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Abstract 

 
DAMGARCH is a new model that extends the VARMA-GARCH model of Ling and McAleer 

(2003) by introducing multiple thresholds and time-dependent structure in the asymmetry of the 

conditional variances. Analytical expressions for the news impact surface implied by the new model 

are also presented. DAMGARCH models the shocks affecting the conditional variances on the basis 

of an underlying multivariate distribution. It is possible to model explicitly asset-specific shocks 

and common innovations by partitioning the multivariate density support. This paper presents the 

model structure, describes the implementation issues, and provides the conditions for the existence 

of a unique stationary solution, and for consistency and asymptotic normality of the quasi-

maximum likelihood estimators. The paper also presents an empirical example to highlight the 

usefulness of the new model. 

 
 
Keywords: Multivariate asymmetry, conditional variance, stationarity conditions, asymptotic 
theory, multivariate news impact curve. 
 
JEL classifications: C32, C51, C52 
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1. Introduction 
 

Starting with the seminal work of Engle (1982) and Bollerslev (1986) for univariate models, and 

Bollerslev (1990) and Engle and Kroner (1995) for multivariate models, the modeling of 

conditional variances, covariances and correlations has attracted considerable interest in the risk and 

financial volatility literature. Several extensions and generalizations have been suggested for both 

the univariate and multivariate representations (see, for example, Bollerslev, Chou and Kroner 

(1992), Bollerslev, Engle and Nelson (1994), Li, Ling and McAleer (2002), McAleer (2005), and 

Bauwens, Laurent and Rombouts (2006)). Numerous proposed models have been applied to vastly 

different data sets including exchange rate forecasting, stock price volatility prediction, and market 

risk measurement through Value-at-Risk forecasts. 

In comparison with the development of model specifications, the theoretical contributions have 

been limited. In fact, the conditions for the existence of a unique stationary and ergodic solution, 

and for the asymptotic theory of the parameter estimates, have become available only for a subset of 

the proposed models (among others, see Bougerol and Picard (1992) and Ling and McAleer 

(2002a), (2002b) for univariate GARCH models, and Jeantheau (1998), Comte and Lieberman 

(2003), Ling and McAleer (2003), McAleer et al. (2008), and Hafner and Preminger (2009) for 

multivariate GARCH – MGARCH henceforth – models)1. Furthermore, in the multivariate model 

case, the diagnostic checking of model adequacy has been poorly covered in the literature, being 

restricted to some recent papers considering multivariate extensions of the well-known Ljung-Box 

test statistic (see Ling and Li, (1997) and Tsay (1998)).  

One of the most important topics in the financial econometrics literature is the asymmetric behavior 

of conditional variances. The basic idea is that negative shocks have a different impact on the 

conditional variance evolution than do positive shocks of a similar magnitude. This issue was raised 

by Nelson (1990) in introducing the EGARCH model, and was also considered by Glosten, 

Jagannathan and Runkle (1992), Rabemananjara and Zakoian (1993) and Zakoian (1994) for the 

univariate case. For these models, some general results apply, including the conditions for 

stationarity and asymptotic theory for the quasi-maximum likelihood estimates (see Ling and 

McAleer, (2002a, b)). However, restricting attention to only a single asset may be too stringent, 

particularly if the primary goal is the measurement of the risk of an investment or a portfolio. 

                                                 
1 Note that the VARMA-GARCH model proposed by Ling and McAleer (2003) nests some other multivariate GARCH 
representations, including the CCC model of Bollerslev (1990). However, this class of models is non-nested with 
respect to the BEKK and Vech GARCH representations developed in Engle and Kroner (1995) (see also Caporin and 
McAleer, (2008)). 
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In such cases, we could be interested in analyzing the effects of a shock on a set of assets, with a 

possible distinction between asset-specific shocks and market shocks.  

In addition to the possible mean effects, this paper focuses on the variance and covariance effects, 

monitoring an asset’s conditional variance reaction to another asset’s specific shock. For instance, 

the model we propose may be used to examine the effects of an oil price shock on oil price 

volatility and on the volatilities of the stocks belonging to the auto sector, or the effects of a market 

shock (that could be represented by an unexpected macroeconomic shock) on the conditional 

variances of a set of stocks. Furthermore, in our modeling approach we will distinguish the effects 

of a shock’s “sign” from these coming from the shock’s “size”. Note that the possible combinations 

of sign and size may depend on the other asset’s sign and size, with increased complexity according 

to the chosen multivariate framework. A related issue, the so-called ‘leverage’ effect (negative 

shocks should increase conditional variances while positive shocks should induce a reduction in the 

conditional variances) will not be addressed, given that our main focus is on conditional variance 

asymmetry2. 

Information on variance asymmetry could be useful for asset pricing, portfolio construction (given 

the relationship of such a shock-propagation mechanism with the asset correlations and their betas), 

and for market risk measurement (see, among others, Hafner and Herwartz (1998), Hansson and 

Hordahl (1998), and the references in Bauwens et al. (2006)). The structures needed to monitor, 

estimate and use the conditional variance asymmetries should be included in an appropriate 

multivariate model. A recent contribution in this direction was McAleer, Hoti and Chan (2009), 

who provided a multivariate generalization of the GJR model of Glosten et al. (1992). However, 

their approach concentrates on a specific distinction between positive and negative shocks, and is 

based on an extension of the univariate analysis. The MGARCH literature includes several models 

with asymmetry, with interesting examples given in Kroner and Ng (1998) and De Goeij and 

Marquering (2004). In the cited papers, the asymmetry term enters either a Vech or BEKK 

representation (for definitions, see Engle and Kroner, (1995)). However, McAleer, Hoti and Chan 

(2009) seem to be the only authors to have dealt with asymmetry in the VARMA-GARCH model of 

Ling and McAleer (2003). Note that the VARMA-GARCH model nests the CCC model of 

Bollerslev (1990), so that the introduction of asymmetry in the VARMA-GARCH model of Ling 

and McAleer (2003) can be extended directly to the variance dynamics in the CCC model, and 

                                                 
2 Note that the term ‘leverage’ is used by some authors to identify what we call ‘asymmetry’, that is, a different effect of 
negative and positive shocks of a similar magnitude on the conditional variance (for an example, see Bauwens et al. 
(2006)) 
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hence also the variance and covariance dynamics in the DCC model of Engle (2002) and the 

GARCC model of McAleer et al (2008).  

Despite the lack of theoretical contributions dealing with asymmetry and variance spillovers in the 

DCC model, the econometric literature includes several papers dealing with ‘simple’ GARCH(1,1) 

specifications and asymmetric effects in the correlations (see, among others, Cappiello, Engle and 

Sheppard (2006)). The model to be presented here does not allow the correlation matrix to follow a 

dynamic evolution such as in the DCC model. This choice is motivated by the fact that we will also 

provide theoretical results, which could have not been derived by the inclusion of dynamic 

correlations. 

The purpose of this paper is to provide a general framework, in which both multivariate variance 

asymmetry and spillover effects are considered, to derive the conditions to ensure the existence of a 

unique stationary and ergodic solution, and to prove the consistency and asymptotic normality of 

the Quasi-Maximum Likelihood Estimator (QMLE) for the parameters of interest. In addition to the 

traditional asymmetric effect, we include time dependence in the asymmetric component of the 

variances, thereby extending the ideas of Caporin and McAleer (2006).  

We propose the Dynamic Asymmetric MGARCH (DAMGARCH) model that allows for time-

varying asymmetry with spillover effects. The interactions between variances may depend both on a 

direct relation between the conditional variances (as in standard MGARCH models) and on 

spillover effects from the asymmetric component of the GARCH model. As DAMGARCH is a 

generalization of the DAGARCH model of Caporin and McAleer (2006), it inherits many of the 

properties of DAGARCH, namely the possibility of explaining asymmetry as well as persistence in 

asymmetry. DAMGARCH also represents a generalization of the VARMA-GARCH model of Ling 

and McAleer (2003). Therefore, it is non-nested with respect to the Vech class of models of Engle 

and Kroner (1995). Note that the DAMGARCH model generalizes the existing MGARCH models 

with asymmetry for the inclusion of spillovers in the asymmetry term, for the definition of 

asymmetry over a set of thresholds, and for the generalization of the indicator functions that drive 

the asymmetric effect. Clearly, the price to pay for such a generalization is the increase in the 

number of parameters and the subsequent complexity of model estimation. However, following the 

standard practice in this strand of the literature, restricted parameterizations that do not considerably 

affect model flexibility could be considered. To put it differently, in order to mitigate the 

computational complexity of full model estimation, we propose a multi-stage estimation approach. 

We present a simple empirical analysis to compare a bivariate DAMGARCH model with basic 

CCC specifications, where the conditional variances follow a standard GARCH(1,1) model, the 

asymmetric GJR-GARCH of Glosten et al. (1992), or the DAGARCH model of Caporin and 
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McAleer (2006). The model proposed provides a higher likelihood and relevant insights into the 

asymmetric dynamics in the DAX and FTSE stock market indices. 

Throughout the paper we use the following notation: “:” denotes horizontal matrix concatenation; 

( )Aρ  identifies the eigenvalue of matrix A with largest absolute value; vec(A) stacks the columns 

of matrix A; vecu(A) stacks the columns of the lower triangular part of A below the main diagonal; 

diag(a) is a diagonal matrix with the vector a on the main diagonal; dg(A) is the vector containing 

the elements on the main diagonal of A; � denotes the Hadamard matrix multiplication. 

The remainder of the paper has the following structure. Section 2 defines the DAMGARCH model 

and considers three specific issues, namely the definition of thresholds (subsection 2.1), asymptotic 

properties of the model and of the QMLE (subsection 2.2), and estimation of DAMGARCH 

(subsection 2.3). In Section 3 we introduce the News Impact Surface and present a simulated 

example of the possible forms of the function, depending on the relations between the conditional 

variances. Section 4 presents an empirical analysis of two of stock market indices, comparing 

DAMGARCH with a set of CCC models. Section 5 gives some concluding comments. 

 

2. DAMGARCH: Multivariate GARCH with Dynamic Asymmetry 
 

In what follows, Yt  represents an n-dimensional vector of observable variables. The primary focus 

is on the mean residuals under the following equations: 

 

1 1 1| ,     | 0,      |t t t
t t t t t t t tY E Y I E I E I D RDε ε ε ε− − −⎡ ⎤′⎡ ⎤ ⎡ ⎤= + = = Σ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ t     (1) 

 

in which  1tI −  is the information set available at time 1t − , 1| t
tE Y I −⎡ ⎤⎣ ⎦  is the conditional mean of 

Yt, and tε  is the n-dimensional mean residual vector at time t . The mean residuals have a 

conditionally time-dependent covariance matrix that can be decomposed into the contributions of 

the conditional variances and the conditional correlations3. Finally,  is a diagonal matrix of 

conditional volatilities, given by: 

tD

( )1, 2, ,, ,...,t t tD diag σ σ σ= n t , and R  is the correlation matrix. Note 

that, as stated in the introduction, we use a constant correlation matrix, otherwise theoretical results 

could have not been derived (see Caporin and McAleer (2009)). It is also assumed that the 

                                                 
3 It is implicitly assumed that the covariance dynamics are a by-product of the conditional variances and dynamic 
conditional correlations. Therefore, the Vech and BEKK representations (see Engle and Kroner (1995)) are not directly 
comparable with the model developed in this paper. 
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standardized and uncorrelated innovations, 1 1
t tD tη ε− −= Γ , are independent, with R′ΓΓ = . Note that, 

as distinct from standard practice, , which is a full symmetric matrix, is not obtained by a 

Cholesky decomposition of the correlation matrix, but 

Γ

Γ  comes from the eigen decomposition of 

the correlation matrix. In fact, R U U ′= Δ , where U  is the matrix of eigenvectors and Δ  is the 

diagonal matrix of eigenvalues. Using the fact that UU I′ = , the identity matrix, we set Γ  to 

. Finally, let ½U U ′Γ = Δ 1
t tz D tε−=  denote the variance standardized innovations. 

Define the vectors of conditional variances and squared innovations as 

 and ( ) ( )2 2 2
1, 2, ,, ,...t t t n t t tH dgσ σ σ

′ ′= = D D ( )′= 2
,

2
,1 , tntte εεε

t m−

2
,2 ,...t , respectively. The following equations 

define the Dynamic Asymmetric MGARCH (hereafter DAMGARCH) model: 

 

1 1

s r

t i t i
i m

H W B H G−
= =

= + +∑ ∑
r

,         (2) 

where  ( ) ( ) ( )( ){ }, , 1
1

l

t m j m j m t m j t m t m j t m j
j

G A G I d dε ε ε− − − − −
=

⎡ ⎤= + Ψ − −⎣ ⎦∑
r

% � −
%

}−

    (3) 

and ,       (4) ( ){ , , 1
1

l

t m j m j m t m j t m
j

G A G I ε− − −
=

⎡ ⎤= + Ψ⎣ ⎦∑

 

where, , 1,2,..., ,iB i s=  , ,   1, 2,..., ,   1, 2,..., ,j mA j l m r= = , ,   1, 2,..., ,   1, 2,..., ,j m j l m r Ψ = =  and  are 

n-dimensional square matrices, W  and 

tG

tG
r

 are n-dimensional vectors, l  is the number of subsets in 

which the support of the multivariate probability density function of tε  has been partitioned (that is, 

there may be  “threshold vectors”1l − 4). In addition, ( )j tI ε  is a scalar (or a diagonal matrix) 

indicator function5 (its structure will be further specified below) that verifies if the vector tε  (each i 

component of tε ) belongs to subset j  of the joint support (of the marginal support), 0jd =%  or 

                                                 
4 The term “thresholds” is not appropriate when considering a multivariate density for which the threshold may be a 
vector with different components, as the marginal density may have different thresholds. In dealing with multivariate 
densities, reference will instead be made to a partition of the density support that defines some subsets. 
5 If a scalar, the function ( )j tI ε  assumes the value 1 if the vector tε  belongs to subset j , and 0 otherwise. If a diagonal 

matrix, each element in the diagonal of ( )j tI ε  is an indicator function based on the marginal of the mean residuals, 

,( )j i tI ε , and assumes the value 1 if the element ,i tε  belongs to its specific subset j , and 0 otherwise. 
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j jd d=% , where jd  is an n-dimensional vector that defines the upper (or lower) bounds of subset j 

(we will address below the structure of the subsets, the structure of jd  and its usefulness6).  

We highlight that the vector  is a selection vector allowing a direct inclusion of the 

thresholds or bounds 

0jd =%

jd  in the GARCH equation. Note also that the vectors jd  characterize the 

thresholds used in the definition of the asymmetric components. These thresholds are not 

necessarily explicitly included in the GARCH equation (when 0jd =% ), while they define the 

partitions of tε  in all cases (and thus always enter in the functions ( )j tI ε , as will be shown below).  

It will be convenient to call jd  the vectors of ‘observed thresholds’, and the definition will be 

motivated below. In the derivation of the asymptotic properties, we will use an 

alternative representation of the DAMGARCH model, which is given in Appendix A.1. The two 

terms  and  define the ARCH component of the model: the first is a function dependent on 

the thresholds and the second term, which drives the dynamic asymmetry. Finally, we note that 

t mG −

r
t mG −

tG
r

 

in (3) is measurable with respect to the information set at time t, but enters equation (2) with a lag 

of at least 1. 

The indicator function, and therefore the number of thresholds (or number of subsets), can be 

defined not only on the 1t −  innovation vectors, but also on a larger number of terms. In fact, it is 

possible to generalize ( )j tI ε  to 1( , ,..., )j t t t mI ε ε ε− − . However, in this case, the number of thresholds 

(or subsets) may increase appreciably. Considering only the sign of the innovation, a single lag 

leads to , while the use of two lags leads to 2l = 4l = , with an exponential increase in the number 

of partitions. Put differently, we can generalize equations (3) and (4) by increasing the number of 

lags for the terms  and , with an obvious increase in the number of parameter matrices. tG tG
r

Note that equation (2) defines the dynamics of the conditional variances on the basis of (i) past 

conditional variances and (ii) past squared innovations. While the first term represents the 

‘standard’ GARCH component, the second term does not explicitly include the ‘standard’ ARCH 

component. In fact, the representation we choose can be recast with a slightly different structure, 

showing the asymmetric variance dynamic as an addition to the VARMA-GARCH structure of 

Ling and McAleer (2003). Actually, in a simple case, assuming dj=0 j=1,2, r=s=1 (that is, where 

                                                 
6 Note that the inclusion of jd  induces a continuous news impact surface, as will be shown below. The representation 
adopted here generalises the continuous news impact curve of Engle and Ng (1993) and Caporin and McAleer (2006) to 
the multivariate case. 
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the thresholds do not directly enter in the ARCH component definition, which allows the omission 

of ), we can write the ARCH coefficients of the model as follows: tG
r

 

( ) ({1 1 1 1 1
1

,      ,
l

t t t t t j j t j
j

H W B H G e G A G I ε− − − −
=

⎡ ⎤= + + + = + Ψ⎣ ⎦∑A )}t

}t

    (5) 

 

so that we can rewrite the ARCH term as 

 

( ){ 1
1

.
l

t j j t j
j

G A G I ε−
=

⎡ ⎤+ = + + Ψ⎣ ⎦∑A A         (6) 

 

Equation (6) includes the traditional ARCH term, , and additional ARCH matrices, the A

jA 1, 2...,j = l  matrices, which are modifying the ARCH coefficients depending on the thresholds, 

and a dynamic asymmetric component 1tG − . Equation (6) also highlights that a sufficient condition 

for the identification of both the Aj (with 1, 2...,j l= ) and the  matrices requires that at least one 

of the 

A

jA 1, 2...,j = l  matrices must be set to zero. In this case, the matrices jA 1, 2...,j l=  will 

define the differential effects on the conditional variances (ARCH component) of each subset with 

respect to a baseline subset. It may be considered a multivariate generalization of the GJR model. In 

the DAMGARCH model, we have a baseline ARCH component referred, as an example, to small 

positive innovations and additional effects for negative small innovations, negative large 

innovations and positive large innovations. Furthermore, in equation (3) we allowed for the direct 

dependence of the ARCH part from the thresholds in order to induce a continuous news impact 

curve, as in Engle and Ng (1993). Finally, the ARCH part of DAMGARCH can also be interpreted 

as the sum of two components: letting r=1 for simplicity, we may identify a standard ARCH part 

(threshold dependent, and hence asymmetric) that is given by 

 

( ) ( ) (1 1 1
1

l

j j t t j t j
j

)A I dε ε ε− − −
=

⎡ ⎤− −⎣ ⎦∑ % %� d ,  

 

and a second term associated with the asymmetry persistence: 
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 .  ( ) ( ) (2 1 1 1
1

l

j t j t t j t j
j

G I d dε ε ε− − − −
=

⎡ ⎤Ψ −⎣ ⎦∑ % %� )−

 

This second term includes a component ( )2tG −  that carries the asymmetric effect up to time t-2 

(depending on the information set at time t-2). The asymmetric behavior of time t conditional 

variances depends thus on past shocks (through the first term) but also on the asymmetry behavior 

in the previous period (through the second term). The pattern of  will capture the time-varying 

asymmetry effects over the conditional variances.  

tG

We can define DAMGARCH as an MGARCH model in which the time-varying ARCH 

coefficients, 1j j tA G −+ Ψ ,  j=1,2,…l, depend on the partition to which time t-1 shock vector belongs, 

namely the jA  matrices, and on an autoregressive component that drives the persistence in the 

ARCH coefficients, as parameterized by the jΨ  matrices. Caporin and McAleer (2006) provide a 

detailed discussion of the interpretation of the DAGARCH coefficients, which can be generalized 

directly to the DAMGARCH model. 

A deeper discussion of the indicator function is required. We propose two alternative structures, 

which are defined over the multivariate density of the mean innovation vector, tε , and over the 

marginal densities of the univariate mean innovations, ,i tε , respectively. 

Consider the use of the multivariate density. In this case, define nS ⊆ �  as the support of the 

multivariate innovation density, so that: 

 

( )
1,
0, otherwise,

t j
j t

S
I

ε
ε

∈⎧
= ⎨

⎩
          (7) 

 

where jS  is a subset of . Furthermore, we have S

 

1

,      ,    , 1,2,..., ,    .
l

j i j
j

S S S S Ø i j l i j
=

= = =U I ≠        (8) 

 

As an example, we may define the following three subsets of :  S
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{ }
{

1 ,

3 ,

2 1 3

: , 1,2...n ,

: , 1,2...n ,

.

t i t L

t i t U

S d i

S d i

S S S S

ε ε

ε ε

= < =

= > =

= − −

}          (9) 

 

In this example, assuming that Ld  is a large negative number and Ud  is a large positive number, the 

partition distinguishes extreme events from the remaining elements of . The direct dependence of 

variances from thresholds (see equation (3)) was introduced in order to induce continuity of the 

news impact to conditional variances. When the indicator functions are defined over the 

multivariate density support, continuity may not be simply achieved. In fact, thresholds may have a 

complex representation (see the examples in Appendix A.2). In these cases, we must set 

S

0jd =% and 

continuity may be obtained appropriately defining the A coefficient matrices associated to the 

partition. In the example of equation (9), we should set A1=A2+Aa and A3=A2+Ab , where Aa and Ab 

are parameter matrices. We may define the thresholds over the marginal densities of the 

innovations. In this case, we may define the ( )j tI ε  function as a diagonal matrix of dimension , 

with 

n

,( )j i tI ε  on the main diagonal. In turn, ,( )j i tI ε  is the indicator function for the inclusion of ,i tε  

in the j-th subset defined over the probability density support of ,i tε . The ,( )j i tI ε  indicator function 

is the univariate counterpart of equation (7), namely: 

 

if j jd d=%  
( )

( )

, ,
,

, , 1
,

1,     
,      1, 2,...,

0,     otherwise

1,     
,      1,...,

0,     otherwise

i t i j
j i t

i t i j
j i t

d
I j k

d
I j k l

ε
ε

ε
ε −

⎧ <
= =⎨

⎩
⎧ >

= =⎨
⎩

+

      (10)  

 

if  0jd =% ( ) , 1 , ,
,

1,     <
,      1, 2,...,

0,     otherwise
i j i t i j

j i t
d d

I j
ε

ε −⎧ ≤
= ⎨

⎩
l=      (11) 

 

where the subset is expressed as a segment on the support of the probability density function of ,i tε . 

Furthermore, for  (that is, the first subset), the condition in (11a,b) is 1j = ,i t idε ≤ ,1 , while for j l=  

(that is, the last subset), the condition becomes , ,i t i ldε 1−>  with ,1 , 1 , 1 , 1... 0 ...i i k i kd d d d− +< < < < < < i l− , 

that is, the k-th threshold is equal to zero for all variables. The last assumption is imposed in order 

 11



to simplify the model structure. Finally, the indicator function distinguishes positive and negative 

values in order to induce continuity in the news impact surface, which will be defined below. 

If we follow equations (10)-(11) in defining the indicator functions, then the elements of jd  may be 

different over the variables and are defined accordingly to the structure of  ,( )j i tI ε , namely 

{ },1 ,,...,j j jd d d= l  for 1,..., 1j k= − , { }1,1 1,,...,j j jd d d− −= l  for 2,...,j k l= + , and 10j nd ×=  for 

. Under (7), the definition of ,j k k= +1 jd  depends on the relations used to define the Sj subsets. In 

the example in (9), we have 1 L nd d i= , 2 0nd =  and 3 U nd d i= , where  is an n-dimensional vector 

of ones and 0  is an n-dimensional vector of zeros. 

ni

n

The development of the DAMGARCH model is similar in spirit to Ling and McAleer (2003), 

McAleer et al. (2007) and McAleer et al. (2009). In fact, assuming a constant correlation matrix, 

and imposing the condition that  (an n-dimensional square parameter matrix that is not 

influenced by asymmetric behavior) yields the VARMA-GARCH model of Ling and McAleer 

(2003). Moreover, the GARCC model proposed in McAleer et al. (2008) could be obtained 

assuming a time-dependent structure for the conditional correlation matrix, again under the 

restriction . 

t j j t jG A e− =
r

−

                                                

t j j t jG A e− −=
r

The DAMGARCH model extends current multivariate representations of GARCH by introducing 

multiple thresholds and time-dependent asymmetry. However, DAMGARCH has a similar 

limitation of the standard multivariate representation, namely the problem of (high) 

dimensionality7. 

In order to resolve this problem, diagonal representations can be used, such as a separate univariate 

DA-GARCH model for each innovation variance. Diagonality implies that all the parameter 

matrices are diagonal, while no restrictions are imposed on the thresholds, which could differ 

according to the variables involved. Furthermore, block structures could be considered, as in Billio 

et al. (2006). In that case, the parameter matrices could be partitioned and restricted on the basis of 

a particular asset classification. 

 

2.1. Defining Thresholds and Model Specifications 

As given in Caporin and McAleer (2006), the use of multiple thresholds with time-varying 

conditional variances may create problems in the definition of thresholds. In fact, if the thresholds 

are designed to identify the queues of the innovation density, they must be defined over the 

 
7 See Table 1 for the numbers of parameters of several MGARCH models. 
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standardized innovations, as the thresholds should adapt to movements in the conditional variances. 

Consider a simple example in which a time series follows a GARCH(1,1) process, but without any 

mean dynamics. If we focus on the upper α -quantile of the mean distribution, this quantile is a 

function of the conditional variance and of the quantile of the standardized innovation density. 

Thus, in univariate representations, thresholds have to be defined over the standardized innovation, 

either by fixing a set of values or a set of percentiles a priori. 

Continuing with this example, assume that the lowest threshold for mean innovations, tε , is fixed at 

Ld , so that the indicator function for this case is ( ) 1( )t t LI dε ε= < . The probability associated with 

this indicator function gives:  

 

( ) ( ) ( ) ( )1
t L t t L t t L z t LP d P z d P z d F dε σ σ σ−< = < = < = 1−       (12) 

 

where  is the cumulative density of the standardized innovations, . We note that the 

probabilities are functions of the conditional variance. Therefore, fixing a value for 

(.)zF tz

Ld  is not 

equivalent to defining a quantile on the mean innovation probability density function. 

A similar structure is needed for multivariate representations, as thresholds must then be defined 

over standardized innovations. However, a further difficulty arises with regard to the definition of 

thresholds according to the joint or marginal densities. The two approaches are equivalent if and 

only if the variables are independent. For this reason, we believe that thresholds have to be defined 

over the standardized and uncorrelated innovations, that is, on the innovations computed as 
1 1

t tD tη ε− −= Γ , where  is a symmetric matrix obtained from the spectral decomposition of the Γ tR  

correlation matrix satisfying R′ΓΓ = . The existence of non-linear dependence across variables will 

result in a different set of thresholds obtained through the marginal and the joint densities. Making a 

parallel with simultaneous equation systems, the shocks, tη , may be compared with the structural 

shocks and, depending on their values, they affect the observed shocks, tε , and their variance 

dynamics. 

Following this statement, we note that the observed thresholds jd  defined over the mean 

innovations tε  will be time dependent: in fact, we defined them as ,j t td D d= Γ j , where  

represents the vector of ‘structural’ thresholds defines with respect to 

jd

tη . Observed thresholds may 

be time dependent, given that they are a function of conditional standard deviations and conditional 
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correlations, both of them possibly time dependent. Put differently, the structural thresholds are 

assumed to be time independent. 

In the following, it is assumed that the thresholds are fixed over the probability density function of 

the tη . The structural thresholds, jd , can be fixed a priori or determined by a quantile relation, 

1( )j id F α−= 8. Furthermore, the term ‘thresholds’ will be used only with respect to the marginal 

densities, while the term ‘support partitions’ will be used with respect to the joint density. Note that 

the introduction of a threshold ‘structure’ on marginal or joint densities will be equivalent only in 

special cases, namely when the correlations are all equal to zero. 

Thresholds and partitions can be defined as follows. Consider first the definition of thresholds over 

marginal densities. Assume that the thresholds are fixed over the components of tη . Finally, define 

 as the joint cumulative density, and (.)F (.),  1, 2,..., ,iF i n=  as the marginal cumulative densities of 

the tη . It follows that: 

 

( ) 1
,

1,     
,     1, 2,...,

0,     otherwise
t j i,t t ji i

j i t

D d ε D d
I jε −

⎧ ⎡ ⎤ ⎡ ⎤Γ < ≤ Γ⎪ ⎣ ⎦ ⎣ ⎦= ⎨
⎪⎩

l=       (13) 

 

where jd  is the vector of structural thresholds defined over the tη  innovations. Note that the 

condition in equation (13) is based on the elements of a time-dependent threshold vector, so that the 

indicator matrix function is given by 1, 2, ,( ) ( ( ), ( ),..., ( ))j t j t j t jI diag I I I n tε ε ε ε= . Finally, for 1j = , 

the condition is , while for 1,i,t t iε D d≤ Γ j l= , the condition is . Equation (13) refers to 

the indicator functions as defined in (11). The previous comments and the discussion on threshold 

definition are valid also for the indicator functions of (10). The partition over the joint density of 

,i,t t l iε D d> Γ

tε  

is defined as: 

 

( ) 1, ,1,     
,     1, 2,...,

0,     otherwise
j t t j t

j t
d ε d

I jε −⎧ < ≤
= ⎨

⎩
l=

                                                

       (14) 

 

 
8 Note that the standardised innovations are also uncorrelated, so that the thresholds and quantiles may be defined over 
either the marginal or the joint distribution function. 
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where the condition is satisfied if and only if the vector tε  is included in the partition of the joint 

probability support. Specifically, equation (14) is equivalent to equation (7), as we can write the 

subset as: 

 

{ }1, , , , ,: ,   1, 2,..., ,     1, 2,...,j t j i t i t j i tS ε d ε d i n j−= < ≤ = = l .       (15) 

 

Note that equations (13) and (14) are not equivalent representations, and is possible to move from 

one to the other when the correlations are all equal to zero and only in very special cases. Consider 

a bivariate example to illustrate the point. Assume that the correlation between the two variables is 

equal to zero. Then, the following figure represents a partition that can be obtained using either the 

marginal or the joint threshold definition (specifically, a single threshold that is set to zero): 

 

[Insert Figure 1 here] 

 

For the marginal threshold case, we have 2l =  and a single threshold that is set equal to zero. For 

the joint partition, we have  with each subset identifying a quadrant of the Cartesian plane. 

However, Figure 2 represents a support partition which is defined under the joint probability, but 

which cannot be obtained using the marginal threshold definition. 

4l =

 

[Insert Figure 2 here] 

 

This partition distinguishes between the cases where both variables are negative and the remaining 

combinations.  The fact that equations (13) and (14) are equivalent does not mean that the models 

defined over the joint or the marginal thresholds are also equivalent. In fact, the representation (14) 

over the joint support is associated with a more flexible model. In the case of the marginal 

thresholds, it follows that: 

 

[ ] ( ) [ ] ( )1 1 1 1 2 2 1 2t t t tG A G I A G I tε ε−= + Ψ + + Ψ −

t

,       (16) 

 

whereas over the joint support, it follows that: 

 

( )
4

1
1

t j j t j
j

G A G I ε−
=

⎡ ⎤= + Ψ⎣ ⎦∑ % % % .         (17) 
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The two representations are based on the same joint support partition. However, the second 

representation is more flexible as it allows different variance reactions for each of the four subsets 

of the Cartesian plane. 

When the correlations are not zero, the transformation of structural thresholds into observed 

thresholds may create non-contiguous (or not dense) sets in the support of tε  that makes the 

bracketing of vectors as in equation (14) almost impossible. When thresholds are defined over 

marginal densities, the only effect of the correlations on the conditional variances is through the 

thresholds themselves. In fact, in the limiting case of diagonal specifications, the conditional 

variances are close to be driven by univariate DAGARCH models, given that the only link is in the 

thresholds (diagonal specifications exclude any spillover effect in the GARCH coefficients, as well 

as in the ARCH and asymmetry terms). Finally, note that if the diagonal specification is coupled 

with independent standardized residuals tη , then the DAMGARCH model collapses exactly on a 

collection of univariate DAGARCH models. 

Within the DAMGARCH model, the thresholds are not endogenous but must be fixed a priori on 

the basis of a distributional assumption for the structural residuals, tη . When the model has been 

estimated, the researcher may test the distributional assumptions, possibly update the beliefs, and 

re-estimate the DAMGARCH model. In addition, the thresholds may be defined on using the 

empirical densities of tη . In this case, an iterative estimation procedure should be used, as will be 

discussed in the estimation section. 

 

2.2. Stationarity and Asymptotic Theory 

In this paper, we focus on the variance model structure. The inclusion of ARMA mean components 

can be obtained using the results in McAleer et al. (2009). We assume a constant correlation matrix, 

R, so that the extension to time-dependent correlations can be obtained as an extension of the results 

in McAleer et al. (2008). In the following, we provide the assumptions and the theorems stating the 

stationarity and the asymptotic properties of the DAMGARCH model. All the proofs are reported in 

Appendix A.4. The assumptions and the theorems are a direct extension of the results in Ling and 

McAleer (2003) (refer to the DAMGARCH model, as defined in equations (1)-(4)). The model 

parameter vector θ is defined as follows: 
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( ) ( ) ( ) ( )
( ) ( ) ( )

1,1 , 1,1 ,

1

: ... : : ... :

: ... : :
l r l r

s

W vec A vec A vec vec

vec B vec B vecu R
θ

′⎡ ⎤′ ′ ′′ Ψ Ψ⎢ ⎥=
⎢ ⎥
⎣ ⎦

′
. 

 

Assumption 1: 1| t
tE Y I −⎡ ⎤⎣ ⎦  = 0. 

 

As a direct consequence of Assumption 1, the mean residuals are observable. 

 

Assumption 2: The innovations 1 1
t tD tη ε− −= Γ  are independently and identically distributed. The 

structural thresholds are defined over the tη . The structural thresholds are known. 

 

As stated in Assumption 2, we assume the knowledge of structural thresholds, which are fixed at the 

quantiles of the underlying structural innovations, following the description in the previous section. 

The following additional assumptions are needed to derive the conditions to ensure the existence of 

a unique ergodic and stationary solution to the DAMGARCH model. 

 

Assumption 3: We assume that the parameter space Θ is a compact subspace of Euclidean space, 

such that θ is an interior point of Θ; R is a finite and positive definite symmetric matrix, with ones 

on the main diagonal  and having a positive lower bound over the parameter space Θ; all 

elements of Bi and 

( )Rρ

1
1t t jE G z− −⎡⎣ % ⎤⎦  are non-negative i=1,2,…s, j=1,2,…r (where 

 
and 1

1tG − t jz −%  are 

defined in Theorem 1 below); W has elements with positive lower and upper bound over Θ; and all 

the roots of 1
1

1 1

0
r s

i i
t t i i

i i

I E G z L B L− −
= =

⎡ ⎤− −⎣ ⎦∑ ∑% =  are outside the unit circle. 

 

Assumption 4: 1
1

1

r
i

t t i
i

I E G z L− −
=

⎡ ⎤− ⎣ ⎦∑ %  and 
1

s
i

i
i

B L
=
∑  are left coprime, and satisfy other identifiability 

conditions given in Jeantheau (1998) (the conditions are given in the proof to Theorem 3). 

 

Assumption 5: at least one of the following set of restrictions is satisfied: 

i) the model has no dynamic asymmetry effect (that is, the parameter matrices  are all 

zero and thus the model collapses on a multiple threshold asymmetry specification, which is a direct 

generalization of McAleer et al. (2009));  

1,1 ,... l rΨ Ψ
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ii) the parameter matrices 1,1 , 1,1 , 1... , ... , ...l r l r sA A Ψ Ψ B B  are all diagonal. 

 

The restrictions in Assumption 5 are needed to obtain the model structural properties as 

generalizations of the proofs in Ling and McAleer (2003) and McAleer et al. (2009). 

 

Theorem 1: Under assumptions (1)-(5), the DAMGARCH model of equations (1)-(4) admits a 

unique second-order stationary solution, tH% , measurable with respect to the information set It-1, 

where It-1 is a σ-field generated by the innovations . The solution tz% tH%  has the following causal 

expansion: 

 

1
1 1

j

t t
j i

H W M A i t jξ
∞

− + −
= =

⎛ ⎞
′= + ⎜ ⎟
⎝ ⎠

∑ ∏%

         
(19) 

(3 ) 3 (
0 : : 0nn nlr ns n nlr n s

M I
× + × ×

⎡ ⎤′ = ⎢⎣ 1)− ⎥⎦

⎤
⎥

         
 (20) 

1 1 1 1 1 1
-1 -1 -1 - - - 1

(3 ) 3 (3 )

3 ( -1) 3 ( -1) 3 3 ( -1)
1 1 1 1 1 1
-1 -1 -1 - - - 1

( -1) 3 ( -1) ( -1)

: : ... : : ...
0 0

0 0
: : ... : : ...

0 0

t t t t t t t t r t t r t t r t t s

nl n nlr nl n ns

t nl r nl r nl nl r ns

t t t t r t r t r s

n s nlr n s n s

z G z G z G z G z G z G z B z B

A I
G G G G G G B B

I

− × − ×

× ×

× ×

=

% % % % % % % %

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦  

 (21) 

( ) ( ) ( ) ( )
2, 2,

1 3 1 1 1 1, , , ,0 , ,0b c
t t l t t nl r n sz W i e G G Wξ − − × − ×

⎡ ′ ′ ′ ′ ′= ⊗⎢⎣ ⎦
%

     
 (22) 

( ) ( ) ( )1 2 ,          2t t t j j j t j je dg e dg d d e dg d tε ε ε′ ′= = = − ′

1/ 2
t

      
(23) 

( )

( )( ) ( )( )
( )( )

1, 1, 1 1 2, 2, 1 21

, , 1

: : ...

... :

m m t m t m m m t m t m

t m
n nl

l m l m t m l t m

A G I A G I
G

A G I

ε ε

ε

− − − − − −

−
×

− − −

⎡ ⎤⎡ ⎤ ⎡ ⎤+ Ψ + Ψ⎣ ⎦ ⎣ ⎦⎢ ⎥=
⎢ ⎥⎡ ⎤+ Ψ⎣ ⎦⎣ ⎦    

 (24) 

( )( ) [ ] ( )1,     ,     ,   and   t t t t n t t t tz diag dg z z E z I z D D diag Hε−′= = = =% %
  

  (25) 

 

where the quantity  comes from the alternative representation of the DAMGARCH model 

described in Appendix A.1. Hence, {

1
1tG −

},t tY H%  are strictly stationary and ergodic. 
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The following theorem states the conditions to ensure the existence of moments for the 

DAMGARCH model. 

 

Theorem 2: Under assumptions (1) to (5), if ( ) 1b
tE Aρ ⊗⎡ ⎤ <⎣ ⎦ , then the 2bth moments of Yt are 

finite. where b is a strictly positive integer, and ⊗b denotes the Kroneker product of b matrices 

defined in Theorem 1. 

tA  

 

We assume the coefficients are estimated by Quasi-Maximum Likelihood, following Bollerslev and 

Wooldridge (1992). A deeper discussion of the DAMGARCH estimation and the relevant 

implementation issues is included in Section 2.3.  

In order to prove the consistency of the QML estimates, we introduce the following assumption on 

logarithmic moments, as in Jeantheau (1998).  

 

Assumption 6: For any θ ∈Θ , we have ( )log tEθ
⎡ ⎤Σ < ∞⎣ ⎦

% , where ( ) ( )½ ½ t tdiag H R diag HΣ = % %%
t , 

and tH%  is defined in (19). 

 

The following two theorems define consistency and asymptotic normality of the quasi-maximum 

likelihood estimator for the parameters of the DAMGARCH model. 

 

Theorem 3: Define θ̂  as the quasi-maximum likelihood estimates of DAMGARCH. Under the 

conditions given by Jeantheau (1998) reported in Appendix A.4 and the theorems in Ling and 

McAleer (2003), we have ˆ pθ θ⎯⎯→ . 

 

Theorem 4: Suppose that is  generated by equations (1)-(4), satisfying assumptions (1)-(6). 

Given the consistency of the QMLE for DAMGARCH, under conditions 4.i), 4.ii) and 4.iii), we have 

tY

( ) ( )1 1ˆ 0,Ln N θ θ θθ θ − −− ⎯⎯→ Σ Ω Σ : 

4.i)
2

'
L

θ θ
∂

∂ ∂
 exists and is continuous in an open and convex neighbor of θ ; 
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4.ii) 
2

1

ˆ'
Ln

θθ θ
− ∂

∂ ∂
 converges in probability to a finite non-singular covariance matrix 

2
1

'
LE nθ θ θ

−⎡ ∂
Σ = ⎢ ∂ ∂⎣ ⎦

⎤
⎥  for any sequence θ̂  such that ˆ pθ θ⎯⎯→ ; 

4.iii) 1

ˆ

Ln
θθ

− ∂
∂

 converges in law to a multivariate normal distribution ( )0,N θΩ , with covariance 

matrix equal to 1

ˆ ˆ
lim

'
L LE nθ

θ θθ θ
−⎡ ⎤∂ ∂

Ω = ×⎢ ⎥∂ ∂⎣ ⎦
. 

 

2.3 Estimation  

We have already mentioned that estimation of DAMGARCH could be considered through a quasi-

maximum likelihood approach, following Bollerslev and Wooldridge (1992). This means that we 

can define an approximate likelihood function ( )L θ  that depends on the conditional covariance 

matrix, ( ) ( ) ( )(
1 1

T T

t t t
t t

L l l )θ θ
= =

= = Σ∑ ∑ θ . Traditionally, the approximate likelihood function is 

derived from a multivariate normal distribution.  

In the MGARCH literature, there also exists a two-step estimation approach that considers 

univariate estimation of the conditional variances and multivariate estimation of the correlation 

parameters, following Bollerslev (1990) and Engle (2002). It should be noted that the two-step 

approach cannot be used with DAMGARCH for two reasons: first, given the dependence of the 

conditional variance dynamics from the observed thresholds that, in turn, are defined over the 

conditional variances and correlations; second, by the inclusion of possible spillover effects across 

conditional variances in the traditional GARCH matrix. The two-step approach could be used only 

under the strong assumption of independence between the mean residuals, tε , and absence of 

spillovers in the GARCH component of the model.  Note that even when all the parameter matrices 

are diagonal (that is, when there are no spillovers between variables) but the correlations are not 

zero, the two-step approach cannot be used as the observed thresholds still depend on the 

correlation matrix. 

Although all the parameters could be estimated, at least in principle, by maximizing the likelihood 

function, the model complexity creates several implementation and numerical optimization 

problems. These are present unless very restrictive parameterizations or limited dimension systems 

are considered. By fitting the full model, or with even a moderate number of variables, full 
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estimation induces a sensible increase in the computational time. In order to reduce the 

computational burden, we suggest the following approximate estimation procedure. 

Recall that the number of variables is denoted by n. Thus, we suggest the following steps: 

1) assume that the standardized and uncorrelated residuals are distributed according to a 

standard normal variables, fix the structural thresholds for j=1,2...l at the theoretical 

quantiles of the normal distribution; 

jd

2) estimate a standard GARCH model on a univariate basis and save the conditional variances 
2
,GARCH j tσ , the standardized residuals 1

, ,GARCH i t i t GARCH i t,η ε σ −=%  for i=1,2…n, and the thresholds 

( ) 1
, , ,      1, 2...GARCH j t i t GARCH i t jd d jε σ −= = l ; 

3) estimate a univariate DAGARCH model (see Caporin and McAleer, (2006)) using the 

 thresholds and save the conditional variances 1
,GARCH i t jdσ − 2

,DAGARCH i tσ  and the standardized 

residuals 1
, , ,DAGARCH i t i t DAGARCH i tη ε σ −=%  for i=1,2…n; 

4) compute the unconditional correlation matrix (using the sample estimator) on the 

1, 2, ,: : ...DAGARCH t DAGARCH t DAGARCH t DAGARCH n tη η η η ′⎡= ⎣% % % ⎤⎦%  series and save the correlation matrix 

Rn, the uncorrelated residuals 1, 2, ,: : ...R t R t R t R n tη η η η ′⎡ ⎤= ⎣ ⎦  and the thresholds 

     1,2...DAMGARCH j t jd D d j= Γ = l  (as defined in equation (11)); 

5) using standard approaches, test the distributional assumption of step 1) and, if necessary, 

update the dj thresholds (note that the threshold may be updated either modifying the 

distributional assumption or by computing them using the empirical model residuals). 

 

If we assume that the model follows a diagonal specification in the GARCH conditional variance 

dynamics and all correlations estimated in step 4) are zero, then the previous steps allow complete 

model estimation. The user just needs to validate the distributional assumptions in step 5), and, if 

needed, update the estimates of step 3) and 4). Some iterations of steps 3)-5) are needed if the 

thresholds are derived from empirical model residuals. Alternatively, the algorithm should proceed 

with the following steps. Note that Steps 1)-5) in this case are used to derive a reasonable vector of 

coefficient starting values, thereby reducing the computational time. 
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6) estimate the conditional variance parameters by fixing the correlation matrix and, using the 

thresholds defined in steps 4) and 5); then, save the conditional variances 2
,DAMGARCH i tσ  and 

the standardized residuals 1
, , ,DAMGARCH i t i t DAMGARCH i tη ε σ −=%  for i=1,2…n; 

7) compute the unconditional correlation matrix (using the sample estimator) on the 

1, 2, ,: : ...DAMGARCH t DAMGARCH t DAMGARCH t DAMGARCH n tη η η η ′⎡ ⎤= ⎣ ⎦% % % % series and save the correlation 

matrix Rn, the uncorrelated residuals 1, 2, ,: : ...R t R t R t R n tη η η η ′⎡ ⎤= ⎣ ⎦  and the thresholds 

( )      1,2...DAMGARCH j t t jd D d jε = Γ = l  (as defined in equation (11)); 

8) test the distribution assumption of step 1) using standard approaches and, if necessary, 

update the  thresholds (ote that the threshold may be updated either modifying the 

distributional assumption or by computing them using the empirical model residuals) 

jd

9) iterate steps 6) to 8) until convergence of the full model likelihood function (iterations are 

needed because estimation of the conditional variance parameters is separated from 

estimation of the correlations). 

 

Given the parameter estimates, standard errors could be computed by numerical methods on the full 

system likelihood (that is, by the joint use of numerical gradient and Hessian computation in a 

Quasi-Maximum Likelihood approach, following Bollerslev and Wooldridge (1992)). Clearly, the 

proposed approach is suboptimal, but full systems estimation is likely to be viable only for small-

dimensional systems. 

A discussion of a feasible model structure and on the number of parameters is needed. The general 

model has a very high number of parameters (recall that n is the number of assets, s is the GARCH 

order, and r the ARCH order). Furthermore, 1l −  is the number of thresholds (that is, we have l 

components in the asymmetric GARCH structure), and q is the order of the threshold function Gt. 

Therefore, the total number of parameters is: n for the conditional variance constants,  for the 

GARCH component,  for the threshold component, and  for the 

correlation matrix, namely 

2n s×

( )2 1n q× + × l ( )1 / 2n n× −

( ) ( )2 1 / 2n n s l l q n n+ × + + × + × − . Clearly, this is an intractable number 

of parameters, even for small dimensional systems. However, several restrictions could be 

considered: the use of diagonal parameter matrices; introducing restrictions on the asymmetry 

dynamics (acting on the term Gt); fixing the number of thresholds at a small value, such as one (l = 

2) for positive-negative or, as an example, to three (l = 4) for distinguishing among large and small 
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positive (negative) values; or a combination of the above restrictions. Furthermore, we may expect 

the threshold dynamics order to be small. Finally, note that if the model follows a pure ARCH 

dynamic (restricting s to zero), two-step estimation procedures are directly available. 

Table 1 reports some examples, restricting to three the threshold number, imposing the standard 

GARCH orders, and fixing the asymmetry dynamics order to one. The number of DAMGARCH 

parameters is also compared with several alternative models. We show that the number of 

parameters in DAMGARCH is of order O(n2), namely the same order as the standard BEKK model, 

but lower than the order of the general Vech model, which is O(n4). Furthermore, the diagonal 

specification of DAMGARCH with common dynamics in the asymmetry has a parametric 

dimension that is comparable to that of the CCC model, but with additional interesting properties. 

 

[Insert Table 1 here] 

 

3. The News Impact Surface implied by DAMGARCH 
 

Engle and Ng (1993) introduced the news impact curve, which is a useful tool for evaluating the 

effects of news on the conditional variances. The different reactions of the conditional variances to 

positive and negative shocks motivated the GJR and EGARCH representations of Glosten et al. 

(1992) and Nelson (1990), respectively. Both models permit a richer parameterization of the news 

impact curve as compared with the standard GARCH model. As an extension, Caporin and 

McAleer (2006) provided the news impact curve in the presence of multiple thresholds and dynamic 

asymmetry in conditional volatility.  

This section provides a multivariate extension of the news impact curve for the DAMGARCH 

model. Without loss of generality, consider a simple model with two variables, structural shocks 

normally distributed, three thresholds set to zero, to the 5% and 95% quantiles, and all other orders 

restricted to one. These values lead to the following DAMGARCH representation: 

 

1 1t tH W B H G−= + +
r

1t− ,          (26) 

( ) ( ) ( ){ }4

1
1

t j j t j t t j t j
j

G A G I d dε ε ε−
=

⎡⎡ ⎤= + Ψ − −⎣ ⎦ ⎣∑
r

% %� ⎤
⎦

}t

,      (27) 

( ){
4

1
1

t j j t j
j

G A G I ε−
=

⎡ ⎤= + Ψ⎣ ⎦∑ .         (28) 
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The parameter matrices have been set to the following specifications: 

 

1 2 3 4

1

0.05 0 0.05 0 0.05 0 0.05 0.3
0.3 0.05 0 0.05 0 0.05 0 0.05

0.01 0.8 0.05 1 0.7 0.10 0
0.01 0.05 0.8 0.7 1 0 0.10

A A A A

W B R

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡

= = = Ψ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣

⎦
⎤
⎥
⎦

 (29) 

 

Note that the first (second) asset’s conditional variance depends on the second (first) asset’s large 

positive (negative) shocks (see matrices A1 and A4). Furthermore, the two assets conditional 

variances are linked by a spillover effect (see matrix B1). Finally, Ψ  is constant over j. 

Traditionally, the news impact curve represents the variance movements in response to an 

idiosyncratic shock, assuming that all past variances are evaluated at the unconditional variance 

implied by the model. For the simple GARCH(1,1) model, this implies: 

 
2 2

tNIC zω βσ ασ= + + 2 ,  (30) 

 

where  represents the idiosyncratic component. In the DAMGARCH model, assuming that the 

correlations are constant, the news impact surface is given by: 

2
tz

 

[ ] [ ]( ) ( )( )( ) [ ]
1

d d
j

j j j t t j t j
i

NIS W BE H A E G diag dg I z z z E H
=

⎡ ⎤⎛ ⎞⎛ ⎞⎡ ⎤′= + + + Ψ − Γ − Γ⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
∑ , (31) 

 

where the derivation of the formula and the expectations are defined Appendix A.2. Note that the 

News Impact Surface is continuous by construction when thresholds are defined over the marginal 

density support as in (10). When thresholds are defined over the multivariate density support of tη  

or when , the continuity of the News Impact Surface is not always guaranteed. 0jd =%

As an example, we report the News Impact Surfaces for the two asset example for two different 

cases: the first with the coefficients reported in (29), while the second is without any relation 

between the variances (that is, all matrices are diagonal, excluding the correlation matrix). 

 

[Insert Figures 3-6 here] 
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Note that when the assets are not correlated and there is no spillover or asymmetric behavior, the 

NIS collapses to the traditional News Impact Curve, as shown for the first asset in Figure 3 and for 

the second in Figure 4. When we introduce spillovers, the asymmetric component comes into play, 

modifying the NIS for the monitored assets depending on the shocks affecting the other asset (see 

Figures 5 and 6).  

 

4. Dynamic Asymmetric Effect: an empirical example  
 

This section focuses on the estimation of the DAMGARCH model and its comparison with the 

simpler CCC-GARCH(1,1), CCC-GJR and CCC-DAGARCH models9. We consider the daily 

closing levels of the DAX and FTSE 100 indices. The sample considered covers the period from 

1998 to 2004 (1734 daily observations), and the data are downloaded from Datastream. The two 

markets are highly correlated and may show strong dependence in the extreme returns. Therefore, 

we may expect a NIS that is similar to that reported in the previous sections. 

Table 5 reports the estimated coefficients of the DAMGARCH model, while Tables 2, 3 and 4 

report the CCC-GARCH(1,1), the CCC-GJR and the CCC-DAGARCH estimates, respectively. 

Furthermore, Figures 7 and 8 report the conditional variances estimated by the three models for the 

FTSE index and the percentage differences between the CCC and DAMGARCH models. Figures 9 

and 10 report the NISs for the DAX and the FTSE implied by the DAMGARCH model. 

In this bivariate case we estimate a full DAMGARCH model with three thresholds, and all other 

orders set to 1. The thresholds were initially fixed at zero at the upper and lower 10% tails under a 

standardized normal distribution for the uncorrelated and variance standardized residuals. 

Following the estimation approach outlined in Section 2, we verified the distribution of the 

empirical model residuals, which showed some deviation from normality (asymmetry for the FTSE 

returns and mild leptokurtosis for the DAX returns). Given this observation, we decided to fix the 

thresholds using empirical structural residuals and to iterate model estimation and definition of the 

thresholds until convergence of the likelihood function (the stopping rule was set to a change in the 

likelihood value lower than 1-4). Convergence required only 4 iterations. Some descriptive statistics 
                                                 

2
1

9 The conditional variances follows in these cases have the following specifications: CCC-GARCH(1,1) 
2 2
, 1i t i i t i tσ ω α ε β σ−= + + − ; CCC-GJR ( )2 2 2

, 1 1 1 0i t i i t i t t i tI 2
1σ ω α ε γ ε ε β σ− − −= + + < + − ; CCC-DAGARCH 

( ) ( )( )
4 22 2

, , 1 , , , 1 , , 1 , 1
1

i t i i i t i j i j i t i j i t i t i j
j

I z dσ ω β σ γ φ γ ε− − − −
=

= + + + −∑ ,
where , , , 1i j i j i td d σ −= 1

, , ,i t i t i tz, ε σ −= , the thresholds 

 are defined as the 5%, 50% and 95% quantiles of a standardized normal density,  ,i jd

( ) ( )
4

, , , , 1 , ,
1

,i t i j i j i t i j i t
j

I zγ γ φ γ −
=

= +∑ ( ) ( ), , 1 , 1 ,1 ,  1,i j i t i t i jI z z d j− −= < = 2,  and
 ( ) ( ), , 1 , 1 , 11 ,  3, 4i j i t i t i jI z z d j− − −= > = . 
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and the threshold values used in the estimation of DAMGARCH are included in Table 6. In 

addition, Figures 11 and 12 report the frequency histograms of the residuals. Graphical and 

descriptive analyses show that the differences between the index innovations and the impact of the 

deviations from normality to the structural thresholds (and is more evident in FTSE). 

Note that in the following and in the Tables, the parameter matrices of DAMGARCH are matched 

with a subscript corresponding to the following partition of the marginal innovations density: 

 

1 - large negative values (below the lower threshold – 10% quantile); 

2 - negative values; 

3 - positive values; 

4 - large positive values (above the upper threshold – 90% quantile). 

Three thresholds were also used for the DAGARCH specifications, and the coefficients subscript 

can be interpreted as for the DAMGARCH model. 

The CCC models provide persistent conditional variance dynamics, a finding that is confirmed by 

the elevated values of the B matrix in the DAMGARCH model. The DAMGARCH model provides 

significant coefficients in many parameter matrices, with the exception of the A matrix associated 

with positive innovations. Similar findings are observed in the CCC-DAGARCH estimates. 

There is an evident interrelationship between the two markets, in particular, for large positive 

shocks, and the correlation estimated by DAMGARCH is similar to that given by the CCC models. 

Comparing the fitted conditional variances, we note some discrepancies, in particular, during 

periods of high volatility: the DAMGARCH peaks in the conditional variance seem, in some cases, 

to anticipate those produced by CCC models, an effect that may be due to an improved forecasting 

ability. Furthermore, the relative percent changes of CCC models with respect to the DAMGARCH 

ones reveals that, even if the patterns are very close (as we can observe in Figure 7), there are 

relevant differences, in some cases the variances are doubles while in other are halved. Notably, the 

differences are very high even comparing DAGARCH and DAMGARCH conditional variances. 

Finally, the log-likelihood provided by the DAMGARCH model is much higher than that of 

the CCC models. As there is a nesting relationship between the models, standard likelihood ratio 

tests can be used (in the following, p-values are derived presuming that the asymptotic density is the 

traditional one). These tests are in favor of the DAMGARCH model. The CCC-GJR model nests 

CCC-GARCH; in this case the test statistic has a value of 91.08, 2 degrees of freedom and a p-value 

of less than 1-10. The likelihood comparison of CCC-GJR and DAMGARCH provides a test statistic 

equal to 82.15. The test has now 30 degrees of freedom: 2 in the B matrix (off-diagonal coefficients 

are zero), 16 in the Ψi matrices (all coefficients restricted to zero), and 12 in the Ai matrices (8 for 
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zero restrictions on the off-diagonal parameters plus 4 zero restrictions for diagonal elements in A1 

and A4 – diagonal elements in A2 and A3 can be interpreted as the ARCH effect for negative and 

positive shocks). In this case, the P-value is less than 1-6, thereby supporting the inclusion of 

threshold asymmetry between variances. Furthermore, a comparison of the CCC-GJR and CCC-

DAGARCH specifications is in favor of the former.  

It seems that the inclusion of multiple thresholds in the conditional variances is not useful, at least 

when we exclude any spillover across variances. Note that in the CCC-DAGARCH model we 

postulate that the thresholds do not depend on the correlation matrix. A comparison of CCC-GJR 

and DAMGARCH shows that a multivariate model with dynamic asymmetry, variance spillovers 

and thresholds that are correlation dependent lead to improvements with respect to the traditional 

MGARCH models. 

In conclusion, the News Impact Surfaces reported in Figures 9 and 10 are similar to the 

example discussed in Section 3. They show that both the DAX and FTSE conditional variances 

depend on the other asset shocks, with a more pronounced effect in the case of DAX. 

 

[Insert Figures 7-12 and Tables 2-6 here] 

 

 

5. Concluding Remarks 
 

This paper introduced a new MGARCH model, DAMGARCH, which generalized the VARMA-

GARCH model of Ling and McAleer (2003) by introducing multivariate thresholds and time-

dependent asymmetry in the ARCH component of the model. As a result, the proposed 

parameterization is able to explain variance asymmetry and threshold effects simultaneously with 

variance spillovers. 

Furthermore, we provided the conditions for the existence of a unique stationary solution and, by 

generalizing the asymptotic theory in Ling and McAleer (2003), showed that the quasi-maximum 

likelihood estimators were consistent and asymptotically distributed as multivariate normal. In 

addition, we presented the analytic form of the multivariate news impact curve, which was labelled 

the news impact surface, whose final purpose was a detailed graphical analysis of asymmetry and 

leverage effects. 

 27



In an illustrative empirical application, it was shown that the DAMGARCH model outperformed 

the standard CCC model in terms of the maximized log-likelihood values. An extended comparison 

of DAMGARCH and other more traditional MGARCH models is left for future research. 
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Appendix A.1 Alternative representation of the DAMGARCH model 

 

Equations (2) - (4) can be represented in an alternative way as follows: 
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where we have used the equivalence ( ) . Furthermore, 

using the following relations: 

( ) ( )(t j t j t j t jd d dg d dε ε ε ε⎛ ⎞′− − = − −⎜ ⎟
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we may rewrite  as  2

t mG −

 

( ) ( ) ( ){ }2
1 1 2 ,1 1 2 2 ,2 1 2 ,: : ... :t m t m t m t m t m t m l t m lG e e e e e e e e e− − − − − − −= + + + + + + , 

 

highlighting the fact that the component including the innovation contains an element which is time 

varying but constant over all partitions, a second element that is time invariant but changing across 

partitions, and a cross term which is time varying and varying across partitions. Using this last 

result, the following representation can be derived: 
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( )1 2, 1 2, 1 2,

1 1
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t i t i t m t m t m t m t m
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Appendix A.2 Possible partitions defined over the joint support 

 

The flexibility of the partitions and of the models defined directly over the joint support 

accommodates particular representations, such as that depicted in Figure 3, which focuses on very 

extreme events. A natural question that may arise is the identification of common shocks or 

common components. 

 

[Insert Figure A.1 here] 

 

Finally, the partitions defined over the joint probability support may also accommodate non-linear 

relations between assets. A simple example is the distinction between extreme events of an elliptical 

multivariate distribution, as depicted in Figure A.1. This may be interesting for cases with constant 

correlations and thresholds defined over the standardised but correlated innovations. 

 

[Insert Figure A.2 here] 

 

Appendix A.3: Derivation of the News Impact Surfaces and of the unconditional estimates 

 

Assume s=1 and r=1, and that the indicator function is defined over the marginal densities, so that  

( )j tI ε  is a diagonal matrix. The model representation is given by 
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Lemma A.1 

The focus of the indicator function refers to subset j: ( )j tI ε . The following equality holds: 
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Proof: 

Assume that the indicator functions are defined as in (11.a). Then, for a given j in 1,2,…,l, and a 

given i in 1,2,…,k,  
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A similar proof can be derived when indicator functions follows (11.b).■ 

 

If the model has a unique stationary solution, we can write 
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As we are interested in the unconditional values, the expectations can be rewritten as follows: 
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The unconditional value of the asymmetric term has to be computed numerically. The following 

equalities hold: 
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where ( )j j tM E I z⎡= ⎣ ⎤⎦  (which is a diagonal matrix). Note that this expectation can be evaluated 

numerically if the correlations are constant over time. Alternatively, we suggest using 

approximations and evaluate the quantity using the unconditional correlations implied by the 

correlation model. Given the values of jM , we determine the unconditional value [ ]tE G  by 

solving the following linear system: 
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Next, consider then the following equality: 
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By focusing on the following expectation (when j jd d=% ): 
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and using the fact that ( )j tI z  is diagonal, we can write: 
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This expression arises from the fact that the diagonal of the product within the internal parentheses 

is equivalent to the product of ( )j tI η  with the dg(.) result given above. Furthermore, again using 

the fact that our interest is on the diagonal elements, we derive the following equalities: 
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where we use the diagonality of , and replace the expectations with their unconditional values, 

namely 

tD

[ ] [ ]( ) [ ]( ) [ ]t t t tdg E D E D dg E D D E H= = t , and Γ  comes from the decomposition of the 

unconditional correlation matrix. Note also that the expectation of ( )t tE dg D D⎡ ⎤⎣ ⎦  is independent of 

the expectation of ( )( )( )j t t j t jE dg I z d dη η⎡ ⎛ ⎤⎞′− Γ − Γ⎜⎢ ⎝ ⎠⎣ ⎦
⎟⎥   by the law of iterated expectations: the 

conditional standard deviations are a function of the information set at time t-1, while the 

innovations are referred to time t. Defining 

 

( )( )( )j j t t j t jN E I z z d z d⎡ ⎤′= − Γ − Γ⎢ ⎥⎣ ⎦
, 

 

it follows that: 

 

( )( )( ) [ ] ( ) [ ] ( )

( ) [ ] ( )( ) [ ].

t j t t j t j t t j t j

j t j t

E dg D I z z d z d D E H dg N E H dg N

dg N E H diag dg N E H

⎡ ⎤⎛ ⎞′− Γ − Γ = =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

= =

� �

�

 

 36



 

Note that, when , the previous result is still valid but we must redefine  as follows: 0jd =%
jN

 

( )j j t tN E I z z z⎡ ⎤′=
⎣ ⎦

%
t . 

 
It should be emphasized that the unconditional expectation of the correlation matrix equals the 

correlation matrix if the matrix is constant, otherwise it has to be computed on the basis of a 

specified dynamic structure. Collecting the various results, we can then write: 

 

[ ]( ) ( ) ( )( )

[ ]( ) ( )( ) [ ]

1 2 1 1
1

1

l

t j j t j t t j t j
j

l

j j t j t
j

E G A E G E I z dg d d

A E G diag dg N E H

ε ε− − − − −
=

=

⎡ ⎤⎛ ⎞
1

′⎡ ⎤ = + Ψ − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦

⎡ ⎤= + Ψ⎣ ⎦

∑

∑

r

 

[ ] [ ] [ ]( ) ( )( ) [ ]1
1

l

t t j j t j
j

E H W B E H A E G diag dg N E H
=

t
⎡ ⎤= + + + Ψ ⎣ ⎦∑ . 

 

Solving with respect to the unconditional variances gives 

 

[ ] [ ]( ) ( )( )
1

1
1

l

t n j j t j
j

E H I B A E G diag dg N W
−

=

⎛ ⎞⎡ ⎤= − − + Ψ⎜ ⎟⎣ ⎦⎝ ⎠
∑ . 

 

Note that the unconditional value of the correlation matrix should be derived under the appropriate 

model that is used to define the dynamic conditional correlations, unless the conditional correlations 

are assumed to be constant. The unconditional variance of DAMGARCH is equivalent to 

 

DRDΣ = , 

 

and correlation targeting is imposed when the following equalities hold: 

 

( ) ( )( )

*

* *
1

1

,

,
l

n j j t j
j

R R

W I B A E G diag dg N H
=

=

⎛ ⎞⎡ ⎤⎡ ⎤= − − + Ψ⎜ ⎟⎣ ⎦⎣ ⎦⎝ ⎠
∑ *  
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where R* and H*  refer to the corresponding sample estimators, *
jN  is evaluated using the 

decomposition of R*, and *
tE G⎡ ⎤⎣ ⎦  depends on *

jM , which is also evaluated using the decomposition 

of R*. Note also that the dynamic correlation model has to be re-cast to ensure correlation targeting. 

Note that this result includes as special cases the CCC, VARMA-GARCH, VARMA-AGARCH 

and DCC models. 

 

Appendix A.4: Proofs of Theorems 

 

Proof of Theorem 1. 

 

Following Ling and McAleer (2003), we first rewrite DAMGARCH in the following form: 

 

1t t tX A X tξ−= + , 

 

where 

 

2, 2, 2, 2, 2, 2, 2, 2, 2,
1 1 1 1 1, , , , , ,..., , , , , ,...,a b c a b c a b c

t t t t t t r t r t t t sX G G G G G G G G G H H H− − − + − + − − +

′⎡ ⎤′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′=
⎣ ⎦1 , 

 

which has dimension (3nlr+ns)x1 and where the elements are defined in Appendix A.1. Note that 

the vector tX  contains threshold-dependent elements at time t, threshold dependent components, as 

well as the innovation (mean residuals) at time t. Using the notation introduced in Appendix A.1, 

we consider the following representation of the variance dynamics: 

 

( )1 2, 1 2, 1 2,

1 1

s r
a b

t i t i t m t m t m t m t m
i m

H W B H G G G G G G− − − − −
= =

= + + + +∑ ∑ c
− . 

 

Multiplying the equation for  by tH ( )( )t tz diag dg z zt
′=%  yields: 

 

( )1 2, 1 2, 1 2,

1 1

s r
a b

t t t i t i t t m t m t t m t t m t m
i m

e z W z B H z G G z G G z G G− − − − −
= =

= + + + +∑ ∑% % % % % c
− , 
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given that . The previous equation implies a matrix , with the following structure: t t tz H e=% tA

 
1 1 1 1 1 1
-1 -1 -1 - - - 1

(3 ) 3 (3 )

3 ( -1) 3 ( -1) 3 3 ( -1)
1 1 1 1 1 1
-1 -1 -1 - - - 1

( -1) 3 ( -1) ( -1)

: : ... : : ...
0 0

0 0
: : ... : : ...

0 0

t t t t t t t t r t t r t t r t t s

nl n nlr nl n ns

t nl r nl r nl nl r ns

t t t t r t r t r s

n s nlr n s n s

z G z G z G z G z G z G z B z B

A I
G G G G G G B B

I

− × − ×

× ×

× ×

=

% % % % % % % %

n

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦ .

 

 

Furthermore, 

 

( ) ( ) ( ) ( )
2, 2,

1 3 1 1 1 1, , , ,0 , ,0b c
t t l t t nl r n sz W i e G G Wξ − − × − ×

⎡ ⎤′ ′ ′ ′ ′= ⊗⎢ ⎥⎣ ⎦
%

 
 

 

Given these quantities, and following Ling and McAleer (2003), we define the quantity 

 

, 1
1 1

jm

m t t t i t j
j i

S Aξ ξ− + −
= =

⎛ ⎞
= + ⎜ ⎟

⎝ ⎠
∑ ∏  

 

where m = 1,2,…. Denote by  the element of order k in the summation included in , such 

that 

,m ts ,m tS

 

, 1
1

j

m t k t k t i t j
i

E s E e e Aξ ξ− + −
=

⎛ ⎞′ ′= + ⎜ ⎟
⎝ ⎠
∏ , 

 

where ek is a vector conformable with  comprising zeros and with 1 in position k. As the 

matrices  are not independent, we need to modify the proof of Ling and McAleer (2003). We first 

note that the following decomposition holds for each matrix At : 

,m tS

tA
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1

1 1 1 1 1 1
-1 -1 -1 - - - 1

(3 ) 3 (3 )

1 3 ( -1) 3 ( -1) 3 3 ( -1)
1 1 1 1 1 1
-1 -1 -1 - - - 1

( -1) 3 ( -1) ( -1)

: : ... : : ...
0 0

0 0
: : ... : : ...

0 0

t t t

t t t t r t r t r s

nl n nlr nl n ns

t nl r nl r nl nl r ns

t t t t r t r t r s

n s nlr n s n s n

A Z A

G G G G G G B B

A I
G G G G G G B B

I

−

− × − ×

− × ×

× ×

=

⎡ ⎤
⎢
⎢
⎢=
⎢
⎢
⎢
⎣ ⎦

%

%

(3 )

(3 ) 3

0
0

t n nlr ns n
t

nlr ns n n nlr ns n

z
Z

I
× + −

+ − × + −

⎥
⎥
⎥
⎥
⎥
⎥

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

%

 

 

where 1tA −
%  depends on the information set at time t-1 and tZ  depends on the information set at time 

t. Furthermore, consider a simple DAMGARCH model where the lags of the conditional variance 

dynamics are all restricted to be equal to one, which implies that 1tA −
%  depends only on the 

information at time t-1.and it is independent of tZ .When increasing any lag length or order of the 

model, the following proof must be adapted. Thus, we have 

 

[ ]
1

, 1 1 2
1 1

j j
j

m t k t i t i t j k t t i t i t j t j k
i i

E s E e Z A e E Z E A Z E A e Aξ ξ
−

− + − − − − − −
= =

⎛ ⎞ ⎛ ⎞′ ′ ⎡ ⎤ ⎡ ⎤= =⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠
∏ ∏% % % ′= Δ Δ , 

 

where  and  are two matrices, and 1Δ 2Δ

 
1 1

1 1 1

3 ( 3 ) 3

( 3 )( -1) ( 3 )( -1) ( 3 ) ( 3 )( -1)

1 1
1 1 1

( -1) ( 3 ) ( -1) ( -1)

... ...

0 0

0 0

... ...

0 0

t t t r s

nl n nl r nl ns

n nl r n nl r n nl n nl r ns

t t t r s

n s n nl r n s n s n

E G z E G B B

A I

E G z E G B B

I

− − −

× + ×

+ + × + + ×

− − −

× + ×

⎡ ⎤⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦⎢ ⎥
⎢ ⎥
⎣ ⎦

%

%

.   (A.3.1) 

 

In order to obtain (A.3.1), we have used the previous decompositions of At and the equality  

 

( ) [ ]
1

1
1 1

j j

t i t i t j t t i t i t j t j
i i

E Z A E Z E A Z E Aξ
−

− + − − − − − −
= =

⎡ ⎤ ⎛ ⎞⎡ ⎤ ⎡= ⎜ ⎟⎢ ⎥ ⎣ ⎦ ⎣⎣ ⎦ ⎝ ⎠
∏ ∏% % ξ ⎤⎦

% .    (A.3.2) 
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If the model follows the general representation in equations (1)-(4) in the text, (A.3.2) is not valid, 

due to the inclusion in 1tA −
%  of the  terms. In fact, the terms  depend on the 

past values of the innovations and are tdependent on the past values of 

1
-1 -,...,tG G1

t r
1
t r

1
-1 -,...,tG G

tZ . However, under the 

restriction that the model has no dynamic asymmetry, the terms  simplify removing the 

dependence on past values of 

1
-1 -,...,tG G1

t r

tZ . In this case, the expectations can be split given the dependence of 

1tA −
%  on time t-1 quantities only (when this is not the case, the expectation within the parentheses 

will involve additional terms). 

A similar result applies when the model parameter matrices are diagonal: by expanding the term 

 in (A.3.1), and by using the diagonality of the parameter matrices and of 1
1tG − ( )1j tI ε − , we can 

show that the expectation in (A.3.1) is still valid. Unfortunately, such an approach cannot be used 

when the model has full parameter matrices. 

When (A.3.1) is valid, it can be shown that Assumption 3 ensures the roots of the characteristic 

polynomial of A  lie inside the unit circle, thereby proving the convergence of jA , and hence of the 

whole term. The remainder of the proof follows closely that in Ling and McAleer (2003) and in 

McAleer et al. (2009), also with respect to the proofs of strict stationarity and ergodicity. ■ 

 

Proof of Theorem 2. 

 

Using Theorem 1 and the results reported in Appendix A.4, the proof follows by direct extension of 

the results in McAleer et al. (2009). ■ 

 

Proof of Theorem 3. 

 

Consistency is obtained by verifying the conditions given in Jeantheau (1998), namely 

i) the parameter space Θ is compact; 

ii) for any θ ∈Θ , the model admits a unique strictly stationary and ergodic solution; 

iii) there exists a deterministic constant k, such that  and ,  tt kθ∀ ∀ ∈Θ Σ > ; 

iv) model identifiability; 

v)  is a continuous function of the parameter vector, tΣ θ ; 

vi) log 0  tEθ θ⎡ ⎤Σ < ∀ ∈Θ⎣ ⎦ . 
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Note that the determinant of the conditional covariance matrix can be decomposed using equation 

(1) into 2
t t t tD R D D RΣ = = , where we have also used the assumption of a constant conditional 

correlation matrix. Furthermore, by Assumption 3,  is strictly positive, and there exists a constant 

k1 such that 

tD

2
1  ttD k> ∀ . In addition, again using Assumption 3, there exists a second constant k2 

such that 2R k> . Then we can define a third constant k = k1 k2, such that   and t k t θΣ > ∀ ∀ ∈Θ , 

where Θ is a compact subspace of an Euclidean space. This proves conditions i) and iii). Theorem 1 

ensures the existence of a unique, strictly stationary and ergodic solution to DAMGARCH, 

verifying condition (ii). Assumption 4 deals with condition (iv), ensuring identifiability, while 

Assumption 5 imposes the log-moment condition, (vi). Finally, under Assumption 4, it is evident 

that the conditional variances are a continuous function of the parameter set, proving condition v). 

Condition (ii) refers to a unique strictly stationary and ergodic solution, while Theorem 1 provides 

conditions for second-order stationary solutions. However, using the results in Ling and McAleer 

(2003), Theorem 3.1, consistency can be proved under second-order stationary solutions.■ 

 

Proof of Theorem 4. 

 

Using the previous results, the proof can be obtained by direct extension of the Theorems and 

Lemmas in Ling and McAleer (2003) and McAleer et al. (2009). ■  
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  ω α β 
DAX Coeff. 0.074 0.143 0.833 

 100*St.dev. 0.429 0.338 0.467 
FTSE Coeff. 0.009 0.087 0.908 

 100*St.dev. 0.010 0.039 0.042 
Correlation 0.715   

Log-Likelihood -1708.484   
Table 2: CCC-GARCH estimates – bold values identify significant coefficients 
 
 
 

 ω α γ β 
DAX Coeff. 0.023 0.022 0.097 0.919

 100*St.dev. 0.040 0.070 0.364 0.080
FTSE Coeff. 0.009 0.003 0.104 0.935

 100*St.dev. 0.008 0.079 0.322 0.140
Correlation 0.713    

Log-Likelihood -1662.922    
Table 3: CCC-GJR-GARCH estimates – bold values identify significant coefficients 
 
 
 

  DAX FTSE   DAX FTSE 
ω Coeff. 0.020 0.010 Coeff. 0.000 0.000 
 100*St.dev. 0.023 0.009 Ψ1 (DAX) 100*St.dev. 0.074 0.160 

Coeff. 0.930 0.930 Coeff. 0.064 0.175 B (DAX) 100*St.dev. 0.093 0.049 Ψ2 (FTSE) 100*St.dev. 0.404 0.784 
Coeff. 0.000 0.000 Coeff. 0.000 0.000 A1 (DAX) 100*St.dev. 0.508 0.091 Ψ3 (FTSE) 100*St.dev. 0.123 0.048 
Coeff. 0.106 0.103 Coeff. 0.001 0.000 A2 (DAX) 100*St.dev. 0.112 0.096 Ψ4 (FTSE) 100*St.dev. 0.268 0.326 
Coeff. 0.000 0.000 Correlation 0.714 A3 (FTSE) 100*St.dev. 0.204 0.088 Log-Likelihood -1660.82 
Coeff. 0.150 0.084A4 (DAX) 100*St.dev. 0.714 0.604

Table 4: CCC-DAGARCH estimates – bold values identify significant coefficients 
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  DAX FTSE   DAX FTSE 
ω Coeff. 0.015 0.009 Coeff. 0.000 0.000 
 100*St.dev. 0.020 0.006 Ψ1 (DAX) 100*St.dev. 0.199 0.051 

Coeff. 0.943 0.000 Coeff. 0.009 0.003 B (DAX) 100*St.dev. 0.067 0.058 Ψ1 (FTSE) 100*St.dev. 0.193 0.329 
Coeff. 0.000 0.928 Coeff. 0.076 0.029 B (FTSE) 100*St.dev. 0.000 0.020 Ψ2 (DAX) 100*St.dev. 1.551 0.257 
Coeff. 0.000 0.024 Coeff. 0.273 0.185 A1 (DAX) 100*St.dev. 0.075 0.401 Ψ2 (FTSE) 100*St.dev. 0.503 0.716 
Coeff. 0.000 0.003 Coeff. 0.000 0.093 A1 (FTSE) 100*St.dev. 0.043 0.289 Ψ3 (DAX) 100*St.dev. 0.139 0.467 
Coeff. 0.063 0.011 Coeff. 0.000 0.000 A2 (DAX) 100*St.dev. 0.004 0.058 Ψ3 (FTSE) 100*St.dev. 0.067 0.116 
Coeff. 0.008 0.059 Coeff. 0.000 0.017 A2 (FTSE) 100*St.dev. 0.018 0.003 Ψ4 (DAX) 100*St.dev. 0.184 0.116 
Coeff. 0.000 0.003 Coeff. 0.000 0.000 A3 (DAX) 100*St.dev. 0.052 0.097 Ψ4 (FTSE) 100*St.dev. 0.180 0.204 
Coeff. 0.000 0.000 Coeff. 0.718 A3 (FTSE) 100*St.dev. 0.001 0.006 Corr 100*St.dev. 0.050 
Coeff. 0.252 0.072 Log-Likelihood 1622.425 A4 (DAX) 100*St.dev. 0.530 0.546
Coeff. 0.068 0.101A4 (FTSE) 100*St.dev. 0.003 0.390

Table 5: DAMGARCH estimates – bold values identify significant coefficients 
 
 
 
 DAX FTSE 
Mean 0.006 -0.013 
Median 0.056 0.022 
Maximum 5.466 3.589 
Minimum -3.517 -4.014 
Std. Dev. 1.002 1.001 
Skewness -0.013 -0.165 
Kurtosis 3.699 3.293 
Correlation 0.004 
Jarque-Bera 35.331 14.083 
Probability 0.000 0.001 
10% quantile -1.271 -1.248 
90% quantile 1.278 1.233 

Table 6: Descriptive analysis of standardized and uncorrelated residuals (used for 
determining empirical structural innovations) and empirical quantiles used to define model 
thresholds – 10% (90%) quantile for the normal variable is -1.281 (1.281) 



 
 

DAMGARCH – l=4 – s=r=q=1 

 Assets number 
(number of correlations) 

2 
(1) 

3 
(3) 

4 
(6) 

5 
(10) 

10 
(45) 

20 
(190) 

100 
(4950) 

n 
(n(n-1)/2) 

Full 39 87 154 240 955 3810 95050 ( ) ( )2 1
2

n n
n s l lq n

−
+ + + +  

Diagonal 21 33 46 60 145 390 5950 ( ) ( )1
2

n n
n s l lq n

−
+ + + +  

Common Dynamic 27 60 106 165 655 2610 65050 ( ) ( )2 1
1

2
n n

n s l n
−

+ + + +  

D
A

M
G

A
R

C
H

 (i
nc

lu
di

ng
 c

or
re

la
tio

ns
) 

Diagonal and Common Dynamic 15 24 34 45 115 330 5650 ( ) ( )1
1

2
n n

n s l n
−

+ + + +  

CCC 
(GARCH(s,r) and correlations) 9 15 22 30 85 270 5350 ( ) ( )1

2
n n

n s r n
−

+ + +  

DCC 
(GARCH(s,r) and correlations) 11 17 24 32 87 272 5352 ( ) ( )1

2 DCC DCC

n n
n s r n s r

−
+ + + + +  

Diagonal BEKK(s,r) 7 12 18 25 75 250 5250 ( ) ( )1
2

n n
s r n  

+
+ +

Triangular BEKK(s,r) 9 18 30 45 165 630 15150 ( ) ( )1
1

2
n n

s r
+

+ +  

BEKK(s,r) 11 24 42 65 255 1010 25050 ( ) ( ) 21
2

n n
s r n

+
+ +  

Diagonal Vech(s,r) 9 18 30 45 165 630 15150 ( ) ( )1
1

2
n n

s r
+

+ +  

Vech(s,r) 21 78 210 465 6105 88410 >5×106 ( ) ( ) ( ) 2
1 1

2 2
n n n n

s r
⎛ ⎞+ +

+ + ⎜ ⎟
⎝ ⎠

 

Table 1: Model dimension ( DCCs and DCCr  are the lag orders in the DCC model) 
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Figure 3: NIS of the first asset without spillovers  Figure 4: NIS of the second asset without spillovers 
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Figure 1: Multivariate GJR representation  Figure 2: Partition over the joint support 
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Figure 5: NIS of the first asset with spillovers  Figure 6: NIS of the second asset with spillovers 
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Figure 9: DAX NIS      Figure 10: FTSE NIS 
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Figure 7: FTSE conditional variances given by CCC, GJR and DAMGARCH 
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Figure 8: FTSE percentage difference between the conditional variances obtained from  
CCC and GJR compared with DAMGARCH 
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Figure 11: histogram of DAX structural innovations  Figure 12: histogram of FTSE structural innovations 
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Figure A.1: Extreme Events on a Bivariate Support   Figure A.2: A non-linear support partition 
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