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Abstract

Recent data suggest that countries with a higher accumulation of
robots achieve higher economic growth . This study analyzes the inter-
national growth patterns in a two-country economy with task-based au-
tomation technology. We show that whenever one country can achieve
perpetual growth by fully automating all tasks, another country can-
not. Thus, automation widens the international disparities in output
growth. Using panel data covering 62 countries from 1994 to 2019, we
empirically find that countries with more industrial robots are associ-
ated with higher economic growth through the increased accumulation
of robots.
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1 Introduction

Advances in production automation, including the use of industrial robots,

which have recently been installed in various production processes, are ex-

pected to result in unprecedented economic growth unconstrained by labor

input (Aghion et al., 2019). However, although automation technologies

are gradually spreading worldwide, the density of robots, measured as the

number of robots per capita, varies significantly across countries (De Backer

et al., 2018). As Figure 1a shows, countries with higher robot density achieve

higher economic growth by accumulating more robots. This tendency also

holds true in Figure 1b, where countries are grouped according to their

amounts of robot stock. These observations suggestthat the use of robots

accelerates economic growth and widens economic disparities across coun-

tries. In this study , we analyze the international growth patterns using

a two-country model in which production tasks are automatable by robots.

We also empirically test our theoretical findings based on panel data covering

62 countries from 1994 to 2019.

Industrial robots are distinguished from traditional capital such as plants

owing to their substitutability for labor: robots can perfectly substitute for

labor when conducting production tasks. An expanding body of the liter-

ature now investigates the impact of automation technology on wages, the

share of labor income, and unemployment (e.g., Autor et al., 2003; Graetz

and Michaels, 2018; Acemoglu and Restrepo, 2020). In this study, we em-

ploy the workhorse model developed by Acemoglu and Autor (2011) and

Acemoglu and Restrepo (2018b) in which production is performed by com-

bining various tasks, with some tasks fully automated using robots. A re-

markable feature of their task-based model is that robots can outperform

labor in productivity, thereby leading to persistent economic growth through

the accumulation of reproducible robot capital (Nakamura and Nakamura,

2008). Moreover, although it has not received much attention, the task-
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Figure 1 : Relationship between robot growth and GDP growth, 1994–2019.

Note: This figure plots the robot and GDP growth rates, averaged from 1994 to 2019, for
62 countries. The robot growth rate is the average annual growth rate of the “operational
stock” of industrial robots, sourced from the International Federation of Robotics . The
average GDP growth rate comes from the 2023 World Economic Outlook published by the
International Monetary Fund (IMF). The sample is divided into two groups. The top 10
group, red circles in Panel (a), includes countries ranked in the top 10 for robot density
at least once between 2000 and 2019, where robot density is the number of operational
industrial robots per 10,000 employees in the manufacturing industry according to the
International Federation of Robotics. The top 10 group in Panel (b) includes countries
ranked based on the “operational stock” instead of robot density. The red (black) line
represents the ordinary least squares regression line for the countries in the top 10 group
(other countries).

based model also allows for production to be carried out only by labor.

This study aims to clarify the patterns of automation and economic

growth in a financially integrated world. We theoretically find that at the

stage of low robot productivity, production relies solely on labor (and tradi-

tional capital) and the economy remains at a low level of output. As robots

become more productive, the economy shifts to a stage in which robots

replace labor in certain tasks. Eventually, with a substantial increase in

robot productivity, (almost) all tasks are automated by robots, leading to

3



persistent economic growth. However, as long as one country can achieve

persistent growth by fully automating tasks, the other country cannot. This

is because in a financially integrated world, robots move to the most produc-

tive country, namely, the country with the highest comparative advantage

of robots over labor. Therefore, automation technology causes disparities in

output growth internationally.

We empirically test our theoretical findings suggesting that countries

with higher robot stock achieve more rapid output growth through the ac-

cumulation of robots. This contrasts with the implications of neoclassical

models with capital accumulation as an engine of economic growth in which

the growth rate of per capita output converges to zero in the absence of ex-

ogenous technological progress because of the diminishing marginal product

of capital (Barro, 1991; Barro and Sala-i-Martin, 1992; Mankiw et al., 1992;

Johnson and Papageorgiou, 2020).1 Our regression results using the model

with country and time fixed effects show that the association between the

growth rates of robot stock and GDP is statistically significant and positive

for countries with high robot density, whereas it is insignificant for countries

with low robot density. In the estimation, we control for the growth effects

of increases in traditional capital and labor employment. Notably, we find

that the accumulation of traditional capital has no statistically significant

impact on output growth when country and time fixed effects are controlled

for. Unlike traditional capital, the use of robots accelerates economic growth

in countries with high robot density. This is consistent with the quantitative

findings of Autor and Salomons (2018), Berg et al. (2018), and Acemoglu

(2024). The result remains robust to changing the method of grouping the

1The endogenous growth literature theoretically and empirically explores the factors
leading to technological progress. Examples include human capital accumulation (Lucas,
1988; Barro, 1991; Griliches, 1998; Bils and Klenow, 2000), R&D activities (Romer, 1990;
Bloom et al., 2013), and public investment and capital (Grier and Tullock, 1989; Barro,
1990; Devarajan et al., 1996). See Barro and Sala-i-Martin (2004, chapter 8) and Aghion
and Howitt (2008, chapter 7) for the convergence and divergence in cross-country income
due to international technological transfers.
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sample and altering the source of the employment data.

This study contributes to the literature on economic growth driven by

automated production tasks.2 The pioneering work by Zeira (1998) shows

that with technological innovations, labor-saving technologies are chosen

over capital-saving technologies. Acemoglu and Autor (2011) develop a task-

based model to investigate how automation progress affects wages depend-

ing on workers’ skill types. Nakamura and Nakamura (2008) suggest that

automated tasks may continue to increase and the economy may grow per-

petually. The key mechanism is that the marginal product of robots does

not diminish sufficiently and approaches a constant value asymptotically.

Nakamura (2010) finds that multiple steady states arise in the presence of

an externality of mechanization on robot productivity: the economy either

falls into a poverty trap with no growth or achieves persistent growth de-

pending on the initial level of robot stock. Ikeshita et al. (2023) point out

that task automation leads to perpetual growth within the Solow growth

framework. Ray and Mookherjee (2022) analyze the impact of automation

on the labor income share using a model with robot capital, traditional capi-

tal, and human capital. They establish a condition under which endogenous

economic growth occurs; however, the labor income share does not converge

to zero when robots are reproducible. These studies have primarily focused

on a closed economy, whereas we examine international growth patterns and

show that perpetual economic growth can occur only in the country with the

highest comparative advantage of robots over labor, while other countries

invest in this leading country and cease to grow.3

2There is an alternative analytical framework in which robots serve the same role as
labor as inputs for production (e.g., Steigum, 2011; Prettner and Strulik, 2020; Sasaki,
2023).

3Various sources of economic growth, other than capital accumulation, are investigated.
For instance, Acemoglu and Restrepo (2018b) and Hémous and Olsen (2022) consider
new task creation to be a driver of economic growth. Nakamura and Zeira (2024) clarify
the mechanism by which new task creation covers unemployment caused by automation
advancements. Aghion et al. (2019) provide the condition for technological singularity to
emerge through an expansion of new ideas.
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This study is also closely related to the literature analyzing automa-

tion in open economy settings. Acemoglu and Restrepo (2022a) show that

population aging induces automation advancements, which spill over to for-

eign countries through international trade. Using a quantitative model with

global value chains, Furusawa et al. (2021) calibrate the labor market im-

pact of automation. Mandelman and Zlate (2022) demonstrate that the

employment polarization in the United States with low-skilled immigrants

in the workforce is caused by lower production costs due to automation

and offshoring. Artuc et al. (2023) show numerically that automation en-

hances welfare more in more automated countries than in less automated

countries. Auray and Eyquem (2019) consider two countries with heteroge-

neous firms and workers to explain why rapid progress in automation is not

necessarily associated with substantial improvement in total factor produc-

tivity. Momoda et al. (forthcoming) reveal that technological innovations

have asymmetric spillover effects on the degree of automation and welfare in

robot-producing and non-robot-producing countries. We complement this

body of research by showing the determination of international growth pat-

terns, including the stages in which production is performed only by either

labor or robots. Moreover, we provide empirical evidence that the accumu-

lation of robots accelerates economic growth. Our findings thus offer new

insights into global disparities in economic growth driven by advancements

in automation owing to the use of industrial robots.

The remainder of this paper is organized as follows. Section 2 presents

the basic structure of the theoretical model. Section 3 derives the equilib-

rium condition. Section 4 analyzes the dynamics to clarify international

growth patterns. Section 5 presents empirical evidence that the accumu-

lation of industrial robots accelerates economic growth in some countries

with higher robot density, as implied in our theoretical model. Section 6

concludes.
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2 The Model

Consider an economy with two countries h and f . Their labor supply

is constant and denoted by Lh(> 0) and Lf (> 0), respectively. A homo-

geneous tradable good is produced in both countries using task-based tech-

nologies à la Zeira (1998), Acemoglu and Autor (2011), and Acemoglu and

Restrepo (2018b). Production is required to combine various types of tasks,

each of which is performed by either industrial robots or labor. Robots are

freely mobile across the two countries, whereas labor is not. As per factor

prices and factor productivities, there are three possible production patterns

within a country: it uses (i) only labor, (ii) both labor and robots, and (iii)

only robots. Within this framework, we investigate international growth

patterns.

2.1 Household

A representative household in country i(= h, f) lives infinitely and has

the following lifetime utility:

U i =

∫ ∞

0
e−ρt ln cidt,

where ρ(> 0) and ci denote the rate of time preference and individual con-

sumption in country i, respectively. Each household inelastically supplies

one unit of labor and is subject to the following budget constraint:

ȧi = rai + wi − ci, (1)

where a dot represents a time derivative, wi is the wage rate in country i, and

ai is the individual financial wealth in country i, which yields interest rate r

and consists of equities and foreign assets/liabilities. Owing to arbitrage in

the financial market, the interest rate is equalized across the two countries.

The optimality conditions for utility maximization are

ċi

ci
= r − ρ, lim

s→∞
aise

−
∫ s
t rvdv = 0, (2)
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where the subscript represents the time index. Because the first condition

holds for both countries and labor supply is constant, global total consump-

tion, C, evolves according to

Ċ

C
= r − ρ, where C ≡ Lhch + Lfcf . (3)

2.2 Production

A representative firm in country i assembles final output Y i by combin-

ing a mass one of tasks Acemoglu and Autor (2011):

Y i = exp

[∫ 1

0
ln yi(z)dz

]
,

where yi(z) represents the input of task z in country i. Each task is per-

formed by employing industrial robotmi(z) and labor li(z) within a country:

yi(z) = θimm
i(z) + θilγ(z)l

i(z),

where θim(> 0) and θilγ(z)(> 0) measure the productivity levels of robots

and labor in country i, respectively.

Without loss of generality, we assume that (i) robot productivity is

higher in country h than in country f and (ii) labor productivity is task-

dependent, ordered from lowest to highest:

Assumption 1. θhm > θfm.

Assumption 2. γ′(z) > 0, γ(0) > 0, γ(1) <∞.

Assumption 2 implies that robots have a comparative advantage over labor

in lower-indexed tasks. Because robots and labor are perfectly substitutable

in task production, each task requires one of the two production factors. Let

Ii be the threshold value such that for z ≤ (≥)Ii, task z is conducted by

employing robots (labor) in country i. An increase in Ii implies that more

tasks are automated in that country.

8



The firm’s profit maximization problem involves choosing the degree of

automation Ii and the levels of factor inputs in task z, mi(z) and li(z),

respectively:

max
Ii,mi(z),li(z)

exp

[∫ Ii

0
ln θimm

i(z)dz +

∫ 1

Ii
ln θilγ(z)l

i(z)dz

]

− q

∫ Ii

0
mi(z)dz − wi

∫ 1

Ii
li(z)dz,

where q is the rental price of robots, which is the same across countries

because of international robot mobility. The optimality conditions are

q

θim
− wi

θilγ(I
i)


≥ 0 if Ii = 0,

= 0 if 0 < I i < 1,

≤ 0 if Ii = 1,

(4)

mi(z) =
Y i

q
for 0 < I i ≤ 1, (5)

li(z) =
Y i

wi
for 0 ≤ Ii < 1. (6)

The first condition indicates that the firm uses only labor (robots) for all

tasks if the marginal cost of robots is higher (lower) than that of labor in

an efficiency unit; otherwise, both labor and robots are employed within a

country, meaning that the threshold Ii lies between 0 and 1. The second

and third conditions provide the demand for each input.

Regarding the robot supplier, we consider a single firm that invests in

and rents robots to both countries at the same rental price q.4 The firm

accumulates robots to maximize its value:

V =

∫ ∞

t
(qM −X)e−

∫ s
t rdvds, subject to Ṁ = X − δM, M ≥ 0,

4Alternatively, we could model that robots are produced within each country and
are immobile internationally. In this case, the rental prices in both countries may differ
(e.g., Ono and Shibata, 2006, 2010). However, this consideration does not alter our main
implications. We believe that our assumption of a single robot producer is not unrealistic
because industrial robots are more mobile than traditional capital such as plants.
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where M , X, and δ(≥ 0) denote robot stock, investment in robots, and the

depreciation rate of robots, respectively.5 Households can freely sell or buy

equity of this firm in an international financial market.

Optimality requires the transversality condition and

r ≥ q − δ with equality whenever M > 0. (7)

If the marginal cost of capital procurement (r) exceeds the marginal revenue

of the accumulation of robots, which is equal to the rental price (q) net of the

depreciation rate (δ), then the firm shuts down and is liquidated (M = 0).

As long as M > 0, it holds that r = q − δ.

3 Equilibrium

In this section, we derive the equilibrium conditions. Because the factor

demand levels are symmetric across tasks within a country from (5) and (6),

we obtain the following relationship:

mi(z) =
M i

Ii
for 0 < I i ≤ 1, li(z) =

Li

1− Ii
for 0 ≤ Ii < 1, (8)

where M i is country i’s total demand for robots and satisfies

Mh +Mf =M.

Using these factor demand, we rewrite the production function of the final

good as

Y i = Ai
(
Ii
) (
M i

)Ii (
Li
)1−Ii

, (9)

where Ai
(
Ii
)
≡

(
θim
Ii

)Ii (
θil

1− Ii

)1−Ii

exp

[∫ 1

Ii
ln γ(z)dz

]
. (10)

5By describing the dynamic motion of the accumulation of robots as Ṁ = ζX −
δM , we can distinguish investment productivity ζ from robot productivity in final good
production, θim. In our setting, an increase in ζ simultaneously increases θhm and θfm.
Hence, for simplicity, we omit the investment productivity parameter.
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If Ii lies between 0 and 1, this aggregate production technology exhibits

decreasing returns to scale with respect to robot and labor inputs. Oth-

erwise, it has constant returns to scale, being only one of the two factors

employed:

Y i = Ai(0)Li, Ai(0) = θil exp

[∫ 1

0
ln γ(z)dz

]
, if Ii = 0;

Y i = Ai(1)M i, Ai(1) = θim, if Ii = 1.

We call the former no automation and the latter full automation. With

full automation, the country continues to grow by perpetually accumulating

reproducible robots. However, we later show that full automation is only

asymptotically achieved in equilibrium and does not occur simultaneously

in both countries as long as there is even a slight international difference

in robot productivity (θhm ̸= θfm). In other words, whenever one country

reaches full automation asymptotically, the other country ceases to expand,

employing non-reproducible labor.

Applying (8) and (9) to the factor demand functions (5) and (6) yields

q = IiAi(Ii)

(
M i

Li

)Ii−1

for 0 < I i ≤ 1, (11)

wi =
(
1− Ii

)
Ai(Ii)

(
M i

Li

)Ii
for 0 ≤ Ii < 1, (12)

which means that the factor prices equal the marginal product of each input.

These relationships rewrite (4), where 0 < I i < 1, as

Iiθilγ(I
i)

(1− Ii)θim
=
M i

Li
⇒ Ii = Ii

(
M i

Li

)
. (13)

Under Assumption 2, the function Ii
(
M i/Li

)
has the following properties:

∂I i

∂ (M i/Li)
=

(1− Ii)2θim
[γ(Ii) + Ii(1− Ii)γ′(Ii)] θil

> 0;

Ii → 0 as
M i

Li
→ 0;

Ii → 1 as
M i

Li
→ ∞.

(14)
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M i

Li

Ii

0

1

Figure 2 : The relationship between M i

Li
and Ii.

The sign of the second derivative of the function Ii
(
M i/Li

)
is undetermined

partly because the sign of γ′′(Ii) is ambiguous.

Figure 2 illustrates the shape of the function Ii
(
M i/Li

)
. The last prop-

erty in (14) shows that the economy never reaches full automation (Ii = 1)

for a finite M i and a positive constant Li. Acemoglu and Restrepo (2018b)

derive the condition for full automation to emerge by introducing leisure

utility under which households choose zero labor supply as Ii reaches 1.

With Li = 0, full automation (Ii = 1) is consistent with condition (13),

even if M i is finite. Although our model assumes an inelastic positive labor

supply and cannot analyze full automation, we can examine the situation

in which M i continues to increase and Ii asymptotically approaches 1. We

call this situation asymptotic full automation.

Next, we examine the international allocation of robots depending on

their rental price. Substituting Ai(Ii) in (10) and M i/Li in (13) into (11)

and applying the function Ii(M i/Li) in (13) to the result, we obtain the

12



following relationship between robot stock and the rental price:

q = θim exp

[∫ 1

Ii(M i/Li)
ln

γ(z)

γ (Ii(M i/Li))
dz

]
for 0 < I i ≤ 1. (15)

Assumption 2 and the property in (14) guarantee that

∂q

∂(M i/Li)
= −(1− Ii)γ′(Ii)q

γ(Ii)

∂I i

∂(M i/Li)
< 0;

q → qi as
M i

Li
→ 0, or Ii → 0;

q → qi as
M i

Li
→ ∞, or Ii → 1,

(16)

where qi and qi are the upper and lower bounds of the robot rental price,

respectively, given by

qi ≡ θim exp

[∫ 1

0
ln
γ(z)

γ(0)
dz

]
(> 0), qi ≡ θim (∈ (0, qi)).

Assumption 1 implies that

qh > qf , qh > qf .

In Figure 3, Case 1 (Case 2) describes the relationship equation (15) for

i = h, f when qh ≥ (<)qf due to relatively low (high) θfm. In Cases 1 and 2,

as long as robots exist somewhere in the world (i.e., M > 0), the equilibrium

rental price must lie within a bounded interval between qh and qh because

it is profitable for the robot supplier to rent robots to the more productive

country h. In contrast to the neoclassical production function, task-based

technology does not fulfill the Inada condition; that is, the marginal product

of robots does not fall to zero (rise to infinity) as robot stock approaches in-

finity (zero). This is because the complementarity between the accumulation

of robots and automation makes the marginal product of robots decrease less

as automation progresses Nakamura and Nakamura (2008). Consequently,

there is a possibility that all robots are concentrated in one country. In Case

13
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Figure 3 : The relationship between M i

Li
and q.

1, country h uses all existing robots for all q ∈ (qh, qh). In Case 2, the con-

centration of all robots in country h occurs for relatively high q ∈ [qf , qh);

whereas robots are employed in both countries if the rental price is suffi-

ciently low to satisfy q ∈ (qh, qf ).

We now determine the equilibrium rental price. If country h employs

all existing robots, then (15) in which i = h and Mh = M determines the

equilibrium rental price as

q = q̂ (M) ≡ θhm exp

[∫ 1

Ih(M/Lh)
ln

γ(z)

γ (Ih(M/Lh))
dz

]
for 0 < Ih ≤ 1.

(17)

This holds for all M ∈ (0,∞) in Case 1 in Figure 3.

Consider Case 2 in Figure 3. From (16), the rental price decreases as

robots accumulate. As the rental price falls sufficiently to meet q̂(M) ∈
(qh, qf ), country f , which has low robot productivity, begins to use robots.

In other words, robots are also allocated to country f if M rises above the

14



threshold value M that fulfills

θhm exp

[∫ 1

Ih(M/Lh)
ln

γ(z)

γ
(
Ih

(
M/Lh

))dz] = qf . (18)

A positive finite M exists if and only if qh < qf , as shown in Case 2 in

Figure 3.

As M exceeds M , (15) must hold for both i = h and f . Thus, Mf can

be expressed as a function of Mh. Furthermore, considering the equilibrium

condition in the robot market (M = Mh +Mf ), we can express Mh and

Mf as a function of M , respectively:

Mh = M̃h(M), Mf = M̃f (M) if M < M. (19)

These functions indicate that the robot stock of each country increases with

global robot stock: for i = h (or f) and j = f (or h),

∂M i

∂M
=

{
1 +

Ii(1− Ii)γ′(Ii)
[
γ(Ij) + Ij(1− Ij)γ′(Ij)

]
M j

Ij(1− Ij)γ′(Ij) [γ(Ii) + Ii(1− Ii)γ′(Ii)]M i

}−1

> 0 if M < M .

(20)

Thus, we can represent the rental price as a function of M from (15):

q = q̃(M) ≡ θhm exp

∫ 1

Ih(M̃h(M)/Lh)
ln

γ(z)

γ
(
Ih

(
M̃h(M)/Lh

))dz


for 0 < Ih ≤ 1 and M < M .

Global robot stockM rises according to the equilibrium condition in the

final good market:

Ṁ = Y (M)− C − δM, (21)

where Y (M) ≡ Y h + Y f satisfies (9) into which the functions in (13) and

(19) are substituted:

Y (M)


= Ah

(
Ih

(
M
Lh

))
(M)I

h(M/Lh) (Lh)1−Ih(M/Lh)
+Af (0)Lf if M ≤M ,

= Ah
(
Ih

(
M̃h(M)
Lh

)) [
M̃h(M)

]Ih(M̃h(M)/Lh) (
Lh

)1−Ih(M̃h(M)/Lh)

+Af
(
If

(
M̃f (M)
Lf

)) [
M̃f (M)

]If(M̃f (M)/Lf) (
Lf

)1−If(M̃f (M)/Lf)
if M < M .
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As shown in Appendix A, global total production increases with global robot

stock, independent of the relative levels of M and M :

Y ′(M) = q > 0. (22)

As M approaches infinity (zero), the slope of Y (M) converges to the mini-

mum (maximum) level of rental price qh (qh). As illustrated in Figure 4, the

Ṁ locus strictly increases if qh ≥ δ; it has a single peak if qh < δ ≤ qh; and

it decreases strictly if qh < δ. For analytical simplicity, we exclude the last

case in which the supplier has no incentive to accumulate robots from (7)

because any equilibrium rental price is below the robot depreciation rate.

That is, we assume that

Assumption 3. δ ≤ qh.

It is noted that, deviating from the neoclassical framework, production

is possible even if robots are not used at all in either country. This implies

that the intercept of the Ṁ locus in Figure 4 has a positive value:

Y (0) = Ah(0)Lh +Af (0)Lf > 0. (23)

As (7) holds with equality if M > 0, the dynamic equation of aggregate

consumption, (3), reduces to

Ċ

C
= q − ρ− δ, where q =

{
q̂(M) if 0 < M ≤M ,

q̃(M) if M < M .
(24)

Equations (21) and (24) constitute autonomous dynamics with respect to

M and C. Because the rental price has the lower bound qh and the upper

bound qh, the economy does not necessarily converge to the steady state in

which q = ρ+δ. If qh ≤ ρ+δ (ρ+δ ≤ qh), aggregate consumption continues

to decrease (increase) regardless of robot stock level M .
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Figure 4 : The Ṁ = 0 locus.

4 International Growth Patterns

This section shows that the following three types of international growth

patterns arise:

1. No automation: If qh ≤ ρ+ δ, the economy converges to the steady

state in which neither country uses robots, instead employing only

labor (Ih = If = 0).

2. Partial automation: If qh < ρ + δ < qh, the economy converges

to the steady state in which at least country h uses robots as well as

labor (0 < Ih < 1 and 0 ≤ If < Ih).

3. Asymptotic full automation: If ρ + δ ≤ qh, the economy con-

verges to a balanced growth path along which country h asymptoti-

cally achieves full automation and perpetual production growth but

country f does not (Ih → 1 and 0 ≤ If < 1).
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Figure 5 : The phase diagram of the dynamics when qh ≤ ρ+ δ.

4.1 No automation

We begin with the case in which the robot productivity of country h,

θhm, is sufficiently low to satisfy qh ≤ ρ+ δ, where qh ≥ δ from Assumption

3. Because the equilibrium rental price q is always under ρ+ δ, global total

consumption continues to fall from (24) as long as M > 0. The phase

diagram of the dynamics is illustrated in Figure 5. Along the saddle-point

stable path D1E1, the economy reaches the steady state at which both

countries produce output by employing only labor (M =Mh =Mf = 0 and

Ih = If = 0) and total consumption is given by Y (0) in (23).6 In Appendix

C, we prove that the trajectories except for D1E1 are incompatible with the

household’s optimality conditions in (2).

6In Appendix B, we analyze the local stability of the dynamics around the steady state
E1 and prove that the dynamic system is saddle-point stable at least under Assumption 3.
At E1 in which M = 0, we have C = Y (0) from (21) and r can deviate from qh − δ from
(7). If r > (<)ρ, over-savings (under-savings) occurs so that future consumption increases
(decreases) from (3), and then r immediately falls (rises) to clear the market. As a result,
r equals ρ and C remains constant at Y (0) in the steady state E1.
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In transition, country h employs robots and labor until reaching the

steady state E1, whereas country f may or may not use robots. If qh ≥ qf

(see Case 1 in Figure 3), country f cannot employ robots even in transition

because of its low robot productivity. By contrast, if qh < qf (see Case 2 in

Figure 3), country f is sufficiently productive to employ robots for a large

M > M but not for a small M ≤M , where M is defined in (18).

The result is summarized as follows.

Proposition 1. If the robot productivity of country h is sufficiently low to

satisfy qh ∈ [δ, ρ + δ], there exists a unique equilibrium path along which

neither country eventually uses robots (Ih = If = 0); that is, no automation

prevails in the steady state.

This type of equilibrium never emerges under neoclassical production func-

tions in which the marginal product of capital approaches infinity as capital

stock approaches zero. Our result shows that production automation con-

tinues to decline as long as robot technology is scarce.

4.2 Partial automation

Consider an advancement of robot technology in country h that leads to

qh < ρ+ δ < qh. In this case, there is an equilibrium rental price such that

q = ρ+ δ. The phase diagram of the dynamics is illustrated in Figure 6.

As in the Ramsey–Cass–Koopmans model (see Blanchard, 1989, chapter

2), there exists a unique stable path D2E2 that reaches the steady state with

a positive and finite level of robot stock M∗.7

As robots accumulate along path D2E2, the rental price decreases and

the number of automated tasks increases in country h. By contrast, this

diffusion mechanism may or may not work in country f . If the robot pro-

ductivity of country f is so low that qf ≤ qh (Case 1 in Figure 3), robots

7We can rule out the divergent paths starting above or below the path D2E2. See
Appendix C.
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Ċ = 0 Ċ
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Figure 6 : The phase diagram of the dynamics when qh < ρ+ δ < qh.

are not used in country f throughout the entire path (0 < Ih < 1 and

If = 0). Even if qf > qh (Case 2 in Figure 3), the same phenomenon

with no automation occurs, at least around the steady state E2 as long as

qf ≤ ρ+ δ (i.e., M∗ ≤ M). However, if country h is sufficiently productive

to be qf > ρ + δ, we have M∗ > M , which leads to partial automation in

both countries around the steady state (0 < Ih < 1 and 0 < If < 1).8

We establish the following proposition.

Proposition 2. If the robot productivity of country h satisfies qh < ρ+ δ <

qh, there exists a unique equilibrium path along which country h uses both

robots and labor (0 < Ih < 1); that is, partial automation prevails in country

8Suppose that the economy is initially in the steady state E1 in Figure 5, where robot
stock M is zero, and that an improvement in θhm unanticipatedly takes place. The equi-
librium dynamics shift from those in Figure 5 to those in Figure 6. In our setting, this
shift is possible because production is feasible using only labor and thus output Y (0) is
positive even with no robot stock (M = 0). Such a shift is impossible according to the
neoclassical production function in which capital and labor are complements and output
is zero with no capital stock.
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Ṁ = 0

D3

E3

Y (0)

Figure 7 : The phase diagram of the dynamics when ρ+ δ ≤ qh.

h. In the steady state, country f does not use robots (If = 0) if the robot

productivity of country f is sufficiently low to satisfy qf ≤ ρ + δ, but uses

both robots and labor (0 < If < 1) if qf > ρ+ δ.

4.3 Asymptotic full automation

The last case is where country h is highly productive to the extent

that ρ + δ ≤ qh. Because the equilibrium rental price exceeds ρ + δ for

any M > 0, global total consumption continues to rise from (24). The

Ṁ = 0 locus is strictly increasing, as illustrated in Case A in Figure 4,

because δ < qh is ensured. Thus, we obtain the phase diagram of the

dynamics in Figure 7. In Appendix C, we show that the path D3E3 is a

unique equilibrium path that fulfills the household’s optimality conditions

(2). Along the path D3E3, consumption and robot stock continue to increase

and consequently the degree of automation in country h approaches full

automation asymptotically (Ih → 1).

Perpetual economic growth is sustained by asymptotic full automation

in country h, while country f ceases to grow. Noticing that the rental price
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q declines toward qh along the equilibrium path, no automation prevails in

country f (i.e., If = 0) if qf ≤ qh. Even if country f is sufficiently productive

to satisfy qf > qh, automation advancements in country f eventually stop

around If∗ ∈ (0, 1) that fulfills

θfm exp

[∫ 1

If∗
ln

γ(z)

γ (If∗)
dz

]
= qh, (25)

where the left-hand side follows from (15). This is because renting robots

over If∗ to the less productive country f is unprofitable.

Proposition 3. If the robot productivity of country h is sufficiently high to

satisfy ρ+δ ≤ qh, there exists a unique equilibrium path along which country

h uses only robots asymptotically (Ih → 1) but country f does not; that is,

asymptotic full automation prevails only in country h. Along the equilibrium

path, country f does not use robots (If = 0) if the robot productivity of

country f is sufficiently low to satisfy qf ≤ qh, but uses both robots and

labor (0 < If < 1) if qf > qh.

A key feature of our task-based technology is that the marginal product

of robots is bounded from above and below, resulting in uneven economic

growth in the financially integrated world. Some other production functions

share the similar property, as pointed out by Jones and Manuelli (1990)

and Barro and Sala-i-Martin (2004, pp. 66–71, 226–232), but yield different

outcomes. For example, if we assume a combination of AK and Cobb–

Douglas technologies instead of (9):

Y i = BiM i +
(
M i

)α (
Li
)1−α

, where
∂Y i

∂M i
= Bi + α

(
M i

Li

)α−1

,

Bh > Bf > 0 and 0 < α < 1, then the marginal product of robots has a

positive lower bound but no finite upper bound:

qi = lim
Mi

Li
→0

∂Y i

∂M i
= ∞, qi = lim

Mi

Li
→∞

∂Y i

∂M i
= Bi > 0.
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In other words, the Inada condition is violated asM i/Li approaches infinity.

When ρ+δ ≤ qh, country h perpetually grows and the rental price converges

to the lower bound qh. However, along this path, robots are also used

in country f ; that is, there is no case in which country f employs only

labor, unlike in Proposition 3. Therefore, we conclude that our automation

technology is more likely to generate uneven international growth.

The same result is obtained if we assume a production function with a

constant elasticity of substitution between robots and labor:

Y i = Bi
[
α
(
M i

)ψ
+ (1− α)

(
Li
)ψ] 1

ψ
,

where
∂Y i

∂M i
= Biα

[
α+ (1− α)

(
M i

Li

)−ψ] 1−ψ
ψ

.

With a high degree of substitution such that 1 < 1/(1 − ψ) < ∞, the

marginal product of robots is strictly positive but unbounded from above:

qi = lim
Mi

Li
→0

∂Y i

∂M i
= ∞, qi = lim

Mi

Li
→∞

∂Y i

∂M i
= Biα

1
ψ > 0.

This production function has a different property when the degree of

substitution is low (1/(1 − ψ) < 1): the marginal product of robots is

bounded from above but converges to zero as M i/Li approaches infinity:

qi = lim
Mi

Li
→0

∂Y i

∂M i
= Biα

1
ψ > 0, qi = lim

Mi

Li
→∞

∂Y i

∂M i
= 0.

This allows for no automation but not for perpetual growth simultaneously.

Therefore, we can maintain the previous implication: automation leads to

uneven international growth relative to other production technologies.9

9Nakamura and Nakamura (2008) and Nakamura (2010) point out that the elasticity
of substitution between robots and labor exceeds unity through changes in the degree of
automation, even if the production function of a final good takes a Cobb–Douglas form,
as in (9). To see this, we divide (11) by (12) to obtain q/wi and totally differentiate the
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Table 1 : International growth patterns in the steady state under Assump-
tions 1–3.

Condition Country h Country f

δ ≤ qh ≤ ρ+ δ
no automation no automation

(Ih = 0) (If = 0)

qh < ρ+ δ < qh
qf ≤ ρ+ δ

no automation
partial automation (If = 0)

qf > ρ+ δ(> qf )
(0 < Ih < 1) partial automation

(0 < If < Ih < 1)

ρ+ δ ≤ qh
qf ≤ qh

no automation
asymptotic full automation (If = 0)

qf > qh
(Ih → 1) partial automation

(0 < If < 1)

4.4 Summary

Table 1 summarizes the results of Propositions 1–3. The improvement

in robot productivity in the more productive country h shifts the equi-

librium from no automation to partial automation and to asymptotic full

automation. In other words, production automation serves as a pathway

for sustaining perpetual economic growth. However, the same phenomenon

does not occur in the less productive country f . Country f ’s production

ceases to grow, remaining in either no automation or partial automation. If

the robot productivity of country f improves to surpass that of country h

and Assumption 1 is no longer satisfied, the production growth of country

h is halted. In any case, we conclude that automated production technolo-

gies cause international dispersion in output growth, unlike models with a

neoclassical production function.

Our contributions complement those of Nakamura (2010), who finds

result by considering the relationship between Ii and M i/Li in (14). This yields

−
dM

i

Li /
Mi

Li

d q
wi /

q
wi

= 1 +
γ(Ii)

Ii(1− Ii)γ′(Ii)
(> 1).

Accordingly, the elasticity of substitution between robots and labor is greater than unity
and varies with the degree of automation Ii.
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that automation sustains perpetual growth in a closed economy setting.

However, while Nakamura focuses solely on asymptotic full automation, we

establish the condition under which growth patterns with no automation,

partial automation, and asymptotic full automation arise. Notably, we show

that asymptotic full automation is achievable by one of the two countries

when international technological differences exist (Assumption 1), imply-

ing inevitable uneven output growth in an open economy with automation

technologies.

One may consider that country f is deprived of opportunities for growth

through automation technology. This is rather desirable in terms of welfare.

For example, consider the case in which country f is highly productive, but

less productive than country h: ρ+ δ ≤ qf and qf ≤ qh. Proposition 3 indi-

cates that country f ’s production remains constant using only labor, which

is referred to as no automation (If = 0). In this case, if country f prohibits

international asset trade, it achieves asymptotic full automation (If → 0)

because ρ+δ ≤ qf , thereby promoting economic growth perpetually. Never-

theless, the closed economy is inferior in terms of country f ’s welfare. This

is because consumption grows at the rate qf − ρ− δ in the closed economy,

which is lower than the rate qh−ρ−δ in the open economy in which country

f can access more profitable investment opportunities. Thus, international

financial integration impedes country f ’s production growth but enhances

its welfare. Similar phenomena occur in all the cases in Table 1. We state

this result in the following proposition.

Proposition 4. The integration of financial markets may hamper asymp-

totic full automation in the less productive country f but does improve its

welfare.
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5 Empirical Evidence

The theoretical results in Propositions 1–3 imply that (i) under low robot

productivity, economic growth gradually slows and eventually stops unless

exogenous technological improvement continues, and (ii) with sufficiently

high robot productivity, most tasks become automated and the economy

continues to grow perpetually through the accumulation of robots. Thus, as

illustrated in Figure 1, the growth impact of increases in robot capital may

differ significantly among countries depending on their level of robot pro-

ductivity. In this section, we present the results of empirically investigating

whether the accumulation of industrial robot capital accelerates real GDP

growth using panel data on 62 countries from 1994 to 2019.

5.1 Regression model

For simplicity, the theoretical model in the previous sections omitted

traditional capital such as plants. To clarify the difference between the em-

pirical implications of traditional and robot capital, we consider the following

production function instead of (9):

Y i
t =

(
Ki
t

)α [
Ait(M

i
t )
Iit (Lit)

1−Iit
]1−α

, with 0 < α < 1,

where the subscript t denotes the period, Ki
t represents traditional capital,

and

Ait = Ai(Iit),
dAit
dIit

= −Ait ln
M i
t

Lit
⋛ 0,

Iit = Ii
(
M i
t

Lit

)
,

dIit

d
(
M i
t

Lit

) =
(1− Iit)

2θim[
γ(Iit) + Iit(1− Iit)γ

′(Iit)
]
θil
> 0,

from (10) and (13), respectively. Robots and labor are perfectly substi-

tutable at each level of task production. The share of income for robots

is given by (1 − α)Iit and changes according to the degree of automation,

Iit . On the contrary, traditional capital complements both labor and robots.

The income share of traditional capital remains constant at α.

26



Differentiating this production function, we obtain

Ẏ i
t

Y i
t

= α
K̇i
t

Ki
t

+ (1− α)Iit
Ṁ i
t

M i
t

+ (1− α)(1− Iit)
L̇it
Lit
, (26)

where the effects of a change in Iit cancel out. The coefficient of the second

term on the right-hand side, (1−α)Iit , shows that the accumulation of robot

stock has a stronger impact on the output growth rate in a country with a

higher degree of automation, with other factors held constant.

To test this implication, we consider the following regression model with

the country fixed effect µi and time fixed effect λt:

gYit = β1g
K
it + (β2 + β3di)g

M
it + (β4 + β5di)g

L
it + µi + λt + uit, (27)

where β1, . . . , β5 are the unknown coefficients to be estimated, uit is the

error term, and

gYit ≡
Ẏ i
t

Y i
t

, gKit ≡ K̇i
t

Ki
t

, gMit ≡ Ṁ i
t

M i
t

, gLit ≡
L̇it
Lit
.

We classify the sample into two groups based on the data related to their

amounts of robot capital. The dummy variable di takes 1 if a country is

classified as a country group with high robot capital and 0 otherwise. From

a theoretical perspective, we hypothesize the following.10

Hypothesis 1. A country group with high robot capital has a greater impact

of gMit on gYit than a country group with low robot capital. That is, β3 > 0.

According to our theory, the economy with low robot productivity converges

to the steady state with no economic growth. Hence, the effect of gMit on gYit

may be negligible in countries with low robot capital, implying that β2 may

be insignificant or a small value. The theory predicts β1 > 0, β4 > 0, and

β5 < 0.

10The growth-accelerating effect of robot capital is valid even if asymptotic full automa-
tion is a distant prospect. Hence, our empirical analysis does not contradict the conclusion
of Nordhaus (2021), who shows that singularity, interpreted as asymptotic full automation
in our context, is not imminent by checking the growth trajectories of capital-related indi-
cators, particularly the share of capital in total income and share of informational capital
in total capital.
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5.2 Data

The dataset is an unbalanced panel covering 62 countries from 1994 to

2019, with missing data for some years and countries. Y i
t represents real

Gross Domestic Product (GDP), calculated by dividing nominal GDP (in

current U.S. dollars) by the GDP deflator. The data are sourced from the

World Economic Outlook (April 2023) published by the International Mon-

etary Fund (IMF). The amount of traditional capital, Ki
t , is computed as

the sum of general government capital stock (kgov n), private capital stock

(kpriv n), and public–private partnerships capital stock (kppp n), all mea-

sured in billions of nominal national currencies. The data are based on the

Investment and Capital Stock Dataset 1960–2019 compiled by the IMF. The

number of robots, M i
t , is provided by “operational stock,” which measures

the number of robots currently deployed, reported by the International Fed-

eration of Robotics 2021.11

For the data on labor Lit, we employ four alternative measures. As

a benchmark, we use the employment data for all sexes and age groups

(in thousands of people) sourced from the International Labour Organiza-

tion (ILO). To assess the robustness of our regression results, we also use

three alternative measures. First, we replace the employment data with the

working-age population data (in millions of people) from the World Eco-

nomic Outlook (April 2023) compiled by the IMF. Second, we use different

employment data (in millions of people), taken from the World Economic

Outlook (April 2023). The coverage of countries in the IMF’s employment

11In a broader sense, automation-related capital contains Information and Communica-
tion Technology (ICT) assets. The Conference Board’s Total Economy Database provides
ICT data only on a flow service basis. EU KLEMS, compiled by the European Commis-
sion, includes the ICT stock data but covers only 26 countries, with some missing values.
Eden and Gaggl (2018, 2020) employ these ICT data to examine its growth effects. Simu-
lating the United States, Eden and Gaggl (2018) reveal the recent increasing contribution
of ICT to per capita income, which improves the welfare of the representative household.
However, Eden and Gaggl (2020) find no systematic relationship between ICT and per
capita income when considering cross-country differences in skilled and unskilled labor
endowments.
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data is more limited than that of the ILO’s. While the IMF relies on em-

ployment data submitted by individual countries, the ILO’s data are based

on statistics compiled by national authorities in accordance with ILO stan-

dards.12 Therefore, in countries in which both IMF and ILO employment

data are available, discrepancies exist between the values of each dataset.

Third, we calculate the total hours worked by multiplying the employment

data by the mean weekly hours actually worked per employed person, cov-

ering all sexes, age groups, and economic activities, as reported by the ILO.

The dummy variable di takes 1 if a country is classified as having high

robot capital and 0 otherwise. We consider two types of classifications using

the industrial robot data from the International Federation of Robotics 2021.

In the baseline regression, we classify countries based on robot density, de-

fined as the number of operational industrial robots per 10,000 employees in

the manufacturing industry. As a robustness check of our regression results,

we alternatively classify countries using the value of the “operational stock”

of industrial robots instead of robot density. See Table 2 for a classification

and list of countries with high robot capital.

Table 3 reports the summary statistics of the sample used in the baseline

regression analysis. The growth rate of robot capital, gMit , is extremely

high and considerably volatile, with an average rate of 42.15% and standard

deviation of 6.85%. This reflects the fact that the number of operational

robots is low in many countries; hence, even a slight change in robot stock

can vary the growth rate markedly. The correlation matrix in Table 4 shows

that there is no perfect multicollinearity between the explanatory variables.

[Tables 2–4]

12Further details can be found in the International Labour Standards, available at
https://www.ilo.org/international-labour-standards.

29



5.3 Baseline regression results

Table 5 presents the baseline results of the regression model (27) using

the Ordinary Least Squares (OLS) estimation. As a benchmark, we use the

employment data from the ILO as a proxy for Lit and categorize countries

based on their robot density. The dummy variable di equals one if a country

is ranked among the top 10 in robot density at least once between 2000 and

2019. Table 2 lists the top 10 countries by robot density.

[Table 5]

Columns (1)–(4) report the results under the different fixed effects spec-

ifications: without fixed effects, with country fixed effects only, with time

fixed effects only, and with both country and time fixed effects, respectively.

The coefficient of the interaction term di × gMit is positive and statistically

significant at the 1% level across all the regressions. By contrast, gMit is not

statistically significant in all the regressions except for that without fixed

effects, indicating its limited explanatory power. These results support Hy-

pothesis 1, suggesting that the accumulation of industrial robots drives real

GDP growth in high robot-density countries, but not in countries with low

robot density. Hence, international disparities in GDP growth would widen

owing to the accelerated economic growth in countries with high robot den-

sity. As shown in column (4), which presents the OLS regression result with

country and time fixed effects, the estimated coefficient of di × gMit is 0.010.

This implies that a 1% increase in the growth rate of robot stock leads to a

0.01% increase in the GDP growth rate in countries with high robot density.

Our findings are consistent with those of previous studies. Berg et al.

(2018) simulate how improved robot productivity affects GDP by consider-

ing various cases of the substitutability between robots and labor. They re-

veal that when robots compete with labor in all tasks and traditional capital

remains unchanged in the initial state, GDP increases by 12–21% in the long

run, accompanied by the accumulation of robot capital. Acemoglu (2024)
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evaluates the potential impact of artificial intelligence on future GDP using

the task-based model of Acemoglu and Restrepo (2022b). Under a moderate

increase in capital stock driven by artificial intelligence, real GDP growth is

projected to fall by 0.93–1.16% over the next decade in total. In an alter-

native scenario with a substantial investment boom, these estimates rise to

1.40–1.56%. This calculation is consistent with our estimations from data

on the accumulation of robots. The cumulative growth rate of robot stock

in countries ranked among the top 10 in robot density is 124% on average

over the 10 years from 2010 to 2019. Hence, according to our estimated

coefficient of di × gMit , these countries experience a 1.24% increase in real

GDP growth over those 10 years.

No definitive results are obtained for the other variables. The positive

relationship between gKit and gYit is significant in columns (1)–(3), but not

significant in column (4), which shows that results based on the regression

with country and time fixed effects. Further, gLit has no explanatory power

in any of the regressions except in the specification without fixed effects.

The coefficient of di × gLit is significant but exhibits the wrong sign.

5.4 Robustness check

We assess the robustness of the regression results in Table 5 using four

approaches: (i) using alternative data for labor Lit, (ii) altering the clas-

sification criteria for countries with high robot capital, (iii) trimming the

top and bottom 5% of the data on the growth rate of robot stock, and (iv)

re-estimating the model using per capita variables.

Alternative labor data

In the baseline regression, we use the employment data from the ILO

as a proxy for labor Lit to calculate the growth rate gLit. Alternative proxies

are available. Table 6 presents the regression results using the working-age

population data from the IMF instead of the employment data. Table 7
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presents the results using the alternative employment data from the IMF.

Table 8 considers the hours worked by multiplying the employment data in

Table 5 by the mean hours worked per employed person.

[Tables 6–8]

In all cases, the core finding is robust: the coefficient of di×gMit remains

significantly positive, whereas the explanatory power of gMit is limited. Im-

portantly, the alternative labor data alter the significance of the coefficient

of gLit, aligning with the sign predicted by the theoretical model (see Tables

7 and 8); gLit is positively associated with gYit and di × gLit has a negative

coefficient. In summary, while these alternative labor data are desirable,

they have the disadvantage of a substantial decrease in the number of ob-

servations.

Classification criteria for high robot-capital countries

The baseline regression designates countries as installing high robot cap-

ital if their robot density ranks within the top 10 at least once between 2000

and 2019. In this robustness check, we explore alternative classification cri-

teria. In Tables 9 and 10, the criteria for robot density are changed from the

top 10 to the top 5 and to top 15, respectively. In Table 11, countries are

instead ranked by their operational stock of industrial robots and countries

whose robot stocks are ranked in the top 10 at least once between 2000 and

2019 are classified as high robot-capital countries. Table 2 lists the countries

with high robot capital under each classification criterion. To allow for a

comparison with Table 5, we use the employment data from the ILO as a

proxy for labor Lit in Tables 9–11.

[Tables 9–11]

The regression results in Tables 9 and 11 are essentially unchanged from

those in Table 5. However, in Table 9, which uses a classification criterion
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based on a robot density ranking in the top 5, all the coefficients of di× gMit

are approximately 0.002 higher than those in Table 5. By contrast, as shown

in Table 10, when countries with less high robot density are included in

the high robot-capital country group, the robot growth rate di × gMit loses

explanatory power and the labor growth rate gLit becomes a more dominant

explanatory factor.

Trimmed data

As production using industrial robots has advanced rapidly, the sample

includes extremely high growth rates of robot capital in some countries over

certain years. Although such data could be informative, we test the model

by trimming the data on the growth rates of robot capital to confirm the

robustness of the regression results in Table 5. We use the employment data

from the ILO as a proxy for Lit and classify countries using a criterion based

on a robot density ranking in the top 10.

Table 12 reports the results obtained by trimming the top and bottom

5% of the data on the growth rate of robot capital. The coefficient of gMit

becomes significantly positive as a result of removing the bottom 5% of the

data. By contrast, while the coefficient of di × gMit remains significant, its

estimates decrease because of the exclusion of the top 5% of the data. In

Table 13 where we trim the top 10% of the data on the growth rates of

robot capital, this tendency is more evident: the coefficient of di × gMit is

no longer significant because of the exclusion of a greater number of high

robot-density countries.

[Tables 12–13]
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Per capita variables

By subtracting L̇it/L
i
t from both sides and rearranging the result, we can

express (26) in terms of per capita variables as follows:

ẏit
yit

= α
k̇it
kit

+ (1− α)Iit
ṁi
t

mi
t

,

where yit ≡ Y i
t /L

i
t, k

i
t ≡ Ki

t/L
i
t, and mi

t ≡ M i
t/L

i
t. Accordingly, in this

robustness check, we test the following regression model instead of (27):

gyit = δ1g
k
it + (δ2 + δ3di)g

m
it + µi + λt + eit, (28)

where gyit ≡ ẏit/y
i
t, g

k
it ≡ k̇it/k

i
t, g

m
it ≡ ṁi

t/m
i
t; δ1, . . . , δ3 are the unknown

coefficients to be estimated; and eit is the error term. We predict δ1 > 0,

δ2 > 0, and δ3 > 0.

As shown in Table 5, we classify high robot-capital countries using a

criterion based on a robot density ranking in the top 10. To calculate a per

capita value of each variable, we use four alternative measures for labor Lit:

the IMF’s employment data in Table 14, the population data in Table 15,

the ILO’s employment data in Table 16, and the hours worked data in Table

17. Importantly, in Tables 14–17, the interaction term di×gmit is significantly

and positively associated with gyit, implying the growth-accelerating effect

of robot capital (Hypothesis 1). The coefficient of gmit is not significant in

Tables 14–17. Compared with the results in Tables 5–8 derived from the

regression model (27), the notable distinction is that gkit has a significant

positive coefficient (except for in column (4) in Table 15), thus showing the

GDP growth effect of traditional capital.

[Tables 14–17]

6 Conclusion

This study examines the international growth patterns in an open econ-

omy with task-based automation technologies. In our framework, production
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can be performed by using only labor or, asymptotically, only robots. We

show that while the more productive country can achieve asymptotic full

automation, the less productive country cannot. This implies that automa-

tion technology becomes a factor that can cause international dispersion in

production growth, which occurs as long as the international difference in

robot productivity is even slight. However, while restricting international

asset trade may open the door for the low productivity country to achieve

asymptotic full automation, this is undesirable in terms of welfare.

We also present empirical results that support the theoretical implica-

tions of the relationship between automation and production growth. Ac-

cording to our panel data analysis including 62 countries from 1994 to 2019,

countries with more industrial robot installations exhibit higher production

growth as the accumulation of robots increases. In other words, the accumu-

lation of robots accelerates economic growth and widens the international

disparities in economic growth. The robustness of our regression results is

ensured even if we (i) use alternative labor proxies, (ii) redefine the criteria

of a country group with high robot capital, (iii) trim the top and bottom 5%

of the data on the growth rate of robot stock, and (iv) rewrite and regress

the model in terms of per capita variables.

Our model has potential for future research. We assume that the task-

dependent component of labor productivity, γ(z), has a common curvature

across countries. Relaxing this assumption generates richer implications; for

example, the comparative advantages between countries change over time,

thereby providing more complicated dynamics of automation. Second, we

exclude the convergence and divergence in cross-country income that stem

from the international diffusion of robot and labor productivities, facilitated

by technological transfers through, for example, R&D activities, imitation,

and foreign direct investment (Barro and Sala-i-Martin, 2004, chapter 8;

Aghion and Howitt, 2008, chapter 7). Integrating these elements with au-

tomation technology would yield a more comprehensive understanding of
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the global income distribution, whereas our model isolates a distinct mech-

anism driven by production automation. Third, new task creation is vital

as an engine of economic growth (Acemoglu and Restrepo, 2018b; Naka-

mura and Zeira, 2024), whereas our model relies on automation through the

accumulation of robots. Considering both engines would have additional im-

plications for labor allocation. Fourth, a more accurate evaluation of welfare

in the presence of automated technologies requires considering the possibil-

ity of unemployment (Cords and Prettner, 2022; Ogawa and Shimizu, 2022),

changes in the terms of trade (Momoda et al., forthcoming), and the effects

of task offshoring (Mandelman and Zlate, 2022). Finally, the introduction of

low- and high-skilled workers into the model, as in Acemoglu and Restrepo

(2018a), would provide insights into the impact of automation on the income

distribution.
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Appendix A. Slope of Y (M)

In this appendix, we derive the slope of the Y (M) function, represented

in (22). Using (10) and (13) to substitute for Ai(Ii) and M i/Li from (9),

we have

Y i =
θil
[
γ(Ii)

]Ii
Li

1− Ii
exp

[∫ 1

Ii
ln γ(z)dz

]
.

The partial differentiation of this equation with respect to Ii yields

∂Y i

∂I i
=

[
γ(Ii) + Ii(1− Ii)γ′(Ii)

]
Y i

(1− Ii)γ(Ii)
> 0.

Multiplying this result by ∂I i/∂(M i/Li) in (14), ∂(M i/Li)/∂M i = 1/Li

and ∂M i/∂M , we obtain

∂Y i

∂M
=
IiY i

M i

∂M i

∂M
= q

∂M i

∂M
,

where the second equality is derived from (9) and (11). Because Mh = M

when country h uses all existing robots (more precisely, when either qh ≥ qh

or qh < qh andM ≤M), it holds that ∂Mh/∂M = 1 and ∂Mf/∂M = 0. On

the contrary , when both countries use robots (i.e., when qh < qh and M <

M), ∂M i/∂M is given by (20) and we have (∂Mh/∂M) + (∂Mf/∂M) = 1.

Accordingly, irrespective of the relative magnitude between qh and qh and

the level of M , the slope of Y (M) is represented by (22):

Y ′(M) =
∂Y h

∂M
+
∂Y f

∂M
= q.

Appendix B. Local Stability of the Dynamics in Fig-
ure 5

This appendix analyzes the local stability of the dynamics around the

no-automation steady state E1 in Figure 5. Linearizing the dynamic system

(21) and (24) around M = 0 and C = Y (0), we obtain(
Ṁ

Ċ

)
=

[
qh − δ −1

q̂′(0)Y (0) qh − ρ− δ

](
M − 0
C − Y (0)

)
.
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Recall that (i) the rental price approaches qh toward M = 0 and (ii) the

relationship between q and M is represented by the function q̂(M) in (17)

because all existing robots are employed in country h in the neighborhood

of sufficiently small M , irrespective of either qh ≥ qh or qh < qh. The

determinant of the coefficient matrix is as follows:

Det =
(
qh − δ

)(
qh − ρ− δ

)
+ q̂′(0)Y (0).

We have (i) qh − δ ≥ 0 from Assumption 3, (ii) qh − ρ − δ ≤ 0 in the

present case, and (iii) Y (0) > 0 from (23). Substitute the first equation

in (14) into the first equation in (16) and evaluate the result by i = h,

Mh =M , Ih = 0, and q = qh. This yields

q̂′(0) = − γ′(0)qhθhm

[γ(0)]2 θhl L
h
< 0.

Therefore, the determinant is negative and the dynamic system has one

positive and one negative characteristic root. Because C is jumpable andM

is not, the dynamic path is saddle-point stable at least under Assumption

3.

Appendix C. Uniqueness of the Equilibrium Path

In this appendix, we show that path DjEj (j = 1, 2, 3) described in

Figures 5–7 is a unique equilibrium path. Starting above path DjEj , the

trajectory hits the vertical axis in finite time and then aggregate consump-

tion must fall to Y (0) discontinuously. This discrete jump is incompati-

ble with the consumption-smoothing condition (3). Blanchard and Fischer

(1989, appendix A in p. 75) provide the mathematical proof to rule out such

paths. By contrast, the trajectory starting below the path DjEj violates

the transversality condition in (2), as we prove below.

Before proceeding with the proof, we show that the wage rate wi (i =

h, f) is bounded from above and below. Substituting Ai(Ii) in (10) and
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M i

Li

0
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wi
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Figure C1 : The relationship between M i

Li
and wi.

M i/Li in (13) into wi in (12) and applying the function Ii(M i/Li) in (13)

to the result, we can relate the wage rate to the capital-to-labor ratio as

follows:

wi = θilγ

(
Ii
(
M i

Li

))
exp

[∫ 1

Ii(M i/Li)
ln

γ(z)

γ (Ii(M i/Li))
dz

]
for 0 ≤ Ii < 1.

As described in Figure C1, the wage rate is positive, bounded between wi

and wi, and strictly increasing with the robot-to-labor ratio:

∂wi

∂(M i/Li)
= −I

iγ′(Ii)wi

γ(Ii)

∂I i

∂(M i/Li)
> 0 from Assumption 2 and (14);

wi = wi as
M i

Li
= 0, or Ii = 0; wi → wi as

M i

Li
→ ∞, or Ii → ∞,

where the lower and upper bounds of the wage rate, wi and wi, are given by

wi ≡ θil exp

[∫ 1

0
ln γ(z)dz

]
(∈ (0, wi)), wi ≡ θilγ(1) (∈ (0,∞)). (C1)

44



Cases of no automation and partial automation in Figures 5
and 6

Let us return to the proof. First, we consider the dynamics of no au-

tomation and partial automation, illustrated in Figures 5 and 6. Integrate

the household’s budget equation (1) from time t to ∞ to obtain

lim
s→∞

aise
−

∫ s
t rvdv − ait =

∫ ∞

t

(
wis − cis

)
e−

∫ s
t rvdvds.

Because the integration of the Euler equation (2) from time t to s generates

cis = cite
∫ s
t rvdv,

we have the following consumption function:

cit = ρ

(
ait +

∫ ∞

t
wise

−
∫ s
t rvdvds− lim

s→∞
aise

−
∫ s
t rvdv

)
.

Summing up this equation yields the following aggregate consumption

function:

Ct = ρ
(
Mt +Ht − lim

s→∞
Mse

−
∫ s
t rvdv

)
, (C2)

where Mt = Lhaht + Lfaft ,

Ht ≡ Lh
∫ ∞

t
whs e

−
∫ s
t rvdvds+ Lf

∫ ∞

t
wfs e

−
∫ s
t rvdvds.

The second equation represents the equilibrium condition in the financial

market and Ht is aggregate human capital.

Along the trajectory starting below the path DjEj (j = 1, 2), aggregate

consumption decreases toward zero (Ct → 0), keeping robot stock positive

(Mt > 0). Moreover, as shown in Figure C1, the wage rates of both countries

are bounded at positive values; hence, aggregate human capital is positive

(Ht > 0). Accordingly, the consumption function (C2) implies that

lim
s→∞

Mse
−

∫ s
t rvdv > 0,
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or, equally, that at least the transversality condition of either country is

violated along this trajectory. In other words, the over-accumulation of

robots occurs; thus, it is optimal to increase consumption. Consequently,

the path DjEj (j = 1, 2) is shown to be a unique equilibrium path.

Case of asymptotic full automation in Figure 7

Next, we consider the dynamics of asymptotic full automation in Figure

7. Over time, the rental price and country h’s wage rate converge toward

qh = θhm and wh = θhl γ(1), respectively (see Figures 3 and C1). Country f ’s

wage rate is bounded and lies at a certain constant level, wf∗, between wf

and wh. Hence, aggregate human capital converges to the following positive

constant value:

lim
t→∞

Ht =
Lhwh + Lfwf∗

qh − δ
(> 0),

where we used rs = qh − δ(> 0) for Mt > 0 from (7) and ρ+ δ ≤ qh in the

case of asymptotic full automation (see Proposition 3).

Given this limt→∞Ht(> 0) and robot stockMt(> 0), the optimal level of

consumption that satisfies the individual transversality conditions is uniquely

determined by

Ct = ρ
(
Mt + lim

t→∞
Ht

)
,

which is from (C2). This consumption level is on the path D3E3 in Figure

7. Lower consumption leads to the violation of optimality:

lim
s→∞

Mse
−

∫ s
t rvdv > 0.

This implies that robots accumulate too quickly and consumption grows too

slowly. Thus, the path D3E3 is a unique equilibrium path.
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Appendix D. International Labor Mobility and Full
Automation

In the main text, we assume away international labor mobility. This

appendix clarifies that labor mobility causes the population to be concen-

trated in either of the two countries, thereby generating the possibility of

(non-asymptotic) full automation in the more productive country, Ih = 1.

The driving force behind this population concentration is that wages do not

rise to infinity (do not fall to zero) as labor decreases to zero (increases to

infinity), unlike under the neoclassical production function. This property

of wages is illustrated in Figure C1.

Because households can freely access the international financial markets

in both countries, the incentive for labor mobility is governed solely by the

international difference in wage rates—people move to the country with the

higher wage rate. Here, we consider that Lh and Lf represent the population

of each country satisfying

Lh + Lf = L,

where L is the constant world population.

Population concentration under no automation

First, we consider the case in which both countries initially remain at

the steady state with no automation, E1, in Figure 5 and suppose that

restrictions on migration are unanticipatedly removed. In this case, wage

rates are at each lower bound wi and then all people migrate to the country

with the higher wage rate or higher labor productivity θil .

Proposition D.1. Suppose that the economy is initially in the steady state

with no automation under the condition δ ≤ qh ≤ ρ+δ. Then, international

labor mobility causes the population to be concentrated in country f (country

h); that is, Lf = L (Lh = L) if its labor productivity is sufficiently high to

satisfy wf > (<)wh.
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Table D1 : Labor mobility and automation under ρ+ δ ≤ qh.

Conditions Country h Country f

qf ≤ qh
wf < wh asymptotic full automation no production

(Lh = L, Ih → 1) (Lf = 0, If = 0)

wf > wh full automation no automation
(Lh = 0, Ih = 1) (Lf = L, If = 0)

qf > qh

wf < wh asymptotic full automation no production

wh < wf ≤ wh wf∗ < wh (Lh = L, Ih → 1) (Lf = 0, If = 0)
wf∗ > wh full automation no automation

wf > wh (Lh = 0, Ih = 1) (Lf = L, If = 0)

If the production function satisfies the Inada condition, such population

concentration never occurs; that is, labor is allocated to both countries so

that wage rates are equalized internationally.

Population concentration leads to full automation

Next, we focus on the situation in which asymptotic full automation

initially prevails in country h, as Figure 7 illustrates. When labor mobility

is restricted, the wage rate in country h approaches the upper bound wh,

whereas that in country f takes a value between the upper bound wf and

lower bound wf depending on its labor productivity.

In the first case, qf ≤ qh, implying no automation in country f (see

Proposition 3). Its wage rate is given by the lower bound wf . Therefore,

if wf > wh because of the high labor productivity of country f , all people

move there and thereby full automation is realized in country h (i.e., Lh = 0,

Lf = L, Ih = 1, If = 0). Otherwise, full automation remains asymptotic

even after labor mobility because all people prefer to work in country h (i.e.,

Lh = L, Lf = 0, Ih → 1, If = 0).

In the second case, partial automation prevails in country f because

qf > qh (see Proposition 3). From (13) and (25), the robot-to-labor ratio of

country f is in the neighborhood of mf∗ such that the marginal productivity
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Figure D1 : The relationship between wh and wf .

of robots equals the rental price qh:

θfm exp

[∫ 1

If (mf∗)
ln

γ(z)

γ (If (mf∗))
dz

]
= qh.

Given this mf∗, the functional relationship between wi and M i/Li, given in

Appendix C, determines the equilibrium wage rate of country f , denoted by

wf∗, between wf and wf :

wf∗ = θfl γ
(
If

(
mf∗

))
exp

[∫ 1

If (mf∗)
ln

γ(z)

γ (If (mf∗))
dz

]
∈ (wf , wf ).

Figure D1 depicts three types of wage schedules. Case I fulfills wf ≤ wh

because of the low labor productivity of country f . Any level of wf∗ is

below country h’s wage rate, wh. Hence, country h attracts people and
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retains asymptotic full automation (i.e., Lh = L, Lf = 0, Ih → 1, If = 0).

As country f ’s labor productivity θfl increases, the wage schedule shifts

to Case II, where wh < wf ≤ wh and the marginal labor productivity of

country f equals country h’s wage rate wh at the threshold value m̄f :

θfl γ
(
If

(
mf

))
exp

[∫ 1

If(mf)
ln

γ(z)

γ
(
If

(
mf

))dz] = wh.

If wf∗ > wh, country h achieves full automation (i.e., Lh = 0, Lf = L,

Ih = 1, If = 0); otherwise, it retains asymptotic full automation (i.e.,

Lh = L, Lf = 0, Ih → 1, If = 0). Case III corresponds to high labor

productivity in country f : wh < wf . Because any wf∗ exceeds country h’s

wage rate wh, country h attracts all people and achieves full automation

(i.e., Lh = 0, Lf = L, Ih = 1, If = 0).

The conditions for full automation are summarized in Table D1 and in

the following proposition.

Proposition D.2. Suppose that the economy is initially in the steady state

with asymptotic full automation under the condition ρ + δ ≤ qh. Then,

international labor mobility leads to (non-asymptotic) full automation in

country h, causing the population to be concentrated in country f if the

labor productivity of country f is sufficiently high, more concretely, if one of

the following three conditions is met: (i) qf ≤ qh and wf > wh; (ii) qf > qh

and wh < wf ≤ wh < wf∗; and (iii) qf > qh and wf > wh.

Our theory predicts the emergence of a production-specializing country in

which no workers live because production is fully automated. This geo-

graphical implication also applies to the population agglomeration among

the regions within a country. Alternatively, our result can be interpreted as

meaning that internal labor mobility between two firms with heterogeneous

productivities can lead to full automation in the firm with high robot pro-

ductivity. In any case, free labor mobility benefits all people through the

specialization of production.
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Table 2 : List of countries with high robot capital

Country
Robot density ranking Robot stock ranking

Top 10
Top 10 Top 5 Top 15

Australia 〇
Austria 〇 〇
Belgium 〇 〇 〇
Canada 〇 〇
China 〇
Denmark 〇 〇 〇
Finland 〇 〇
France 〇 〇 〇
Germany 〇 〇 〇 〇
Italy 〇 〇 〇 〇
Japan 〇 〇 〇 〇
Korea 〇 〇 〇 〇
Mexico 〇
Netherlands 〇
Russia 〇
Singapore 〇 〇 〇
Slovak Republic 〇
Slovenia 〇
Spain 〇 〇 〇
Sweden 〇 〇 〇 〇
Switzerland 〇
Taiwan 〇 〇 〇
Thailand 〇
U.K. 〇 〇
U.S. 〇 〇 〇 〇

Note: This table lists countries classified as having high robot capital based on data

provided by the International Federation of Robotics 2021. Robot density is the

number of operational industrial robots per 10,000 employees in the manufacturing

industry. The first three columns labeled “Robot density ranking” and the last column

labeled “Robot stock ranking” list high robot-capital countries classified according to

robot density and the value of the operational stock of industrial robots, respectively.

In each of the “Top 10,” “Top 5,” and “Top 15” lists, countries marked with a circle

are those ranked in the top 10, top 5, and top 15 at least once between 2000 and 2019

based on each classification criterion.

51



Table 3 : Summary statistics

Variable N Mean SD Min Max

All 62 countries
gYit 954 2.74 0.10 -14.84 14.52
gKit 954 6.10 0.19 -8.51 66.36
gMit 954 42.15 6.85 -100.00 4800.00
gLit 954 1.37 0.33 -74.96 294.30

Top 10 countries
with high robot density
gYit 370 2.44 0.13 -8.07 14.52
gKit 370 3.85 0.16 -3.75 18.11
gMit 370 15.95 2.41 -82.33 408.33
gLit 370 0.96 0.09 -6.66 9.07

Non Top 10 countries
with high robot density
gYit 584 2.93 0.14 -14.84 11.11
gKit 584 7.53 0.28 -8.51 66.36
gMit 584 58.76 11.03 -100.00 4800.00
gLit 584 1.64 0.54 -74.96 294.30

Note: This table presents the summary statistics of the sample used in the baseline

empirical analysis. Values are rounded to two decimal places. The data cover 62

countries from 1994 to 2019. gYit , g
K
it , g

M
it , and gLit denote the growth rates of real

GDP, traditional capital, robot capital, and labor, respectively. To calculate gLit, we

use the employment data from the ILO as a proxy for labor Lit. The top 10 countries

with high robot density include those ranked among the top 10 in robot density at

least once between 2000 and 2019, while the other countries are classified as non-top

10 countries with high robot density.
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Table 4 : Correlation matrix

gYit gKit gMit gLit
gYit 1.00 0.27 0.10 0.10
gKit 0.27 1.00 0.03 0.07
gMit 0.10 0.03 1.00 -0.00
gLit 0.10 0.07 -0.00 1.00

Note: This table presents the correlation matrix of the variables used in the baseline

empirical analysis. Values are rounded to two decimal places. gYit , g
K
it , g

M
it , and gLit

denote the growth rates of real GDP, traditional capital, robot capital, and labor,

respectively. To calculate gLit, we use the employment data from the ILO as a proxy

for labor Lit.
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Table 5 : Baseline regression results

(1) (2) (3) (4)

Intercept 1.935***

(0.168)

di −0.972*** −0.903***

(0.220) (0.292)

gKit 0.121*** 0.101** 0.121*** 0.053

(0.016) (0.048) (0.043) (0.043)

gMit 0.001** 0.001 0.000 0.000

(0.000) (0.001) (0.000) (0.000)

di × gMit 0.019*** 0.017*** 0.013*** 0.010***

(0.003) (0.002) (0.002) (0.002)

gLit 0.017** 0.011 0.008 0.000

(0.009) (0.020) (0.019) (0.015)

di × gLit 0.712*** 0.665*** 0.452*** 0.374***

(0.088) (0.082) (0.128) (0.095)

Num.Obs. 954 954 954 954

Num.Country 62 62 62 62

F statistic 34.19 27.12 28.96 10.98

R squared 0.18 0.13 0.16 0.06

Adjusted R squared 0.17 0.07 0.13 -0.04

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (27) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

62 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gYit , gKit , gMit , and gLit

denote the growth rates of real GDP, traditional capital, robot capital, and labor,

respectively. To calculate gLit, we use the employment data from the ILO as a proxy

for labor Lit. The dummy variable di takes 1 if a country is ranked among the top

10 in robot density at least once between 2000 and 2019 and 0 otherwise. Robust

standard errors are listed in parentheses: columns (1) and (3) use White standard

errors, whereas columns (2) and (4) base on clustered standard errors.
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Table 6 : Using population as a proxy for labor

(1) (2) (3) (4)

Intercept 1.598***

(0.185)

di −0.383 −0.615*

(0.254) (0.344)

gKit 0.120*** 0.115** 0.111*** 0.054

(0.016) (0.050) (0.040) (0.043)

gMit 0.001** 0.001 0.000 0.000

(0.000) (0.001) (0.000) (0.000)

di × gMit 0.020*** 0.018*** 0.014*** 0.011***

(0.003) (0.002) (0.002) (0.002)

gLit 0.591*** 0.390 0.656*** 0.745*

(0.139) (0.559) (0.223) (0.423)

di × gLit 0.162 −0.243 0.171 −0.588

(0.257) (0.604) (0.251) (0.441)

Num.Obs. 945 945 945 945

Num.Country 60 60 60 60

F statistic 25 13.72 30.37 7.33

R squared 0.14 0.07 0.17 0.04

Adjusted R squared 0.13 0 0.14 -0.06

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (27) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

60 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gYit , gKit , gMit , and gLit

denote the growth rates of real GDP, traditional capital, robot capital, and labor,

respectively. To calculate gLit, we use the working-age population data from the World

Economic Outlook (April 2023), published by the IMF, as a proxy for labor Lit. The

dummy variable di takes 1 if a country is ranked among the top 10 in robot density at

least once between 2000 and 2019 and 0 otherwise. Robust standard errors are listed

in parentheses: columns (1) and (3) use White standard errors, whereas columns (2)

and (4) base on clustered standard errors.
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Table 7 : Using alternative employment data as a proxy for labor

(1) (2) (3) (4)

Intercept 0.866***

(0.157)

di −0.017 0.023

(0.179) (0.238)

gKit 0.136*** 0.059* 0.149*** 0.029

(0.024) (0.034) (0.030) (0.031)

gMit 0.001** 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

di × gMit 0.016*** 0.015*** 0.010*** 0.008***

(0.002) (0.002) (0.002) (0.002)

gLit 0.987*** 1.078*** 0.859*** 0.950***

(0.053) (0.083) (0.066) (0.080)

di × gLit −0.200** −0.301** −0.215* −0.371***

(0.082) (0.149) (0.130) (0.132)

Num.Obs. 683 683 683 683

Num.Country 35 35 35 35

F statistic 127.24 127.12 109.74 106.18

R squared 0.53 0.5 0.5 0.46

Adjusted R squared 0.53 0.47 0.48 0.41

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (27) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

35 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gYit , gKit , gMit , and gLit

denote the growth rates of real GDP, traditional capital, robot capital, and labor,

respectively. To calculate gLit, we use employment data from the World Economic

Outlook (April 2023), published by the IMF, as a proxy for labor Lit. The dummy

variable di takes 1 if a country is ranked among the top 10 in robot density at least

once between 2000 and 2019 and 0 otherwise. Robust standard errors are listed in

parentheses: columns (1) and (3) use White standard errors, whereas columns (2) and

(4) base on clustered standard errors.
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Table 8 : Using hours worked as a proxy for labor

(1) (2) (3) (4)

Intercept 1.214***

(0.189)

di −0.282 −0.335

(0.230) (0.271)

gKit 0.123*** 0.130** 0.146*** 0.116*

(0.020) (0.057) (0.054) (0.064)

gMit 0.001 0.001 0.000 −0.001

(0.001) (0.001) (0.001) (0.001)

di × gMit 0.014*** 0.014*** 0.006*** 0.005***

(0.005) (0.004) (0.002) (0.002)

gLit 0.566*** 0.578*** 0.417*** 0.411***

(0.039) (0.161) (0.119) (0.123)

di × gLit −0.158** −0.178 −0.248** −0.273**

(0.078) (0.167) (0.116) (0.124)

Num.Obs. 578 578 578 578

Num.Country 42 42 42 42

F statistic 62.81 67.05 52.66 39.66

R squared 0.4 0.39 0.37 0.28

Adjusted R squared 0.39 0.33 0.33 0.18

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (27) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

42 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gYit , gKit , gMit , and gLit

denote the growth rates of real GDP, traditional capital, robot capital, and labor,

respectively. To calculate gLit, we use the total hours worked data from the ILO

as a proxy for labor Lit. The total hours worked are computed by multiplying the

employment data by the mean weekly hours actually worked per employed person.

The dummy variable di takes 1 if a country is ranked among the top 10 in robot

density at least once between 2000 and 2019 and 0 otherwise. Robust standard errors

are listed in parentheses: columns (1) and (3) use White standard errors, whereas

columns (2) and (4) base on clustered standard errors.
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Table 9 : Classification criterion based on a robot density ranking in the
top 5.

(1) (2) (3) (4)

Intercept 1.898***

(0.151)

di −1.100*** −1.014***

(0.251) (0.282)

gKit 0.126*** 0.112** 0.127*** 0.058

(0.016) (0.050) (0.043) (0.044)

gMit 0.001** 0.001 0.000 0.000

(0.000) (0.001) (0.000) (0.000)

di × gMit 0.021*** 0.019*** 0.015*** 0.012***

(0.004) (0.002) (0.002) (0.002)

gLit 0.020** 0.013 0.009 0.001

(0.009) (0.022) (0.020) (0.016)

di × gLit 0.855*** 0.733*** 0.602*** 0.429***

(0.120) (0.113) (0.159) (0.145)

Num.Obs. 954 954 954 954

Num.Country 62 62 62 62

F statistic 30.37 21.19 28.56 9.07

R squared 0.16 0.11 0.16 0.05

Adjusted R squared 0.16 0.04 0.13 -0.05

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (27) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

62 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gYit , gKit , gMit , and gLit

denote the growth rates of real GDP, traditional capital, robot capital, and labor,

respectively. To calculate gLit, we use the employment data from the ILO as a proxy

for labor Lit. The dummy variable di takes 1 if a country is ranked among the top

5 in robot density at least once between 2000 and 2019 and 0 otherwise. Robust

standard errors are listed in parentheses: columns (1) and (3) use White standard

errors, whereas columns (2) and (4) base on clustered standard errors.
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Table 10 : Classification criterion based on a robot density ranking in the
top 15

(1) (2) (3) (4)

Intercept 1.541***

(0.198)

di 0.459** 0.012

(0.206) (0.377)

gKit 0.115*** 0.083* 0.111** 0.039

(0.017) (0.043) (0.045) (0.041)

gMit 0.001* 0.001 0.000 0.000

(0.001) (0.001) (0.001) (0.001)

di × gMit 0.000 0.000 0.001 0.000

(0.001) (0.001) (0.001) (0.001)

gLit 0.336*** 0.303** 0.272** 0.232**

(0.034) (0.136) (0.111) (0.106)

di × gLit −0.334*** −0.304** −0.279** −0.243**

(0.035) (0.136) (0.111) (0.106)

Num.Obs. 954 954 954 954

Num.Country 62 62 62 62

F statistic 31.12 23.26 33.92 17.26

R squared 0.16 0.12 0.18 0.09

Adjusted R squared 0.16 0.05 0.15 0

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (27) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

62 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gYit , gKit , gMit , and gLit

denote the growth rates of real GDP, traditional capital, robot capital, and labor,

respectively. To calculate gLit, we use the employment data from the ILO as a proxy

for labor Lit. The dummy variable di takes 1 if a country is ranked among the top

15 in robot density at least once between 2000 and 2019 and 0 otherwise. Robust

standard errors are listed in parentheses: columns (1) and (3) use White standard

errors, whereas columns (2) and (4) base on clustered standard errors.
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Table 11 : Classification criterion based on a robot stock ranking in the top
10

(1) (2) (3) (4)

Intercept 1.794***

(0.165)

di −0.537** −0.507

(0.216) (0.310)

gKit 0.125*** 0.107** 0.126*** 0.054

(0.016) (0.049) (0.042) (0.044)

gMit 0.001** 0.001 0.000 0.000

(0.000) (0.001) (0.000) (0.000)

di × gMit 0.017*** 0.014*** 0.012*** 0.008***

(0.003) (0.003) (0.002) (0.003)

gLit 0.018** 0.011 0.007 0.000

(0.009) (0.020) (0.018) (0.015)

di × gLit 0.488*** 0.432*** 0.359*** 0.271***

(0.074) (0.131) (0.095) (0.085)

Num.Obs. 954 954 954 954

Num.Country 62 62 62 62

F statistic 30.97 20.92 28.79 8.76

R squared 0.16 0.11 0.16 0.05

Adjusted R squared 0.16 0.04 0.13 -0.05

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (27) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

62 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gYit , gKit , gMit , and gLit

denote the growth rates of real GDP, traditional capital, robot capital, and labor,

respectively. To calculate gLit, we use the employment data from the ILO as a proxy

for labor Lit. The dummy variable di takes 1 if a country is ranked among the top

10 in the amount of operational stock of industrial robots at least once between 2000

and 2019 and 0 otherwise. Robust standard errors are listed in parentheses: columns

(1) and (3) use White standard errors, whereas columns (2) and (4) base on clustered

standard errors.
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Table 12 : Top and bottom 5% trimmed data

(1) (2) (3) (4)

Intercept 1.587***

(0.169)

di −0.707*** −0.737***

(0.212) (0.284)

gKit 0.133*** 0.100*** 0.140*** 0.058

(0.016) (0.037) (0.049) (0.036)

gMit 0.013*** 0.012*** 0.007*** 0.006***

(0.002) (0.002) (0.002) (0.002)

di × gMit 0.009** 0.008** 0.009** 0.007**

(0.004) (0.003) (0.004) (0.003)

gLit 0.009 0.002 0.002 −0.005

(0.008) (0.012) (0.014) (0.010)

di × gLit 0.717*** 0.682*** 0.483*** 0.428***

(0.081) (0.078) (0.126) (0.087)

Num.Obs. 859 859 859 859

Num.Country 61 61 61 61

F statistic 46.55 40.88 36.31 17.16

R squared 0.25 0.2 0.21 0.1

Adjusted R squared 0.24 0.14 0.18 0

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (27) with

country and time fixed effects. The sample is an unbalanced panel dataset from 1994

to 2019. We trim the top and bottom 5% of the data on the growth rate of robot

stock. As a result, the number of countries is reduced from 62 to 61. Columns (1)–

(4) report the regression results without country and time fixed effects, with country

fixed effects only, with time fixed effects only, with both country and time fixed effects,

respectively. gYit , g
K
it , g

M
it , and gLit denote the growth rates of real GDP, traditional

capital, robot capital, and labor, respectively. To calculate gLit, we use the employment

data from the ILO as a proxy for labor Lit. The dummy variable di takes 1 if a country

is ranked among the top 10 in robot density at least once between 2000 and 2019 and

0 otherwise. Robust standard errors are listed in parentheses: columns (1) and (3)

use White standard errors, whereas columns (2) and (4) base on clustered standard

errors.
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Table 13 : Top and bottom 10% trimmed data

(1) (2) (3) (4)

Intercept 1.873***

(0.168)

di −0.889*** −0.859***

(0.216) (0.293)

gKit 0.117*** 0.097** 0.118** 0.052

(0.016) (0.040) (0.047) (0.040)

gMit 0.013*** 0.013*** 0.007** 0.006***

(0.002) (0.003) (0.003) (0.002)

di × gMit 0.006 0.007 0.005 0.005

(0.005) (0.005) (0.004) (0.003)

gLit 0.012 0.005 0.003 −0.005

(0.009) (0.015) (0.016) (0.012)

di × gLit 0.711*** 0.669*** 0.447*** 0.376***

(0.086) (0.079) (0.118) (0.088)

Num.Obs. 858 858 858 858

Num.Country 62 62 62 62

F statistic 33.21 30.84 25.28 11.33

R squared 0.19 0.16 0.16 0.07

Adjusted R squared 0.18 0.09 0.12 -0.04

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (27) with

country and time fixed effects. The sample is an unbalanced panel dataset from

1994 to 2019. We trim the top 10% of the data on the growth rate of robot stock.

Columns (1)–(4) report the regression results without country and time fixed effects,

with country fixed effects only, with time fixed effects only, with both country and time

fixed effects, respectively. gYit , g
K
it , g

M
it , and gLit denote the growth rates of real GDP,

traditional capital, robot capital, and labor, respectively. To calculate gLit, we use the

employment data from the ILO as a proxy for labor Lit. The dummy variable di takes

1 if a country is ranked among the top 10 in robot density at least once between 2000

and 2019 and 0 otherwise. Robust standard errors are listed in parentheses: columns

(1) and (3) use White standard errors, whereas columns (2) and (4) base on clustered

standard errors.
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Table 14 : Using per capita variables based on the ILO’s employment data

(1) (2) (3) (4)

Intercept −3.440***

(0.235)

di 2.325*** 2.257***

(0.360) (0.687)

gkit 0.789*** 0.869*** 0.800*** 0.883***

(0.015) (0.131) (0.160) (0.118)

gmit 0.001* 0.002* 0.001 0.001

(0.001) (0.001) (0.001) (0.001)

di × gmit 0.020*** 0.021*** 0.013*** 0.014***

(0.006) (0.003) (0.003) (0.003)

Num.Obs. 954 954 954 954

Num.Country 62 62 62 62

F statistic 724.23 1334.21 795.08 1550.77

R squared 0.75 0.82 0.77 0.84

Adjusted R squared 0.75 0.81 0.77 0.83

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (28) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

62 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gyit, g
k
it, and gmit denote the

growth rates of real GDP per capita, traditional capital per capita, and robot capital

per capita, respectively. To calculate a per capita value of each variable, we use the

employment data from the ILO as a proxy for labor Lit. The dummy variable di takes

1 if a country is ranked among the top 10 in robot density at least once between 2000

and 2019 and 0 otherwise. Robust standard errors are listed in parentheses: columns

(1) and (3) use White standard errors, whereas columns (2) and (4) base on clustered

standard errors.
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Table 15 : Using per capita variables based on population

(1) (2) (3) (4)

Intercept 1.430***

(0.165)

di −0.282 −0.512*

(0.206) (0.292)

gkit 0.122*** 0.114** 0.113*** 0.054

(0.016) (0.048) (0.040) (0.042)

gmit 0.001** 0.001 0.000 0.000

(0.000) (0.001) (0.000) (0.000)

di × gmit 0.020*** 0.018*** 0.014*** 0.011***

(0.003) (0.002) (0.002) (0.002)

Num.Obs. 945 945 945 945

Num.Country 60 60 60 60

F statistic 27.08 22.48 28.66 9.38

R squared 0.1 0.07 0.11 0.03

Adjusted R squared 0.1 0.01 0.08 -0.07

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (28) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

60 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gyit, g
k
it, and gmit denote

the growth rates of real GDP per capita, traditional capital per capita, and robot

capital per capita, respectively. To calculate a per capita value of each variable, we

use the working-age population data from the World Economic Outlook (April 2023),

published by the IMF, as a proxy for labor Lit. The dummy variable di takes 1 if a

country is ranked among the top 10 in robot density at least once between 2000 and

2019 and 0 otherwise. Robust standard errors are listed in parentheses: columns (1)

and (3) use White standard errors, whereas columns (2) and (4) base on clustered

standard errors.
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Table 16 : Using per capita variables based on the IMF’s employment data

(1) (2) (3) (4)

Intercept 0.995***

(0.147)

di −0.181 −0.161

(0.163) (0.229)

gkit 0.128*** 0.063** 0.155*** 0.066**

(0.023) (0.032) (0.025) (0.028)

gmit 0.001* 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

di × gmit 0.016*** 0.015*** 0.009*** 0.007***

(0.002) (0.002) (0.002) (0.002)

Num.Obs. 683 683 683 683

Num.Country 35 35 35 35

F statistic 20.96 16.03 20.9 6.94

R squared 0.11 0.07 0.11 0.03

Adjusted R squared 0.1 0.02 0.07 -0.06

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (28) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

35 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gyit, g
k
it, and gmit denote

the growth rates of real GDP per capita, traditional capital per capita, and robot

capital per capita, respectively. To calculate a per capita value of each variable, we

use the employment data from the World Economic Outlook (April 2023), published

by the IMF, as a proxy for labor Lit. The dummy variable di takes 1 if a country is

ranked among the top 10 in robot density at least once between 2000 and 2019 and

0 otherwise. Robust standard errors are listed in parentheses: columns (1) and (3)

use White standard errors, whereas columns (2) and (4) base on clustered standard

errors.

65



Table 17 : Using per capita variables based on hours worked

(1) (2) (3) (4)

Intercept 0.571***

(0.190)

di −0.132 −0.101

(0.240) (0.337)

gkit 0.187*** 0.230*** 0.227*** 0.286***

(0.020) (0.075) (0.076) (0.090)

gmit 0.001 0.001 0.000 0.000

(0.001) (0.001) (0.001) (0.001)

di × gmit 0.014*** 0.014*** 0.007*** 0.006***

(0.005) (0.004) (0.002) (0.002)

Num.Obs. 578 578 578 578

Num.Country 42 42 42 42

F statistic 27.61 32.46 39.8 49.59

R squared 0.16 0.15 0.22 0.23

Adjusted R squared 0.16 0.08 0.19 0.12

Country fixed effect No Yes No Yes

Time fixed effect No No Yes Yes

* p < 0.1, ** p < 0.05, *** p < 0.01

Note: This table presents the OLS estimates using the regression model (28) with

country and time fixed effects. The sample is an unbalanced panel dataset covering

42 countries from 1994 to 2019. Columns (1)–(4) report the regression results without

country and time fixed effects, with country fixed effects only, with time fixed effects

only, with both country and time fixed effects, respectively. gyit, g
k
it, and gmit denote

the growth rates of real GDP per capita, traditional capital per capita, and robot

capital per capita, respectively. To calculate a per capita value of each variable, we

use the total hours worked data from the ILO as a proxy for labor Lit. The total hours

worked are computed by multiplying employment data by the mean weekly hours

actually worked per employed person. The dummy variable di takes 1 if a country is

ranked among the top 10 in robot density at least once between 2000 and 2019 and

0 otherwise. Robust standard errors are listed in parentheses: columns (1) and (3)

use White standard errors, whereas columns (2) and (4) base on clustered standard

errors.
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