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Abstract 
 

The paper examines the performance of four multivariate volatility models, namely CCC, 

VARMA-GARCH, DCC, BEKK and diagonal BEKK, for the crude oil spot and futures 

returns of two major benchmark international crude oil markets, Brent and WTI, to calculate 

optimal portfolio weights and optimal hedge ratios, and to suggest a crude oil hedge strategy. 

The empirical results show that the optimal portfolio weights of all multivariate volatility 

models for Brent suggest holding futures in larger proportions than spot. For WTI, however, 

DCC, BEKK and diagonal BEKK suggest holding crude oil futures to spot, but CCC and 

VARMA-GARCH suggest holding crude oil spot to futures. In addition, the calculated 

optimal hedge ratios (OHRs) from each multivariate conditional volatility model give the 

time-varying hedge ratios, and recommend to short in crude oil futures with a high proportion 

of one dollar long in crude oil spot. Finally, the hedging effectiveness indicates that diagonal 

BEKK (BEKK) is the best (worst) model for OHR calculation in terms of reducing the 

variance of the portfolio. 

 

Keywords: Multivariate GARCH, conditional correlations, crude oil prices, optimal hedge 
ratio, optimal portfolio weights, hedging strategies. 
 

JEL Classifications: C22, C32, G11, G17, G32. 
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1.  Introduction 

 

As the structure of world industries changed in the 1970s, the expansion of the oil market has 

continually grown to have now become the world’s biggest commodity market. This market 

has developed from a primarily physical product activity into a sophisticated financial 

market. Over the last decade, crude oil markets have matured greatly, and their range and 

depth could allow a wide range of participants, such as crude oil producers, crude oil physical 

traders, and refining and oil companies, to hedge oil price risk. Risk in the crude oil 

commodity market is likely to occur due to unexpected jumps in global oil demand, a 

decrease in the capacity of crude oil production and refinery capacity, petroleum reserve 

policy, OPEC spare capacity and policy, major regional and global economic crises risk 

(including sovereign debt risk, counter-party risk, liquidity risk, and solvency risk), and 

geopolitical risks.  

 

A futures contract is an agreement between two parties to buy and sell a given amount of a 

commodity at an agreed upon certain date in the future, at an agreed upon price, and at a 

given location. Furthermore, a futures contract is the instrument primarily designed to 

minimize one’s exposure to unwanted risk. Futures traders are traditionally placed in one of 

two groups, namely hedgers and speculators. Hedgers typically include producers and 

consumers of a commodity, or the owners of an asset, who have an interest in the underlying 

asset, and are attempting to offset exposure to price fluctuations in some opposite position in 

another market. Unlike hedgers, speculators do not intend to minimize risk but rather to make 

a profit from the inherently risky nature of the commodity market by predicting market 

movements. Hedgers want to minimize risk, regardless of what they are investing in, while 

speculators want to increase their risk and thereby maximize profits. 

 

Conceptually, hedging through trading futures contracts is a procedure used to restrain or 

reduce the risk of unfavourable price changes because cash and futures prices for the same 

commodity tend to move together. Therefore, changes in the value of a cash position are 

offset by changes in the value of an opposite futures position. In addition, futures contracts 

are favoured as a hedging tool because of their liquidity, speed and lower transaction costs.  
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Among the industries and firms that are more likely to use a hedging strategy is the oil and 

gas industry. Firms will hedge only if they expect that an unfavourable event will arise. Knill 

et al. (2006) suggested that if an oil and gas company uses futures contracts to hedge risk, 

they hedge only the downside risk. When an industry perspective is good (bad), it will scale 

down (up) on the futures usage, thereby pushing futures prices higher (lower). Hedging by 

the crude oil producers normally involves selling the commodity futures because producers or 

refiners use futures contracts to lock the futures selling prices or a price floor. Thus, they tend 

to take short positions in futures. At the same time, energy traders, investors or fuel oil users 

focusing to lock in a futures purchase price or price ceiling tend to long positions in futures. 

Daniel (2001) shows that hedging strategies can substantially reduce oil price volatility 

without significantly reducing returns, and with the added benefit of greater predictability and 

certainty. 

 

Theoretically, issues in hedging involve the determination of the optimal hedge ratio (OHR). 

One of the most widely-used hedging strategies is based on the minimization of the variance 

of the portfolio, the so-called minimum variance hedge ratio (see Chen et al. (2003) for a 

review of the futures hedge ratio, and Lien and Tse (2002) for some recent developments in 

futures hedging). With the minimum-variance criterion, risk management requires 

determination of the OHR (the optimal amount of futures bought or sold expressed as a 

proportion of the cash position). In order to estimate such a ratio, early research simply used 

the slope of the classical linear regression model of cash on the futures price, which assumed 

a time-invariant hedge ratio (see, for example, Ederington (1979), Figlewski (1985), and 

Myers and Thomson (1989)).  

 

However, it is now widely agreed that financial asset returns volatility, covariances and 

correlations are time-varying with persistent dynamics, and rely on techniques such as 

conditional volatility (CV) and stochastic volatility (SV) models.  Baillie and Myers (1991) 

claim that, if the joint distribution of cash prices and futures prices changes over time, 

estimating a constant hedge ratio may not be appropriate. In this paper, alternative 

multivariate conditional volatility models are used to investigate the time-varying optimal 

hedge ratio and optimal portfolio weights, and the performance of these hedge ratios is 

compared in terms of risk reduction. 



The widely used ARCH and GARCH models appear to be ideal for estimating time-varying 

OHRs, and a number of applications have concluded that such ratios seem to display 

considerable variability over time (see, for example, Cecchetti et al. (1988), Baillie and 

Myers (1991), Myers (1991), and Kroner and Sultan (1993)). Typically, the hedging model is 

constructed for a decision maker who allocates wealth between a risk-free asset and two risky 

assets, namely the physical commodity and the corresponding futures. OHR is defined as 

( ) (1 1OHR cov , | var |t t t t t ts f F f F− −= ) , where  and ts tf  are spot price and futures price, 

respectively, and  is the information set. Therefore, OHR  can be calculated given the 

knowledge of the time-dependent covariance matrix for cash and futures prices, which can be 

estimated using multivariate GARCH models.  

1tF − t

 

In the literature, research has been conducted on the volatility of crude spot, forward and 

futures returns. Lanza et al. (2006) applied the constant conditional correlation (CCC) model 

of Bollerslev (1990) and the dynamic conditional correlation (DCC) model of Engle (2002) 

for West Texas Intermediate (WTI) oil forward and futures returns. Manera et al. (2006) used 

CCC, the vector autoregressive moving average (VARMA-GARCH) model of Ling and 

McAleer (2003), the VARMA- Asymmetric GARCH model of McAleer et al. (2009), and 

DCC to spot and forward return in the Tapis market. Chang et al. (2009a and 2009b) 

estimated multivariate conditional volatility and examined volatility spillovers for the returns 

on spot, forward and futures returns for Brent, WTI, Dubai and Tapis to aid risk 

diversification in crude oil markets.  

 

For estimated time-varying hedge ratios using multivariate conditional volatility models, 

Haigh and Holt (2002) modelled the time-varying hedge ratio among crude oil (WTI), 

heating oil and unleaded gasoline futures contracts of crack spread in decreasing price 

volatility for an energy trader with the BEKK model of Engle and Kroner (1995) and linear 

diagonal VEC model of Bollerslev et al 1988, and accounted for volatility spillovers. 

Alizadeh et al. (2004) examined appropriate futures contracts, and investigated the 

effectiveness of hedging marine bunker price fluctuations in Rotterdam, Singapore and 

Houston using different crude oil and petroleum futures contracts traded on the New York 

Mercantile Exchange (NYMEX) and the International Petroleum Exchange (IPE) in London, 

using the VECM and BEKK models. Jalali-Naini and Kazemi-Manesh (2006) examined 

5 
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hedge ratios using weekly spot prices of WTI and futures prices of crude oil contracts one 

month to four months on NYMEX. The results from the BEKK model showed that the OHRs 

are time varying for all contracts, and higher duration contracts had higher perceived risk, a 

higher OHR mean, and standard deviations.  

 

Recently, Chang et al. (2010) estimated OHR and optimal portfolio weights of the crude oil 

portfolio using only the VARMA-GARCH model. However, they did not focus on the 

optimal portfolio weights and optimal hedging strategy based on a wide range of multivariate 

conditional volatility models, and did not compare their results in terms of risk reduction or 

hedge strategies. As WTI and Brent are major benchmarks in the world of international 

trading and the reference crudes for the USA and North Sea, respectively, the empirical 

results of this paper show different optimal portfolio weights, optimal hedging strategy and 

their explanation to aid in risk management in crude oil markets. 

 

The purpose of the paper is three-fold. First, we estimate alternative multivariate conditional 

volatility models, namely CCC, VARMA-GARCH, DCC, BEKK and diagonal BEKK for the 

returns on spot and futures prices for Brent and WTI markets. Second, we calculate the 

optimal portfolio weights and OHRs from the conditional covariance matrices for effective 

optimal portfolio design and hedging strategies. Finally, we investigate and compare the 

performance of the OHRs from the estimated multivariate conditional volatility models by 

applying the hedging effectiveness index. 

 

The structure of the remainder of the paper is as follows. Section 2 discusses the multivariate 

GARCH models to be estimated, and the derivation of the OHR and hedging effective index. 

Section 3 describes the data, descriptive statistics, unit root test and cointegration test 

statistics. Section 4 analyses the empirical estimates from empirical modelling. Some 

concluding remarks are given in Section 5. 

 

2. Econometric Models 

   

2.1 Multivariate Conditional Volatility Models 

 



This section presents the CCC model of Bollerslev (1990), VARMA-GARCH model of Ling 

and McAleer (2003), DCC model of Engle (2002), BEKK model of Engle and Kroner (1995) 

and Diagonal BEKK. The first two models assume constant conditional correlations, while 

the last two models accommodate dynamic conditional correlations.  

 

Consider the CCC multivariate GARCH model of Bollerslev (1990):  

 

( )1t t ty E y F tε−= +   ,   t tD tε η=                                              (1) 

( )1var |t t t tF D Dε − = Γ  

 

where , ( )1 ,...,t t mty y y ′= ( 1 ,...,t t mtη η η )′=  is a sequence of independently and identically 

distributed (i.i.d.) random vectors,  is the past information available at time t, tF

( 1 2 1 2
1diag ,...,t )mD h h= , m is the number of returns, and 1,...,t n= , (see, for example, McAleer 

(2005) and Bauwens et al. (2006)). As ( ) ( )1t t t tE F Eηη ηη−′ ′Γ = = , where { }ijρΓ =  for 

, the constant conditional correlation matrix of the unconditional shocks, , 1,...,i j m= tη , is 

equivalent to the constant conditional covariance matrix of the conditional shocks, tε , from 

(1), t t t t t tD Dε ε ηη′ ′= , ( )1 2diag tD Q= t , and ( )1ε ε −′ = = Γt t t t t tE F Q D D

n

, where  is the 

conditional covariance matrix. The conditional covariance matrix is positive definite if and 

only if all the  conditional variance are positive and 

tQ

Γ  is positive definite. 

 

The CCC model of Bollerslev (1990) assumes that the conditional variance for each return, 

, , follows a univariate GARCH process, that is ith 1,..,i = m

,h

 

2
,

1 1

r s

it i ij i t j ij i t j
j j

h ω α ε β− −
= =

= + +∑ ∑  ,                                     (2) 

 

where ijα  represents the ARCH effect, or short run persistence of shocks to return i, ijβ  

represents the GARCH effect, and 
1 1

r s

ij ij
j j
α β

= =

+∑ ∑  denotes the long run persistence.  
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In order to accommodate interdependencies of volatility across different assets and/or 

markets, Ling and McAleer (2003) proposed a vector autoregressive moving average 

(VARMA) specification of the conditional mean, and the following specification for the 

conditional variance: 

 

( )1t t tY E Y F tε−= +                                                         (3) 

( )( ) ( )t tL Y Lμ εΦ − = Ψ                                                     (4) 

t tD tε η=                                                                 (5) 

,
1 1

r s

t t l t l l i t
l l

H W A B Hε l− −
= =

= + +∑ ∑r                                               (6) 

 

where ,  and  are  matrices, with typical elements tW lA lB m m× ijα  and ijβ , respectively. 

( )1 ,...,t t mtH h h ′= , , ( )2 2
1 ,...t mtε ε ε ′=

r ( ) 1 ... p
m pL I LΦ = −Φ − −Φ L  and ( ) 1 ...mL I LΨ = −Ψ −  

 are polynomials in L, the lag operator. It is clear that when  and  are diagonal 

matrices, (6) reduces to (2). Theoretically, GARCH(1,1) captures infinite ARCH process 

(Bollerslev (1986)). However, on a practical level, a multivariate GARCH model with a 

greater number of lags can be problematic. 

q
qL−Ψ lA lB

 

The VARMA-GARCH model assumes that negative and positive shocks of equal magnitude 

have identical impacts on the conditional variance. McAleer et al. (2009) extended the 

VARMA-GARCH to accommodate the asymmetric impacts of the unconditional shocks on 

the conditional variance, and proposed the VARMA-AGARCH specification of the 

conditional variance as follows: 

 

1 1 1

r r s

t i t i i t i t i j
i i j

t jH W A C I B Hε ε− − − −
= = =

= + + +∑ ∑ ∑r r  ,                                  (7) 

 

where  are  matrices for  with typical element iC m m× 1,..,i = r ijγ , and ( )1diag ,...,t t mtI I I= ,  

is an indicator function, given as  
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( )
0, 0
1, 0

it
it

it

I
ε

η
ε

>⎧
= ⎨ ≤⎩

                                                     (8).  

 

If , (7) collapses to the asymmetric GARCH (or GJR) model of Glosten et al. (1992). 

Moreover, VARMA-AGARCH reduces to VARMA-GARCH when  for all i. If 

 and  and  are diagonal matrices for all i and j, then VARMA-AGARCH reduces 

to the CCC model. The structural and statistical properties of the model, including necessary 

and sufficient conditions for stationarity and ergodicity of VARMA-GARCH and VARMA-

AGARCH, are explained in detail in Ling and McAleer (2003) and McAleer et al. (2009), 

respectively. The parameters of model (1)-(7) are obtained by maximum likelihood 

estimation (MLE) using a joint normal density. When 

1m =

0iC =

0iC = iA jB

tη  does not follow a joint multivariate 

normal distribution, the appropriate estimator is QMLE. 

 

The assumption that the conditional correlations are constant may seem unrealistic in many 

empirical results, particularly in previous studies about crude oil returns (see, for example, 

Lanza et al. (2006), Manera et al. (2006), and Chang et al. (2009a, 2009b, 2010)). In order to 

make the conditional correlation matrix time dependent, Engle (2002) proposed a dynamic 

conditional correlation (DCC) model, which is defined as 
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     1| (0,−t t t )y F Q      ,     1,2,...,=t n                           (9) 

,= Γt t t tQ D D                                                          (10) 

 

where ( 1 2 1 2
1diag ,...,t )mD h h=  is a diagonal matrix of conditional variances, and  is the 

information set available at time t. The conditional variance, , can be defined as a 

univariate GARCH model, as follows: 

tF

ith

 

,
1 1

p q

it i ik i t k il i t l
k l

h ω α ε β ,h− −
= =

= + +∑ ∑  .                                         (11) 

 

 



If tη  is a vector of i.i.d. random variables, with zero mean and unit variance,  in (12) is the 

conditional covariance matrix (after standardization, 

tQ

it it ityη = h ). The itη  are used to 

estimate the dynamic conditional correlations, as follows: 

 

{ } { }1/2 1/2( ( ) ( ( )t t t tdiag Q Q diag Q−Γ = −

t

  
                                 (12) 

 

where the k  symmetric positive definite matrix Q  is given by k×

 

1 2 1 1 1 2(1 )t t tQ Qθ θ θ η η θ 1tQ− −′= − − + + −  ,                                (13) 

 

in which 1θ  and 2θ  are scalar parameters to capture the effects of previous shocks and 

previous dynamic conditional correlations on the current dynamic conditional correlation, 

and 1θ  and 2θ  are non-negative scalar parameters satisfying 1 2 1+ <θ θ , which implies that 

. When 0>tQ 1 2 0θ θ= = ,  in (13) is equivalent to CCC. As  is a conditional on the 

vector of standardized residuals, (13) is a conditional covariance matrix, and 

tQ tQ

Q  is the k k×  

unconditional variance matrix of tη . DCC is not linear, but may be estimated simply using a 

two-step method based on the likelihood function, the first step being a series of univariate 

GARCH estimates and the second step being the correlation estimates (see Caporin and 

McAleer (2009) for further details and caveats). 

 

An alternative dynamic conditional model is BEKK, which has the attractive property that the 

conditional covariance matrices are positive definite. However, BEKK suffers from the so-

called “curse of dimentionality” (see McAleer et al. (2009) for a comparison of the number of 

parameters in various multivariate conditional volatility models). The BEKK model for 

multivariate GARCH(1,1) is given as: 

 

1 1 1t t t tε ε− − −′ ′ ′ ′= +H C C A A + B H B  ,                                         (14) 

 

where the individual element for the matrices C ,  and B  matrices are given as A
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11 12

21 22

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A
a a
a a

,        11 12

21 22

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

B
b b
b b

,        11

21 22

0⎡ ⎤
= ⎢ ⎥
⎣ ⎦

C
c
c c

 

 

with , where 
1 1 1 1

(A A ) (B B )
= = = =

⊗ + ⊗∑ ∑ ∑ ∑q K q K
kj kj kj kjj k j k

⊗  denotes the Kronecker product 

of two matrices, are less than one in the modulus for covariance stationary (Silvennoinen and 

Teräsvirta (2008)). In this diagonal representation, the conditional variances are functions of 

their own lagged values and own lagged returns shocks, while the conditional covariances are 

functions of the lagged covariances and lagged cross-products of the corresponding returns 

shocks. Moreover, this formulation guarantees  to be positive definite almost surely for all 

t. The BEKK(1,1) model gives 

tH

(5 1) 2+N N  parameters. For further details and a comparison 

between BEKK and DCC, see Caporin and McAleer (2008, 2009). In order to reduce the 

number of estimated parameters, by setting  where  is diagonal matrix,  (14) 

becomes 

B = AD D

 

1 1 1 1[− − − −′ ′ ′ ′ ′= +t t t t tE ]ε ε ε εH C C A A + D A A D                                   (15) 

 

with ,  for stationary. The parameters of the covariance equation (2 2 1+ <ii iia b 1, 2=i , , ≠ij th i j ) 

are products of the corresponding parameters of the two variance equations ( ).  ,ij th

,

 

2.2 Optimal Hedge Ratios and Optimal Portfolio Weights  

 

Market participants in futures markets choose a hedging strategy that reflects their attitudes 

toward risk and their individual goals. Consider the case of an oil company, which usually 

wants to protect exposure to crude oil price fluctuations. The return on the oil company’s 

portfolio of spot and futures position can be denoted as: 

 

, ,H t S t t F tR R Rγ= −  ,                                                       (15) 

 

where ,H tR  is the return on holding the portfolio between 1t −  and t , ,S tR  and ,F tR  are the 

returns on holding spot and futures positions between t and 1t − , and γ  is the hedge ratio, 
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that is, the number of futures contracts that the hedger must sell for each unit of spot 

commodity on which price risk is borne. 
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1

According to Johnson (1960), the variance of the returns of the hedged portfolio, conditional 

on the information set available at time t − , is given by 

 

( ) ( ) ( ) (2
, 1 , 1 , , 1 ,var | var | 2 cov , | var |H t t S t t t S t F t t t F t tR R R R Rγ γ− − −Ω = Ω − Ω + Ω )1−  ,      (16) 

 

where ,  and ( ), 1var |S t tR −Ω ( ), 1var |F t tR −Ω ( ), , 1cov , |S t F t tR R −Ω  are the conditional variance 

and covariance of the spot and futures returns, respectively. The OHRs are defined as the 

value of tγ  which minimizes the conditional variance (risk) of the hedged portfolio returns, 

that is, ( ), 1min var |
t H t tRγ −⎡ Ω⎣ ⎤⎦ . Taking the partial derivative of (16) with respect to tγ , 

setting it equal to zero and solving for tγ , yields the OHRt conditional on the information 

available at  (see, for example, Baillie and Myers (1991)): 1t −

 

( )
( )

, , 1
1

, 1

cov , |
|

var |
S t F t t

t t
F t t

R R
R

γ −∗
−

−

Ω
Ω =

Ω
                                             (17) 

 

where returns are defined as the logarithmic differences of spot and futures prices.  

 

From the multivariate conditional volatility model, the conditional covariance matrix is 

obtained, such that the OHR is given as: 

 

,
1

,

| SF t
t t

F t

h
h

γ ∗
−Ω =  ,                                                       (18) 

 

where  is the conditional covariance between spot and futures returns, and  is the 

conditional variance of futures returns. 

,SF th ,F th

 

In order to compare the performance of OHRs obtained from different multivariate 

conditional volatility models, Ku et al. (2007) suggest that a more accurate model of 



conditional volatility should also be superior in terms of hedging effectiveness, as measured 

by the variance reduction for any hedged portfolio compared with the unhedged portfolio. 

Thus, a hedging effective index (HE) is given as:  

 

var var
HE

var
unhedged hedged

unhedged

⎡ ⎤−
= ⎢ ⎥
⎢ ⎥⎣ ⎦

 ,                                            (19) 

 

where the variances of the hedge portfolio are obtained from the variance of the rate of 

return, ,H tR , and the variance of the unhedged portfolio is the variance of spot returns (see, 

for example, Ripple and Moosa (2007)). A higher HE indicates a higher hedging 

effectiveness and larger risk reduction, such that a hedging method with a higher HE is 

regarded as a superior hedging strategy.  

 

Alternatively, in order to construct an optimal portfolio design that minimizes risk without 

lowering expected returns, and applying the methods of Kroner and Ng (1998) and 

Hammoudeh et al. (2009), the optimal portfolio weight of crude oil spot/futures holding is 

given by:  

 

, ,
,

, ,2
F t SF t

SF t
S t SF t F t

h h
w

h h h ,

−
=

− +
                                                (20) 

and 

 

,

, , ,

,

0,               if   < 0       
,         if  0 <  0

1,               if   > 0       

SF t

SF t SF t SF t

SF t

w
w w w

w

⎧
⎪= ⎨
⎪
⎩

<                                         (21) 

 

where  ( ) is the weight of the spot (futures) in a one dollar portfolio of crude oil 

spot/futures at time t.  

,SF tw ,1 SF tw−
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3.  Data 

 

Daily synchronous closing prices of spot and nearby futures contract (that is, the contract for 

which the maturity is closest to the current date) of crude oil prices from two major crude oil 

markets, namely Brent and WTI, are used in the empirical analysis. The 3,132 price 

observations from 4 November 1997 to 4 November 2009 are obtained from the DataStream 

database. The returns of crude oil prices i of market j at time t in a continuous compound 

basis are calculated as ( ), ,logij t ij t ij tr P P −= , 1 , where ,ij tP  and , 1ij tP −  are the closing prices of 

crude oil price i in market j for days  and t 1−t , respectively.  

 

[Insert Table 1 and 2 here] 

 

Table 1 presents the descriptive statistics for the prices and returns series of crude oil prices. 

The ADF and PP unit root tests for spot and futures prices in Table 2 are not statistically 

significant, so they contain a unit root, and hence are I(1). The market efficiency hypothesis 

requires that the current futures prices and the future spot price are cointegrated, meaning that 

futures prices are unbiased predictors of spot prices at maturity (Dwyer and Wallace (1992), 

Chowdhury (1991), Crowder and Hamed (1993) and Moosa (1996)). Consequently, the agent 

can buy or sell a contract in the futures market for a commodity and undertakes to receive or 

deliver the commodity at a certain time in the futures, based on a price determined today 

(Chow and McAleer (2000)). 

 

The Johansen (1988, 1991, 1995) test for cointegation between spot and futures prices is 

presented in Table 3. The trace ( traceλ ) and maximal ( maxλ ) eigenvalue test statistics are used, 

based on minimizing AIC. Under the null hypothesis of no cointegrating vectors, , both 

tests are statistically significant, while the alternative hypothesis of at least one cointegrating 

vector of 

0=r

traceλ  and one cointegrating vector of maxλ  are statistically insignificant. These 

results indicate that spot and futures prices are cointegrated with one cointegrating vector.  

 

[Insert Table 3 here] 
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The average returns of spot and futures in Brent and WTI are similar and very low, but the 

corresponding variance of returns is much higher. These crude oil returns series have high 

kurtosis, which indicates the presence of fat tails. The negative skewness statistics signify the 

series has a longer left tail (extreme losses) than right tail (extreme gains). The Jarque-Bera 

Lagrange multiplier statistics of crude oil returns in each market are statistically significant, 

thereby implying that the distribution of these returns is not normal. Based on the coefficient 

of variation, the historical volatility among all crude oil returns are not especially different. 

 

Figure 1 presents the plot of synchronous crude oil price prices. All prices move in the same 

pattern, suggesting they are contemporaneously highly correlated. The calculated 

contemporaneous correlations between crude oil spot and futures returns for Brent and WTI 

markets are both 0.99. Figure 2 shows the plot of crude oil returns. These indicate volatility 

clustering, or periods of high volatility followed by periods of relative tranquility. Figure 3 

displays the volatilities of crude oil returns, where volatilities are calculated as the square of 

the estimated residuals from an ARMA(1,1) process. These plots are similar in all four 

returns, with volatility clustering and an apparent outlier. 

 

[Insert Figures 1-3 here] 

 

Standard econometric practice in the analysis of financial time series data begins with an 

examination of unit roots. The Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) 

tests are used to test for all crude oil returns in each market under the null hypothesis of a unit 

root against the alternative hypothesis of stationarity. The results from unit root tests are 

presented in Table 2.  The tests yield large negative values in all cases for levels, such that the 

individual returns series reject the null hypothesis at the 1% significance level, so that all 

returns series are stationary. 

 

4. Empirical Results 

 

An important task is to model the conditional mean and conditional variances of the returns 

series. Therefore, univariate ARMA-GARCH models are estimated, with the appropriate 

univariate conditional volatility model given as ARMA(1,1)-GARCH(1,1). These results are 



available upon request. All multivariate conditional volatility models in this paper are 

estimated using the RATS 6.2 econometric software package.  

 

Table 4 presents the estimates for the CCC model, with 1p q r s= = = = . The two entries 

corresponding to each of the parameters are the estimate and the Bollerslev-Wooldridge 

(1992) robust t-ratios. The ARCH and GARCH estimates of the conditional variance between 

crude oil spot and futures returns in Brent and WTI are statistically significant. The ARCH 

( )α  estimates are generally small (less than 0.1), and the GARCH ( )β  estimates are 

generally high and close to one. Therefore, the long run persistence, is generally close to one, 

indicating a near long memory process, signifying that a shock in the volatility series impacts 

on futures volatility over a long horizon. In addition, as 1α β+ < , all markets satisfy the 

second moment and log-moment condition, which is a sufficient condition for the QMLE to 

be consistent and asymptotically normal (see McAleer et al. (2007)). The CCC estimates 

between the volatility of spot and futures returns of Brent and WTI are high, with the highest 

being 0.923 between the standardized shocks to volatility in the crude oil spot and futures 

returns of the WTI market. 

 

[Insert Table 4 here] 

 

Table 5 reports the estimates of the conditional mean and variance for VARMA(1,1)-

GARCH(1,1) models. The ARCH ( )α  and GARCH ( )β  estimates, which refer to the own 

past shocks and volatility effects, respectively, are statistically significant in all markets. The 

degree of short run persistence, α , varies across those returns. In the case of the Brent 

market, the shock dependency in the short run of futures returns (0.100) is higher than that of 

spot returns (0.069).  In the WTI market, spot returns (0.211) are higher than futures returns 

(0.066). However, the degree of long run persistence, α β+ ,  of futures returns in both 

markets is higher than for spot returns. This indicates that convergence to the long run 

equilibrium after shocks to futures returns is faster than for spot returns. Moreover, volatility 

spillover effects between volatility of spot and futures returns are found in both markets, 

especially the interdependency of spot and futures returns in the Brent market, 0.712 and 

0.212. This means that the conditional variances of spot and futures returns of the Brent 

market are affected by the previous long run shocks from each other, while the conditional 
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variance of spot returns is only affected by the previous long run shocks from futures returns, 

0.654 in the case of the WTI market. 

 

[Insert Table 5 here] 

  

The DCC estimates of the conditional correlations between the volatilities of spot and futures 

returns based on estimating the univariate GARCH(1,1) model for each market are given in 

Table 6. Based on the Bollerslev and Wooldridge (1992) robust t-ratios, the estimates of the 

DCC parameters, 1̂θ  and 2̂θ , are statistically significant in all cases. This indicates that the 

assumption of constant conditional correlation for all shocks to returns is not supported 

empirically. The short run persistence of shocks on the dynamic conditional correlations is 

greatest for WTI at 0.139, while the largest long run persistence of shocks to the conditional 

correlations is 0.986 (= 0.070 + 0.916) for Brent. The time-varying conditional correlations 

between spot and futures returns are given in Figure 4. It is clear that there is significant 

variation in the conditional correlations over time, especially in the spot and futures returns of 

Brent. 

 

[Insert Table 6 here] 

[Insert Figure 4 here] 

 

The estimates for BEKK and 11 parameters are given in Table 7. The elements of the 2 2×  

parameter matrices, A and B, are statistically significant. Therefore, the conditional variances 

depend only on their own lags and lagged shocks, while the conditional covariances are a 

function of the lagged covariances and lagged cross-products of the shocks. In addition, in 

both markets the estimates of , ,  and  are statistically significant, such that there 

are cross-effects between the variability of spot and futures returns. Table 8 presents the 

estimates for diagonal BEKK and 7 parameters, all of which are statistically significant. The 

estimated coefficients of the conditional variances and covariances in both markets are such 

that the sum of the ARCH and GARCH effects are close to one.                                                                         

12a 21a 12b 21b

 

[Insert Tables 7 and 8 here] 
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Table 9 gives the optimal portfolio weights, OHRs and hedge effectiveness. The average 

value of , calculated from (20) and (21), based on the Brent and WTI markets, are 

reported in the first and second columns. In the case of the Brent market, the optimal 

portfolio weights from each model are not particularly different, suggesting that the portfolio 

constructions give similar results. For example, the largest average value of  of the 

portfolio comprising crude oil spot and futures from the CCC model is 0.383, meaning that 

investors should have more crude oil futures than spot in their portfolio in order to minimize 

risk without lowering expected returns. In addition, the optimal holding of spot in one dollar 

of crude oil spot/futures portfolio is 38.3 cents, and 61.7 cents for futures. 

,SF tw

,SF tw

 

[Insert Table 9 here] 

 

In the case of the WTI market, optimal portfolio weights from constant conditional 

correlation models, namely CCC and VARMA-GARCH, are different and smaller than those 

from the dynamic conditional correlation models, namely DCC and BEKK. For example, the 

largest  is 0.571 from the BEKK model, while the smallest  is 0.350 from the CCC 

model, thereby signifying that the dynamic conditional correlation models suggest holding 

crude oil spot (57.1 cents for spot) more than futures (42.9 cents for futures), whereas the 

constant conditional correlation models suggest holding crude oil futures (65 cents for 

futures) than spot (35 cents for futures) of a one dollar spot/futures portfolio.  

,SF tw ,SF tw

 

Figure 5 presents the calculated time-varying OHRs from each multivariate conditional 

volatility model. There are clearly time-varying hedge ratios. The third and fourth columns in 

Table 8 report the average OHR values. As the hedge ratios are identified by the second 

moments of the spot and futures returns, we conclude that the different multivariate 

conditional volatility models provide the different of OHR. The average OHR values of the 

Brent market obtained from several different multivariate conditional volatility models are 

high and have similar patterns to those of the WTI market. In addition, the constant 

conditional correlations of both markets recommend to short futures as compared with the 

dynamic conditional correlations. 
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Each multivariate conditional volatility model provides an average OHR value of the WTI 

market that is more than the Brent market, such that shorting a short position in a WTI 

portfolio requires more futures contracts than shorting the same position in a Brent portfolio. 

For example, the largest average OHR values are 0.846 and 0.956 from VARMA-GARCH of 

Brent and WTI, suggesting that, in order to minimize risk for short hedgers, one dollar long 

(buy) in the crude oil spot is shorted (sold) by about 84.6 and 95.6 cents of futures, 

respectively.  

 

These results can be explained as follows. First, WTI crude oil is of a much higher quality 

than Brent, with API gravity of 30.6 degrees and containing only 0.24 percent of sulfur, so it 

can refine a large portion of gasoline. Although Brent is a light crude oil, it is not quite as 

light as WTI because its API gravity is 38.3 and it contains 0.37 percent of sulfur. Therefore, 

WTI is more expensive that Brent. Second, as the oil volume and open interest of WTI is 

greater than for Brent, in terms of the volume of crude or the number of market participants, 

WTI has higher liquidity than Brent. Therefore, WTI is generally used as a benchmark in oil 

pricing. Third, as traders profit from wider price swings, increasing volatility makes it more 

expensive for producers and consumers to use futures as a hedge. Table 1 shows that the 

standard deviation of the crude oil price of Brent is higher than for WTI, and the standard 

deviation and conditional volatility of crude oil returns of Brent are also higher than for WTI.  

 

[Insert Figure 5 here] 

 

As risk is given by the variance of changes in the value of the hedge portfolio, the hedging 

effectiveness in columns five and six in Table 7 shows that all four multivariate conditional 

volatility models effectively reduce the variances of the portfolio, and perform better in the 

WTI market than the Brent market (the HE indices are around 80% for WTI and 56% for 

Brent). Of the multivariate GARCH models, the largest HE value of the Brent market and 

WTI market is obtained from diagonal BEKK, such that diagonal BEKK is the best model for 

OHR calculation in terms of the variance of portfolio reduction. In contrast, the lowest HE 

value in both markets is obtained from BEKK model. Therefore, the BEKK model is the 

worst model in terms of the variance of portfolio reduction.  
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5. Conclusion 

 

This paper estimated four multivariate volatility models, namely CCC, VARMA-GARCH, 

DCC, BEKK and diagonal BEKK, for the crude oil spot and futures returns of two major 

benchmark international crude oil markets, namely Brent and WTI. The estimated conditional 

covariance matrices from these models were used to calculate the optimal portfolio weights 

and optimal hedge ratios, and to indicate crude oil hedge strategies. Moreover, in order to 

compare the ability of variance portfolio reduction due to different multivariate volatility 

models, the hedging effective index was also estimated.  

 

The empirical results for daily data from 4 November 1997 to 4 November 2009 showed that, 

for the Brent market, the optimal portfolio weights of all multivariate volatility models 

suggested holding futures in larger proportion than spot. On the contrary, for the WTI market, 

BEKK, recommended holding spot in larger proportion than futures, but the CCC, VARMA-

GARCH and DCC suggested holding futures in larger proportion than spot. The calculated 

OHRs from each multivariate conditional volatility model presented the time-varying hedge 

ratios, and recommended short hedger to short in crude oil futures, with a high proportion of 

one dollar long in crude oil spot. The hedging effectiveness indicated that diagonal BEKK 

(BEKK) was the best (worst) model for OHR calculation in terms of the variance of portfolio 

reduction. 
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Table 1. Descriptive Statistics 

 
Panel a: Crude Oil Prices    

Prices Mean Max Min SD Skewness Kurtosis Jarque-Bera 

BRSP 43.103 144.07 9.220 26.837 1.163 4.100 863.70 

BRFU 43.103 144.07 9.220 26.837 1.163 4.100 863.70 

WTISP 44.675 145.66 10.730 26.814 1.192 4.231 939.78 

WTIFU 44.696 145.29 10.720 26.827 1.189 4.220 932.83 

 
Panel b: Crude Oil Returns     

Returns Mean Max Min SD CV Skewness Kurtosis Jarque-Bera 

BRSP 0.0004 0.152 -0.170 0.025 0.016 -0.047 6.113 1265.547 

BRFU 0.0004 0.129 -0.144 0.024 0.017 -0.142 5.576 876.642 

WTISP 0.0004 0.213 -0.172 0.027 0.015 -0.002 7.932 3174.982 

WTIFU 0.0004 0.164 -0.165 0.025 0.016 -0.120 7.164 2270.166 
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Table 2. Unit Root Tests 

 
Panel a: Crude Oil Prices 

ADF test (t-statistic) Phillips-Perron test Prices 

None Constant Constant 
and Trend None Constant Constant 

and Trend 
BRSP 0.185 -1.074 -2.372 0.177 -1.079 -2.402 

BRFU 0.325 -0.937 -2.187 0.262 -0.990 -2.298 

WTISP 0.148 -1.132 -2.431 0.159 -1.119 -2.444 

WTIFU 0.224 -1.054 -2.324 0.185 -1.096 -2.400 

Panel b: Crude Oil Returns 
ADF test (t-statistic) Phillips-Perron test Returns 

None Constant Constant 
and Trend None Constant Constant 

and Trend 
BRSP -55.266 -55.275 -55.267 -55.276 -55.280 -55.271 

BRFU -59.269 -59.281 -59.273 -59.239 -59.252 -59.244 

WTISP -56.678 -56.684 -56.676 -56.881 -56.906 -56.897 

WTIFU -42.218 -42.231 -42.224 -57.169 -57.191 -57.183 

Note: Entries in bold are significant at the 1% level. 
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Table 3. Cointegration Test Using the Johansen Approach 

 
Market lag λ  

0=k
trace

 
λ  

1≤k
max

 
λ  

0=k
max

 
λ  

1=k  
Brent 1 126.51 

(12.321) 
0.005 

(4.130) 
126.51 

(11.225) 
0.005 

(4.130) 
WTI 1 438.88 

(12.321) 
0.016 

(4.130) 
438.87 

(11.225) 
0.016 

(4.130) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: (1) Entries in bold indicate that the null hypothesis is rejected at the 5% level. 
     (2) The cointegrating vector is normalized with respect to  tS



Table 4. CCC Estimates 
Panel a: BRSP_BRFU          

Returns C AR MA ϖ  α  β  α β+  

Constant 

conditional 

correlation 

Log- 

likelihood 
AIC 

BRSP 1.878e-03 

(2.648) 

-0.841 

(-8.338) 

0.859 

(9.045) 

6.871e-06 

(5.636) 

0.039 

(13.72) 

0.951 

(256.6) 

0.990 0.794 

(159.65) 

16291.932 -10.399 

BRFU 1.343e-03 

(2,930) 

-0.383 

(-27.87) 

0.309 

(21.08) 

6.299 

(5.691) 

0.035 

(9.693) 

0.953 

(204.2) 

0.988    

Panel b: WTISP_WTIFU          

Returns C AR MA ϖ  α  β  α β+  

Constant 

conditional 

correlation 

Log- 

likelihood 
AIC 

WTISP 1.086e-03 

(3.560) 

-0.093 

(-0.768) 

0.029 

(0.240) 

2.069e-05 

(15.58) 

0.083 

(23.90) 

0.888 

(244.9) 

0.971 0.923 

(550.9) 

17421.123 -11.1198 

WTIFU 1.209e-03 

(4.005) 

-0.177 

(-18.21) 

0.100 

(8.240) 

1.978e-05 

(11.55) 

0.083 

(20.818) 

0.888 

(163.0) 

0.971    
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Table 5. VARMA-GARCH Estimates 
Panel a: BRSP_BRFU            

Returns C AR MA ϖ  BRSPα  BRFUα  BRSPβ  BRFUβ  α β+  

Constant 

conditional 

correlation 

Log- 

likelihood 
AIC 

BRSP 1.492e-03 

(2.066) 

-0.855 

(-9.824) 

0.872 

(10.673) 

3.644e-06 

(0.433) 

0.069 

(4.590) 

-0.037 

(-2.424) 

0.412 

(3.327) 

0.712 

(4.585) 

0.481 0.803 

(158.566) 

16348.450 -10.432 

BRFU 1.183e-03 

(2.634) 

-0.384 

(-25.856) 

0.308 

(21.408) 

7.749e-06 

(2.481) 

-0.064 

(-4.946) 

0.100 

(6.867) 

0.212 

(2.364) 

0.762 

(9.794) 

0.862    

Panel b: WTISP_WTIFU            

Returns C AR MA ϖ  WTISPα  WTIFUα  WTISPβ  WTIFUβ  α β+  

Constant 

conditional 

correlation 

Log- 

likelihood 
AIC 

WTISP 1.011e-03 

(3.414) 

-0.060 

(-0.392) 

1.303e-03 

(0.009) 

1.641e-05 

(3.382) 

0.211 

(21.250) 

-0.138 

(-20.464) 

0.305 

(10.436) 

0.654 

(19.323) 

0.516 0.928 

(583.246) 

17525.095 -11.184 

WTIFU 1.143e-03 

(3.914) 

-0.179 

(-18.196) 

0.105 

(9.717) 

1.048e-05 

(8.172) 

1.679 

(0.274) 

0.066 

(11.045) 

0.033 

(1.387) 

0.887 

(40.623) 

0.953    

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and Wooldridge (1992) robust t- ratios.  
             (2) Entries in bold are significant at the 5% level. 
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Table 6. DCC Estimates 
Panel a: BRSP_BRFU           

 C AR MA ϖ  α  β  α β+  1θ  2θ  
Log-

likelihood 
AIC 

BRSP 1.821e-03 

(2.671) 

-0.762 

(-3.584) 

0.776 

(3.765) 

7.742e-06 

(5.033) 

0.053 

(13.851) 

0.935 

(189.947) 

0.988 0.070 

(18.766) 

0.916 

(183.616) 

16424.565 -10.483 

BRFU 1.244e-03 

(2.789) 

-0.346 

(-21.576) 

0.299 

(18.131) 

6.012e-06 

(5.156) 

0.043 

(11.195) 

0.946 

(195.999) 

0.989     

Panel b: WTISP_WTIFU           

 C AR MA ϖ  α  β  α β+  1θ  2θ  
Log-

likelihood 
AIC 

WTISP 0.001 

(1.580) 

-0.259 

(-5.655) 

0.252 

(5.160) 

3.34E-05 

(2.118) 

0.151 

(3.142) 

0.774 

(10.295) 

0.925 0.139 

(1.981) 

0.458 

(0.174) 

17618.890 -11.246 

WTIFU 0.0003 

(1.796) 

0.626 

(6.871) 

-0.658 

(-8.085) 

3.98E-05 

(2.129) 

0.151 

(3.460) 

0.789 

(12.108) 

0.940     

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and Wooldridge (1992) robust t- ratios.  
             (2) Entries in bold are significant at the 5% level. 
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Panel a: BRSP_BRFU           

Returns 
C AR MA C A B 

Log-

likelihood 
AIC 

BRSP 0.002 

(2.527) 

-0.715 

(-2.585) 

0.724 

(2.481) 

-0.001 

(-1.286) 

 -0.320 

(-7.800) 

0.153 

(5.613) 

-0.151 

(-6.583) 

-0.878 

(-27.652) 

16427.720 -10.483 

BRFU 0.001 

(2.386) 

-0.331 

(-19.748) 

0.285 

(12.605) 

0.005 

(6.616) 

-0.0001 

(-0.063) 

0.182 

(5.438) 

-0.357 

(-13.812) 

-0.897 

(-81.273) 

-0.043 

(-0.967) 

  

Panel b: WTISP_WTIFU           

Returns 
C AR MA C A B 

Log-

likelihood 
AIC 

WTISP 0.0004 

(1.289) 

0.310 

(2.370) 

-0.387 

(-3.186) 

0.002 

(5.808) 

 -0.911 

(-5.941) 

-0.018 

(-2.394) 

0.494 

(9.593) 

-0.079 

(-62.908) 

18021.590 -11.501 

WTIFU 0.0007 

(1.575) 

-0.212 

(-6.440) 

0.157 

(4.043) 

-0.003 

(-7.358) 

1.00E-06 

(0.001) 

0.938 

(6.758) 

0.192 

(6.130) 

0.500 

(10.064) 

1.053 

(213.713) 

  

Notes: (1) 
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Table 7. BEKK Estimates 

11 12

21 22

a a
a a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

A 11 12

21 22

b b
b b
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

B 11

21 22

0c
c c

, , ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

C  are the coefficient matrices from equation (14). 

           (2) The two entries for each parameter are their respective parameter estimates and Bollerslev and Wooldridge (1992) robust t- ratios. 
           (3) Entries in bold are significant at the 5% level. 
 

 

 

 



BRSP_BRFU C A B 

Coeff. 6.55E-06 

(6.739) 

8.43E-06 

(8.034) 

0.218 

(29.836) 

 0.971 

(546.5) 

 

  1.40E-05 

(7.836) 

 0.243 

(30.926) 

 0.960 

(375.6) 

Log-likelihood 16341.97      

AIC -10.431      

WTISP_WTIFU C A B 

     Coeff. 7.54E-05 

(19.449) 

5.57E-05 

(19.709) 

0.377 

(77.944) 

 0.870 

(302.90) 

 

  3.80E-05 

20.588. 

 0.282 

(78.404) 

 0.931 

(768.65) 

Log-likelihood 17750.13      

AIC -11.331      

Substituted coefficient WTI 

Substituted coefficient Brent  

             (3) Entries in bold are significant at the 5% level. 

            (2) The two entries for each parameter are their respective parameter estimates and Bollerslev and 

Wooldridge (1992) robust t- ratios. 

 

 

 

 

 

 

 

Notes:  (1) , , 

Panel a Diagonal BEKK 
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COV1_2 = 8.432e-06 + 0.053*RESID1(-1)*RESID2(-1) + 0.932*COV1_2(-1) 

GARCH2 = 1.397e-05+0.059*RESID2(-1)^2+0.921*GARCH2(-1) 

GARCH1 = 6.549e-06+0.047*RESID1(-1)^2+0.943*GARCH1(-1) 

COV1_2 = 5.571e-05 + 0.106*RESID1(-1)*RESID2(-1) + 0.810*COV1_2(-1) 

GARCH2 = 3.797-05+0.080*RESID2(-1)^2+0.867*GARCH2(-1 

GARCH1 = 7.544e-05+0.142*RESID1(-1)^2+0.757*GARCH1(-1) 

11 12

22

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

a a
a

A 11

22

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

b
b

B 11 12

22

Table 8. Diagonal BEKK Estimates 

 

⎡ ⎤
= ⎢
⎣

⎥
⎦

c c
c

C  are the coefficient matrices from equation (14). 
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Table 9. Alternative Hedging Strategies 
 Optimal Portfolio Weights Average OHR Variance of Portfolios Hedge Effectiveness (%) 

Model Brent WTI Brent WTI Brent WTI Brent WTI 

CCC 0.383 0.350 0.840 0.955 2.682e-04 1.349e-04 56.724 80.857 

VARMA-GARCH 0.377 0.351 0.846 0.956 2.706e-04 1.373e-04 56.346 80.513 

DCC 0.366 0.478 0.824 0.923 2.663e-04 1.342e-04 57.045 80.942 

BEKK 0.355 0.571 0.827 0.922 2.710e-04 1.417e-04 56.294 79.886 

Diagonal BEKK 0.351 0.501 0.843 0.941 2.655 e-04 1.340 e-04 57.167 80.983 

Unhedged Portfolio     6.199e-04 7.046e-04   

Note: The portfolio weights given are for the spot oil, and thus 1-spot weights for futures in the portfolio are warranted. 

 

 



Figure 1. Crude Oil Spot and Futures Prices for Brent and WTI 
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Figure 2. Logarithm of Daily Crude Oil Spot and Futures Returns for Brent and WTI 
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Figure 3. Estimated Conditional Volatilities of Returns for Brent and WTI 
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Figure 4. DCC Models Conditional Correlations 
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Figure 5. Optimal Hedge Ratios 
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