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Abstract

This paper applies the chaos control method (the OGY method) proposed
by Ott et al. (1990, Physical Review Letters) to policy making in macroeco-
nomics. This paper demonstrates that the monetary equilibrium paths in a
discrete-time, two-dimensional overlapping generations model exhibit chaotic
fluctuations depending on the money supply rate and the elasticity of substitu-
tion between capital and labor under the assumption of the constant elasticity
of substitution (CES) production function. We also show that the chaotic fluc-
tuations can be stabilized by controlling the money supply rate by using the
OGY method.
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1 Introduction

In history, many economies have repeatedly experienced economic overheating, fol-

lowed by recessions. Many studies tried to construct a dynamic general equilibrium

model that can explain such phenomena. Introducing outside money into overlap-

ping generations models, Gale (1973), Farmer (1986), and Yokoo (2000) examined

the possibility of endogenous fluctuations. In particular, Gale (1973) showed that in

an economy without outside money, the steady state equilibria are classified into two

cases: one is the classical case in which the steady state is efficient, and the other the

Samuelson case, in which the steady state is inefficient. Gale (1973) also indicated

that, once outside money is introduced into the model, a positive outside money

steady state exists in the Samuelson case and a negative outside money steady state

exists in the classical case, and that in the latter economy, endogenous fluctuations of

the economy are possible. Similar results are obtained by Farmer (1986) and Yokoo

(2000). Along this line of research, we adopt a simple overlapping generations model

with outside money and investigate the dynamic properties of the model.

Moreover, in the field of macroeconomics, the complex behavior of macroeco-

nomic variables caused by economic nonlinearities has been studied over the years.

For example, Benhabib and Day (1982) and Grandmont (1985) used overlapping

generations models to show that perfectly competitive equilibrium can exhibit com-

plex endogenous fluctuations. Following their work, many other studies, including

Nishimura and Yano (1995), Farmer (1986), Yokoo (2000), and Matsuyama et al.

(2016, 2018), have also shown that complex behavior in macroeconomic models is

caused by several factors.

There are also various empirical studies on chaotic phenomena in macroeconomics.

In fact, these studies show mixed results; that is, there are both supportive and neg-

ative results for the existence of chaotic behaviors. This is due to the fact that the

sample size of data available for macroeconomics is small. Recently, Barnett et al.

(2022a) used a different approach to confirm the possibility of chaos in macroeco-

nomics. They adopted the new Keynesian model of Benhabib et al. (2001a,b) as

a benchmark, and numerically examined whether the parameter values set by Ben-
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habib et al. (2001a,b) satisfy Shilnikov’s criterion for the existence of chaos. As a

result, Barnett et al. (2022a) numerically confirmed the existence of Shilnikov chaos.

Furthermore, Barnett et al. (2022b) set parameters to values obtained from the US

economy and confirm that the Shilnikov chaos condition is also satisfied. These results

indicate the importance of analyses on chaotic fluctuations in the actual economy.

Concerning macroeconomic policy implications, Barnett et al. (2022a) showed

that in their model, an economy can be captured by a “liquidity trap” like state that

emerges from chaotic fluctuations, and that the fluctuations cannot be influenced by a

central bank’s policy relating the interest rate to the other parts of the macroeconomic

dynamics. Moreover, Barnett et al. (2022b) showed that the chaos control method

proposed by Ott et al. (1990) (hereafter the OGY method) is effective against the

liquidity trap brought about by chaotic fluctuations.1

When a chaotic attractor exists and a saddle periodic point is contained in it,

the trajectories generally do not converge to the periodic point, but they enter its

neighborhood recurrently due to the transitivity of chaos. Ott et al. (1990) showed

that when a trajectory enters the neighborhood of its target periodic saddle point, it

can be kept near that periodic point by perturbing its parameters and attempting to

place the trajectory on the stable manifold of that periodic saddle point. Thus, the

OGY method makes it possible to stabilize the unstable periodic orbit (see subsection

4.2 for details).

In this paper, following Farmer (1986) and Yokoo (2000), we specify the produc-

tion technology as a constant elasticity of substitution (CES) type and confirm that

the monetary equilibrium paths exhibit chaotic fluctuations depending on the money

supply rate and the elasticity of substitution between capital and labor. We also show

that chaotic equilibrium can be stabilized by applying the OGY method to the supply

rule of outside money. There is a closely related paper by Bella and Mattana (2020).

They also showed the existence of chaotic monetary fluctuations and the effectiveness

of the OGY method in stabilizing the macroeconomy. However, there are differences

1As applications of the OGY method to economics, Kaas (1998) showed that the government
can stabilize an unstable Walrasian equilibrium by altering income tax rates or the government’s
expenditure. Yokoo (2010) applied the OGY method to the population problem.
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between their and our studies. The monetary equilibrium in their model depends on

imperfections in the financial market in the form of credit constraints on banks, and

has a more complex structure than our model. The chaotic monetary equilibrium in

their analysis has not been theoretically proved to be observable. In contrast, our

model structure is identical to the standard overlapping generations model (Farmer

(1986) and Yokoo (2000)), and we can theoretically confirm the existence of observ-

able monetary chaos.

2 Settings of the model

2.1 Firm and household behavior

Departing from the standard OLG model with productive capital of Diamond (1965),

we add an asset (outside money) into the model. Time is discrete, extending from

0 to infinity. The representative competitive firm at the beginning of time period t

exploits labor Lt and capital Kt to produce a single good which can be consumed or

invested. The labor population grows at a constant rate, n, that is Lt+1 = (1 + n)Lt

for any t. The firm’s behavior can be summarized by the following standard first-order

conditions:

rt = f ′(kt)− δ,

wt = f(kt)− ktf
′(kt) ≡ w(kt),

where kt = Kt/Lt denotes the capital–labor ratio, f(kt) the production function in

the intensive (or per-capita) form, rt the real rate of return on capital, wt the real

wage rate, δ ∈ [0, 1] the depreciation rate of capital, and the subscript t the period of

time. The production function in intensive form is specified as of the following CES

(constant elasticity of substitution) type:

f(k) = A
[
1− α + αk−β

]− 1
β =

Ak

[α + (1− α)kβ]
1
β

, (1)

where A > 0, α ∈ (0, 1), β > −1 (β ̸= 0). The elasticity of substitution between

capital and labor is given by (1 + β)−1. In what follows, we only consider the case

where the elasticity of substitution is smaller than 1, that is, β > 0. In other words,
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our production technology is closer to the Leontief technology rather than the linear

technology among the CES class.

Next, take a look at the household behavior. As usual, the representative agent

of the household is assumed to live for two periods. She inelastically supplies one

unit of labor to the labor market and earns wage income only during her young age

period. We assume that the utility function of the agent born in period t is of the

log-linear form:

u(cyt , c
o
t+1) = (1− s) log ct + s log cot+1, (2)

where s ∈ (0, 1) is a constant, which turns out to represent the saving rate, and cyt

denotes consumption in youth, and cot+1 denotes that in old age. The agent born in

period t tries to maximize her utility given by (2) subject to the constraints:

wt + xt = cyt + ςt and (1 + rt+1)ςt = cot+1,

where ςt represents savings and xt denotes the monetary transfer in real terms. By

utility maximization, her optimal savings are expressed as:

ςt = s(wt + xt). (3)

2.2 Outside money

The asset market equilibrium is then represented by

Kt+1 = ςtLt −Bt, (4)

where

Bt =
Mt

Pt

(5)

is the real value of outside money, with Mt being the nominal value of the outside

money and Pt being its price. In our economy, as in Gale (1973), there is a central

clearing house. Young people can accumulate (decumulate) capital by receiving goods

from (handing over goods to) the clearing house, but they pay (receive) the goods

when they become old. In this setting, outside money can take negative values; that
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is, the young sell outside money to the clearing house and buy it back from the

clearing house when old. (The initial old generation has debts historically and pays

the debts in terms of goods to the clearing house, and the initial young generation

receives the goods by selling outside money to the clearing house). This situation is

analyzed by many researchers such as Gale (1973), Grandmont (1982), and Benhabib

and Laroque (1988).2 Alternatively, following Farmer (1986), we can interpret outside

money as the government’s net debt. In this interpretation, negative outside money

represents the situation where the private sector’s asset holdings are less than the

total asset holdings of the economy and the net worth held by the government is

positive. IMF (2018) reported a Public Sector Balance Sheet constructed by taking

a broader view of government assets and liabilities rather than standard government

debt, and Figure 1.1 in the report shows that the net worth of governments in 20 of

the 31 countries is positive. Thus, it would not be unrealistic to consider the case of

negative outside money.

Suppose now that the policy authority such as the central bank has a policy of

keeping the growth rate of outside money constant. That is, we assume that:

Mt = (1 + µ)Mt−1,

where µ is the growth rate of outside money that can be controlled by the policy

authority. The revenue from money growth (seigniorage) is distributed to the young

generation as a lump sum. The aggregate money transfer is then given by

xtLt ≡
Mt −Mt−1

Pt

= µ
Mt−1

Pt

= µ
Pt−1

Pt

Mt−1

Pt−1

. (6)

On the other hand, it follows from the no-arbitrage condition between productive

capital and outside money that:

rt+1 =
1/Pt+1 − 1/Pt

1/Pt

=
Pt

Pt+1

− 1. (7)

Combining (6) and (7) yields:

xt = µ

(
1 + rt
1 + n

)
bt−1, (8)

where we have used Bt = Mt/Pt, bt = Bt/Lt, and Lt+1 = (1 + n)Lt.
2Bewley (1992) stated, “The quantity of outside money may also be negative. Negative outside

money may be interpreted as demand deposits with the banking system held by the government.”
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2.3 The dynamic equation

By (4), we obtain

kt+1 ≡
Kt+1

Lt+1

= σt
Lt

Lt+1

− Bt

Lt

Lt

Lt+1

=
σt − bt
1 + n

. (9)

Putting (1), (3), and (8) into (9) gives:

kt+1 =
1

1 + n

[
s

(
w(kt) + µ

(
1− δ + f ′(kt)

1 + n

)
bt−1

)
− bt

]
. (10)

As bt = Mt/(PtLt) for any t, we have

bt+1

bt
=

Pt

Pt+1

Mt+1

Mt

Lt

Lt+1

=
(1 + rt+1) (1 + µ)

1 + n
,

which can be rewritten as

bt+1 =
(1− δ + f ′ (kt+1)) (1 + µ)

1 + n
bt. (11)

Shifting t by one period in (11) and substituting it into (10), we obtain:

kt+1 =
1

1 + n

[
sw(kt)−

1 + (1− s)µ

1 + µ
bt

]
. (12)

Rewriting (12) gives

1 + (1− s)µ

1 + µ
bt = sw(kt)− (1 + n)kt+1 ≡ H(kt, kt+1). (13)

Putting (13) into (11), we finally obtain the following second-order difference equa-

tion:

(1 + µ)(1− δ + f ′(kt+1))H(kt, kt+1) = (1 + n)H(kt+1, kt+2). (14)

The OLG model given by (14) reduces to that studied by Yokoo (2000) when we

let n = µ = 0 and δ = 1.

3 Dynamics

3.1 Steady states

For the second-order difference equation in terms of capital per capita given by (14),

there are two types of potential steady states. The first type is characterized by k

satisfying

H(k, k) = 0.
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Evidently, k = 0 is always a steady state, whereas the existence of a positive steady

state of this type is not necessarily ensured if the production function is given by (1).

In any case, it follows from (13) that bt = 0 at a steady state of this type, which

means that outside money is never valued there.

The other type of possible steady state, which is more important than the first

type, satisfies H(k, k) ̸= 0. As result, it must hold that:

(1 + µ)(1− δ + f ′(k)) = 1 + n.

Because f ′′(k) < 0 for k > 0, such a steady state is unique if it exists. In this steady

state, outside money is valued.

3.2 Chaotic dynamics

We want to concentrate on monetary policy, which is related to µ, so we specify

non-essential parameters as follows:

δ = 1 and n = 0,

which simply says that capital fully depreciates in one period and the population is

constant over time.

Letting

xt = kt and yt = kt+1

turns (14) into:

Xt+1 = G(Xt, µ), (15)

where

Xt =

(
xt

yt

)
and G(Xt, µ) =

(
yt

sw(yt) + (1 + µ)f ′(yt) (yt − sw (xt))

)
.

Furthermore, we assume that:

A =
1

α
. (16)

Although economic justification is difficult with respect to the specification of this

parameter, it facilitates the analysis of the model. Indeed, if µ = µ0 = 0, then the

point X̄ = (1, 1)T , where T denotes the transpose, is always the golden-rule steady
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state of (15), i.e., G(X̄, µ0) = X̄, under the condition (16) plus n = 0 and δ = 1,

irrespective of the other parameters.

It is known from Yokoo (2000) that when β in (1) is sufficiently large and s

is sufficiently close to 0, this steady state of (15) is a hyperbolic saddle point to

which a transverse homoclinic orbit exists (hence the existence of Smale’s horse-

shoe). Furthermore, it is demonstrated that a chaotic attractor is generated by a

homoclinic bifurcation for (15). This ensures, by Mora-Viana’s Theorem (Mora and

Viana (1993), also Palis and Takens (1993) for technical details), the observability of

chaotic motions in the long run for a large set of parameter values. See Yokoo (2000)

for details. These theoretical results support the existence of the chaotic attractors

seen in the numerical calculations, as shown in Figure 1.

Insert Figure 1 around here.

Figure 1 plots a trajectory generated by (15) for a set of empirically plausible

parameter values:

A = 2, α = 0.5, β = 8, s = 0.1, and µ = 0. (17)

Some comments are in order. The parameter values except for β are commonly

assumed in the literature. We mention the validity of β = 8. From the theoretical

and practical viewpoints, the value of the elasticity of substitution between capital

and labor is assumed to be around 1. Indeed, in the SIGMA model of the Federal

Reserve Board, the value is set to 0.9. Gechert et al. (2022) recently carried out a

meta-analysis based on 3186 observations of the elasticity of substitution from 121

previous works and observe that the mean of the elasticity of substitution is 0.3.

Therefore, the assumption that β = 8, which means the elasticity of substitution

1/(1 + β) = 0.11, is not necessarily unrealistic. One can observe an attractor that

seems to be a so-called Hénon-like strange attractor, in Figure 1. Actually, the

transient motions are omitted in this Figure. The golden-rule steady state, which is

a hyperbolic saddle, also seems to be contained in the attractor.
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4 Controlling methods: a policy comparison

4.1 Fixed stabilizing monetary policy

Suppose now that a monetary policy authority such as a central bank has strong

independence from the government and public opinion and is free to determine the

growth rate of money. If the economy has persistent fluctuations and does not tend

to converge to a steady state as shown in Figure 1, to what value should the central

bank steer the growth rate of money?

To get a rough idea of the growth rate of money and the corresponding changes

in its dynamic properties, for the set of parameter values given by (17), let us assume

that the other parameters except µ are constant, and let the parameter µ be moved

within a “realistic” range, and plot the corresponding bifurcation diagram in Figure

2.

Insert Figure 2 around here.

According to Figure 2, for the economy to have a natural tendency to converge

to a steady state, the growth rate of money must be fixed at around −30 percent

(µ ≈ −0.3) at least! However, this is totally impractical. In exchange for economic

stability, we must accept the tradeoff of the virtual disappearance of money.

4.2 Fine-tuning monetary policy: the OGY method

In the previous section, we have seen that there is a tradeoff between the natural

stabilization of the economy and the maintenance of the value of money. In this

section, we examine how to resolve this dilemma. In other words, by exploiting the

nature of chaos, we would like to stabilize the economy and maintain the value of

the outside money at the same time. For this purpose, let us assume the following

situation as described in Figure 1.

• There exists a golden-rule steady state, which is a hyperbolic saddle point.

That is, there exist a (local) stable manifold and an unstable manifold of that

point;
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• The golden-rule steady state is contained in a chaotic attractor;

• The growth rate of money is manipulable by the authority such as the central

bank, but its variability is limited to a very narrow range.

The OGY method is known as the current classical theory of chaos control. Let us

briefly explain the theory based on the model used in this paper. From the situation

in Figure 1, the golden-rule steady state, which is a saddle point, is contained in a

chaotic attractor, but the dynamics on the attractor is transitive; in other words, it

has a dense orbit on its invariant set, so that for any neighborhood of the steady state,

the economic state will enter it at some point in time. At that time, the position of

the steady state and its stable manifold are changed by moving the control parameter

(in this case, the growth rate of money) so that the economic state at the next time

point is on (near) the stable manifold of the steady state. In reality, due to errors,

the state will deviate from the stable manifold, but by performing this operation in

succession, the economic state can be brought closer to the target golden-rule steady

state. The stable manifold of the steady state itself cannot be calculated exactly,

but by keeping the neighborhood of the target sufficiently small, the error due to the

first-order approximation can be reduced.

Let us now consider controlling the system (15) using the OGY method. The

presentation here is based on Lai and Grebogi (1993). The money growth rate that

is the basis for control is set to zero, i.e., µ = µ̄ = 0. Let µt be the money growth

rate at time t. Remember that the golden-rule steady state X̄ is given by

X̄ =

(
1
1

)
.

Linearizing (15) around (Xt, µt) = (X̄, µ̄) yields

Xt+1 − X̄ = J(Xt − X̄) +B(µt − µ̄), (18)

where

J = DXG(X̄, µ̄) and B = DµG(X̄, µ̄)
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are a 2×2 Jacobian matrix and a 2×1 vector evaluated at (X̄, µ̄), respectively. Some

computation3 shows that

J =

(
0 1

−sγ 1 + γ(s− α)/α

)
and B =

(
0

1− s(1− α)/α

)
,

where

γ = (1− α)(1 + β).

Consider the eigenvalues of J , that is the solutions of

|J − λI| = 0,

where I is the identity matrix of 2 × 2. One can check that for a sufficiently large

β > 1 and for a sufficiently small s > 0, J has two real eigenvalues λs and λu, such

that

λu < −1 < λs < 0.

This implies that the golden-rule steady state is a (hyperbolic) saddle point for such

parameter values. Let us call λs the stable eigenvalue and λu the unstable eigenvalue

of J . The corresponding stable/unstable eigenvectors vs,u are calculated as:

vs,u =

(
1

λs,u

)
.

Because the local stable manifold of X̄ is tangent to the stable eigenspace at X̄,

we want to put Xt+1 onto the stable eigenspace of X̄ with Xt as given, using the

linearized system (18). To do this, we need to find the contravariant vectors es,u of

vs,u, respectively. These vectors are calculated as follows. First, let P be a matrix

defined as

P = (vs vu) =

(
1 1
λs λu

)
.

Then its inverse is given by

P−1 =
1

λu − λs

(
λu −1
−λs 1

)
≡ (es eu)T .

Note that

es · vs = eu · vu = 1 and es · vu = eu · vs = 0.

3Notice that f(1) = 1/α, f ′(1) = 1, w(1) = 1/α− 1, and w′(1) = −f ′′(1) = γ = (1− α)(1 + β).
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Because eu · vs = 0, we can apply the orthogonal condition to (18) to obtain

(Xt+1 − X̄) · eu = 0.

Thus, some calculations show that when the trajectory of the economy enters the

vicinity of the golden-rule steady state in time t, the value of the money growth rate

should be determined according to the following rule:

µt = µ̄− J(Xt − X̄) · eu

B · eu

=
sαγ(xt − 1) + (αλs − α + αγ − sγ)(yt − 1)

α− s(1− α)
, (19)

where

λs =
1

2

[
1− γ +

sγ

α
+

√(
1− γ +

sγ

α

)2

− 4sγ

]
.

5 Controlling chaotic fluctuations

In this section, we are going to exploit the OGY method developed in the previous

section to control chaotic or periodic fluctuations.

5.1 A case with no external shocks

We will first consider the case where there are no external shocks to the economy.

In this case, the economy is completely described by (15). The parameters are given

by (17) so that the economy exhibits chaotic dynamics with the target steady state

contained in the chaotic attractor as depicted in Figure 1. Once the trajectory of

(15) enters a given neighborhood of the steady state of the target, the OGY control

procedure, is activated. That is, if

||Xt − X̄|| ≡
√

(xt − 1)2 + (yt − 1)2 < ε

for some ε > 0, then the money growth rate µt is determined by the rule (19).

Insert Figures 3 and 4 around here.
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Figure 3 shows a chaotic time series corresponding to Figure 1 without control. On

the other hand, Figure 4 shows the time series when control is started at Ts (t = 500)

and stopped at Te (t = 2, 500). It can be seen that the trajectory is completely

controlled to the target steady state a short time after the start of control, and

chaotic behavior appears again when the control is released.

Now let us see how the money growth rate is adjusted during the control. See

Figure 5 for this. Because the values of µt are stuck at 0 for most of the time, it is

only displayed for 50 iterations from the start of the control. The simulation shows

that the control procedure is activated after only a few iterations from the start of

control and that the money growth rate is immediately reduced to a value close to

zero as the system is quickly stabilized.

Insert Figure 5 around here.

5.2 A case with external shocks: when the target is far away
from the attractor

When simulating mathematical models that produce chaotic dynamics, it is common

to observe periodic windows between chaotic behaviors in the bifurcation diagram.

This is also the case for our model. Let us change β from β = 8 to β = 7, holding the

other parameters unchanged. Figure 6 shows an attractor on the plane generated by

(15) and Figure 7 plots the bifurcation diagram with respect to µ.

Insert Figures 6 and 7 around here.

In this example, orbit stabilization by the OGY method fails because the attractor

is too far away from the given neighborhood of the target steady state. See Figure

8. We then consider a situation in which the economy is subjected to an external

shock. We demonstrate below that such shocks, or stochastic perturbations, might

contribute to stabilization.

Insert Figure 8 around here.
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To do this, we add some stochastic perturbations to (15). To be more specific,

we consider:

Xt+1 = G(Xt, µ) + σ

(
0
ϵt

)
, σ ≥ 0, (20)

where ϵt is a random variable that follows an independent and identical distribution.

For simplicity, a uniform distribution on the interval [−1, 1] is assumed.

Figures 9 and 10 show the trajectory plots generated by (20) for σ = 0.01 and

σ = 0.05, respectively.

Insert Figures 9 and 10 around here.

Compare the bifurcation diagram, Figure 11, corresponding to Figure 9 with that

with no external shocks, Figure 6. Most of the “windows” in the bifurcations diagram

seem to have disappeared due to rather small external shocks.

Insert Figure 11 around here.

Interestingly, the influence of stochastic perturbations reveals a hidden chaotic

structure, which, as a result, makes it possible to capture the trajectory in the neigh-

borhood of the target. In fact, the OGY method succeeds in stabilizing the system

in such situations. See Figures 12 and 13. The corresponding money growth rate

movements are shown in Figures 14-16. Figure 16 is an enlargement of Figure 15.

Unlike the case with no external shocks, fine tuning of monetary policy in response to

external shocks is complicated. The amplitude of the money growth rate, however,

is relatively small in this example, although it depends, of course, on the magnitude

of the noise.

Insert Figures 12 and 13 around here.

Insert Figures 14, 15, and 16 around here.

6 Concluding remarks

This paper applied the OGY method proposed by Ott et al. (1990) to policy mak-

ing in macroeconomics. This paper demonstrated that the monetary equilibrium
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paths exhibit two-dimensional chaotic fluctuations depending on the money supply

rate and the elasticity of substitution between capital and labor under the assump-

tion of a constant elasticity of substitution (CES) production function. We showed

that chaotic outside monetary equilibrium paths can be controlled to the outside

money steady state by the OGY method. We also found numerically that moderate

stochastic shocks can contribute to such stabilization.

This paper stabilizes the economy by controlling the capital–labor ratio. Note that

because there is a smooth one-to-one relationship between the interest rate and the

capital-labor ratio, the stabilization policy here can also be interpreted as controlling

the interest rate.
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Figure 1: Chaotic attractor on the plane. The golden rule steady state (1, 1) is
highlighted. The transients are omitted. A = 2, α = 1/2, β = 8, s = 0.1, and µ = 0.
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Figure 2: Bifurcation diagram. The parameter µ, the growth rate of money, moves
from −1 to 1 A = 2, α = 1/2, β = 8, and, s = 0.1. Money loses value if µ falls below
a certain value. For some range of the value of µ, which is negative, the golden rule
steady state is an attractor, whereas chaotic fluctuations are observed for a much
larger set of µ values.
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Figure 3: Uncontrolled chaotic time series. A = 2, α = 1/2, β = 8, s = 0.1, and
µ = 0.

Figure 4: Controlled chaotic time series. It takes some time for the chaotic trajectory
to enter the vicinity of the target. As soon as the control is aborted, chaotic behavior
reappears. A = 2, α = 1/2, β = 8, s = 0.1, and ε = 0.1. t ∈ [0, 3 × 103]. Control
starts at Ts = 500 and stops at Te = 2, 500.
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Figure 5: The values of µt stick to zero by 10 steps from the start of control. A =
2, α = 1/2, β = 8, s = 0.1, and ε = 0.1. t ∈ [500, 550].
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Figure 6: The target steady state is far from the attractor. The attractor is contained
in the red circles. The transients are omitted. A = 2, α = 1/2, β = 7, s = 0.1, and
µ = 0.
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Figure 7: Bifurcation diagram with respect to µ. A = 2, α = 1/2, β = 7, and s = 0.1.
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Figure 8: Time series. The OGY method fails to stabilize the system. A = 2, α =
1/2, β = 7, s = 0.1, and ε = 0.1.
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Figure 9: Noisy chaotic “attractor”. The influence of stochastic perturbations reveals
the hidden chaotic structure. σ = 0.01.
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Figure 10: Noisy chaotic “attractor”. The influence of stochastic perturbations re-
veals the hidden chaotic structure. σ = 0.05.
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Figure 11: Compared with Figure 7, most of the windows have disappeared due to
small external shocks. σ = 0.01.

28



Figure 12: Time series. The OGY method succeeds in stabilizing the system sub-
jected to external shocks. σ = 0.01.

Figure 13: Time series. The OGY method succeeds in stabilizing the system sub-
jected to external shocks. σ = 0.05.
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Figure 14: Monetary policy dynamics: time series of µt. t ∈ [0, 3× 103]. σ = 0.01.

Figure 15: Monetary policy dynamics: time series of µt. t ∈ [0, 3× 103]. σ = 0.05.
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Figure 16: Closeup of Figure 15. t ∈ [500, 600]. σ = 0.05.
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