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Abstract
New ideas and technologies adopted by a small number of individuals occasionally
spread globally through a complex web of social ties. Here, we present a simple and
general approximation method, namely, a message-passing approach, that allows us
to describe the diffusion processes on (sparse) random networks in an almost exact
manner.We consider two classes of binary-action games where the best pure strategies
for individual players are characterized as variants of the threshold rule. We verify that
the dynamics of diffusion observed on synthetic networks are accurately replicated by
the message-passing equation, whose fixed point corresponds to a Nash equilibrium,
while the conventional mean-fieldmethod tends to overestimate the size and frequency
of diffusion. Generalized cascade conditions under which a global diffusion can occur
are also provided. We extend the framework to analyze multiplex networks in which
social interactions take place in multiple layers.

Keywords Network game · Coordination game · Mean field · Message-passing
method · Multiplex network

JEL Classification C72 · D85 · L14

We would like to thank Takehisa Hasegawa, Ryoji Sawa and Takashi Shimizu for their useful comments
and suggestions. Kobayashi acknowledges financial support from JSPS KAKENHI 19H01506, 20H05633
and 22H00827. Onaga acknowledges financial support from JSPS KAKENHI 19K14618 and 19H01506.

B Teruyoshi Kobayashi
kobayashi@econ.kobe-u.ac.jp

Tomokatsu Onaga
onaga@se.is.tohoku.ac.jp

1 Kobe University, Kobe, Japan

2 Tohoku University, Sendai, Japan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00199-022-01457-x&domain=pdf
http://orcid.org/0000-0002-3135-9038


T. Kobayashi, T. Onaga

1 Introduction

Decisions are often a result of the influence of others. One would be more likely to
adopt a new technology if many friends and colleagues are already using it, while one
may forego the technology if only a few have adopted it. Such peer effects through
social ties aremodeled as coordination games on a social network (Kandori et al. 1993;
Morris 2000; Jackson 2008). In a class of 2 × 2 coordination games, in which there
are two pure Nash equilibria, changes in the strategies undertaken by a small fraction
of players may initiate contagion that finally leads all the players in the network to
change their behavior (Morris 2000; Jackson and Yariv 2007; López-Pintado 2008;
Galeotti et al. 2010; López-Pintado 2012; Lelarge 2012; Sadler 2020; Melo 2021).
An alternative framework for studying strategic interactions in networks is provided
by Ballester et al. (2006). In their model, a player takes a real-valued action x ≥ 0 to
maximize a quadratic utility function that depends on the neighbors’ actions, as well
the player’s own action. They show that players’ best strategies in equilibrium are
characterized by their positions in the network, where the best action x is proportional
to the player’s Bonacich centrality.1

In the standard coordination games on anetwork, the best pure strategy is formulated
as a fractional-threshold rule in which a player becomes “active” if a certain fraction
of the neighbors are active (Morris 2000; Jackson 2008). In the utility-maximizing
games proposed by Ballester et al. (2006), it can also be shown that the best strategy
is described as a threshold rule as long as players’ actions are binary, i.e., x ∈ {0, 1},
but an essential difference is that the best binary action is expressed as an absolute-
threshold rule; a player decides to be active (i.e., select x = 1) if the total number,
as opposed to the fraction, of active neighbors exceeds a certain threshold, as in the
classical threshold model of Granovetter (1978). Thus, the two types of games fall
into two distinct classes of threshold models.

While the behavior of each player is determined by a threshold rule at the local
level, understanding the aggregate dynamics of diffusion and its equilibrium property
is a non-trivial problem if players are interconnected in a complex manner. As a
conventional approach for achieving this goal, mean-field approximations have been
extensively used to calculate the steady-state fraction of active players (Jackson and
Yariv 2007; López-Pintado 2006, 2008, 2012; Lelarge 2012). A key idea of the mean-
fieldmethod is that the (possibly heterogeneous) probabilities of neighbors being active
are approximated by a constant probability that a randomly chosen neighbor is active.

In this study, we develop a more accurate approximation method that allows us
to describe the dynamics, as well as the equilibrium, of contagion on complex net-
works in an almost exact manner. Our method, called the message-passing approach,
is a more elaborated version of the conventional mean-field approximation in that
the message-passing approach takes into account the directionality of the spreading
process (Gleeson and Porter 2018; Dall’Asta 2021).2 In the mean-field method, the
probability of a neighboring player being active is given as a function of the probability

1 See, Chen et al. (2018) for an extension of the Ballester et al.’s (2006) model.
2 Message-passing approaches are approximation methods that have been developed in statistical physics.
In the study of ferromagnetism, Ising model, in which each of atomic spins is in one of two states {−1,+1},
was initially analyzedbasedon themean-field theorydevelopedbyWeiss (1907).Amore accurate solutionof
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that the neighbor’s neighbors are active, and afixed point of the self-consistent equation
corresponds to the steady state of the spreading process, i.e., a Nash equilibrium (Jack-
son and Yariv 2007; Jackson 2008; Jackson and Zenou 2015). However, the recursive
expression of the self-consistent equation necessarily incorporates a repercussion of
peer effects among neighboring players because social influence, or “messages,” may
be transmitted multiple times between the neighbors. The mean-field approximations
may thus overestimate the activation probability of neighbors. The message-passing
method overcomes this problem by imposing a directionality condition that one of the
neighbors to which a message will be passed at time step t + 1 is not yet active at
time step t . In general, mean-field methods are accurate enough in the limit of large
degrees, where network density is sufficiently high, but they do not necessarily provide
good approximations for sparse networks (Dorogovtsev et al. 2008; Gleeson 2011).
Nevertheless, in the previous studies on network games, little quantitative validation
has been performed to examine if the mean-field approximation correctly captures the
“true” Nash equilibrium.

The main results of this study are summarized as follows. First, for each class of
network games, we obtain a generalized version of the conventional cascade condi-
tions. Several studies provide analytical conditions that predict a parameter space in
which a vanishingly small fraction of active players can cause a global cascade (Watts
2002; Gleeson and Cahalane 2007; López-Pintado 2008; Lelarge 2012; Dall’Asta
2021). However, if the share of initially active players, called “seed players,” is posi-
tive, which seems to be the case in real social networks, the accuracy of these cascade
conditions would be undermined because the fraction of active players is assumed to
be zero in evaluating the first derivative. Based on the message-passing equation, we
derive generalized cascade conditions that incorporate the previously proposed ones
as special cases. We show that the parameter space indicated by the generalized cas-
cade conditions almost exactly matches the “ground-truth” cascade region obtained
by numerical simulations on synthetic networks.

Second, themessage-passingmethod can accurately describe the aggregate dynam-
ics of contagion, i.e., the dynamic path of the share of active players to the equilibrium
level, while previous studies on network games focus mainly on equilibrium property.
The message-passing equation can be used to explain how fast and to what extent a
“message” will spread through social ties, as well as how many players will finally
receive the message. We show that the share of active players at a given time step t is
approximated by the probability of a randomly chosen player being active at time t ,
which is calculated by iterating the message-passing equation t times.

Finally, we extend the baseline game-theoretic framework for single networks (i.e.,
monoplex networks) to the case of multiplex networks. A multiplex network is a set
of layers in each of which a network is formed by a common set of nodes (Brummitt
et al. 2012; Brummitt and Kobayashi 2015; Bianconi 2018). For instance, students’
friendship in a school shapes a school social network, while students using Twittermay
also be connected through follower-followee relationships. In such cases, a monoplex
modelwill not be enough to study the aggregate dynamics of social influence. If Twitter

IsingmodelwasobtainedusingBethe approximation (Bethe1935), and then avariant of themessage-passing
approximation, called the cavity method, was developed as an extended version of Bethe approximation,
which can be applied to wider classes of models in statistical physics (Mézard et al. 1987).
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followers are more influential than school friends, or vice versa, then we need to take
into account the inter-layer heterogeneity that would be reflected as a difference in the
payoff parameters. To analyze the contagion of behavior in the framework ofmultiplex
networks, we redefine the best strategies in the two classes of games and develop a
generalized cascade condition based on the largest eigenvalue of the Jacobian matrix
that has a derivative of the multivariate message-passing equation in each element.
We reveal that, for a given connectivity of networks, inter-layer heterogeneity tends to
enhance contagion because players are more likely to become active in the influential
layer, which would trigger a global contagion.

Our analysis is located at the intersection of game theory and network science. It
has been widely recognized that the role of networks (e.g., social ties between indi-
viduals and trading relationships between firms) is crucial in understanding social
and economic phenomena (c.f., Amir et al. 2021; Barbieri 2021; Luo et al. 2021;
Masatlioglu and Suleymanov 2021; Meng and Tian 2021; La Torre et al. 2022). Game
theorists have long studied the diffusion of behavior on networks in which strategic
interactions take place between players connected by social ties (Jackson 2008; Easley
and Kleinberg 2010; Jackson 2011; Jackson and Zenou 2015; Tabasso 2019). A sem-
inal work by Morris (2000) examines a class of 2 × 2 coordination games on regular
graphs and defines a contagion threshold of the payoff parameter, showing how the
possibility of contagion depends on the network structure. Another type of model to
study network games is based on a utility function that depends on neighbors’ actions.
Ballester et al. (2006) consider a continuous-action game on networks and show that
the optimal strategy of a player in a Nash equilibrium is proportional to the player’s
Bonacich centrality. Chen et al. (2018) extend the framework to accommodate multi-
ple (or bilingual) actions, as examined by Goyal and Janssen (1997), Immorlica et al.
(2007), and Oyama and Takahashi (2015) in the context of coordination games.

In network science, the collective dynamics of individuals’ behavior have been
recognized as an important research topic since the early 2000’s (Watts 2002; Watts
and Dodds 2007). Watts’ model of threshold cascades has been extended to a wide
variety of collective phenomena, such as information cascades (Nematzadeh et al.
2014; Kobayashi 2015; Unicomb et al. 2021), and default contagion in financial net-
works (Gai and Kapadia 2010; Cont et al. 2013; Hurd 2016; Caccioli et al. 2018).
The framework has also been extended to analyze contagion on multiplex networks in
which nodes belong to multiple layers (Brummitt et al. 2012; Yağan and Gligor 2012;
Brummitt and Kobayashi 2015; Bianconi 2018; Unicomb et al. 2019).

These studies in the field of network science usually take the threshold rules as
given, but our work provides a microfoundation from a game-theoretic perspective;
in both fractional and absolute threshold models, the threshold value is obtained as
a function of the payoff parameters and the preference parameters. Many studies
analyzing the fractional-threshold models employ variants of the message-passing
equationproposedbyGleeson andCahalane (2007) andGleeson (2008) to calculate the
steady-state equilibrium. While the message-passing approach is not new in network
science (Dall’Asta 2021), to the best of our knowledge, we are the first to provide
formal proofs for the existence of and convergence to a fixed point of the message-
passing equation.
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2 Binary-action games onmonoplex networks

2.1 Random network and locally tree-like structure

We first consider a single (i.e., monoplex) uniformly random network formed by a
sufficiently large number of players. Player i is connected with ki other players by
undirected and unweighted edges. ki is called the degree of player i (or node i). Players
at the end of the edges emanating from i are called neighbors of player i . At each
time step, each pair of neighbors plays a one-to-one game. The only assumption we
make about the network is that it has a locally tree-like structure, i.e., there are no
cycles (e.g., triangles, quadrangles) at least locally. This indicates that neighbors of
a node are not directly connected, so the neighbors are not coordinating with each
other. Examples of this class of networks include sparse Erdős–Rényi random graphs
and the configuration models in which the degree distribution is prespecified while
the nodes are connected at random subject to the degree constraint (Molloy and Reed
1995; Newman 2018).

In Erdős–Rényi networks and the configuration models, the clustering coefficient
C , which is the average probability that two neighbors of a node are connected, is
generally given by3

C = 1

N

(〈k2〉 − 〈k〉)2
〈k〉3 , (1)

where N is the number of nodes in the network and 〈·〉 denotes the average operator.
Note that the moments 〈k〉 and 〈k2〉 are fixed in Erdős–Rényi and the configuration
models since the degree distribution is prespecified. We thus have limN→∞ C = 0,
meaning that the fraction of local triangles among all pairwise combinations is at
most O(N−1), which is negligible when the network is sufficiently large. The density
of these networks, given by 2M/(N (N − 1)) = 〈k〉/(N − 1) where M denotes the
number of edges, is also vanishing as N → ∞, meaning that they are sparse.

2.2 Fractional thresholdmodel

We first describe a standard coordination game on a network. Each player takes action
0 or action 1, the payoffs of which are given in Table 1 where a, c > 0. Throughout
the analysis, players taking action 1 are called active, while those taking action 0 are
called inactive.

Now let us consider a situation in which an arbitrary chosen player changed the
strategy from action 0 to action 1. We call this player a seed. If the seed player adopts
action 1, there arises a possibility that some of the neighbors may accordingly change
their strategy, because they might be better off if they would coordinate with the seed.
It is assumed that seed players will never revert their strategy. The condition for player

3 See Newman (2018). For Erdős–Rényi networks with 〈k〉 ≈ pN , where p denotes a connecting proba-
bility, the clustering coefficient reduces to C = 〈k〉/N .
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Table 1 Payoffs in a
coordination game

(ui , u j ) denotes the combination of payoffs, where ui (resp. u j ) is the
payoff to player i (resp. j). a, c > 0

i to take action 1 is given by −c(ki − mi ) + ami > 0, or

mi

ki
>

c

a + c
≡ φ, (2)

where mi denotes the number of player i’s neighbors that take action 1. If a player
takes action 1, it would affect the neighbors through the threshold condition (2), which
may cause further changes in the neighbors’ neighbors’ action, and so forth (Morris
2000). In this way, a change in the behavior of a single seed player in an infinitely
large network may cause a global cascade of behavioral changes (Watts 2002). While
the original Watts model assumes that the initial seed fraction is vanishingly small,
here we will generalize the framework so that the effect of a positive fraction of seed
nodes can be formally analyzed.

It should be noted that players’ actions are irreversible in the sense that players
adopting action 1 will not have an incentive to revert to action 0.4 This guarantees
the monotonicity of the contagion process, and thus there is at least one stationary
equilibrium (Morris 2000). We call a class of contagion models in which the threshold
condition is given by (2) fractional-threshold models (Watts 2002; Karimi and Holme
2013).5

Definition 1 If players in a network change their strategies according to (2), the result-
ing cascading behavior is called a fractional-threshold contagion.

2.3 Absolute thresholdmodel

There is a strand of literature on continuous-action games on networks in which each
player takes an action represented by a real value x ≥ 0 (Ballester et al. 2006; Jackson
andZenou2015). Typically, player i maximizes the followingquadratic utility function

ui (xi ; x−i ) = αxi − 1

2
x2i + γ

∑

j 
=i

Ai j xi x j , (3)

where x−i denotes the vector of actions taken by players other than i , and Ai j is
the (i, j)th element of the adjacency matrix A; Ai j = 1 if there is an edge between

4 Recall that seed nodes are assumed to be irreversible.
5 Unicomb et al. (2021) call this type of cascade model a relative threshold model.
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players i and j , and Ai j = 0 otherwise. Since there is no self-loop and edges are
undirected, we have Ai i = 0 and Ai j = A j i . The first term, αxi , captures the payoff
of taking action xi with weight α > 0, while the second term, x2i /2, represents the cost
of taking action. The third term, γ

∑
j 
=i Ai j xi x j , denotes the benefit of coordinating

with neighbors. We focus on the case of γ ≥ 0 to investigate the dynamics of a
monotonic cascading process, in which a stationary equilibrium is guaranteed.

Now we consider a case where players’ actions take binary values: xi ∈ {0, 1}. The
utilities of taking action xi = 0 and xi = 1 are respectively given as

ui (0; x−i ) = 0, (4)

ui (1; x−i ) = α − 1

2
+ γmi . (5)

Note that if xi = 0 is the status quo for all players, this condition is similar to the one
in the fractional threshold model in that a player’s action may cause other players’
actions to change. Specifically, player i takes action 1 if ui (0; x−i ) < ui (1; x−i ), which
is rewritten as

mi >
1

γ

(
1

2
− α

)
≡ θ. (6)

The most important difference from the threshold condition in the fractional model,
Eq. (2), is that condition (6) is independent of the degree ki . A player will be activated
if the number of active neighbors exceeds a certain threshold θ . We call this class
of contagion models asolute-threshold models (Granovetter 1978; Karimi and Holme
2013; Unicomb et al. 2021).

Definition 2 If players in a network change their strategies according to (6), the result-
ing cascading behavior is called an absolute-threshold contagion.

3 Analysis of contagion dynamics

As discussed above, the best pure strategies in the two types of games fall into two
different classes: fractional and absolute threshold rules. In this section, we show how
the contagion dynamics in these two classes of games can be analyzed within a unified
framework.

3.1 Amessage-passing approach

To study the dynamics of cascading behavior in an analytically tractable and intuitive
manner, we employ amessage-passing approach. Belowwe present amessage-passing
equation that allows us to describe the dynamics of contagion in both classes of network
games. We further propose analytical conditions with which we can identify under
what circumstances a global cascade can take place.
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3.1.1 Message-passing equation

Let ρ0 ∈ [0, 1) denote the fraction of seed players among all players. That is, �ρ0N�
seed players are randomly selected from the population. Let qt ∈ [0, 1] be the prob-
ability that a randomly selected neighbor of a node is active at time step t . In the
message-passing approach, the states of k − 1 neighbors out of k neighbors are taken
into account in calculating the probability qt , assuming that one neighbor that is not
included in the k − 1 neighbors is still inactive (Fig. 1). This allows us to respect the
directionality in the spreading of influence; a player would become active after being
influenced by (or receiving “messages” from) the k − 1 neighbors, and the influence
(or the “message”) is passed on to a neighbor who is not yet active. Assuming that
the network is locally tree-like, we calculate qt by iterating the following recursion
equation (i.e., the message-passing equation):

qt = ρ0 + (1 − ρ0)

∞∑

k=1

k

z
pk

k−1∑

m=0

(
k − 1

m

)
qmt−1(1 − qt−1)

k−1−mF (m, k) ,

≡ G(qt−1), for t = 1, 2, . . . , (7)

where
(k−1

m

) ≡ (k − 1)!/[k!(k − 1 − m)!], and pk denotes the degree distribution,
i.e., the probability that a randomly chosen player has exactly k neighbors. z ≡ 〈k〉 =∑∞

k=0 kpk is the mean degree of the network, so k
z pk represents the probability that

a randomly chosen neighbor of a player has degree k.6 F is a real-valued function
bounded on [0, 1], which is called the response function. We impose the following
assumption on F :

Assumption 1 F : Z≥0 × Z>0 → [0, 1] has the following properties:
For k = 1, 2, . . .,

(i) F(0, k) = 0,
(ii) F(m, k) is increasing in m, i.e., F(m1, k) ≤ F(m2, k) for all m1,m2 ∈ Z≥0

such that m1 ≤ m2.

Part (i) of the assumption indicates that players will never get activated if there are
no active neighbors, while part (ii) ensures that players are more likely to be active as
they have more active neighbors for a given number of neighbors.

Specifically, the response function in the fractional threshold model is defined as

F(m, k) ≡ F frac(m, k) =
{
1 if m

k > φ,

0 otherwise.
(8)

6 If the network is directed, the summation in Eq. (7) should be taken from m = 0 to k since each edge
has an intrinsic direction (Brummitt and Kobayashi 2015). López-Pintado (2012) studies the impact that
the presence of in/out-degree correlations (i.e., assortativity) would have on diffusion.
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Fig. 1 Schematic of the
message-passing method

Clearly, if φ ≥ 0, the response function satisfies Assumption 1. In the absolute thresh-
old model, the response function is given by

F(m, k) ≡ Fabs(m) =
{
1 if m > θ,

0 otherwise.
(9)

Again, if θ ≥ 0, this response function satisfies Assumption 1.
For a given qt , we can calculate the average fraction of active players at time t ,

denoted by ρt , as

ρt = ρ0 + (1 − ρ0)

∞∑

k=1

pk

k∑

m=0

Bk
m(qt )F (m, k) , (10)

where Bk
m(q) ≡ ( k

m

)
qm(1 − q)k−m denotes a binomial distribution with parameter q.

3.1.2 Relation to a more general approximation method

Gleeson (2011, 2013) argues that a general approximation method based on approxi-
mate master equations (AMEs) is far more accurate than the mean-field approxima-
tions in a wide variety of contagion models. Let sk,m(t) denote the fraction of k-degree
nodes that are inactive and have m active neighbors at time t , where the average frac-
tion of active nodes is given by ρ(t) = 1 − ∑

k pk
∑k

m=0 sk,m(t). Using the AME
formalism, we can express the dynamics of sk,m in continuous time as follows:

d

dt
sk,m = −F(m, k)sk,m − β · (k − m)sk,m + β · (k − m + 1)sk,m−1, (11)

where β ≡ [∑k pk
∑k

m=0(k −m)F(m, k)sk,m]/[∑k pk
∑k

m=0(k −m)sk,m] denotes
the average transition rate at which a neighbor of an inactive node becomes active.
In the AME method, we need to consider three factors that can change sk,m . The
first term on the RHS of (11) represents the fraction of k-degree nodes having m
active neighbors that newly change their state from inactive to active. The second term
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represents the fraction of nodes that leave the sk,m class because one of the (k − m)

inactive neighbors is newly activated and the number of active neighbors becomes
m + 1. The third term represents the fraction of nodes that newly enter the sk,m class
from the sk,m−1 class because the number of inactive neighbors changes from k−m+1
to k − m. Gleeson (2011, 2013) shows that a wide variety of contagion processes on
networks can be described by the AME method almost exactly. The downside of the
AMEmethod, on the other hand, is that since the total number of combinations (k,m)

is (kmax + 1)(kmax + 2)/2, the number of equations grows quadratically with the
maximum degree kmax. Thus, solving the system of differential equations in the AME
approach can be computationally expensive for well connected networks.

Despite the increased number of equations to be solved in the AME formalism, it
is shown that the message-passing equation (7) is directly derived from the system
of AMEs as long as the threshold models of type (8) and (9) are considered. We
summarize the equivalence between the message-passing and the AME methods in
the following proposition:

Proposition 1 (Gleeson 2013) Suppose that response function F is given by (8) or (9).
Given the initial fraction of active nodes at time t = 0, denoted by ρ(0), the system
of differential equations in the AME formalism given by (11), for m = 0, . . . , k and
k = 0, . . . , kmax, reduces to the following system of two differential equations:

d

dt
ρ = v(q) − ρ, (12)

d

dt
q = g(q) − q, (13)

where

v(q) = ρ(0) + [1 − ρ(0)]
∑

k

pk

k∑

m=0

Bk
m(q)F(m, k), (14)

g(q) = ρ(0) + [1 − ρ(0)]
∑

k

kpk
z

k−1∑

m=0

Bk−1
m (q)F(m, k). (15)

Proof See the section VII and Appendix F of Gleeson (2013). ��

Equations (12)–(15) indicate that the dynamics captured by the message passing equa-
tion (7) are indeed equivalent to that described by the AMEs in the class of threshold
models that we consider. This suggests that while the message-passing method is
apparently similar to the conventional mean-field approximation in that the mean
probability q is the only variable in Eq. (7), the message-passing equation essentially
incorporates the transition of neighbors’ states that is neglected in the conventional
mean-field method.
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3.2 Properties of themessage-passing equation (7)

3.2.1 Monotonicity

Given that the response function F satisfies Assumption 1, we now characterize the
function G on [0, 1]. We first describe the boundary conditions of G.

Proposition 2 Let G on [0, 1] be a real-valued function defined by (7). If F : Z≥0 ×
Z>0 → [0, 1] satisfies Assumption 1 (i), thenG(0) = ρ0 andG(1) ≤ 1 forρ0 ∈ [0, 1).

Proof From the convention 0! = 1 and Assumption 1 (i), it is straightforward to
show that G(0) = ρ0 + (1 − ρ0)

∑∞
k=1

kpk
z

(k−1
0

)
F(0, k) = ρ0. We also have G(1) =

ρ0+(1−ρ0)
∑∞

k=1
kpk
z F(k−1, k). Since

∑∞
k=1

kpk
z = 1 and 0 ≤ F ≤ 1, it is clear that

G(1) ≤ 1. The equality is attained if there is k > 1 such that
∑∞

k=k
kpk
z F(k−1, k) = 1.

��
The following proposition states that G is monotone.

Proposition 3 If F : Z≥0 × Z>0 → [0, 1] satisfies Assumption 1 (ii), then G is
increasing on [0, 1].
Proof See, Appendix A. ��
Propositions 2 and 3 can be summarized in the following corollary.

Corollary 1 Let F : Z≥0 × Z>0 → [0, 1] satisfy Assumption 1. Then, G : [0, 1] →
[0, 1] is a monotone map.

3.2.2 Convergence

We now examine convergence of the sequence {qt }t∈Z≥0 generated by iterating the
recursion equation (7) from an initial value q0 ∈ [0, ρ0]. To this end, we use “Kleene’s
fixed point theorem” (Baranga 1991; Stoltenberg-Hansen et al. 1994; Kamihigashi
et al. 2015). Let (P,≤) be a partially ordered set. (P,≤) is ω-complete if every
increasing sequence {xn}n∈Z≥0 in P such that xn ≤ xn+1 has a supremum in P . A

function f : P → P is ω-continuous if f
(
supn∈Z≥0

xn
)

= supn∈Z≥0
f (xn) holds for

every increasing sequence {xn}n∈Z≥0 in P having a supremum.7

Theorem 1 (Kleene’s fixed point theorem) Let (P,≤) be an ω-complete partially
ordered set, and let f : P → P be an ω-continuous function. If x ∈ P is such that
x ≤ f (x), then x∗ ≡ supn∈Z≥0 f n(x) is the least fixed point of f in P.

Proof See Stoltenberg-Hansen et al. (1994, p. 24). ��
Using Kleene’s fixed point theorem, we show that the sequence {qt }t∈Z≥0 generated
by the message-passing equation (7) for a given q0 ∈ [0, ρ0] converges to the least
fixed point of G.

7 It is clear that an ω-continuous function f is increasing: f (x) ≤ f (y) whenever x ≤ y.

123



T. Kobayashi, T. Onaga

Theorem 2 Let F : Z≥0 × Z>0 → [0, 1] satisfy Assumption 1. Then for any initial
value q0 ∈ [0, ρ0]with 0 ≤ ρ0 < 1, the sequence {qt }t∈Z≥0 generated by the message-
passing equation (7) converges to the least fixed point q∗ = G(q∗), where q∗ =
supt∈Z≥0

Gt (q0) ∈ [0, 1].

Proof See Appendix B. ��

Intuitively, the convergence of a monotonic sequence (q0, q1, . . .) to q∗ suggests
that the influence of seed players spreads gradually through network edges, and that
the probability of a randomly chosen neighbor being active will reach a steady-state
equilibrium. In fact, depending on the structure of the network, q∗ may not be the
unique fixed point of G. To illustrate this, we use standard Erdős–Rényi random
networks in which two nodes are connected with a constant probability p (Erdős and
Rényi 1959). While this class of networks is not necessarily realistic, it has been
extensively used in network analysis as an agnostic benchmark in which no structural
information is presumed (c.f., Watts 2002; Jackson 2008; Lelarge 2012). In particular,
Erdős–Rényi networks have several desirable properties for the analysis of contagion:
i) the average degree z is the only parameter that describes the connectivity of anErdős–
Rényi network, so it is straightforward to quantify the effect of network connectivity on
the spreadingof contagion. ii) For a givenfinite averagedegree z < ∞, anErdős–Rényi
networkbecomes sparse as the number of nodes N goes to infinity since p ≡ z/(N−1).
The sparsity ensures that the presence of local cycles and clusters is asymptotically
negligible as N → ∞,8 which is compatible with the assumption that the network is
locally tree-like.

Figures 2 and S1 in Online Appendix illustrate how the number of fixed points
of G depends on the average degree. In each panel of a–c in these figures, the curve
(solid line) represents the function G(q) for a given mean degree annotated at the top.
Note that the degree distribution pk is given by a Poisson distribution with mean z for
Erdős–Rényi networks, i.e., pk = zke−z/k!. Note that G(1) < 1 holds for networks
with relatively small z since we have G(1) = ρ0 + (1 − ρ0)

∑∞
k=1

kpk
z F(k − 1, k)

from the proof of Proposition 2. When z is large enough, we would have a minimum
degree k such that pk = 0 for all k ∈ {k : k < k} and ∑∞

k=k
kpk
z F(k − 1, k) = 1,

thereby leading to G(1) = 1. However, if there are nodes having small k such that
k < k (i.e., pk > 0 for some k ∈ {k : k < k}), then we have G(1) < 1, in which case
q = 1 is not a fixed point of G. Indeed, the latter case corresponds to highly sparse
networks in which the fraction of the largest connected component is less than one,
so the influence of initial seeds would not reach isolated/disconnected components.

The bifurcation diagram (Figs. 2d and S1d) shows that the number of fixed points
varies between 1 and 3 as the connectivity of network changes.As shown inTheorem2,
the fixed point q∗ obtained by iterating the recursion equation from q0 ∈ [0, ρ0] is the
least fixed point of G (Red solid line in Figs. 2d and S1d). In equilibrium, it is optimal
for all players not to change their strategies, i.e., a Nash equilibrium is attained for
every pair, so no further contagion occurs. The steady-state probability of a randomly

8 See, Newman (2018), ch. 11.
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(a) (b)

(c) (d)

Fig. 2 Fixed points of recursion equation (7) for the fractional threshold model. We assume Erdős–Rényi
random networks with ρ0 = 0.01 and φ = 0.2. The mean degree z is a 0.5, b 3, and c 10. Solid and dashed
lines denote G(q) and 45-degree line, respectively. d A bifurcation diagram of fixed points is shown. Black
solid and dashed lines denote stable and unstable fixed points, respectively. Red solid line denotes the fixed
point q∗, defined in Theorem 2

chosen player being active is thus given by

ρ∗ = ρ0 + (1 − ρ0)

∞∑

k=1

pk

k∑

m=0

Bk
m(q∗)F (m, k) . (16)

If there are a sufficiently large number of players, ρ∗ can be interpreted as the share
of active players in a Nash equilibrium. Now we define global cascade as follows:

Definition 3 If ρ∗ � ρ0, then the diffusion process is called global cascade.

Recall that Watts (2002) focuses on vanishingly small seeds (i.e., ρ0 = 0). The
generalization to the case of ρ0 > 0 would be useful when one investigates whether
an activity/information that has already gained some popularity would further spread
in a social network. For example, given the fact that the number of active users of Slack
exceeds 10 million, the question is: Will the population of Slack users increase further
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through a social network of friends/colleagues? To formally answer this question in the
cascade model, it is more natural to assume that the initial seed fraction ρ0 is positive
rather than 0. On the other hand, recall that the irreversibility of action is assumed for
initial seeds. Practically, the irreversibility assumption for a finite fraction of seeds
would be justified even when the seeds may possibly revert their action, because if
some of the “original” seeds revert their action to be inactive, then we could consider
the remaining active fraction as the “core” seed fraction ρ0.9

3.3 Cascade conditions

3.3.1 Generalized first-order cascade (GFC) condition

The message-passing equation (7) can be viewed as a difference equation, whose
stability is related to the condition under which global cascades can occur. Specifically,
if the derivative of G evaluated at the initial value q0 = ρ0 is greater than 1, then there
will be no stable fixed point such that ρ0 = G(ρ0). In this case, the fixed point q∗ will
be apart from ρ0, and therefore a global contagion happens, resulting in q∗ > ρ0.

Theorem 3 Let F : Z≥0 × Z>0 → [0, 1] satisfy Assumption 1. If limq↓ρ0 G
′(q) > 1,

then there is no stable fixed point such that ρ0 = G(ρ0) for any ρ0 ∈ [0, 1).
Proof See Appendix C. ��

We call the condition limq↓ρ0 G
′(q) > 1 the generalized first-order cascade con-

dition since it is essentially a generalized version of the standard cascade condition
proposed by Watts (2002), Gleeson and Cahalane (2007), and Lelarge (2012):

Definition 4 For a given ρ0 ∈ [0, 1), the condition limq↓ρ0 G
′(q) > 1 is called the

generalized first-order cascade (GFC) condition, which is rewritten as

∞∑

k=2

k

z
pk

k−2∑

s=0

(k − 1 − s)Bk−1
s (ρ0) [F(s + 1, k) − F(s, k)] > 1. (17)

A parameter space that satisfies this condition is called the first-order cascade region.

See Eq. (A.5) for a derivation of (17). Indeed, if ρ0 = 0, the GFC condition reduces to
the conventional cascade condition (Watts 2002; Gleeson and Cahalane 2007; Lelarge
2012):

∞∑

k=2

k

z
pk(k − 1)F(1, k) > 1. (18)

9 For example, the number of “original” seeds correspond to the cumulative number of Slack users up to
t = 0, while the number of “core” seeds is given by the number of active users at t = 0. One could also
introduce a possibility that active nodes may be forced to become inactive, but it is beyond the scope of this
paper and left for future research. Kobayashi (2015) and Ruan (2015) study fractional threshold models in
which some fraction of nodes are not responsive to the neighbor’s states.
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Watts (2002) obtains (18) using a generating-function approach, and Gleeson and
Cahalane (2007) derive it based on a message-passing method. They evaluate the
derivative at q = 0, assuming that ρ0 is small enough, while condition (17) allows us
to evaluate the derivative at q = ρ0 > 0.

3.3.2 Generalized extended cascade (GEC) condition

Since condition (17) is based on the first-order derivative ofG(q) atρ0, the nonlinearity
of G near q = ρ0 > 0 is ignored. This implies that the first-order condition may not
always be able to detect a large-size cascade that could happen even if G ′(ρ0) ≤ 1 for
ρ0 > 0. As suggested by Gleeson and Cahalane (2007), the accuracy of the condition
would be improved if we exploit a second-order approximation.

Let us rewriteG(q) asG(q) = ρ0+(1−ρ0)S(q), where S(q) denotes the nonlinear
term. The second-order Taylor expansion of S(q) about ρ0 leads to S(q) = S(ρ0) +
S′(ρ0)(q − ρ0) + 1

2 S
′′
(ρ0)(q − ρ0)

2 = Co + C1(q − ρ0) + C2(q − ρ0)
2, where

C0 ≡ S(ρ0), C1 ≡ S′(ρ0) and C2 ≡ 1
2 S

′′
(ρ0). Note that the first derivative of S on

q ∈ (0, 1) is S′(q) = (1 − ρ0)
−1G ′(q) (see, Eq. A.5), and the second derivative is

given by

S
′′
(q) =

∞∑

k=3

k

z
pk

k−3∑

s=0

(
k − 1

s

)
(k − 1 − s)(k − 2 − s)qs(1 − q)k−3−s

× [F(s + 2, k) − 2F(s + 1, k) + F(s, k)] . (19)

See Appendix D for a derivation of (19). Up to the second-order approximation,
q = G(q) does not have a real root around ρ0 ∈ (0, 1) if its discriminant D evaluated
at q = ρ0 is negative:

D|q=ρ0 ≡ h21 − 4h0h2 < 0, (20)

where h0 ≡ ρ0 + (1−ρ0)(C0 −C1ρ0 +C2ρ
2
0 ), h1 ≡ (1−ρ0)(C1 − 2ρ0C2)− 1, and

h2 ≡ (1−ρ0)C2. By the continuity of S′ and S′′
on [0, 1], this condition also holds for

ρ0 = 0 once we redefine as C1 ≡ limq↓0 S′(q) and C2 ≡ (1/2) limq↓0 S
′′
(q). Then,

we can define the generalized extended cascade condition as follows:

Definition 5 For a given ρ0 ∈ [0, 1), the generalized extended cascade (GEC) condi-
tion is given by:

lim
q↓ρ0

G ′(ρ0) > 1 or D|q=ρ0 < 0. (21)

A parameter space that satisfies (21) is called the extended cascade region.

The GEC condition is a generalized version of the extended cascade condition
proposed by Gleeson and Cahalane (2007), which is recovered by setting ρ0 = 0.
We will show in Sect. 3.5 that the GEC condition predicts the simulated cascade
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region almost exactly. Note that in the GEC condition, both the first- and second-
order approximations are taken into account to more accurately detect the parameter
space in which a large-size cascade can occur. Intuitively, the GFC condition (i.e.,
limq↓ρ0 G

′(ρ0) > 1) indicates whether the slope of G(q) is larger than 1 at q = ρ0
(Fig. 2). In the GEC condition, on the other hand, a second-order approximation is
also used to check whether there exists a real root of G(q) − q = 0 around ρ0 up to
the second order (Eq. 20). This improves the accuracy of the cascade region since it
allows us to capture a situation where the GFC condition is not satisfied while a global
cascade occurs, which could happen only if D|q=ρ0 < 0. This suggests that the GEC
condition (21) is necessary to ensure that q∗ does not exist around ρ0 up to the second
order.

3.4 Amean-field approximation

As an alternative approach to the message-passing method, we also examine a
naive mean-field approach that has been heavily used in the literature of network
games (Jackson and Yariv 2007; Jackson 2008; Jackson and Zenou 2015). Recall that
in the message-passing approach, we define qt as the probability that a neighbor ran-
domly selected from the k − 1 neighbors is active (Fig. 1). On the other hand, in the
conventional mean-field approach, the counterpart of qt , denoted by q̃t , is defined as
the probability of a neighbor randomly selected from all neighbors being active.10 A
neighbor’s activation probability q̃t is then computed using the average probability that
the neighbor’s neighbors are active, which is q̃t−1. q̃t is thus given by the following
recursion equation:

q̃t = ρ0 + (1 − ρ0)

∞∑

k=1

k

z
pk

k∑

m=0

Bk
m(q̃t−1)F (m, k) , (22)

Note that the second summation runs from m = 0 to k as opposed to k − 1, since all
neighbors are equally taken into account in updating the activation probability.

To illuminate the essential difference between the mean-field and message-passing
methods, we provide a schematic of how peer effects are computed in the case of a
3-regular graph in which all nodes have degree 3 (Fig. 3). Figure 3a illustrates that a
node with degree 3 is affected only by two of its neighbors while sending a “message”
to the remaining one. On the other hand, in the mean-field method (Fig. 3b), each
node receives messages from three neighbors while sending a message to “another
neighbor”. This means that each node essentially has one “extra” (or “spurious”) edge,
and the presence of such extra edges can become the source of inaccuracy. Therefore,
to follow the flow of influence in a way that is consistent with the actual connectivity
(i.e., k = 3), one needs to remove the influence from one neighbor by taking a sum
from m = 0 to k − 1 in the message-passing equation (7).

Note that a common idea of the mean-field and message-passing methods is that
they compute the average cascade size over all possible network structures that would

10 See, Gleeson and Porter (2018) for further discussion.
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(a) (b)

Fig. 3 Schematic illustrations of the message-passing and mean-field methods in the case of a 3-regular
graph (i.e., all nodes have degree k = 3)

be realized given a particular model (e.g., Erdős–Rényi, random regular graph, etc).
In other words, any realized network is deemed as a random sample from the network
ensemble defined by the model (or more specifically, the degree distribution pk).
However, this does not mean that different networks are generated during the process
of diffusion. Once a network is realized (i.e., a sample is drawn) at t = 0, the network
structure is fixed throughout the diffusion process. By taking the average over k with
a prespecified degree distribution pk as in Eq. (16), we can essentially calculate the
ensemble average of cascade sizes over all possible network structures that would be
realized under the model. In the numerical experiments shown in the next section,
we repeatedly simulate diffusion processes in each of which a network structure is
randomly sampled at t = 0. The average of simulated cascade sizes over different
runs then corresponds to the theoretical ensemble average obtained by the mean-
field/message-passing method.

3.5 Numerical experiments

A stable fixed point q∗ = G(q∗) allows us to obtain the fraction of active players in the
steady state, denoted by ρ∗, through Eq. (16). However, it is not guaranteed that ρ∗ is
identical to the “true” fraction of active players because in mean-field approximations,
the network structure is captured by its degree distribution pk without incorporating
detailed information about how players are connected. To examine how accurately the
proposed method can explain the “true” fraction of active players, we run simulations
of contagion on synthetic networks. Here, we employ Erdős–Rényi networks and
calculate the average fraction of active players, denoted by ρ̂, as follows:

1. For a given z and N , generate an Erdős–Rényi network with the connecting prob-
ability p = z/(N − 1). Initially, all players are inactive.

2. Select �ρ0N� seed nodes at random and let them be active.
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3. Update the state of all nodes, except for the seed nodes, simultaneously based on
the threshold condition.

4. Repeat step 3 until convergence, where further updates do not change the states of
players.

5. Repeat steps 1–4 and take the average of the final fractions of active players. The
average is denoted by ρ̂.

It should be noted that the structure of an Erdős–Rényi network is characterized only
by its degree distribution, so different networks having the same degree distribution
are expected to yield the same simulation result on average. If network size N is
large enough, then the degree distribution of Erdős–Rényi networks having a common
connecting probability p = z/(N − 1) will be Poissonian with mean z, indicating
that the message-passing equation based on the Poissonian degree distribution could
be applied to any Erdős–Rényi networks with average degree z. We set N = 104

throughout the analysis.

3.5.1 Phase transitions

Figure 4a shows the average of simulated fractions of active players (open circle) in
the fractional threshold model. As is well known in the literature, there are two critical
points with respect to the average degree z (Watts 2002). The first critical point is
around z = 1, below which global cascades cannot occur. This is because a network is
not well connected if z < 1, in which there are many isolated components. For a finite
fraction of players to be active in a sufficiently large network, a vast majority of players
needs to form a giant component (Gleeson 2008). The second critical point appears
well above z = 1, around z = 6 in our case, above which global cascades will not
happen. The reason is that if the network is dense enough, the influence from a single
neighbor is diluted simply because the activation threshold is given as a share of active
neighbors among k neighbors. On the other hand, in the model of absolute-threshold
contagion, there is only one critical point (Fig. 4b). This is because the activation
threshold depends only on the total number of active neighbors m independently of
the number of neighbors k.

Figure 4 also shows that the message-passing method is much more accurate than
the naive mean-field method in explaining the simulation results. In general, the naive
mean-field method overestimates the cascade region because it fails to eliminate the
repercussions of peer effects, as pointed out byGleeson and Porter (2018). Such differ-
ences in accuracy are also observed for networks with scale-free degree distributions
(see Fig. S2). For this reason,we focus on themessage-passingmethod in the following
analysis.

3.5.2 Cascade region

Next, we examine how well the analytical cascade conditions predict the parameter
space within which a global cascade can take place. Simulated fractions of active
players in the steady states for given combinations of the payoff parameters are shown
in Fig. 5. The figure reveals that the GEC condition (red solid) captures the simulated
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Fig. 4 Steady-state fraction of active players in theory (ρ∗) and numerical experiments (ρ̂). For a the
fractional threshold model and b absolute threshold model, the thresholds are set at φ = 0.2 and θ = 1.5,
respectively. z denotes the average degree of Erdős–Rényi networks. The message-passing and naive mean-
field approaches are denoted by black solid and blue dotted lines, respectively. Simulated fraction ρ̂ (open
circle) shows the average of 100 simulations. N = 104 and ρ0 = 0.01

cascade region quite accurately in all the cases that we examined, while the GFC
condition (red dashed) may be less accurate (e.g., Fig. 5a, right, and b, middle). This
suggests that the nonlinearity of the recursion equation G would need to be exploited
to predict the whole area of the true cascade region.

On the other hand, when there are two distinct cascade regions in which the sim-
ulated values of ρ̂ are apparently different, for instance, the middle panel of Fig. 5b,
the GFC condition correctly indicates the region in which the simulated fraction ρ̂

is almost 1. In general, the GFC condition is a more conservative criterion than the
GEC condition, but in many cases, the two conditions coincide and indicate exactly
the same region as shown in Fig. 5.

Figure 6 illustrates how the generalized conditions can differ from the conven-
tional cascade conditions proposed byWatts (2002) andGleeson and Cahalane (2007),
among others. As we already pointed out, the conventional cascade conditions (blue
lines) are obtained by differentiating the recursion equation at q = 0. However, if ρ0
is not sufficiently small (ρ0 = 0.1 in Fig. 6), only the GEC condition (red solid) would
correctly predict the true cascade region, and the GFC condition (red dashed) turns
out to be as accurate as the standard extended condition (blue solid).

3.5.3 Dynamics of spreading process

The message-passing equation qt = G(qt−1) is useful not only for predicting the
steady-state fraction of active players, but also for describing the dynamics of con-
tagion. In fact, while iterating the recursion equation for qt is supposed to capture
a spreading process on a hypothetical tree, the obtained value of ρt from Eq. (10)
well matches the simulated share of active players at t in Erdős–Rényi networks
(Fig. 7), whose structures are not necessarily tree-like. This illustrates the correspon-
dence between iterating recursion equation (7) and updating the states of players in
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(a)

(b)

Fig. 5 Simulated steady-state fraction of active players in a the fractional threshold model and b absolute
threshold model. Red dashed and solid lines indicate the areas within which the GFC and GEC conditions
are satisfied, respectively (Red dashed is invisible when it is overlappedwith solid). For a given combination
of parameters, we run 100 simulations to calculate the average of ρ̂ (color bar). N = 104 and ρ0 = 0.01

(a) (b)

Fig. 6 Comparison between generalized cascade conditions and the conventional ones. Red and blue lines
denote the generalized and the standard cascade conditions, respectively. Solid and dashed respectively
denote the extended and the first-order conditions.bRed dashed is fully overlappedwith red solid. N = 104,
z = 8, and ρ0 = 0.1
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Fig. 7 Dynamic paths of the fraction of active players in theory and simulation. See the caption of Fig. 4
for details

numerical simulations. In a simulation of contagion, we simultaneously update the
states of players at each time step, given the current states of their neighbors. The
state-updating procedure at step t corresponds to updating the recursion equation by
substituting qt−1 with qt in the RHS of Eq. (7).

3.6 Social welfare

In the current models, social welfare is measured by the sum of the realized pay-
offs/utilities. In the fractional threshold model, the social welfare W frac is given by

W frac =
∑

i∈N seed

[−c(ki − mi ) + ami ] +
∑

i /∈N seed

max{0,−c(ki − mi ) + ami }, (23)
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where N seed denotes the set of seed nodes. Since seed nodes are always active inde-
pendently of the states of neighbors, the sum of the seeds’ payoffs are given by the
first term of Eq. (23). The second term comes from the fact that the payoffs of the
players that are not selected as seeds are 0 if they are inactive and −c(k − m) + am
if active.

While the social welfare can be obtained by running numerical simulations, we can
also calculate the average value of welfare based on the analytical methods. Using q∗
obtained by an analytical method, we can calculate the average (steady-state) social
welfare Ŵ frac as follows:

Ŵ frac = ρ0N
∞∑

k=0

pk

k∑

m=0

Bk
m(q∗)[−c(k − m) + am]

+ (1 − ρ0)N
∞∑

k=0

pk

k∑

m=0

Bk
m(q∗)F(m, k)[−c(k − m) + am], (24)

where the first and second terms respectively correspond to those of Eq. (23).
In the absolute threshold model, the social welfare is given by

Wabs = α
∑

i

xi − 1

2

∑

i

x2i + γ
∑

i

∑

j

Ai j xi x j . (25)

Note that in the steady state, the theoretical average of the first term is αρ∗N while
that of the second term leads to −ρ∗N/2 since xi ∈ {0, 1}. The third term represents
(2γ times) the number of edges between active nodes. Since the total number of non-
zero elements in the adjacency matrix is given by Nz, all we need to calculate the
average of the third term is the average probability that a randomly chosen edge has
active nodes on its both ends. For this purpose, let P(k, k′) be the probability that a
randomly chosen edge has a k-degree node and a k′-degree node on its ends. We also
let ρ∗

k denote the probability that a k-degree node is active in the steady state:

ρ∗
k = ρ0 + (1 − ρ0)

k∑

m=0

Bk
m(q∗)F(m, k). (26)

Note that since we consider a class of random networks with prespecified degree
distribution pk , there is no degree-degree correlations (Newman2018). The probability

P(k, k′) is thus given by kpk
z

k′ pk′
z . It follows that the probability of a randomly chosen

edge having k-degree and k′-degree active nodes on its ends leads to P(k, k′)ρ∗
k ρ

∗
k′ .

Therefore, the theoretical average of social welfare in the absolute threshold model is
given by

Ŵabs = αρ∗N − 1

2
ρ∗N + γ Nz

∞∑

k=0

∞∑

k′=0

P(k, k′)ρ∗
k ρ

∗
k′ . (27)
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(a)

(b)

Fig. 8 Per capita welfare in the steady state. a Welfare against mean degree z. In each panel, simulated
average welfare is compared with the theoretical averages obtained by the message-passing (black solid)
and the mean-field (blue dotted) methods. It also shows the social optimum (red dashed). b Scatter plot of
welfare against the fraction of active nodes ρ∗

Figure 8a shows the theoretical and simulated values of the per capita welfare
(i.e., W/N ) against mean degree z. Clearly, the region in which a positive welfare
is attained corresponds to the cascade region. In fact, the social welfare is increasing
in ρ∗ more than proportionally (Fig. 8b). Figure 8a also shows the socially optimal
welfare (denoted by W) that would be achieved if a social planner would optimally
select the states of all nodes (red dashed). For the fractional thresholdmodel, the social
optimum is obviously attained when all nodes are active (i.e.,mi = ki for all i), where

W frac = azN . In the absolute threshold model, on the other hand, the exact solution
of {xi }Ni=1 ∈ {0, 1}N for the maximization of Wabs (Eq. 25) is difficult because one
needs to examine 2N patterns of combinations.11 Instead, we consider a constrained
optimum where all nodes are in the same state (i.e., xi = 0 or 1 for all i). Then we

11 This class of optimization problem is called quadratic unconstrained binary optimization (QUBO) or
unconstrained binary quadratic programming (UBQP) and is known to be NP-hard (Kochenberger et al.
2014).
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Fig. 9 Schematic of a multiplex network. Different colors of edges represent different types of social ties.
Two nodes connected by a dashed line denote a player

haveWabs = max{0, (α −1/2+γ z)N }. Clearly, the state of xi = 1 for all i is indeed
socially optimal when z is large enough because the third term in Eq. (25) becomes a
dominant factor.

The discrepancy betweenW andW in Fig. 8 indicates that depending on the density
(i.e., the mean degree) of the network, the attained Nash equilibrium is not necessarily
optimal in that the social welfare may not be maximized. In the fractional threshold
model (resp. the absolute thresholdmodel), the fraction of active nodes is virtually zero
for z > 6 (resp. z < 7), in which case the players would be better off if they could
collectively coordinate on being active. This illustrates the fact that a coordination
failure occurs outside the cascade region, where there is a positive externality that
being active will benefit its neighbors by making it desirable for them to be active. It
is also worth mentioning that the extent to which the network density affects social
welfare depends on which diffusion process is considered. If the diffusion process is
ruled by a fractional threshold, then increased density will have a negative impact on
social welfare near a critical point (i.e., z ≈ 6 in Fig. 8a, left). On the other hand,
social optimum is attained only when z is sufficiently high in the absolute threshold
model (Fig. 8a, right).

4 Games onmultiplex networks

In reality, individuals are connected to each other in a wide variety of social contexts.
These include online spaces such as Twitter and Facebook, as well as physical spaces
such as schools and work places. In network science, such situations are modeled
as multiplex networks, in which each layer represents a single network formed in a
particular social context (Bianconi 2018).12

In this section, we extend the previous analysis to multiplex networks with two
layers. As shown in the schematic (Fig. 9), every player belongs to both the layers,
and edges in different layers capture different sorts of social ties (e.g., friendships in
school and follower-followee relationships in Twitter). We assume that a multiplex

12 If a common set of nodes forms multiple networks, the set of networks (or layers) is called a multiplex
network. If the sets of nodes in different layers are not necessarily common, the networks are collectively
called multilayer networks.
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network consists of two independent (sparse) Erdős–Rényi networks. This greatly
simplifies the analysis not only because it guarantees that each network has a locally
tree-like structure, but also because the presence of overlapped edges between different
layers can be ignored if the networks are sufficiently large (Bianconi 2013, 2018).

It should be noted that in some special cases, the dynamics of diffusion can be
analyzed with an aggregated (one-layer) network since all nodes are common between
the two layers. In our model, if all the payoff parameters are identical across different
layers, then the dynamics on a multiplex network can be described as that on the
aggregated monoplex network created by combining the two layers. In this section,
we consider a general case in which the payoff parameters can vary across layers,
taking into account different social contexts.

4.1 Fractional thresholdmodel

In a two-layer multiplex network, each player belongs to layer A and layer B and
selects a strategy in a way that maximizes the total net payoff. The payoff matrix of a
coordination game in a layer is given in the same way as that for a monoplex network
(Table 1). The payoff of being active in layer 	 ∈ {A, B} is thus given by

−c	(k	 − m	) + a	m	, (28)

where parameters a	 and c	 are respectively the payoff of coordination and the cost
of failing to coordinate in layer 	. m	 denotes the number of active neighbors in layer
	. Since the payoff of being inactive is 0, a player will decide to be active if the total
net payoff of doing so is positive:

− [cA(kA − mA) + cB(kB − mB)] + aAmA + aBmB > 0. (29)

The response function F for the fractional threshold model on multiplex networks
is then defined as

F(mA,mB, k) ≡ F frac(mA,mB, k) =
{
1 if Eq. (29) is satisfied,

0 otherwise,
(30)

where k = (kA, kB). Note that this response function satisfies a multivariate version
of Assumption 1, namely F(0, 0, k) = 0, and F is increasing in both mA and mB .

4.2 Absolute thresholdmodel

The utility function of player i is given as

ui (xi ; x−i ) = αxi − 1

2
x2i + γA

∑

j 
=i

A(A)
i j xi x j + γB

∑

j 
=i

A(B)
i j xi x j , (31)
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where A(	)
i j denotes the (i, j)th element of the adjacency matrix of layer 	, and γ	

denotes the weight on the influence from neighbors in layer 	. If γA 
= γB , the impact
of peer effects is different between the two layers (e.g., school friends may be more
influential than Twitter followers).

In binary-action games, player i will become active if ui (0; x−i ) < ui (1; x−i ), that
is

α − 1

2
+ γAmA,i + γBmB,i > 0, (32)

where m	,i = ∑
j 
=i A(	)

i j x j denotes the number of active neighbors in layer 	. The
response function is thus given by

F(mA,mB, k) ≡ Fabs(mA,mB) =
{
1 if α − 1

2 + γAmA + γBmB > 0,

0 otherwise.
(33)

It is clear that if α < 1/2, the response function satisfies F(0, 0, k) = 0 and is
increasing in both mA and mB .

4.3 Contagion dynamics onmultiplex networks

Let q	
t denote the probability of a randomly chosen neighbor in layer 	 ∈ {A, B} being

active. The recursion equations for q A
t and qB

t are given by (Yağan and Gligor 2012;
Brummitt et al. 2012):

q A
t = ρ0 + (1 − ρ0)

∞∑

kB=0

pkB

kB∑

mB=0

BkB
mB

(
qB
t−1

) ∞∑

kA=1

kA pkA
zA

×
kA−1∑

mA=0

BkA−1
mA

(
q A
t−1

)
F(mA,mB, k),

≡ g(A)(q A
t−1, q

B
t−1), (34)

qB
t = ρ0 + (1 − ρ0)

∞∑

kA=0

pkA

kA∑

mA=0

BkA
mA

(
q A
t−1

) ∞∑

kB=1

kB pkB
zB

×
kB−1∑

mB=0

BkB−1
mB

(
qB
t−1

)
F(mA,mB, k),

≡ g(B)(q A
t−1, q

B
t−1). (35)

Let us express the vector of functions g(A) and g(B) as:

(
q A
t

qB
t

)
=

[
g(A)(q A

t−1, q
B
t−1)

g(B)(q A
t−1, q

B
t−1)

]
. (36)
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The following proposition describes the boundary conditions of g(	).

Proposition 4 Let F : Z4≥0 → {0, 1} satisfy F(0, 0, k) = 0. Then g(	)(0, 0) = ρ0

and g(	)(1, 1) ≤ 1 for 	 = A, B.

Proof g(A)(0, 0) = ρ0 + (1 − ρ0)
∑∞

kB=0 pkB
∑∞

kA=1
kA pkA
zA

F(0, 0, k) = ρ0, and

g(A)(1, 1) = ρ0 + (1− ρ0)
∑∞

kB=0 pkB
∑∞

kA=1
kA pkA
zA

F(kA − 1, kB , k) ≤ 1. Because

of the symmetry, we also have g(B)(0, 0) = 0 and g(B)(1, 1) ≤ 1. ��

For q A, qB ∈ (0, 1), the Jacobian matrix of vector
[
g(A)(q A, qB), g(B)(q A, qB)

]�

is given by

J (q A, qB) ≡
[J11(q A, qB) J12(q A, qB)

J21(q A, qB) J22(q A, qB)

]
=

⎡

⎣
∂g(A)

∂q A
∂g(A)

∂qB

∂g(B)

∂q A
∂g(B)

∂qB

⎤

⎦ . (37)

where each element of the Jacobian matrix is given in Appendix F. From the mono-
tonicity of F , we have the next proposition:

Proposition 5 If F : Z4≥0 → {0, 1} is increasing in the first two arguments, then g(A)

and g(B) are increasing.

Proof See, Appendix F. ��

From Propositions 4 and 5, g(A) and g(B) are increasing and bounded on [ρ0, 1].
Therefore, combined with their continuity, recursion equations (34) and (35) converge
to fixed points (q A∗, qB∗) ∈ [ρ0, 1]2 if we iterate them from the initial condition
(q A

0 , qB
0 ) = (ρ0, ρ0).

The cascade dynamics on multiplex networks are described by the vector-based
recursion equation (36), so the first-order cascade condition is that the largest eigen-
value of the Jacobian J evaluated at q A = qB = ρ0 exceeds 1:

λmax [J (ρ0, ρ0)] = J11,ρ0 + J22,ρ0 +
√(J11,ρ0 − J22,ρ0

)2 + 4J12,ρ0J21,ρ0

2
> 1,

(38)

where Juv,ρ0 ≡ Juv(ρ0, ρ0). From Appendix F, J11,ρ0 and J12,ρ0 respectively lead
to

J11,ρ0 =
∞∑

kB=0

pkB

kB∑

mB=0

BkB
mB

(ρ0)

∞∑

kA=2

kA pkA
zA

kA−2∑

mA=0

(kA − 1 − mA)BkA−1
mA

(ρ0)

× [F(mA + 1,mB, k) − F(mA,mB, k)] , (39)
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J12,ρ0 =
∞∑

kA=1

kA pkA
zA

kA−1∑

mA=0

BkA−1
mA

(ρ0)

∞∑

kB=1

pkB

kB−1∑

mB=0

(kB − mB)BkB
mB

(ρ0)

× [F(mA,mB + 1, k) − F(mA,mB, k)] . (40)

J21,ρ0 and J22,ρ0 are obtained analogously. Due to the continuity of functions
g(A)(q A, qB) and g(B)(q A, qB) on [0, 1]2, condition (38) based on the Jacobian can
be applied for any ρ0 ∈ [0, 1). Now we can define a cascade region as follows:

Definition 6 For a given seed fraction ρ0 ∈ [0, 1), the cascade region for a multiplex
network is a parameter space within which λmax[J (ρ0, ρ0)] > 1 is satisfied.

As an extension of the first-order cascade condition for monoplex networks,
some studies developed an eigenvalue-based cascade condition for multiplex net-
works (Yağan and Gligor 2012; Brummitt et al. 2012). In these studies, however, the
Jacobian matrix is obtained under the assumption that ρ0 = 0, where the derivative is
evaluated at q A = qB = 0. Condition (38) is thus a generalized cascade condition for
multiplex networks, in which imposing ρ0 = 0 will recover the conventional one.

4.4 Numerical experiments

In this section, we examine howwell the analytical cascade condition (38) predicts the
simulated cascade region in two-layer multiplex networks. To focus on the effect of
multiplicity, we consider a multiplex network that consists of two independent Erdős–
Rényi networks having the same degree distribution pk . Note that if the parameters
in the response function are identical between the two layers (i.e, a	 and c	 for the
fractional threshold model, and γ	 for the absolute threshold model), then a two-layer
multiplex model reduces to a monoplex model in which the average degree is given
by the sum of the two average degrees of the original two layers. Therefore, we allow
these parameters to vary across different layers in the following manner:

aA = (1 − δ)a, aB = (1 + δ)a, (41)

for the fractional threshold model, and

γA = (1 − δ)γ, γB = (1 + δ)γ, (42)

for the absolute threshold model, where δ ∈ [0, 1] represents the extent of inter-layer
heterogeneity in the peer effects. This specification ensures that the average of the
layer-specific parameters is equal to the original value used in the monoplex model
(e.g., (aA + aB)/2 = a). The other parameters are assumed to be the same across
layers.

We find that inter-layer heterogeneity in the threshold conditions expands the first-
order cascade region in both classes of contagion (Fig. S3). This is because the
introduction of heterogeneity necessarily relaxes the threshold condition in one layer,
while it is tightened in the other layer. Thiswill let the former layer “lead” the spreading
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process, and the other layer “follows”. On the other hand, as in the case of monoplex
networks, the first-order cascade condition does not always cover the whole area of
the simulated cascade region. If the average size of simulated cascades ρ̂ is less than
one, then the first-order condition based on the largest eigenvalue of the Jacobian may
fail to indicate the correct cascade region (Fig. S3a, right, and b, left). In this sense,
the first-order condition should be viewed as a conservative criterion, as we pointed
out in the monoplex model.

5 Conclusion and discussion

In network science, the collective dynamics of cascading behavior on complex net-
works have been studied using message-passing approximations. In many of these
studies, the accuracy of the proposed approximation methods is rigorously examined
by comparing the theoretical predictions with the simulated results. However, cas-
cade models often assume that individuals follow an exogenously given threshold rule
without microfoundations. In the literature on coordination games on networks, on
the other hand, a similar mean-field method is occasionally used, but little quantita-
tive validation has been done. In this paper, we provided a unifying framework that
connects the two strands of literature by providing microfoundations for two classes
of threshold rules. Our main contribution is threefold: (i) we provide formal analytical
proofs for the existence of a Nash equilibrium and the convergence of the iteration
algorithm based on the widely used message-passing equation, (ii) the cascade con-
ditions are generalized to include more practically relevant cases in which the seed
fraction is positive, and (iii) we present a welfare analysis in which the social welfare
is analytically calculated.

Some issues remain to be addressed in future research. First, while we focused
on random networks to apply a message-passing method, real social networks are
not necessarily random. Actual social networks often exhibit degree correlations and
community structures (Barabási 2016;Newman2018). Itwould beworthwhile to study
the impact of these realistic factors on the likelihood of contagion. In fact, some studies
have reported that (modified) message-passing methods work well for networks that
are not necessarily locally tree-like (Ikeda et al. 2010; Melnik et al. 2011). Second,
the current work does not consider a case of incomplete information. The preferences
of other players may be unknown in reality, and in such cases, players would learn
the states of the neighbors from their actions (Sadler 2020). Third, endogeneity of
network formation is absent in our model. In many social contexts, individuals can
decide when and with whom to talk. This would require a dynamic network model
in which players optimally select (temporal) neighbors in a way that maximizes their
utilities (Jackson et al. 2017). We hope that our work will stimulate further research
on the dynamics of contagion in these realistic environments.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00199-022-01457-x.
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Appendix A Proof of Proposition 3

The derivative of G(q) for q ∈ (0, 1) leads to

G ′(q) = (1 − ρ0)

∞∑

k=2

k

z
pk

k−1∑

m=0

(
k − 1

m

)[
mqm−1(1 − q)k−1−m

−(k − 1 − m)qm(1 − q)k−2−m)
]
F(m, k), (A.1)

= (1 − ρ0)

∞∑

k=2

k

z
pk(q; k), (A.2)

where we define function (q; k) for k = 1, 2, . . . , as

(q; k) ≡
k−1∑

m=0

(
k − 1

m

)
qm−1(1 − q)k−2−m [m(1 − q) − (k − 1 − m)q] F(m, k).

(A.3)

Note that (q; 1) = 0. To prove that G(q) is increasing in q ∈ (0, 1), it is sufficient
to show that (q; k) is non-negative on (0, 1) for k = 2, 3, . . ..

To prove (q; k) ≥ 0, we first expand  as

(q; k) =
(
k − 1

0

)
q−1(1 − q)k−2 [0 − (k − 1)q] F(0, k)

+
(
k − 1

1

)
q0(1 − q)k−3 [1(1 − q) − (k − 2)q] F(1, k)

+
(
k − 1

2

)
q1(1 − q)k−4 [2(1 − q) − (k − 3)q] F(2, k)

+ · · ·
+

(
k − 1

k − 1

)
qk−2(1 − q)−1 [(k − 1)(1 − q) − 0] F(k − 1, k),

= (k − 1)!
0!(k − 2)!q

0(1 − q)k−2 [F(1, k) − F(0, k)]
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+ (k − 1)!
1!(k − 3)!q

1(1 − q)k−3 [F(2, k) − F(1, k)]

+ (k − 1)!
2!(k − 4)!q

2(1 − q)k−4 [F(3, k) − F(2, k)]

+ · · ·
+ (k − 1)!

(k − 2)!0!q
k−2(1 − q)0 [F(k − 1, k) − F(k − 2, k)] . (A.4)

Since F is increasing in its first argument (Assumption 1), it is clear that F(m +
1, k) − F(m, k) ≥ 0 for m = 0, . . . k − 2 and therefore (q; k) ≥ 0 for k = 2, 3, . . ..
It follows that for any q ∈ (0, 1), we have

G ′(q) = (1 − ρ0)

∞∑

k=2

k

z
pk

k−2∑

s=0

(
k − 1

s

)
(k − 1 − s)qs(1 − q)k−2−s [F(s + 1, k)

−F(s, k)] ≥ 0. (A.5)

From the continuity of G(q), it is true that limq↓0 G(q) = G(0) and limq↑1 G(q) =
G(1). This proves that G(q) is increasing in q ∈ [0, 1]. ��

Appendix B Proof of Theorem 2

We apply Kleene’s fixed point theorem to G on [0, 1]. Let {qt }t∈Z≥0 be an increasing
sequence in [0, 1] such that qt ≤ qt+1. Since 0 ≤ qt ≤ 1 for all t ∈ Z≥0, we have
supt∈Z≥0

qt in [0, 1]. Therefore, [0, 1] is ω-complete. From the continuity and mono-

tonicity of G on [0, 1] (Proposition 3), we have G
(
supt∈Z≥0

qt
)

= supt∈Z≥0
G(qt ) for

any increasing sequence {qt }t∈Z≥0 in [0, 1]. Thus, G is ω-continuous.
It remains to show that q0 ≤ G(q0) for any initial value q0 ∈ [0, ρ0]. Let q0

satisfy 0 ≤ q0 ≤ ρ0. From the monotonicity of G, we have G(0) ≤ G(q0) ≤ G(ρ0),
which indicates that q0 ≤ ρ0 ≤ G(q0) because we have G(0) = ρ0 (Proposition 2).
This proves that q0 ≤ G(q0) for any q0 ∈ [0, ρ0]. It follows from Kleene’s fixed point
theorem that the sequence {qt }t∈Z≥0 generate byG for a given initial value q0 ∈ [0, ρ0]
converges to the least fixed point q∗ = G(q∗), where q∗ = supt∈Z≥0

Gt (q0) ∈ [0, 1].
��

Appendix C Proof of Theorem 3

First, consider the case of ρ0 = 0. From Proposition 2, we haveG(0) = ρ0 = 0, so 0 is
a fixed point. If limq↓0 G ′(q) > 1, then limq↓0 G ′(q) = limq↓0 limε↓0 G(q+ε)−G(q)

ε
=

limε↓0 G(ε)−G(0)
ε

= limε↓0 G(ε)
ε

> 1. Thus, we have ε < G(ε) in the neighborhood
of the fixed point ρ0 = 0. From the monotonicity of G, it follows that ε < G(ε) <
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G(G(ε)) < · · · . This proves that ρ0 = 0 is an unstable fixed point at which a small
perturbation will cause a transition to a larger fixed point.

If ρ0 > 0, wewould have a fixed point ρ0 = G(ρ0) if and only ifG(ρ0)−G(0) = 0
since G(0) = ρ0. To satisfy G(ρ0) − G(0) = 0, G must not be increasing on [0, ρ0]
due to its monotonicity. Thus, G(q + ε) − G(q) = 0 must hold for any q ∈ [0, ρ0)
and ε ∈ (0, ρ0 − q) for ρ0(> 0) to be a fixed point. Then, we have limq↑ρ0 G

′(q) =
limq↑ρ0 limε↓0 G(q+ε)−G(q)

ε
= limq↑ρ0 limε↓0 0

ε
= 0. It follows from the continuity

ofG ′(q) on (0, 1) (see, Eq. A.5) that limq↓ρ0 G
′(q) = limq↑ρ0 G

′(q) = 0. This proves
that ρ0 > 0 is not a fixed point if limq↓ρ0 G

′(q) > 1. ��

Appendix D Second derivative S
′′
(q) in Eq. (19)

From Eq. (A.5), the second derivative of G(q) on (0, 1) leads to

G
′′
(q) = (1 − ρ0)

∞∑

k=2

k

z
pk

k−2∑

m=0

(
k − 1

m

)
(k − 1 − m)

[
mqm−1(1 − q)k−2−m

−(k − 2 − m)qm(1 − q)k−3−m)
]
[F(m + 1, k) − F(m)] ,

= (1 − ρ0)

∞∑

k=2

k

z
pk̃(q; k), (D.6)

where we define function ̃(q; k) for k = 2, 3, . . . , as

̃(q; k) ≡
k−2∑

m=0

(
k − 1

m

)
(k − 1 − m)qm−1(1 − q)k−3−m [m(1 − q) − (k − 2 − m)q]

× [F(m + 1, k) − F(m, k)]. (D.7)

Note that ̃(q; 2) = 0. As in Eq. (A.4), we rearrange ̃ as

̃(q; k) =
(
k − 1

0

)
(k − 1)q−1(1 − q)k−3 [0 − (k − 2)q] [F(1, k) − F(0, k)]

+
(
k − 1

1

)
(k − 2)q0(1 − q)k−4 [1(1 − q) − (k − 3)q] [F(2, k) − F(1, k)]

+
(
k − 1

2

)
(k − 3)q1(1 − q)k−5 [2(1 − q) − (k − 4)q] [F(3, k) − F(2, k)]

+ · · ·
+

(
k − 1

k − 2

)
1 · qk−3(1 − q)−1 [(k − 2)(1 − q) − 0] [F(k − 1, k) − F(k − 2, k)],

= (k − 1)!
0!(k − 3)!q

0(1 − q)k−3 [F(2, k) − 2F(1, k) + F(0, k)]
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+ (k − 1)!
1!(k − 4)!q

1(1 − q)k−4 [F(3, k) − 2F(2, k) + F(1, k)]

+ (k − 1)!
2!(k − 5)!q

2(1 − q)k−5 [F(4, k) − 2F(3, k) + F(2, k)]

+ · · ·
+ (k − 1)!

(k − 3)!0!q
k−3(1 − q)0 [F(k − 1, k) − 2F(k − 2, k) + F(k − 3, k)] . (D.8)

It follows that

̃(q; k) =
k−3∑

s=0

(
k − 1

s

)
(k − 1 − s)(k − 2 − s)qs(1 − q)k−3−s

× [F(s + 2, k) − 2F(s + 1, k) + F(s, k)] . (D.9)

Since G
′′
(q) = (1 − ρ0)

∑∞
k=3

k
z pk̃(q; k) and S

′′
(q) = (1 − ρ0)

−1G
′′
(q), we have

Eq. (19).

Appendix E Scale-free networks

In the current model, the degree distribution {pk} can take any functional form as
long as the network is sparse and has a locally tree-like structure. In the main text,
we consider the standard Erdős–Rényi model, so pk is given by a Poisson distribution
in the limit of large N . On the other hand, it has been argued by a number of studies
that real-world networks are scale-free: the degrees of the networks follow power-law
distributions where pk ∼ k−η (Barabási 2016; Newman 2018).

As in Fig. 4, Fig. S2 shows a comparison between the two methods based on scale-
free degree distributions (the exponent η is set at 2.5). To generate scale-free networks
with different average degrees, the prespecified minimum degree kmin is shifted from
1 to 6 (z = 0 corresponds to empty network). We find that the overall property is
similar to the one we see in Fig. 4; there is a non-negligible difference between the
message-passing and mean-field methods in terms of the obtained ρ∗ while the range
in which cascade occurs is slightly different from the one for Erdős–Rényi random
graphs.

Appendix F JacobianmatrixJ (qA,qB)

Each element of the Jacobian matrix J (q A, qB) (Eq. 37) is given as follows:

J11(q
A, qB) = (1 − ρ0)

∞∑

kB=0

pkB

kB∑

mB=0

BkB
mB

(
qB

) ∞∑

kA=2

kA pkA
zA

×
kA−2∑

mA=0

(kA − 1 − mA)

(
kA − 1

mA

)
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× (q A)mA(1 − q A)kA−2−mA [F(mA + 1,mB, k) − F(mA,mB, k)] ,
(F.10)

J12(q
A, qB) = (1 − ρ0)

∞∑

kA=1

kA pkA
zA

kA−1∑

mA=0

BkA−1
mA

(
q A

) ∞∑

kB=1

pkB

×
kB−1∑

mB=0

(kB − mB)

(
kB
mB

)

× (qB)mB (1 − qB)kB−1−mB [F(mA,mB + 1, k) − F(mA,mB, k)] ,
(F.11)

J21(q
A, qB) = (1 − ρ0)

∞∑

kB=1

kB pkB
zB

kB−1∑

mB=0

BkB−1
mB

(
qB

) ∞∑

kA=1

pkA

×
kA−1∑

mA=0

(kA − mA)

(
kA
mA

)

× (q A)mA (1 − q A)kA−1−mA [F(mA + 1,mB, k) − F(mA,mB, k)] ,
(F.12)

J22(q
A, qB) = (1 − ρ0)

∞∑

kA=0

pkA

kA∑

mA=0

BkA
mA

(
q A

) ∞∑

kB=2

kB pkB
zB

×
kB−2∑

mB=0

(kB − 1 − mB)

(
kB − 1

mB

)

× (qB)mB (1 − qB)kB−2−mB [F(mA,mB + 1, k) − F(mA,mB, k)] .
(F.13)

Note that from the monotonicity of the response function F , all the elements of J are
non-negative for 0 ≤ q A ≤ 1 and 0 ≤ qB ≤ 1. This proves that g(A) and g(B) are
increasing.
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