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Abstract

We incorporate external effects of capital on production and endogenous
technology choice into the standard overlapping generations model. We demon-
strate that our model can exhibit poverty traps, middle-income traps, and per-
petual growth paths. We also show that these three phenomena coexist for
some set of parameters and the economy caught in the middle-income trap can
exhibit chaotic fluctuations in the long run. In obtaining these results in the
standard overlapping generations model, the combination of technology choice
and externalities in production plays a crucial role.
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1 Introduction

Business cycle theory can be broadly divided into two categories: exogenous and

endogenous business cycle theories. Exogenous business cycle theory attributes the

fundamental source of economic fluctuations to stochastic shocks. Exogenous business

cycle theory, especially the dynamic stochastic general equilibrium approach, has a

dominant role in the business cycle research for decades. However, after the global

financial crisis, a renewed interest in endogenous business cycle theory has appeared

(e.g., Beaudry et al. 2020 and Schmitt-Grohé and Uribe 2021), in which economic

fluctuations occur spontaneously due to factors within the economy without any

shocks. At the almost same time, theoretical research on the complexity of business

cycle fluctuations is gaining momentum (e.g., Matsuyama et al. 2016).

In this line of research, the role of technology choice in endogenous business cycles

has attracted much attention. From the end of 1990s, this role in business cycles has

been analyzed by several authors, such as Aghion et al. (1999), Iwaisako (2002), and

Matsuyama (2007). These studies show the possibility of various patterns of dynamics

in their models. However, they basically relied on graphical analysis and did not

characterize the properties of the equilibrium dynamics in detail. Mathematically

rigorous characterizations have recently been made by Asano et al. (2012), Asano et

al. (2021), Matsuyama et al. (2016) and Umezuki and Yokoo (2019a). These studies

assume neoclassical, constant-returns-to-scale technologies.1 In reality, as Caballero

and Lyons (1990) and many other studies have found,2 there would be external effects

in production, especially in manufacturing. Thus, the role of the external effects in

business cycles should be considered.

The existence of these effects allows the cases of increasing marginal productivity

of capital or increasing-returns-to-scale, which, combined with technology choice,

can be a source of a rich variety of complex dynamics.3 In fact, constructing an

1Iwaisako (2002) is an exception. He considers two possible technologies: a constant-returns-scale
and an increasing-returns-to-scale. However, his analysis exclusively relies on the graphical one.

2For example, see Baxter and King (1991), Caballero and Lyons (1992), and Lindström (2000).
3The role of increasing-returns-to-scale has long been analyzed in the field of international trade

(Negishi, 1969). Since the 1990s, the role of increasing returns has attracted attention in various
fields. For example, the field of economic growth has shown that increasing-returns-to-scale (or
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overlapping generations (OLG) model with external effects and two technologies (one

of which is chosen endogenously), we show that our model can generate poverty

traps, middle-income traps, and perpetual growth paths and these three phenomena

can exist simultaneously. We also show that, if the external effect is mildly large

in at least one technology enough to generate a slight degree of increasing marginal

productivity of capital, then the economy can exhibit chaotic business cycles.4 Under

the standard Cobb-Douglas technologies, in which externalities are absent, whenever

we observe long-run fluctuations, they are almost certainly periodic, as shown in

Umezuki and Yokoo (2019a). It should be emphasized that, in obtaining long-run

chaotic fluctuations in the Diamond model with Cobb-Douglas technology choice, the

introduction of externalities in production plays a crucial role.

The remainder of this paper is organized as follows. Section 2 presents the settings

of our model. Section 3 provides the main results, and Section 4 concludes this paper.

Most of the proofs are relegated to appendices.

2 Settings of the model

This section describes the structure of our model: households’ and firms’ behavior

and equilibrium dynamics.

2.1 Household’s behavior

The basic setup follows the standard Diamond-type OLG model. Time is discrete

and extends from 0 to infinity. Population is assumed to be constant over time and

normalized to 1. Each generation lives two periods, supplying one unit of labor

external effects) is an engine of the long-run economic growth, as started by Romer (1986) and Lucas
(1988), and has become one of the foundations of the modern economic growth theory. Furthermore,
the field of urban economics has shown that increasing-returns-to-scale exists in the background of
the phenomenon of urban agglomeration (Fujita and Thisse, 1996; Fujita et al., 1999). For example,
Fujita and Thisse (1996) state that “We can therefore safely conclude that increasing returns to
scale are essential for explaining the geographical distribution of economic activities.” In the current
urban economics, increasing-returns-to-scale has become one of its fundamental components.

4If both external effects of the two technologies are sufficiently small, our model can exhibit
periodic fluctuations, which have been extensively studies, for example, by Ishida and Yokoo (2004),
Asano et al. (2012), and Umezuki and Yokoo (2019a).
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inelastically only when young. She maximizes her Cobb-Douglas utility according to

the following problem:

max
cyt ,c

o
t+1,st

(1− s) log cyt + s log cot+1, s ∈ [0, 1]

s.t. st + cyt = wt, cot+1 = rt+1st.

Here, cyt denotes the consumption when young, cot+1 the consumption when old, st

savings, wt the real wage rate, rt+1 the real rate of return on the loan maturing at

t+ 1, and the subscription t for time. Utility maximization implies that

st = swt.

2.2 Firm’s behavior

We introduce two additional factors into our model: externalities in production and

multiple technologies. The firm is assumed to behave as its owner and as its manager.5

This economy has two available production technologies. We assume that the firm as

the owner has to choose one technology that maximizes the return on capital, whereas

the firm manager attempts to maximize the firm’s profit, which is driven away by

competition. To capture our idea in the simplest possible settings, we employ Cobb-

Douglas technologies as follows:

Fi(k,K, L) = Aik
ηiKαiL1−αi , i ∈ {1, 2}, Ai > 0, αi ∈ (0, 1), and ηi ≥ 0,

where subscript i denotes the i-th technology, K capital, L labor, and k the capital-

labor ratio. Each manager regards k as given. This formulation follows that of

Azariadis and Reichlin (1996).6 The first argument of Fi is related to externalities. If

5Regarding another possible interpretation, we may assume that the firm chooses its production
technology in a discrete manner in the first stage and then choose optimal inputs in the second
stage.

6Several studies measure external effects by estimating the percentage increase in a firm’s output
that is caused by a 1% increase in aggregate inputs (or aggregate output), keeping an individual
firm’s input intact. Caballero and Lyons (1989, 1992) estimated the external effect in the US man-
ufacturing and obtained the values from 0.49 to 0.89 and from 0.32 to 0.49, respectively. Caballero
and Lyons (1990) also provided estimates for European countries ranging from 0.29 to 1.40. More-
over, the estimated values by Lindström (2000) for Swedish manufacturing range from 0.16 to 0.53.
In contrast, using the industry-level UK manufacturing date, Oulton (1996) found evidence neither
for external effects nor for increasing-returns-to-scale. These results show that the degree of external
effects would vary across countries and industries.
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ηi > 0, then positive externalities exist in production such as knowledge spillover. If

ηi = 0, externality are absent, and Fi is a standard Cobb-Douglas production func-

tion. To avoid unnecessary complications, we ignore the case of negative externalities,

that is, ηi < 0. Given the first argument in Fi and L = 1, in a symmetric equilibrium,

competition implies the following first order conditions:

rt =
∂Fi(kt, kt, 1)

∂Kt

≡ ri(kt) = αiAik
ηi+αi−1
t , (1)

wt =
∂Fi(kt, kt, 1)

∂Lt

≡ wi(kt) = (1− αi)Aik
ηi+αi
t .

Thus, the shape of the marginal productivity of capital depends on the value of ηi+αi.

Note that r(k), given by (1), is an increasing function with respect to k if the external

effect is sufficiently large, that is, η + α > 1.

Upon entering the market, the representative firm’s owner in period t, who was

born in period t − 1, chooses a technology that, kt being given, yields the highest

return in a discrete manner (see Appendix). Thus, the owner’s maximization problem

is given by

max
i∈{1,2}

ri(kt).

For notational simplicity, we sometimes write

βi = ηi + αi.

2.3 Equilibrium dynamic model

Considering the market equilibrium and optimization results in the previous subsec-

tions, we can represent our model in a little general form:

kt+1 = swm(kt), (2)

m = arg max
i∈{1,2}

ri(kt), (3)

k0 > 0 : given, and t = 0, 1, 2, · · · . (4)

Without loss of generality, we assume throughout the paper that

β2 > β1. (5)

We claim the following.
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Claim 1. If (5) is satisfied, then r1(k) > r2(k) if and only if 0 < k < θ, where the

threshold θ is the unique positive solution of r1(θ) = r2(θ), that is,

θ =

[
α1A1

α2A2

]1/(β2−β1)

.

Proof. A simple calculation reveals that r′1(θ) < r′2(θ) if and only if β2 > β1.

Using this claim, we can rewrite our model given by (2)-(4) as the following

mapping from R+ = {x ∈ R | x ≥ 0} into itself.

T : R+ → R+, (6)

kt+1 = T (kt) =

{
T1(kt) = s(1− α1)A1k

β1
t if kt ≤ θ,

T2(kt) = s(1− α2)A2k
β2
t if kt > θ.

For simplicity, we have assumed that, if kt = θ, then technology 1 is chosen. Note

that T is a piecewise continuous mapping with one discontinuity. Figure 1 shows

a typical case where the r1-curve downward-sloping, while the r2-curve is upward

sloping and accordingly T1 is chosen for kt ≤ θ and T2 for kt > θ.

INSERT Figure 1 around here.

3 Analysis of the model

In this section, we demonstrate that the model given by (6) can exhibit poverty

traps, middle-income traps, and perpetual growth paths. Moreover, we show that an

economy caught in a middle-income trap can exhibit chaotic fluctuations in the long

run.

In order to characterize the dynamics of the model given by (6), we consider the

following three generic cases:

Case 1 : 1 > β2 > β1,

Case 2 : β2 > β1 > 1,

Case 3 : β2 > 1 > β1.
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In Case 1, the external effects in both technologies are mild. The dynamics here

has been extensively investigated. (See Ishida and Yokoo, 2004;, Asano et al., 2012;

and Umezuki and Yokoo, 2019a.) Note that their models are generically not capable

of generating chaotic dynamics, which would be in distinctive contrast with Cases

2 and 3. Case 2 is an extreme case where externality is strong enough for both of

the technologies. Note that the condition in this case implies that each Ti is strictly

convex. Consequently, we find that chaotic behavior is a ubiquitous feature for this

case. Case 3 is the intermediate case where the external effect is weak or absent in

one technology but strong in the other.

3.1 Case 1: Periodic fluctuations

As mentioned above, Case 1 reduces to the model ever studied by Umezuki and

Yokoo (2019a). Therefore, we do not repeat this in detail here. The assumption that

1 > β1 > β2 corresponds to the case wherein the external effects for both technologies

(i = 1, 2) are not so high and the marginal productivity of capital is decreasing. Thus,

the main results in Umezuki and Yokoo (2019a) apply to Case 1 of our model, and

are summarized in the following proposition:

Proposition 1. Suppose that 1 > β2 > β1 > 0. Then the map (6) exhibits a peri-

odic attractor of arbitrarily large period by choosing other parameters appropriately.

Furthermore, aperiodic motions occur only for parameter values of measure zero.

Proof. See Umezuki and Yokoo (2019a).

Note that by this proposition, whenever we observe a fluctuating behavior in

the long run in a computer simulation under the condition of Case 1, this is almost

certainly a periodic cycle, including an attracting steady state.

3.2 Case 2: Chaotic middle-income trap coexisting with poverty
traps and perpetual growth paths

In this case, because β2 > β1 > 1, each Ti (i = 1, 2) is strictly increasing and strictly

convex. Note that the mapping T given by (6) has a trivial steady state at the origin,
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that is, T (0) = 0. For steady states other than the origin, T has two candidates for

positive ones:

Ti(k̄i) = k̄i, i = 1, 2.

Solving these equations yields

k̄i = [s (1− αi)Ai]
1/(1−βi) , i = 1, 2.

Note that each potential positive steady state is a repeller, while the origin is an

attractor. For later use, we restate this in the following lemma:

Lemma 1. If β2 > β1 > 1, then the origin of (6) is an attractor. Furthermore, any

positive steady state, if it exists, is a repeller.

Proof. The first statement holds by T ′(0) = T ′
1(0) = 0, and the second statement

holds by T ′
i (k̄i) = βi > 1.

By drawing the graph of T , one can recognize that unless

lim
k→θ+

T2(k) ≡ T2(θ) < θ < T1(θ) (7)

the threshold has little effect on the dynamics of T . Therefore, we require (7) or,

equivalently,

s(1− α2)A2

(
α1A1

α2A2

) β2−1
β2−β1

< 1 < s(1− α1)A1

(
α1A1

α2A2

) β1−1
β2−β1

(8)

We first check that such a set of parameter values is not empty and see how to

find such parameters:

Claim 2. The set of parameter values that satisfy (8) is not empty.

Proof. See Appendix.

We further intend to specify a closed trapping interval M ⊂ R+ such that T (M) ⊂
M and 0 /∈ M . By strict monotonicity of Ti, if T (M) ⊂ M , then θ ∈ M . Such an

interval M would be regarded as a middle-income trap. Thus, if

k̄1 < T2(θ) and T1(θ) < k̄2, (9)

then M = [T2(θ), T1(θ)] is such a trapping interval, and so is M ′ = [k̄1, k̄2] with

M ⊂ M ′. We can show that such parametric restrictions are indeed possible:
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Lemma 2. The set of parameters values that satisfy (9) is not empty. In fact, let

α1A1 = α2A2 with α2 ∈ (α1, 1) and, let β2 > β1 > 1 with 1/β1 + 1/β2 > 1. Then, the

inequalities (9) hold.

Proof. See Appendix.

Lemma 2 states that the middle-income trap is more likely to occur when β’s are

large but not too large; that is, the external effect for each technology is “moderately”

large.

Note that (9) implies (8) by convexity of Ti (i = 1, 2). By drawing the graph of

T , we can summarize our observations into the following proposition.

Proposition 2. Assume that β2 > β1 > 1 and β1 + β2 > β1β2. Then, the economy

represented by (6) simultaneously exhibits poverty traps, middle-income traps, and

perpetual growth paths for an open set of parameter values.

Proof. By Lemma 2, (6) has a middle-income trap for some specific parameter values.

The co-existence of the poverty trap and perpetual growth paths follows directly from

Lemma 1. As any slight perturbations of all parameters preserve the inequalities in

(9), the assertion is proved.

This situation is depicted in Figure 2.

INSERT Figure 2 around here.

The above proposition is interesting from two perspectives. First, for some set of

parameter values, poverty traps, middle-income traps, and perpetual growth paths

emerge simultaneously. Second, which of the three economic phenomena in Proposi-

tion 2 will actually occur depends only on the initial conditions, which is explained

in Proposition 4.

Subsequently, we focus on the dynamics on the trapping interval; that is, the

middle-income trap case in Proposition 2. First, suppose that all the conditions in

Proposition 2 are satisfied. Second, we restrict mapping T to M . Note that mapping

T can be log-linearized as follows:

log kt+1 =

{
log s(1− α1)A1 + β1 log kt if log kt ≤ log θ,

log s(1− α2)A2 + β2 log kt if log θ < log kt.
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Next we define a variable change such that

xt = h(kt) =
log(kt/T2(θ))

log(T1(θ)/T2(θ))
. (10)

By (10), the restriction mapping T|M : M → M can be transformed into the

following topologically equivalent piecewise linear mapping from the unit interval

I = [0, 1] to itself:

τ : I → I, (11)

xt+1 = τ(xt) =

{
τ1(xt) = 1 + β1(xt − c) if 0 ≤ xt ≤ c,

τ2(xt) = β2(xt − c) if c < xt ≤ 1,

where c = h(θ), and for any k ∈ M , it holds that h ◦ T|M (k) = τ ◦ h(k). Note that c

cannot take all the values between 0 and 1.

Claim 3. If β2 > β1 > 1 and 1/β1 +1/β2 > 1, then the threshold c in (11) is located

in the interval (1− 1/β2, 1/β1) ⊂ I.

Proof. From (9), we require τ1(0) ∈ (0, 1) and τ2(1) ∈ (0, 1). From τ1(0) ∈ (0, 1), it

follows that 0 < 1−cβ1 < 1, implying c < 1/β1. From τ2(1) ∈ (0, 1), 0 < β2(1−c) < 1

implies c > 1− 1/β2.

Figure 3 depicts the graph of τ corresponding to Figure 2.

INSERT Figure 3 around here.

Let I be a closed interval and f : I → I be a piecewise smooth mapping. If there

is an integer n ≥ 1 such that inf |dfn(x)/dx| > 1 whenever the derivative exists, then

f is said to be eventually expanding.

If the above assumption holds for n = 1, f is just said to be expanding. It

is known by, for example, Lasota and Yorke (1973) that an (eventually) expanding

mapping on the interval can have absolutely continuous invariant measures, implying

that there is observable chaos in the long run.

Proposition 3. Suppose that the parameters are as in Proposition 2. Let M be the

trapping interval for T and let T|M be the restriction of T to M . Then, T|M : M → M

is chaotic in the sense that it admits an absolutely continuous invariant measure.
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Proof. By conjugacy, it suffices to show that τ in (11) admits an absolutely continuous

invariant measure. As inf |τ ′(x)| = β1 > 1, that is, τ is expanding, the assertion

follows from Lasota and Yorke (1973).

Note that the chaotic behavior described in Proposition 3 is robust in the sense

that it persists for any perturbations of parameters provided that they are as in

Proposition 2.

Let us summarize our findings for Case 2 in the following proposition:

Proposition 4. Suppose that the parameters for the model given by (6) are as in

Proposition 2. Then, three cases typically emerge depending on the initial condition:

(i) Poverty trap; for k0 < k̄1, the economy converges to 0.

(ii) Chaotic middle-income trap; for k0 ∈ (k̄1, k̄2), the economy gets trapped in an

interval, where it keeps fluctuating in a chaotic manner.

(iii) Perpetual growth; for k0 > k̄2, the economy grows unboundedly.

Note that, in the case of the chaotic middle-income trap, periodic points exist in

the region. However, they are always unstable (i.e., repellers) and not observable.

The implication of Proposition 4 is as follows. In Case (i), if the economy starts

from a sufficiently small initial value of capital k0 with k0 < k̄1, then the economy

gets caught in a poverty trap, that is, kt is attracted to the origin. This is because the

low return from capital due to increasing marginal productivity of capital obstructs

capital accumulation. In Case (iii), if the economy starts from a sufficiently large

initial value of capital k0 with k0 > k̄2, then the economy exhibits perpetual growth.

This is because the high marginal productivity of capital accelerates economic growth

by the reverse logic to that of Case (i). In Case (ii), if the initial value of capital

k0 lies in the middle range, then the economy is caught by the middle-income trap.

The intuition behind this might be explained as follows. If the economy starts from

a value greater than k̄1 but smaller than θ, then technology 1 is chosen, and the

marginal productivity of capital becomes large due to increasing marginal productiv-

ity, which accelerates economic growth until the threshold is crossed and the regime

switches from technology 1 to technology 2. Then, the per capita capital stock is not

sufficiently large for technology 2 to keep the economy growing. Thus, it begins to
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shrink, which brings it back to a point near the initial value, and the story repeats

itself. Such a mechanism creates middle-income traps. Furthermore, the expand-

ing property of the underlying dynamic system causes chaotic motions. This is an

intriguing case because not only the economy becomes trapped in a middle-income

trap but also the economy fluctuates chaotically in the trap. However, this cannot

occur when the external effects of both technologies are weak (see Proposition 1).

Figure 4 depicts a typical trajectory that is eventually caught and chaotically

fluctuates in a middle-income trap, as described in Proposition 4. Figure 5 plots four

trajectories in the time series described in Proposition 4. Trajectory A in Figure 5

corresponds to a perpetual growth path. Trajectories B and C stand for trajectories

caught into middle-income traps from above and from below, respectively. Finally,

trajectory D is a typical path caught into the poverty trap.

INSERT Figures 4 and 5 around here.

3.3 Another situation in Case 2: Breakdown of the middle-
income trap

When the trapping interval collapses due to some possible change in parameters, the

economy is expected to escape the middle-income region in the long run so that it

eventually either gets caught in the poverty trap or goes onto a perpetual growth

path. Such cases occur, rather than (9), if

T2(θ) < k̄1 and/or k̄2 < T1(θ).

In the rest of this subsection, we focus on the following case:

T2(θ) < k̄1 and k̄2 < T1(θ). (12)

See Figure 6 for this situation and Figure 7 for enlargement.

INSERT Figure 6 and Figure 7 around here.

Lemma 3. The set of parameter values that satisfy (12) is not empty.
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Proof. See Appendix.

Proposition 5. Let β2 > β1 > 1 and β1 + β2 < β1β2 be given. Then, for some open

set of parameter values, T : [k̄1, k̄2] → R+ is topologically chaotic in the sense that

there exists an invariant Cantor set Λ ⊂ [k̄1, k̄2] such that T|Λ : Λ → Λ is topologically

conjugate to the one-sided full-shift on two symbols. Furthermore, for such Λ and

any k0 ∈ [k̄1, k̄2] \ Λ, either limn→∞ T n(k0) = 0 or limn→∞ T n(k0) = ∞ holds.

Proof. From Lemma 3, we can take a set of parameter values satisfying (12). Using

variable transformation

xt = v(kt) =
log(kt/k̄1)

log(k̄2/k̄1)
, (13)

we obtain a piecewise linear mapping

m : R → R,

xt+1 = m(xt) =

{
m1(xt) = β1xt if xt ≤ c,

m2(xt) = 1 + β2(xt − 1) if c < xt,

where v ◦ T (kt) = m ◦ v(kt) and c = v(θ) ∈ (0, 1), indicating that T is topologically

equivalent to m. Consider points in the unit interval I = [0, 1] that remain under

iteration of m. Because 1/β1 + 1/β2 < 1, there are two closed subintervals I0 =

[0, 1/β1] and I1 = [1 − β2, 1] such that I0 ∩ I1 = ϕ and I0 ∪ I1 ⊂ τ(Ii) (i = 0, 1)

(horseshoe condition). Furthermore, it holds that τ ′(x) ≥ β1 > 1 for all x ∈ I0 ∪
I1 (hyperbolicity). See Figure 8. Thus, according to the standard argument of

elementary dynamical systems theory (see e.g. Guckenheimer and Holmes 1983),

there exists a closed m-invariant subset Λ = ∩n≥0T
−n(I0∪I1) = {x ∈ I0∪I1 |T n(x) ∈

I0 ∪ I1, n ≥ 0} ⊂ I0 ∪ I1 as stated in the proposition. The trajectories that go to

positive infinity correspond to high growth paths, whereas the trajectories thatgo to

negative infinity correspond to those caught in the poverty trap.

INSERT Figure 8 around here.

The invariant set Λ in Proposition 5 corresponds to the one-dimensional version

of Smale’s horseshoe. This suggests the possibility that the economy starting in the

middle range exhibits a transiently chaotic behavior before it either gets caught in the
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poverty trap or goes onto a perpetual growth path. The destination that the economy

ends up with can be highly random because the chaotic invariant set scrambles the

nearby points. In their numerical study on endogenous business cycles, Asano et al.

(2020) called this the “pinball effect” in the middle-income trap. Figure 9 shows how

two initial states that are different but close to each other lead to different final states

with transiently chaotic fluctuations.

INSERT Figure 9 around here.

3.4 Case 3: The occurrence of chaotic behaviors in the middle-
income trap

Case 3 is the intermediate case between Cases 1 and 2. As in Case 2, the map given

by (6) is valid for Case 3. The situation in Case 3 differs from that in Case 2 in that

branch T1 of map (6) becomes concave, whereas T2 remains convex because β2 >

1 > β1 > 0. Consequently, several situations occur depending on the configuration

of potential steady states k̄i (i = 1, 2) and the threshold θ.

Because we are interested in the occurrence of the middle-income trap, we focus

on the situations wherein a trapping interval appears. By the concavity of T1 and T2,

we can observe that the following inequality suffices to assure the existence of such a

trapping interval for Case 3:

θ < k̄1 and T1(θ) < k̄2 (14)

or equivalently, (
α1A1

α2A2

) 1
β2−β1

< (s(1− α1)A1)
1

1−β1 and (15)

s(1− α1)A1

(
α1A1

α2A2

) β1
β2−β1

< (s(1− α2)A2)
1

1−β2 . (16)

Lemma 4. Let β2 > 1 > β1 > 0 be fixed. Then the parameters that satisfy the

inequalities given by (14) is not empty. Thus, there exists a trapping interval (or

middle-income trap) M = [T2(θ), T1(θ)] such that T (M) ⊂ M .

Proof. See Appendix.
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As T (0) = T1(0) = 0 and limk→+0 T
′
1(k) = +∞, the origin is an unstable (i.e.,

repelling) steady state in Case 3. This implies that the poverty trap associated with

the origin does not exist in this case.

Lemma 5. For β2 > 1 > β1 > 0, the origin of T given by (6) is always a repelling

steady state.

Let us summarize what we have observed thus far.

Proposition 6. Assume that β2 > 1 > β1 > 0. Then there exists some open set

of parameter values for which the economy represented by (6) simultaneously exhibits

middle-income traps and perpetual growth paths, but without a poverty trap.

Proof. From Lemma 4 we can find parameters that satisfy the inequalities given by

(14), which implies the existence of a trapping interval (middle-income trap). As all

inequalities appearing in Lemma 4 are strict, any mapping T with slightly perturbed

parameters also exhibits a middle-income trap. The non-existence of poverty traps

follows from Lemma 5. For perpetual growth paths, just consider that T ′(k̄2) =

T ′
2(k̄2) > 1 because of convexity of T2.

Figure 10 graphically represents the meaning of Proposition 6.

INSERT Figure 10 around here.

The relationship between the final states and initial conditions presented in Propo-

sition 6 can be roughly summarized by the following proposition:

Proposition 7. Assume that β2 > 1 > β1 > 0 and let the parameters satisfy (14).

Then, two cases typically occur depending on the initial condition:

(i) Persistent fluctuations in the middle-income trap; for k0 ∈ (0, k̄2), the economy

becomes trapped in an interval where it exhibits persistent fluctuation.

(ii) Perpetual growth; for k0 > k̄2, the economy diverges to infinity.
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The following is the intuition behind Proposition 7. In this case two threshold

values of k exist: the first one is θ representing the switching point of technology,

and the second one is k̄2 standing for the unstable steady state under the technology

with increasing marginal productivity of capital. For k < θ, the economy’s behavior

is essentially the same as the standard Solow type model. For k ∈ [θ, k̄2), because the

marginal productivity of capital is low, the economy shrinks. However, for k > k̄2

the marginal productivity of capital is high enough to promote capital accumulation.

Further, the marginal productivity increases as capital accumulates, and therefore

the economy grows perpetually.

Next, the study examines, in detail, what happens in the middle-income trap. We

show that chaotic dynamics in the middle-income trap are possible in Case 3. To

verify this, the same variable transformation is conducted as performed for Case 2 to

obtain the mapping τ : I → I given by (11), with only difference in β1 ∈ (0, 1) rather

than β1 > 1.

Similar to Case 2, the range of threshold c for τ in Case 3 is limited to some

subinterval of I = [0, 1].

Lemma 6. Let β2 > 1 > β1 > 0 be fixed. Then, the threshold c = h(θ) of mapping

(11) is in (1− 1/β2, 1) ⊂ (0, 1).

Proof. Translating (14) through the conjugacy h implies that h(T1(θ)) = 1 < h(k̄i)

for i = 1, 2. As h(k̄1) = (1− cβ1)/(1− β1) and h(k̄2) = cβ2/(β2 − 1), rearranging the

inequalities above yields (β2 − 1)/β2 < c < 1.

Let us consider the mapping τ : I = [0, 1] → I given by (11). Let IL = [0, c] (left

interval) and IR = (c, 1] (right interval) with c ∈ (0, 1). We consider some simplest

possible patterns of trajectories generated by τ . Specifically, we find a trajectory

that visits the left interval successively only once and the right interval successively

at least n times.

Lemma 7. Any trajectory generated by τ stays successively at most once in the left

interval IL if c < 1/(1 + β1).

Proof. Requiring τ1(0) = 1− cβ1 > c, we obtain the result.
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Note that this condition implies that τ(IL) ⊂ IR, which assures that any trajectory

visits IR at least once immediately after it has visited IR.

Lemma 8. Any trajectory generated by τ stays successively at least n times (n ≥ 2)

in the right interval IR, if

c <
βn−1
2

1 + β1β
n−1
2 +

∑n−1
j=1 β

j
2

. (17)

Proof. See Appendix.

For the first step, we identify the condition under which the chaotic behavior

occurs when the trajectory of τ successively visits IL at most once and IR at least

once.

Proposition 8. Let β2 > 1 > β1 > 0 and 1 < β1β2 < 1 + β1. Then τ is chaotic

for any c ∈ ((β2 − 1)/β2, 1/(1 + β1)), and so is T|M : M → M , where M is the

middle-income trap.

Proof. See Appendix.

Next, we extend the above result to a slightly general pattern where the trajectory

stays more often in the right interval.

Proposition 9. Let β2 > 1 > β1 > 0 and 1 < β1β
n
2 < 1 + β1β

n−1
2 for n ≥ 2. Then τ

is chaotic for any

c ∈

(
β2 − 1

β2

,
βn−1
2

1 + β1β
n−1
2 +

∑n−1
j=1 β

j
2

)
,

and so is T|M : M → M .

Proof. Similar to Proposition 8, we have (17) from Lemma 8, and we have (β2 −
1)/β2 < c < 1 from Lemma 6. In order that such c can be taken, it must hold that

β2 − 1

β2

<
βn−1
2

1 + β1β
n−1
2 +

∑n−1
j=1 β

j
2

,

which is equivalent to β1β
n
2 < 1 + β1β

n−1
2 . Furthermore, as any trajectory of τ visits

IL successively at most once and IR at least n times, it follows for any initial condition

x0 ∈ (0, 1) that

(τn+1)′(x0) ≥ β1β
n
2 > 1
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by assumption. Thus, τ is eventually expanding.

INSERT Figure 11 around here.

Proposition 7, along with Propositions 8 and 9, suggests that even when only one

out of the two technologies exhibits moderately strong externalities, chaotic dynamics

in the middle-income trap can be observed for a large set of parameter values. This

result is in sharp contrast to Proposition 1, where no chaotic behavior occurs virtually.

4 Concluding remarks

This paper introduced externalities in production into an OLG model with endoge-

nous technology choice. Then, how the introduction affected macroeconomic fluctu-

ations was analyzed. Specifically, we considered two types of production technologies

that allow for the existence of external effects of capital and specified them as the

Cobb-Douglas type. Umezuki and Yokoo (2019a) showed that, under the Cobb-

Douglas specification, technology choice can generate periodic fluctuation with any

lengths but never create chaotic fluctuations. In contrast, in the present model, if one

of either technology exhibits a moderate degree of increasing marginal productivity

of capital, the economy can exhibit a chaotic behavior.

The present analysis has some limitations. In analyzing technology choice, two

production technologies are specified as the Cobb-Douglas type. However, this as-

sumption may be slightly restrictive, and adopting a broader class of production

technology, for example, the CES type, would be worthwhile. Asano et al. (2020,

2021) analyzed the dynamic implications of technology choice under the setting of

CES technologies. However, they did not consider external effects in production.

Thus, an analysis using CES technologies with external effects will be our future

task. Moreover, Umezuki and Yokoo (2019b) analyzed the case of a continuum of

Cobb-Douglas type technologies and showed that chaotic dynamics can appear for a

wide set of parameters. An interesting extension is to incorporate into our model a

continuum of technologies with production externalities.
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Appendix

Appendix A: Microfoundation of technology choice behavior

This appendix provides a microfoundation for technology choice behavior in our

model.

Our basic setup follows that of Matsuyama (2007). The economy begins in period

1, and continues over time toward infinity. The goods and factor markets are com-

petitive. This economy has J types of production technologies. A type i technology

converts mi units of the final goods into miRi units of capital, and the final good is

produced by Yit = Fi(kt, Kt, Lt). Here, Kt and Lt are capital and labor at time t, re-

spectively, and kt is the capital-labor ratio capturing capital deepening externalities.

The private marginal return of capital is

∂

∂Kt

Fi(kt, Kt, Lt) ≡ MPKi.

We assume that capital depreciates completely in one period.

In each period, a unit of a new generation is born and lives in two periods: young

and old periods. Each agent is assumed to have a long-linear utility. Thus, the saving

rate is constant and independent of the real interest rate. We denote the savings rate

by s. Young agents have two options in managing their saving: becoming either a

lender or an entrepreneur. An agent who chooses to become a lender lends savings

and obtains rt+1swt when old, where rt+1 denotes the real interest rate. An agent

who chooses to become an entrepreneur selects one technology from the two types of

technologies. Because an entrepreneur’s wealth is equal to their saving, if mi > swt,

they have to borrow mi − swt. However, due to the presence of capital market

frictions, each entrepreneur can pledge only up to a constant fraction of the project

revenue for the repayment, λimiRi · MPKi, where 0 ≤ λi ≤ 1. The fraction, λi,

differs between the two types of projects. Specifically, the entrepreneur’s borrowing

constraint is represented by

λimiRi ·MPKi ≥ rt+1(mi − swt) for i = 1, ..., J. (18)

As λi becomes smaller, the credit constraint becomes stronger.
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Because an entrepreneur is always able to choose to become a lender, earnings

from investment should not to be smaller than those from lending:

Ri ·MPKi ·mi − rt+1(mi − swt) ≥ rt+1swt, (19)

that is,

rt+1 ≤ Ri ·MPKi for i = 1, ..., J.

(18) can be rewritten as follows:

rt+1 ≤
Ri ·MPKi(
1− sw

mi

)
/λi

for i = 1, ..., J.

Defining

Φi ≡
Ri ·MPKi

max
{
1,
(
1− swt

mi

)
/λi

} ,
we can summarize (18) and (19) as

rt+1 ≤ Φi for i = 1, ..., J.

Let us assume here that rt+1 < Φi. Then, all agents become entrepreneurs and

adopt type i technology, and this economy has no lender. Clearly, this cannot be an

equilibrium, and we have rt+1 ≥ Φi. Let us next suppose that rt+1 > Φi for some i.

Then, at least one of (18) and (19) for i is not satisfied; thus, type i is not adopted.

In equilibrium, there must be a positive investment; it follows

rt+1 = max {Φ1, ...,ΦJ} . (20)

Evidently, the technology yielding the highest value in the right-hand-side of (20) is

adopted.

In this study, we consider a special case of (20):

J = 2, R1 = R2 = 1, λ1 = λ2 = λ and d1 = d2 = d.

In this case, (20) reduces to

rt+1 = max

{
R ·MPK1

max
{
1,
(
1− swt

m

)
/λ
} , R ·MPK2

max
{
1,
(
1− swt

m

)
/λ
}}
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=
R

max
{
1,
(
1− swt

m

)
/λ
}max {MPK1,MPK2} .

Thus, it is confirmed that the technology with higher marginal productivity of capital

is selected (which is our technology choice assumption in the main text). Note that,

although the interest rate may be reduced by the existence of credit constraints, it

does not affect our analysis because the saving rate in the present model is indepen-

dent of the interest rate.

Appendix B: Proofs

Proof of Claim 2. Let α1A1/α2A2 = 1 and 1 > α2 > α1. Then, all we need to show

is that the inequalities

s(1− α2)A2 < 1 < s(1− α1)α2A2/α1

are possible. Rewriting the above expression as

α1

α2(1− α1)
< sA2 <

1

1− α2

,

we notice that α2/α1(1 − α1) < 1/(1 − α2) always holds because α2 > α1. As sA2

can take any positive value, the claim is proven.

Proof of Lemma 2 . Let α1A1/α2A2 = 1 and 1 > α2 > α1. Then, the first inequality

in condition (9) can be rewritten as(
1

1− α2

)β1−1
β1

(
α1

α2(1− α1)

) 1
β1

< sA2.

Similarly, the second inequality in condition (9) is expressed as

sA2 <

(
1

1− α2

) 1
β2

(
α1

α2(1− α1)

)β2−1
β2

.

Letting V = 1/(1 − α2) and W = α1/α2(1 − α1), we observe that V > W as

α2 > α1. Because sA2 can be taken as any positive value, it suffices to show that

V 1−1/β1W 1/β1 < V β2W 1−1/β2 or V γ < W γ, where γ = 1− 1/β1− 1/β2. Thus, the last

inequality holds if γ < 0 or 1/β1 + 1/β2 > 1.
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Proof of Lemma 3. Using the same notations as in the proof of Claim 2, it suffices to

show that V 1−1/β1W (1/β1) > V β2W 1−1/β2 or (V/W )γ > 1, where γ = 1−1/β1−1/β2.

As V/W > 1, the last inequality holds if we take β1 and β2 (β2 > β1 > 1) such that

γ > 0 or 1/β1 + 1/β2 < 1.

Proof of Lemma 4. Let s ∈ (0, 1) and α2 ∈ (0, 1) (hence, η2 = β2 − α2) be fixed. Let

ai (i = 1, 2) be any numbers such that 1 < a1 < a2. Let α1A1/α2A2 = 1. Then,

inequalities (15) and (16) can be reduced to

1 < s(1− α1)α2A2/α1 < (s(1− α2)A2)
1

1−β2 .

Solving the following simultaneous equations for A2 and α1,

a1 = s(1− α1)α2A2/α1,

a2 = (s(1− α2)A2)
1

1−β2 ,

we obtain

A2 =
1(

s(1− α2)a
β2−1
2

) > 0 and α1 =
1

1 +
(

1−α2

α2

)
a1a

β2−1
2

∈ (0, 1),

which verifies the assertion.

Proof of Lemma 8. Let us begin with τ1(0) = 1− cβ1 > c for at least once in IR. To

ensure that the trajectory to stay successively twice in IR, we require

τ2(τ1(0)) = β2(1− cβ1 − c) = β2 − cβ1β2 − cβ2 > c.

To ensure that the trajectory to stay successively at least three times in IR, we have

τ 22 (τ1(0)) = β2(β2 − cβ1β2 − cβ2 − c) = β2
2 − cβ1β

2
2 − cβ2

2 − cβ2 > c.

Repeating this up to n times, we obtain

τn−1
2 (τ1(0)) = βn−1

2 − cβ1β
n−1
2 − cβn−1

2 − cβn−2
2 − · · · − cβ2

2 − cβ2

= βn−1
2 − cβ1β

n−1
2 − cβ2

(
n−2∑
j=0

βj
2

)
> c.

Solving the last inequality for c yields the result.
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Proof of Proposition 8. From Lemma 7, we have c < 1/(1 + β1). Furthermore, from

Lemma 6, (β2 − 1)/β2 < c. For such a c to be taken, we require

β2 − 1

β2

<
1

1 + β1

,

which is equivalent to β1β2 < 1 + β1. Furthermore, because any trajectory (i.e.,

irrelevant to the initial conditions) of τ visits IL successively at most once and IR at

least once, it follows for any initial condition x0 ∈ (0, 1) that

(τ 2)′(x0) ≥ β1β2 > 1,

where the last inequality follows by assumption. Thus, τ is eventually expanding and

hence chaotic in the sense of Lasota and Yorke (1973). By conjugacy h, T is also

chaotic.
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Figure 1: Graphs of r1, r2, T1, and T2 with β2 > 1 > β1. The r2-curve is upward-
sloping due to externality.
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Figure 2: Coexistence of a poverty trap, middle-income trap, and high growth paths.
β2 > β1 > 1 and β1 + β2 > β1β2. Parameters: A2 = 5, α1 = 0.55, α2 = 0.65,
η1 = 0.65, η2 = 0.7, s = 0.45, A1 = α2A2/α1 ≈ 5.91, β1 = α1 + η1 = 1.2, and
β2 = α2 + η2 = 1.35.
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Figure 3: Piecewise-linearization on the middle-income trap for β2 > β1 > 1 and
β1 + β2 > β1β2. The parameter values are the same as in Figure 2.
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Figure 4: A trajectory converging into the middle-income trap and eventually fluctu-
ating in that region in a chaotic manner. The parameters are the same as in Figure
2.
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Figure 5: Time series corresponding to Proposition 4. A: a perpetual growth path.
B and C: trajectories getting caught into the middle-income trap from above and
below, respectively. D: a trajectory to the poverty trap. The parameters are the
same as in Figure 2.
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Figure 6: Collapse of the middle-income trap in Case 2. β2 > β1 > 1 and β1 + β2 <
β1β2. In this case, a typical trajectory starting in [k̄1, k̄2] eventually gets caught in
the poverty trap or goes onto a high growth path. Parameters: A2 = 5, α1 = 0.45,
α2 = 0.65, η1 = 0.1, η2 = 0.7, s = 0.45, A1 = α2A2/α1 ≈ 5.91, β1 = α1 + η1 = 2.05,
and β2 = α2 + η2 = 3.15
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Figure 7: Enlargement of Figure 6.
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Figure 8: Piecewise-linearization of Figure 6 on the collapsed middle-income trap.
The chaotic invariant set Λ is contained in I0 ∪ I1. The iteration of the mapping
brings any initial point that finally falls into the interval (1/β1, c) to the high growth
path and any initial point that finally falls into (c, 1− β2) to the poverty trap.
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Figure 9: Two different but close to each other initial states near the chaotic in-
variant set Λ lead to different final states with transiently chaotic fluctuations. The
parameters are the same as in Figure 6.
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Figure 10: Coexistence of a middle-income trap and high growth paths. There is
no poverty trap associated with the origin, which turns to a repeller in Case 3:
β2 > 1 > β1 > 0. Parameters: A2 = 5, α1 = 0.55, α2 = 0.65, η1 = 1.5, η2 = 2.5,
s = 0.45, A1 = α2A2/α1 ≈ 7.22, β1 = α1 + η1 = 0.55, and β2 = α2 + η2 = 1.35.
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Figure 11: Piecewise-linearization on the middle-income trap for β2 > 1 > β1 > 0.
The parameter values are the same as in Figure 10.

36


