1

∂Rf

∂Π1

∂D1
· · · ∂Π1

∂DK

...
...

. . .
...

∂ΠK

∂Rf

∂ΠK

∂D1
· · · ∂ΠK

∂DK



=



0 −∇F 1(D1) · · · · · · −∇FK(DK)

−∇F 1(D1)⊤ −1

τ̄
H −Rf∇2F 1(D1)

...
. . . −1

τ̄
H

... −1

τ̄
H

. . .

−∇FK(DK)⊤ −1

τ̄
H −Rf∇2FK(DK)


.
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To show that this matrix is invertible, multiply a row vector (y, (z1)⊤, . . . , (zK)⊤) ∈
R1+SK from left and assume that the vector-matrix product coincides with the zero

vector. The first column (scalar) of the product is

−
∑
k≥1

∇F k(Dk)zk = 0 (24)

and the k-th group of S columns coincides with

−y∇F k(Dk)− 1

τ̄

(∑
ℓ

zℓ

)⊤

H −Rf(z
k)⊤∇2F k(Dk) = 0 (25)

for every k ≥ 1. Multiply y to (24), multiply zk to (25) from right, and sum over

k as well as y times (24), then we obtain the quadratic form of (23):

− 1

τ̄

(∑
k

zk

)⊤

H

(∑
k

zk

)
−Rf

∑
k

(zk)⊤∇2F k(Dk)zk − 2y
∑
k≥1

∇F k(Dk)zk

= − 1

τ̄

(∑
k

zk

)⊤

H

(∑
k

zk

)
−Rf

∑
k

(zk)⊤∇2F k(Dk)zk = 0

Since H is positive semidefinite and the ∇2F k(Dk) are positive definite, this equal-

ity implies that zk = 0 for every k. By (25), y = 0. Hence, the matrix (23) is

invertible.

Let δ0 ∈ N I and (Rf0, D0) be the profile of the risk-free rate and the outputs

at the canonical MVE under δ0. Since the matrix (23) is invertible, there is a

continuously differentiable mapping DMVE of some neighborhood of δ0 into some

neighborhood of (Rf0, D0) such that for every (δ,Rf , D) in the product of these two

neighborhoods, DMVE(δ) = (Rf , D) if and only if Π(Rf , D, δ) = 0. By Lemma 9, D

is the output profile at the canonical MVE under δ if and only if Π(Rf , D, δ) = 0

for some Rf > 0. Thus, by restricting the value taken by DMVE(δ) onto D (rather

than keeping (Rf , D), we complete the proof. ///

Proof of Lemma 13 We follow the same method of proof as for Lemma 12,

except that, for each k, we replace Πk(RfD, δ) by

Φk(Rf , D, δ) = Λ(p)

1− 1

τ̄
(D̄ − E[D̄]1)− δ̄ +

∑
k≥1

τ iaikBi(D, δ)−Rfξ
k(Dk)


because, by Lemma 10, the equalities Φk(RfD, δ) = 0 for all k define the DE.

Since (1, D1
0, . . . , D

K
0 ) is linearly independent, D 7→

(∑
i

τ i

2
Var[Ai(D)]

)
is twice

continuously differentiable at D = D0. Hence, Φk is continuously differentiable
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at (Rf , D0, δ0). Write Π−0(Rf , D, δ) =
(
Πk(Rf , D, δ)

)
k≥1

and Φ−0(Rf , D, δ) =(
Φk(Rf , D, δ)

)
k≥1

. Then, by Lemma 11,

∂Φ−0

∂D
(Rf , D0, δ0) =

∂Π−0

∂D
(Rf , D0, δ0) +∇2

D

(∑
i

τ i

2
Var[Ai(D)]

)
. (26)

SinceBi(D, δ) = 0 for every i,
∑
i

τ i

2
Var[Ai(D)] is maximized and equal to

∑
i

τ i

2
Var[δi−

δ̄]. Thus, ∇2
D

(∑
i

τ i

2
Var[Ai(D)]

)
is negative semidefinite. On the other hand, we

showed in the proof of Lemma 12 that
∂Π−0

∂D
(Rf , D0, δ0) is negative definite (on the

entire RSK) and this fact guarantees the invertibility of the (1 + SK)× (1 + SK)

matrix
∂Π

∂(Rf , D)
(Rf , D0, δ0), which, in turn, implies the continuous differentiabil-

ity of DMVE at D0. By (26),
∂Φ−0

∂D
(Rf , D0, δ0) is also negative definite (on the

entire RSK). As in the proof of Lemma 12, this guarantees the invertibility of

the (1 + SK) × (1 + SK) matrix
∂Π

∂(Rf , D)
(Rf , D0, δ0), where

∂Π−0

∂D
(Rf , D0, δ0) is

replaced by
∂Φ−0

∂D
(Rf , D0, δ0), which implies the continuous differentiability of DDE

at δ0. ///

Proof of Theorem 3 By Lemma 12, DMVE is differentiable at δ. By assumption,

DDE is differentiable at δ. As we noted after Lemma 2, since (1, D1, . . . , DK) is

linearly independent, URE is differentiable at (D, δ). Hence, by chain rule,

∇UMVE(δ) = ∇DURE(D, δ)
dDMVE

dδ
(δ) +∇δURE(D, δ), (27)

∇UDE(δ) = ∇DURE(D, δ)
dDDE

dδ
(δ) +∇δURE(D, δ). (28)

For each i, write δi−δ̄ = Ai(D)+Bi(D), the decomposition onto the linear subspace

spanned by (1, D1, . . . , DK) and its p-orthogonal complement. Then, there is a

unique ai(D) = (aik(D))k ∈ RK such that Ai(D) =
∑

k a
ik(D)Dk. (At each of the

DE and the MVE, θik = τ i/τ̄ − τ iaik(D) for all i and k ≥ 1.) By Lemma 11,

d

dDk

∑
i

τ i

2
Var[Ai(D)] =

(∑
i

τ iaik(D)Bi(D)

)⊤

Λ(p)

for every k. Write D̄ =
∑

k≥1D
k. Then,

∇DkURE(D, δ) =

(
1− 1

τ̄
(D̄ − E[D̄]1)− δ̄ +

∑
i

τ iai(D)Bi(D)

)⊤

Λ(p)
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for every k. Since DMVE(δ) = D = DDE(δ), the proof of Theorem 2 shows that∑
i τ

iaik(D)Bi(D) = 0 for every k. Thus,

∇DkURE(D, δ) =

(
1− 1

τ̄
(D̄ − E[D̄]1)− δ̄

)⊤
Λ(p)

for every k. By the definition of URI,

∇DkURI(D, δ) =

(
1− 1

τ̄
(D̄ − E[D̄]1)− δ̄

)⊤
Λ(p).

Thus,

∇DkURE(D, δ) = ∇DkURI(D, δ)

for every k. By Lemma 9, D is a solution to the maximization problem in part 3

of the lemma. The first-order condition is that there is a Rf > 0 (the risk-free rate

at the MVE) such that

∇DkURI(D, δ) = Rf∇F k(Dk)

for every k. Thus,

∇DURE(D, δ)
dDMVE

dδ
(δ) =

∑
k≥1

∇Dk
URE(D, δ)

dDk
MVE

dδ
(δ) = Rf

∑
k≥1

∇F k(Dk)
dDk

MVE

dδ
(δ),

∇DURE(D, δ)
dDDE

dδ
(δ) =

∑
k≥1

∇Dk
URE(D, δ)

dDk
DE

dδ
(δ) = Rf

∑
k≥1

∇F k(Dk)
dDk

DE

dδ
(δ)

Since the functions δ 7→
∑

k F
k(Dk

MVE(δ)) and δ 7→
∑

k F
k(Dk

MVE(δ)) are con-

stantly equal to w̄,

∑
k≥1

∇F k(Dk)
dDk

MVE

dδ
(δ) = 0,

∑
k≥1

∇F k(Dk)
dDk

DE

dδ
(δ) = 0.

Hence,

∇DURE(D, δ)
dDMVE

dδ
(δ) = 0,

∇DURE(D, δ)
dDDE

dδ
(δ) = 0.
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Thus, by (27) and (28),

∇UMVE(δ) = ∇δURE(D, δ),

∇UDE(δ) = ∇δURE(D, δ).

Thus, ∇UMVE(δ) = ∇UDE(δ). ///

Proof of Corollary 1 Since UDE(δ0) = UMVE(δ0),

UDE(δ)− UMVE(δ)

∥δ − δ0∥
=
UDE(δ)− UDE(δ0)

∥δ − δ0∥
− UMVE(δ)− UMVE(δ0)

∥δ − δ0∥

and, by Theorem 3, the right-hand side converges to zero as δ → δ0. ///

Proof of Proposition 4 As we saw in Example 1, at a MVE, Dk is a scalar

multiple of νk. Thus, (1, D1, . . . , DK) is linearly independent. Since Bi
M = 0 for

every i, by Theorem 2, the MVE is also a DE. Moreover, by Lemma 13, the Dreze

equilibria under δ close to δ0 can be written as a continuously differentiable function

of δ, which implies the existence of a DE under such δ. ///

B Who bears the cost of inputs?

The ex-post (after trade) shareholders are entitled to the (state-contingent) output

Dk on period 1 but we need to specify who pays for the input F k(Dk) on period

0. On this, there are two possibilities: the ex-post (after trade) holder versus the

ex-ante (before trade) holder. We will formulate these two possibilities in turn and

show that they are, in fact, equivalent, in the sense that in both cases, the budget

set in terms of a consumption plan ci is given by

E[πci] ≤ θ̄i0 +
K∑
k=1

(E[πDk]−RfD
k)θ̄ik +Rfw

i,

and the weak inequality holds as an equality at any solution ci to the utility maxi-

mization problem.

B.1 When the after-trade holder pays for the input

Since the risk-free bond is the numeraire and the risk-free rate is Rf , the price for

the period-zero good is equal to Rf . The budget constraint of consumer i on period

zero in terms of the portfolio (θi0, θi1, . . . , θiK) is

K∑
k=0

qkθik +Rf

K∑
k=1

F k(Dk)θik ≤
K∑
k=0

qkθ̄ik +Rfw
i,
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and the resulting consumption plan on period one is equal

ci =
K∑
k=0

θikDk

Since the after-trade ownership of the stock come with the obligation of paying for

the input Dk
0 on period zero, the stock price qk is given by its profit

qk = E[πDk]−RfF
k(Dk).

Thus, the budget constraint can be rewritten as

θi0 +

K∑
k=1

θikE[πDk] = E[πci] ≤ θ̄i0 +

K∑
k=1

(E[πDk]−RfF
k(Dk))θ̄ik +Rfw

i.

At the solution of the utility maximization problem, this weak inequality is satisfied

as an equality. By summing each side over i, the market-clearing condition for the

stocks (but not for the bond) implies that∑
i

θi0 + E[πD̄] = θ̄0 + E[πD̄]−Rf

∑
k

F k(Dk) + w̄.

This can be rewritten as

∑
i

θi0 −
∑
i

θ̄i0 = Rf

(∑
i

wi −
∑
k

F k(Dk)

)
.

Since Rf > 0, the bond market clears, along with the stock markets, if and only if∑
iw

i −
∑

k≥1 F
k(Dk) = 0.

B.2 When the before-trade holder pays for the input

Since the risk-free bond is the numeraire and the risk-free rate is Rf , the price for

the period-zero good is equal to Rf . The budge constraint of consumer i on period

zero in terms of the portfolio (θi0, θi1, . . . , θiK) is

K∑
k=0

qkθik +Rf

K∑
k=1

F k(Dk)θ̄ik ≤
K∑
k=0

qkθ̄ik +Rfw
i,

and the resulting consumption plan on period one is equal, as before, to

ci =
K∑
k=0

θikDk
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Since the after-trade ownership of the stock only entitles its owner the output Dk

on period one, the stock price qk is given by the revenue

qk = E[πDk].

Thus, the budget constraint can be rewritten as

E[πci] = θi0 +

K∑
k=1

θikE[πDk] ≤ θ̄i0 +
K∑
k=1

E[πDk]θ̄ik +Rfw
i −Rf

K∑
k=1

F k(Dk)θ̄ik

= θ̄i0 +

K∑
k=1

(E[πDk]−RfF
k(Dk)θ̄ik +Rfw

i.

Thus, the budget constraint in the case where the before-trade shareholder bears

the cost of input is, in terms of a consumption plan ci and the state price density

π, identical to that in the case where the after-trade shareholder bears the cost of

input. The resulting consumption or asset allocation, or cum- or ex-input-payment

stock prices at any exchange equilibrium would not depend on the choice of who

pays for the input once the production plans (Dk)k are fixed; and since the investors’

portfolio and consumption choices are not affected by this choice, the firms’ choices

would not be affected either.

C Short sales versus derivatives

An unrealistic aspect of a Dreze equilibrium is that the firm’s decision making is

affected not only by shareholders but also by short-sellers, as the coefficients θik

may well be negative in the weighted sum of utility gradients,
∑

i θ
ikΛ(p)πi(ci).

Although the first-order necessary condition for a production plan to be efficient

(in the sense stated in Section 5) must involve short-sellers, their inclusion in the

firm’s decision making is hardly realistic. We could circumvent this difficulty simply

by assuming, as Dreze (1974) did, that no short-sales are allowed. But this (and,

indeed, any) short-sales restriction comes with the cost of sacrificing the convenience

of writing equilibria in terms of state prices.

In this appendix, we give an alternative formulation of asset markets, where

shares cannot be sold short but there are also derivatives, one for each firm, which

has the same payoff as the firm’s (state-contingent) output, does not come with

the voting right, and, yet, can be sold short. The benefit of introducing short-

sales restrictions on shares is that we can eliminate negative coefficients from Dreze

criterion while still using state prices to define all notions of equilibrium (market

value maximization equilibrium, Dreze equilibrium, and constrained equilibrium).

The downside is that those who trade the derivatives are impacted by changes in
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the firms’ production plans, but their welfare change is not taken into consideration

in the firms’ production choice. The resulting allocation is, therefore, unlikely to

be Pareto efficient.

In this alternative formulation, we assume that the investors can buy the shares

of the K firms but cannot sell them more than they initially own. We also introduce

another set of assets, or derivatives with zero-net supply, one for each firm, which

pays off the firm’s (state-contingent) output, does not come with the voting right

or the cost-bearing obligation, and can be sold short. Thus, for each k ≥ 1, the

state-contingent payoff of the k-derivative in period 1 is equal to Dk but there is

no (positive or negative) payoff in period 0.

Recall that if π is a state price density, then the share price qk is equal to

E
[
πDk

]
−RfF

k(Dk). We now assume that the price of the k-th derivative is equal

to E
[
πDk

]
. Since the payoffs of the share and the derivative differ only in that the

former comes with the cost-bearing obligation but the latter does not, and since

the cost is equal to RfF
k(Dk), this assumption implies that the price for the voting

right is equal to zero. We will justify this assumption shortly.

Let

(
ηi0, ηi1, . . . , ηiK , ζi1, . . . , ζiK

)
∈ R×RK

+ ×RK

be a portfolio of the risk-free bond, shares, and derivatives. Since no investor derives

utility from consumption on period 0, it satisfies the budget constraint if and only

if ∑
k≥0

qkηik +
∑
k≥1

E[πDk]ζik +Rf

∑
k≥1

F k(Dk)ηik ≤ Rfw
i +
∑
k≥0

θ̄ikqk,

which can be rewritten as

ηi0 +
∑
k≥1

E[πDk](ηik + ζik) ≤ Rfw
i +
∑
k≥0

θ̄ikqk, (29)

and the resulting consumption plan in period 1 is

ηi0 +
∑
k≥1

(ηik + ζik)Dk. (30)

Recall, for the purpose of comparison, that in our original formulation, if investor

i holds a portfolio of the risk-free bond and shares, (θi0, θi1, . . . , θiK), where θik may

be negative, then the budget constraint, with zero consumption in period 0, is that∑
k≥0

qkθik +Rf

∑
k≥1

F k(Dk)θik ≤ Rfw
i +
∑
k≥0

θ̄ikqk,
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which can be rewritten as

ηi0 +
∑
k≥1

E[πDk]θik ≤ Rfw
i +
∑
k≥0

θ̄ikqk (31)

and the consumption plan in period 1 is

θi0 +
∑
k≥1

θikDk. (32)

By comparing (29) with (31) and (30) with (32), we can see that the two portfolios

generate the same consumption plan if

θi0 = ηi0, (33)

θik = ηik + ζik for every k ≥ 1, (34)

and the converse also holds if (1, D1, . . . , DK) is linearly independent. Moreover,

whenever one satisfies the budget constraint, the other does so too. Hence, whenever

one satisfies the utility maximization condition, the other does so too.

We have so far been concerned with an investor’s utility maximization in the

alternative formulation. We now consider the market-clearing conditions. The

market-clearing conditions in the ηik and the ζik are that∑
i

ηi0 = θ̄0,∑
i

ηik = 1 for every k ≥ 1,∑
i

ζik = 0 for every k ≥ 1.

The modified Dreze equilibrium is defined as a profile ((θik)i,k, Rf , q) that satisfies

the utility maximization condition and the market-clearing condition, and for every

k, Dk is a solution to the problem of maximizing profit under the state price density∑
i η

ikπi(π). Note that the coefficients ηik are all non-negative. The derivative

holdings ζik are irrelevant to the firm’s production decision.

(30) shows that the resulting period-1 consumption plan depend only on the sum

ηik+ζik. Using this fact and a no-arbitrage argument, we can justify our assumption

that the price for the voting right is equal to zero. To do so, recall that the share

price qk satisfies qk = E
[
πDk

]
− RfF

k(Dk) and denote the derivative price by tk.

The assumption of zero price for the voting right is nothing but tk = E
[
πDk

]
.

In the general case where this equality need not hold, the budget constraint (29)
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should be changed into

ηi0 +
∑
k≥1

E[πDk]ηik +
∑
k≥1

tkζik ≤ Rfw
i +
∑
k≥0

θ̄ikqk,

If E
[
πDk

]
< tk, then we can increase ηik and decrease ζik by the same amount,

and increase the bond holding ηi0 by the same amount as the net reduction in

expenditure for the share and the derivative. Thus, there is no solution to the

utility maximization problem. If, on the other hand, E
[
πDk

]
> tk, then it is never

optimal to have ηik > 0, because, if so, then it would be possible to decrease ηik

down to 0 and increase ζik by the same amount, and increase the bond holding

ηi0 by the same amount as the net reduction in expenditure for the share and

the derivative. Hence, ηik = 0 for all i, which would violate the market-clearing

condition
∑

i η
ik = 1. At equilibrium, therefore, we must have tk = E

[
πDk

]
.

Underlying this argument is the (implicit) assumption that the investors take the

production plan Dk as given when making their portfolio choices. In particular,

if unanimity is required for any change in production plans, then, at a modified

Dreze equilibrium, they are indeed rational in expecting that the voting right is not

invoked.

Recall that the market-clearing conditions for the θik are that∑
i

θi0 = θ̄0,∑
i

θik = 1 for every k ≥ 1.

Suppose that the ηik, the ζik, and the θik satisfy (33) and (34) for every i. If,

in addition, the market-clearing conditions for the ηik and ζik are satisfied, then

the market-clearing conditions for the θik are also satisfied. The converse, however,

need not hold. Yet, for every profile of the θik, if it satisfies the market-clearing

conditions, then there are a profile of the ηik and a profile of the ζik that together

satisfy the market-clearing conditions. Among many possibilities, one such example

can be given as follows. For each k ≥ 1, write Θk =
∑

imax {θik, 0}, then, for every
k, Θk ≥ 1 and Θk = 1 if and only if θik ≥ 0 for every i. For each i, let ηi0 = θi0

and, for each k ≥ 1,

ηik =


1

Θk
θik if θik ≥ 0,

0 otherwise,
, (35)

ζik =


(
1− 1

Θk

)
θik if θik ≥ 0,

θik otherwise,

(36)
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Then, for all i and k, ηik ≥ 0 and ηik + ζik = θik, and
∑

i η
ik = 1. Since Θk +∑

{i|θik<0} θ
ik = 1,

∑
k

ζik =

(
1− 1

Θk

)
Θk +

(
1−Θk

)
= 0.

Hence, the market-clearing conditions are met.

We have already seen that whenever one of the two portfolios satisfies the util-

ity maximization condition, so does the other. Together with the equivalence of

the market-clearing conditions, therefore, we can conclude that if one of the two

portfolios is an M -constrained equilibrium, then so is the other. However, they do

not share the same Dreze equilibrium unless θik ≥ 0 for all i and k ≥ 1. In fact,

if the θik, the ηik, and the ζik, are related via (35) and (36), then the modified

Dreze equilibrium in the markets for the bond, the shares, and the derivatives is a

truncated Dreze equilibrium, which was introduced in Remark 2.

D Multiplicity of non-canonical MVE

Proposition 5 Suppose that K = 1. Then, for every linear subspace M that

contains 1, there is a MVE (D1, (θik)i,k, Rf , q) such that D1 ∈M .

This proposition does not quite imply that there are multiple MVE’s. However,

if there is a MVE at which D1 ̸= λ1 for any λ, then, by taking any M that

contains 1 but not D1, we can show that there is another MVE for which the firm’s

state-contingent output is different from D1.

Proof of Proposition 5 By Proposition 1, for every linear subspace M that

contains 1, there is an M -restricted equilibrium (D1, (ci)i, R̃f , π̃). The profit maxi-

mization condition implies that Y 1 does not intersect with{
(z0, z) ∈ R×M | E[π̃z] + R̃fz0 > E[π̃D1]− R̃fF

1(D1)
}
.

Since Y 1 is convex, the separating hyperplane theorem implies that there is a non-

zero vector (Rf , π) that separates these two sets. Then, (−F 1(D1), D1) maximize

profit on Y 1 (not restricted on M) under (Rf , π) and, by multiplying a positive

scalar if necessary, we can assume that (Rf , π) coincides with (R̃f , π̃) on R ×M .

As we saw in the proof of Proposition 1, for each i and k = 0, 1, there is a θik

such that ci =
∑

k=0,1 θ
ikDk and

∑
i θ

ik =
∑

i θ̄
ik for every k = 0, 1. Let q1 =

E[πD1]−RfF
1(D1). We now show that (D1, (θik)i,k, R̃f , q) is a MVE with D1 ∈M .

The profit maximization condition under (Rf , π) has been shown. Since D1

is a profit maximizing output at the M -restricted equilibrium, D1 ∈ M . The
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market-clearing condition follows from the construction of the θik. The utility

maximization condition follows from the utility maximization condition for the M -

restricted equilibrium and the fact that (Rf , π) coincides with (R̃f , π̃) on R ×M .

///
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