KIER DISCUSSION PAPER SERIES

KYOTO INSTITUTE
 OF
 ECONOMIC RESEARCH

Discussion Paper No. 714
"Great Expectatrics: Great Papers, Great Journals, Great Econometrics"
Michael McAleer

August 2010

KYOTO UNIVERSITY
KYOTO, JAPAN

Great Expectatrics: Great Papers, Great Journals, Great Econometrics*

Chia-Lin Chang
Department of Applied Economics
National Chung Hsing University
Taichung, Taiwan
Michael McAleer
Econometric Institute
Erasmus School of Economics
Erasmus University Rotterdam
and
Tinbergen Institute
The Netherlands
and
Institute of Economic Research
Kyoto University
Japan

Les Oxley
Department of Economics and Finance
University of Canterbury
New Zealand

Rervised: August 2010

[^0]
Abstract

The paper discusses alternative Research Assessment Measures (RAM), with an emphasis on the Thomson Reuters ISI Web of Science database (hereafter ISI). The various ISI RAM that are calculated annually or updated daily are defined and analysed, including the classic 2 -year impact factor (2YIF), 5-year impact factor (5YIF), Immediacy (or zero-year impact factor (0YIF)), Eigenfactor score, Article Influence, C3PO (Citation Performance Per Paper Online), h-index, Zinfluence, and PI-BETA (Papers Ignored - By Even The Authors). The ISI RAM data are analysed for 8 leading econometrics journals and 4 leading statistics journals. The application to econometrics can be used as a template for other areas in economics, for other scientific disciplines, and as a benchmark for newer journals in a range of disciplines. In addition to evaluating high quality research in leading econometrics journals, the paper also compares econometrics and statistics, alternative RAM, highlights the similarities and differences in alternative RAM criteria, finds that several ISI RAM capture similar performance characteristics for the leading econometrics and statistics journals while the new PI-BETA criterion is not highly correlated with any of the other ISI RAM, and hence conveys additional information regarding ISI RAM, highlights major research areas in leading journals in econometrics, and discusses some likely future uses of RAM.

Keywords: Research assessment measures, impact factors, Immediacy, Eigenfactor score, Article influence, h-index, C3PO, Zinfluence, PI-BETA.

JEL Classifications:

Great papers appear in great journals

All great journals publish great papers

Not all papers in great journals are great

In Memory of Clive Granger

1. Introduction

Defining and evaluating high quality research are fundamental to the scientific paradigm. Rankings exercises are here to stay, and are essential to evaluate the research performance of individuals, as well as to ascertain the quality of academic journals. The research performance of individuals can be crucial for hiring, firing, tenure and promotion decisions. In the absence of suitable information, the quality of a journal may be used as a proxy for the research quality of academic papers.

The perennial question as to which came first, the chicken or the egg, also applies to whether the quality of an academic paper is more important than the journal in which it was published, and whether the quality of a journal defines the quality of a paper.

Some Research Assessment Measures (RAM) are subscription based, while others can be downloaded free of charge from the Internet. A gold standard database for generating RAM is the Thomson Reuters ISI Web of Science database (hereafter ISI). This paper examines the importance of ranking RAM, emphasizes the importance of RAM as viable rankings criteria, highlights the usefulness of existing RAM from Thomson Reuters ISI (hereafter ISI RAM), and evaluates the usefulness of a new RAM criterion.

The empirical analysis of ISI RAM presented in this paper concentrates on 8 leading econometrics journals, which are compared with 4 leading statistics journals. The
application to econometrics can be used as a template for other areas in economics, for other scientific disciplines, and as a benchmark for newer journals in a range of disciplines. In addition to evaluating high quality research in econometrics, the paper also compares alternative RAM, and highlights the similarities and differences of alternative RAM criteria.

The plan of the remainder of the paper is as follows. Section 2 discusses alternative RAM, with an emphasis on the Thomson Reuters ISI Web of Science database. Various ISI RAM that are calculated annually or updated daily are defined and analysed, including the 2-year impact factor (2YIF), 5-year impact factor (5YIF), Immediacy (or zero-year impact factor (0YIF)), Eigenfactor score, Article Influence, C3PO (Citation Performance Per Paper Online), h-index, Zinfluence, and PI-BETA (Papers Ignored - By Even The Authors). Section 3 discusses the ISI RAM data for 8 leading econometrics journals and 4 leading statistics journals. Section 4 analyses the ISI RAM data, while Section 5 summarizes the outcomes and discusses some future uses of ISI RAM.

2. Research Assessment Measures (RAM)

Several Research Assessment Measures (RAM) criteria are available for recording research performance. Some of these measures are subscription based, while others are downloadable free from the Internet. Alternative sources of RAM are discussed below.

2.1 Thomson Reuters ISI Web of Science

The Thomson Reuters ISI Web of Science database is available to subscribers. Although books and non-ISI journals are not included in the database, a wide range of leading journals is included in the ISI database for an extended period. According to ISI Web of Science (2010): "Authoritative, multidisciplinary content covers over 10,000 of the highest impact journals worldwide, including Open Access journals and over 110,000 conference proceedings." For the 2008 Journal Citations Report year, with the ISI RAM being reported in 2009, there were 209 journals in the Economics
category. The explanations given online are typically very helpful, and the broad range of performance criteria may readily be modified to measure research productivity and citations impact of academic researchers and ISI recognised journals. In short, ISI is credible and accessible.

Alternative excellent databases include the Social Science Research Network (SSRN) database, which includes a very large number of working papers and publications in the social sciences (including economics, finance, accounting and business), the Research Papers in Economics (RePEc) database for economics, the Scopus subscription-based database, and free Internet databases, such as Google Scholar. Each of these databases has their strengths and limitations, but ISI would seem to establish the 'gold standard' database for purposes of generating RAM for journals in a wide range of disciplines for an extended period.

2.2 Definitions of ISI RAM

2.2.1 Annual ISI RAM

With one exception, ISI RAM is reported separately for sciences and social sciences, and may be computed annually or updated daily. ISI RAM is reported for ISI journals, where an ISI journal is defined as:

Definition 1:

An ISI journal is a journal recognized by ISI and for which ISI RAM is reported.

Annual ISI RAM is calculated for a Journal Citations Reports (JCR) calendar year, which is defined as:

Definition 2:

A JCR year is the calendar year BEFORE the annual ISI RAM is released (usually in mid-year).

Thus, for the JCR year 2008, the annual ISI RAM was released in mid-2009.

The ISI RAM are given as follows:
(i) 2YIF (= Impact Factor) (calculated annually)

The classic 2-year impact factor (2YIF) of an ISI journal is typically referred to as "THE impact factor", and is used widely by journals and publishers in promoting journals. For a JCR year, the 2YIF of an ISI journal is defined as:

Definition 3:

2YIF = Total citations in a JCR year to papers published in an ISI journal in the previous 2 years/Total papers published in an ISI journal in the previous 2 years.

Thus, for the JCR year 2008, total citations are for papers published in years 2006 and 2007, as are the total papers published in an ISI journal.
(ii) 5YIF (calculated annually)

The 5-year impact factor (5YIF) of an ISI journal is an alternative impact factor that is more suitable for those disciplines where a longer gestation period is required, such that 2 years is too short a time for published papers to become well cited. For a JCR year, the 5 YIF of an ISI journal is defined as:

Definition 4:

5YIF = Total citations in a JCR year to papers published in an ISI journal in the previous 5 years/Total papers published in an ISI journal in the previous $\mathbf{5}$ years.

Thus, for the JCR year 2008, total citations are for papers published in years 2003, 2004, 2005, 2006 and 2007, as are the total papers published in an ISI journal.
(iii) Immediacy (calculated annually)

Immediacy is intended for comparing journals that specialize in cutting-edge research, and is, in effect, a zero-year impact factor (0YIF) of an ISI journal. For a JCR year, Immediacy of an ISI journal is defined as:

Definition 5:

Immediacy $=$ Total citations to papers published in an ISI journal in a JCR year/Total papers published in an ISI journal in a JCR year.

Thus, for the JCR year 2008, total citations are for papers published in year 2008, as are the total papers published in an ISI journal.

(iv) Eigenfactor Score and Article Influence (calculated annually)

Since 2007, ISI has reported two RAM, namely the Eigenfactor score and Article Influence score. The Eigenfactor score is a modified 5YIF, and the Article Influence score is a standardized Eigenfactor score. For a JCR year, the Eigenfactor score of an ISI journal is defined as:

Definition 6:

Eigenfactor score $=\mathbf{a}$ modified 5YIF, which aggregates citations to ISI journals in both the sciences and social sciences, eliminates journal self-citations, and

"weights each reference according to a stochastic measure of the amount of time researchers spend reading the journal" (ISI, 2010).

Eliminating journal self-citations is becoming increasingly important given the apparent inflation in journal self-citations across many ISI journals in recent years.

The Article Influence score measures the relative importance of an ISI journal on a per-article basis. Normalization ensures that the sum total of articles from all journals is 1 , and the mean Article Influence score is 1.00 .

For a JCR year, Article Influence of an ISI journal is defined as:

Definition 7:

Article Influence $=$ Eigenfactor score divided by the fraction of all ISI articles published by the ISI journal.

Article Influence might be more appropriately called a STandardized Impact Factor For Five Years.

2.2.2 Daily Updated ISI RAM

Other ISI RAM can be updated daily, and are reported for a given day in the current year rather than the JCR year.

(v) C3PO (updated daily)

ISI reports the mean number of citations for an ISI journal, namely total citations up to a given day divided by the number of papers published in an ISI journal up to the same day, as the "average" number of citations. In order to distinguish the mean from the median and mode, the C3PO of an ISI journal on any given day is defined as:

Definition 8:

C3PO (Citation Performance Per Paper Online) $=$ Total citations to an ISI journal in ISI/Total papers published in an ISI journal.

Thus, C3PO for 28 April 2010 is based on total citations and total papers up to and including 28 April 2010.
[Note: C3PO should not be confused with C-3PO, the Star Wars android.]
(vi) h-index (updated daily)

Although the h -index (Hirsch, 2005)) was originally intended to assess the research productivity and citations impact of academic researchers, it can also be used to assess the impact of publications in ISI journals. The h-index of an ISI journal on any given day is based on cited and citing papers, including self citations of ISI journals, and is defined as:

Definition 9:

h-index $=$ each of h papers in an ISI journal has been cited at least h times in ISI journals.

Thus, the h-index for 28 April 2010 is based on total citations and total papers up to and including 28 April 2010.

2.3 Reasons for presenting a new RAM (updated daily)

Existing RAM as performance criteria focus on papers that are actually cited at least once, including self-citations by one or more authors, and on the frequency of such citations. To date, there does not seem to be a RAM that measures the number of
papers in a journal that have never been cited. The lack of citations of a published paper, especially over an extended period, must surely detract from the quality of a journal by exposing: (i) what might be considered as incorrect decisions by the editorial board of a journal; and (ii) the lost opportunities of papers that might have been cited had they not been rejected in favour of papers that are ignored by the profession.

For this reason, we define a paper with Zinfluence as follows:

Definition 10:

Zinfluence $=$ zero influence, based on zero citations in ISI journals.

Zinfluence can be measured by the PI-BETA (= Papers Ignored (PI) - By Even The Authors (BETA)) ratio, and is calculated for an ISI journal on any given day as:

Definition 11:

PI-BETA $=$ Number of Zinfluence papers in an ISI journal/Total papers published in an ISI journal.

Thus, PI-BETA for 28 April 2010 is based on Zinfluence and total papers up to and including 28 April 2010.

2.5 Caveats regarding ISI RAM

Although ISI RAM can be very useful and informative, it is worth emphasizing that it is not entirely free of measurement error. The following caveats should be carefully considered before using ISI RAM. The inclusion of all articles in an ISI journal includes papers, abstracts and book reviews, and possibly even conference reviews, software reports, and letters to the editor. This may explain, at least in part, the
noticeable changes over time in terms of fewer abstracts and book reviews in some ISI journals, at least in the Economics category.

It is also important to note that correct ISI citations can be affected by misspellings of the titles of journals and names of authors; incorrect use of author's initials; and incorrect year of publication, volume number, and/or the starting page number of the ISI journal article. Only those citations that are correct in every respect will be attributed correctly to the cited author. Otherwise, any error will lead to a different citation, such that the total citations of a publication for a particular author will be too low. We hasten to add that any such missing in action (MIA) citations is the responsibility of the citing author(s), and not of ISI.

Two examples that highlight MIA citations are as follows: (1) the specification test of J.A. Hausman (Econometrica, 1978, 46(6), 1251-1271), has citations variously recorded under J. Hausman and J.A. Hausman, and with numerous variations in the year, volume, and starting page number, leading to an additional 118 citations relative to 2,495 correct citations, with an error rate of almost 5%; and (2) the cointegration analysis paper of R.F. Engle and C.W.J. Granger (Econometrica, 1987, 55(2), 251276), has citations variously recorded under R. Engle and R.F. Engle, and with numerous variations in the year, volume, and starting page number, leading to an additional 205 citations relative to 4,252 correct citations, with an error rate of almost 5%. We did not check for spelling variations on the names of any authors, otherwise the permutations would be neverending.

Further caveats relate to the date of downloading ISI RAM, as daily updates will change the h-index, C3PO and PI-BETA scores. The time period for downloading ISI RAM should also be noted as all the ISI RAM will change annually. Finally, the specific time of day (or night) at which the daily ISI updates takes place can change the data period, with 1988-2010 seemingly being the default option when the full database is not accessible. For journals such as Nature and Science, which have a high frequency of publication and also publish a large number of articles, the default option for daily ISI RAM updates would seem to be four years at most. Otherwise, the threshold of 10,000 articles for purposes of daily ISI RAM updates will be exceeded.

3. ISI RAM Data

The primary purpose of this section is to evaluate great papers and great journal in econometrics. The 8 leading econometrics journals chosen from the ISI Economics category for inclusion in the ISI RAM analysis are as follows:

8 leading econometrics journals

(i) Econometrica
(ii) Review of Economics and Statistics (REStat)
(iii) Journal of Econometrics (J. Econometrics)
(iv) Econometric Theory (ET)
(v) Journal of Business \& Economic Statistics (JBES)
(vi) Journal of Applied Econometrics (J. Applied Econometrics)
(vii) Econometric Reviews
(viii) Econometrics Journal

For purposes of comparison with the 8 leading econometrics journals, the following 4 leading statistics journals chosen from the ISI Statistics \& Probability category are also considered:

4 leading statistics journals

(i) Annals of Statistics (Annals)
(ii) Biometrika
(iii) Journal of the American Statistical Association (JASA)
(iv) Journal of the Royal Statistical Society, Series B (JRSSB)

Only articles from ISI Web of Science are included in the citation data. The ISI RAM data for the econometrics and statistics journals were downloaded from ISI as follows. Data for the econometrics journals were downloaded from ISI on 28 April 2010 for all citations for 1988-2010, so that citations are counted from 1988 for all papers
published in an ISI journal from its inception. Econometric Reviews and Econometrics Journal have been included in ISI for only 2 years, so that the ISI RAM data are reported only in Table 1. The data for the economics and statistics journals in Table 17 were downloaded from ISI on 19 May 2010 for all citations for 1988-2010.

The data for the 4 statistics journals were downloaded from ISI on 19 May 2010 for all citations for 1988-2010, so that citations are counted from 1988 for all papers published in an ISI journal from its inception, except for JASA. As ISI does not provide daily updates for more than 10,000 articles for purposes of calculating the h index, C3PO and PI-BETA, the ISI data for JASA is for the period 1955-2010.

4. Analysis of ISI RAM data

Table 1 gives the ISI RAM for 8 econometrics and 4 statistics journals. The 2YIF for the 12 journals are in line with what would be expected of leading journals in the two fields. The 5YIF figures, and hence also Article Influence, are not available for Econometric Reviews and Econometrics Journal as they have been ISI journals for less than three years. In all cases, 5YIF exceeds 2YIF, sometimes considerably, though for JBES the difference is small. For a journal that has been in ISI for less than 3 years, Econometric Reviews has a respectable 2YIF. The Immediacy (or 0YIF) is amazingly high for Econometric Reviews, followed distantly by Annals, JRSSB and REStat. The h-index for Econometrica is high at 201, followed closely by JASA and Biometrika, then by Annals, J. Econometrics, JRSSB and REStat. C3PO is high for JRSSB, followed by Econometrica, Biometrika, JASA, Annals and J. Econometrics. Article Influence is highest for Econometrica, followed distantly by REStat, JRSSB, JASA and Annals.

The PI-BETA scores in Table 1 are revealing. The two newest entrants in the table have high scores as they do not include papers older than two years for purposes of scoring citations. Econometrica has PI-BETA of 0.407, which indicates that 40.7% of all articles in the journal (that is, 2770 of 6798) have never been cited. Only slightly higher is ET, where the PI-BETA of 0.418 shows that 41.8% (or 556 of 1329) articles have never been cited. Not far behind is JASA, with PI-BETA of 0.327 which shows
that 32.7% of articles in the journal have never been cited. At the other end of the spectrum, PI-BETA of Annals and Biometrika show that a relatively low 10.4% and 11.5%, respectively, of their published papers have never been cited. Thus, it is clear that not all papers in great journals are great. In particular, the modal citation for most of these ISI journals is zero, and the median citation is typically one.

The simple correlations for the 7 ISI RAM for the 6 econometrics and 4 statistics journals are given in Table 2, with Econometric Reviews and Econometrics Journal excluded as their ISI RAM data only cover a 2 -year period. The correlations for the pairs (2YIF, 5YIF), (2YIF, Article Influence), and (5YIF, Article Influence) are very high at $0.967,0.932$ and 0.923 , respectively. Thus, the 2 -year and 5 -year impact factors are highly correlated with each other, and each is also highly correlated with Article Influence. Overall, 2YIF, 5 YIF and Article Influence seem to be capturing similar ISI RAM for the leading econometrics and statistics journals combined, whereas Immediacy and the new PI-BETA are not highly correlated with any of the other five ISI RAM.

As the aggregation of the ISI RAM for econometrics and statistics might be masking some differences between the two disciplines, the simple correlations are recalculated separately in Tables 3 and 4, respectively. The simple correlations for the 7 ISI RAM for the 6 econometrics journals are given in Table 3. As in the case of Table 2, the correlations for the three pairs (2YIF, 5YIF), (2YIF, Article Influence), and (5YIF, Article Influence) are very high at $0.961,0.969$ and 0.972 , respectively. The correlations for the pairs (2YIF, h-index), (5YIF, h-index), (2YIF, C3PO), (5YIF, C3PO), (h-index, Article Influence) and (h-index, C3PO) are also very high. In short, 2YIF, 5YIF, h-index, C3PO and Article Influence seem to be capturing similar ISI RAM for the leading econometrics journals, whereas Immediacy and PI-BETA are not highly correlated with any of the other five ISI RAM criteria.

Table 4 reports the simple correlations for the 7 ISI RAM for the 4 statistics journals. As in the case of Table 2, the correlations for the three pairs (2YIF, 5YIF), (2YIF, Article Influence), and (5YIF, Article Influence) are extremely high at 0.993, 0.996 and 0.985 , respectively. The correlation for the pair (h-index, Immediacy) is large and negative at -0.900 , which suggests that cutting-edge research with high Immediacy
will be negatively correlated with the h-index. In summary, 2YIF, 5YIF and Article Influence are virtually interchangeable ISI RAM for the 4 leading statistics journals, and PI-BETA is not highly correlated with any of the other six ISI RAM criteria.

The 25 most highly cited econometrics and economics papers in Econometrica since its inception are given in Table 5. The table speaks for itself. It is interesting that 17 of the 25 most highly cited and influential papers in Econometrica are in econometric theory, and that 9 of the 17 econometrics papers are related to time series analysis. There are 8 Nobel Laureates in the list of 25 most highly cited papers, including highly technical and novel papers on econometrics and economic theory.

Table 6 provides the 25 most highly cited econometrics and economics papers in REStat since its inception. This table also speaks volumes. There is an eclectic mixture of theoretical and applied economics, econometrics and statistics papers, with 8 Nobel Laureates in the list of 25 most highly cited papers, including four soleauthored economic theory papers by Paul Samuelson. The celebrated CES production function (paper 6) has two Nobel Laureates as co-authors.

The 25 most highly cited papers in Journal of Econometrics since its inception are given in Table 7. More than one-half of the novel contributions are in time series, with virtually all of the influential time series papers related to unit roots and cointegration, with two papers on univariate conditional volatility models, namely papers 1 and 3. Clive Granger has four papers in this list, and Robert Engle has two.

Table 8 presents the 25 most highly cited econometrics papers in Econometric Theory since its inception. The 15 papers on theoretical time series (namely, 9 on univariate and multivariate volatility and 6 on cointegration), and other influential papers on asymptotic theory, panel data, model specification and estimation methods, are technically proficient, insightful and innovative contributions to econometric theory.

The 25 most highly cited econometrics papers in JBES since its inception are given in Table 9. The 15 papers on theoretical times series (namely 10 on unit roots and cointegration, and 4 on stochastic volatility and conditional volatility models), and
other influential papers on predictive accuracy, inference, vector autoregressions, and structural change, are novel contributions to econometric theory.

Table 10 gives the 25 most highly cited theoretical and applied econometrics papers in Journal of Applied Econometrics since its inception. Highly innovative papers on a variety of challenging topics is presented, including 4 papers on univariate and multivariate conditional volatility models, and novel papers on discrete choice, structural change, economic growth, convergence, and business cycles.

It is clear that these great Laureates, great authors and great papers make each of these six econometrics journals truly great.

Many significant papers in statistical theory have been widely cited in leading econometrics journals, and this is shown in Tables 11-14 where the 10 most highly cited papers in 4 leading statistics journals are given. The first paper in Annals of Statistics in Table 11 would be known to most empirical economists and econometrics as the originator of the Schwarz Bayesian information criterion (BIC). The second paper by Efron on the bootstrap and the jackknife is also widely known and cited.

Biometrika has produced many classic papers, including the Shapiro-Wilk test of normality (paper 2 in Table 12), and the renowned Phillips-Perron test of a unit root (paper 7). Although not reported here, the classic Durbin and Watson DW test papers in 1950 and 1951 have garnered 721 and 807 citations, respectively. This is all the more impressive when it is clear that the DW test is so familiar and so widely used that it requires no citation to the original contributions.

The 10 most highly cited papers in JASA in Table 13 reveal an incredible 34,010 citations to the Kaplan-Meier nonparametric estimator. Paper 4 by Dickey and Fuller in 1979 was a forerunner of the significant (Augmented) DF test in Econometrica in 1981, and has been even more frequently cited. Paper 9 by Zellner is the widely-used, influential and efficient seemingly unrelated regression equations (SURE) estimator. Both the DF test and SURE estimator have become so familiar to practitioners, especially in econometrics, that it is somewhat surprising to see that they are still being cited.

Table 14 presents the 10 most highly cited papers in JRSSB. Not surprisingly, three of the ten papers are by D.R. Cox, including papers 1 and 2 , the first of which on life tables has an amazing 24,475 citations. Paper 2 is the delightfully-named Box-Cox transformation, which has been especially widely used in empirical economics and econometrics. The REgression Specification Error Test (RESET) of Ramsey (paper 7) is now an essential diagnostic check of functional form in any econometrics computer software package. The classic Cox test of separate models (paper 9) is the origin of the non-nested testing literature in econometrics.

Each of these classic papers by great authors makes these 4 statistics journals truly great.

The 100 most highly cited papers in econometrics are listed in Table 15 according to author, year, journal and number of citations. The table gives a veritable Who's Who of leading authors and classic papers in the profession. Econometrica has 64 papers in the 100 most highly cited papers in econometrics, with 9 of the top 10,16 of 20, 24 of 30,29 of 40,35 of 50,44 of 60,51 of 70,55 of 80 , and 59 of 90 . It goes without saying that Econometrica is monumentally significant to the development of econometrics.

Authors with two or more papers in the 100 most highly cited papers in econometrics are presented in Table 16 according to the number of papers and the number of soleauthored papers. This list also shows 6 Nobel Laureates, namely R.F. Engle, C.W.J. Granger, J.J. Heckman, J. Tobin, D. McFadden, and R.M. Solow. K.J. Arrow has one citation for the CES production function (with Solow as one of the three co-authors), but his significant lifetime contributions to economic theory would not be regarded as econometric in nature. The table also suggests that what many if not most Nobel Laureates say is true, namely that it helps to have great co-authors. Only Tobin has 3 sole-authored papers from 3 in the list, while Heckman has 3 papers of 4 in the list that are sole-authored, and Solow has 1 of 2 papers in the list that is sole-authored.

Finally, some highly cited econometrics papers in journals that were not considered in this paper are given in Table 17. In the Review of Economic Studies, the Arellano-

Bond panel data estimator, the Breusch-Pagan Lagrange multiplier paper with applications to model specification, and Phillips-Hansen test for instrumental variables regression and $\mathrm{I}(1)$ processes, have 1495,583 and 536 citations, respectively. Oxford Bulletin of Economics and Statistics has the Johansen and Juselius estimation and inference of cointegration, the Osterwald-Lenum asymptotic distribution of the cointegration rank test, and Granger's analysis of cointegrated economic variables, with 1692, 671 and 549 citations, respectively. International Economic Review has Pagan's analysis of generated regressors, and L.-F. Lee's simultaneous equations limited dependent variable model, with 575 and 441 citations, respectively.

5. Conclusion

The paper discussed alternative Research Assessment Measures (RAM), with an emphasis on the Thomson Reuters ISI Web of Science (hereafter ISI) database. Alternative ISI RAM that are calculated annually or updated daily were defined and analysed, including the classic 2 -year impact factor (2YIF), 5-year impact factor (5YIF), Immediacy (or zero-year impact factor (0YIF)), Eigenfactor score, Article Influence, h-index, C3PO (Citation Performance Per Paper Online), Zinfluence, and the new PI-BETA (Papers Ignored - By Even The Authors) criterion.

The ISI RAM data were analysed for 8 leading econometrics journals and 4 leading statistics journals. The application to econometrics and statistics could be used as a template for other areas in the ISI Economics category, ISI Statistics \& Probability category, for other scientific disciplines, and as a benchmark for newer journals in a range of disciplines.

In addition to evaluating high quality research in leading econometrics journals, the paper also compared econometrics and statistics, alternative RAM, highlighted the similarities and differences in alternative RAM criteria, found that several ISI RAM captured similar performance characteristics for the leading econometrics and statistics journals, determined that the new PI-BETA criterion was not highly correlated with any of the other ISI RAM, and hence conveyed additional information
regarding ISI RAM, and highlighted major research areas in leading journals in econometrics.

Likely future uses of RAM include using ISI RAM criteria for research assessment exercises, and as input into academic appointments and promotions. Conundrums such as whether or not it is better to publish in a journal with: (i) high rather than low two-year impact factor; (ii) high rather than low five-year impact factor; (iii) high rather than low Immedaicy; (iv) high rather than low h-index; (v) high rather than low C 3 PO ; (vi) low rather than high PI-BETA; and (vii) high rather than low Article Influence; as such choices may increase the probability of being cited, on average.

On the basis of the frequent appearance of Nobel Laureates in a few great journals in econometrics, the ISI RAM would also seem to be useful in predicting future Nobel Laureates in Economic Sciences, and the areas of research that are likely to be considered for such an award.

References

Hirsch, J.E. (2005), An index to quantify an individual's scientific research output, Proceedings of the National Academy of Sciences of the United States of America (PNAS), 102(46), 16569-16572 (15 November 2005).

ISI Web of Science (2010), Journal Citation Reports, Essential Science Indicators, Thomson Reuters ISI.

Table 1
Research Assessment Measures (RAM) for 8 Econometrics and 4 Statistics Journals

Journal	2YIF	5YIF	h-index	C3PO	PI-BETA (measures Zinfluence)	Immediacy (0YIF)	Article Influence
Econometric Reviews	1.220	-	9	2.71	0.444	1.880	-
Econometric Theory	0.768	1.349	48	7.75	0.418	0.185	1.311
Econometrics Journal	0.750	-	7	1.55	0.591	0.065	-
Econometrica	3.865	4.943	201	35.02	0.407	0.255	7.243
J. Applied Econometrics	1.274	1.971	48	11.30	0.259	0.125	1.595
JBES	1.848	2.033	71	16.13	0.235	0.346	1.966
REStat	2.233	3.630	103	16.65	0.203	0.492	3.887
J. Econometrics	1.790	2.625	110	22.79	0.132	0.211	2.284
Annals of Statistics	2.307	3.094	133	27.33	0.104	0.614	2.998
Biometrika	1.405	1.887	165	31.65	0.115	0.307	1.787
JASA	2.394	3.462	190	27.63	0.327	0.187	3.013
JRSSB	2.835	3.943	104	44.93	0.175	0.551	3.476

Note: Data for econometrics (statistics) journals downloaded from ISI on 28 April 2010 (19 May 2010) for all citations for 1988-2010. Econometric Reviews and Econometrics Journal have been included in ISI for only2 years.

Table 2
Correlation Matrix for 6 Econometrics and 4 Statistics Journals

RAM	2YIF	5YIF	h-index	C3PO	PI-BETA	Immediacy (0YIF)	Article Influence
2YIF	-						
5YIF	0.967	-					
h-index	0.675	0.646	-				
C3PO	0.717	0.676	0.674	-			
PI-BETA	0.118	0.116	0.017	-0.280	-		
Immediacy (0YIF)	0.360	0.367	0.069	0.447	-0.560	-	
Article Influence	0.932	0.923	0.642	0.534	0.308	0.211	-

Note: Data for econometrics (statistics) journals downloaded from ISI on 28 April 2010 (19 May 2010) for all citations for 1988-2010. Econometric Reviews and Econometrics Journal are not included as the data only cover a 2 -year period.

Table 3

Correlation Matrix for 6 Econometrics Journals

RAM	2YIF	5YIF	h-index	C3PO	PI-BETA	Immediacy (0YIF)	Article Influence
2YIF	-						
5YIF	0.961	-					
h-index	0.960	0.944	-				
C3PO	0.940	0.886	0.974	-			
PI-BETA	0.166	0.112	0.189	0.066	-		
Immediacy (0YIF)	0.335	0.400	0.219	0.136	-0.300	-	
Article Influence	0.969	0.972	0.955	0.886	0.327	0.300	-

Note: Data downloaded from ISI on 28 April 2010. Econometric Reviews and Econometrics Journal are not included as the data only cover a 2-year period.

Table 4

Correlation Matrix for 4 Statistics Journals

RAM	2YIF	5YIF	h-index	C3PO	PI-BETA	Immediacy (0YIF)	Article Influence
2YIF	-						
5YIF	0.993	-					
h-index	-0.518	-0.430	-				
C3PO	0.472	0.450	-0.741	-			
PI-BETA	0.368	0.470	0.561	-0.132	-		
Immediacy (0YIF)	0.412	0.305	-0.900	0.373	-0.685	-	
Article Influence	0.996	0.985	-0.505	0.400	0.349	0.440	-

Note: Data downloaded from ISI on 19 May 2010.

Table 5
25 Most Highly Cited Papers in Econometrica

Rank	Author(s)	Title	Year	Citations
1	D. Kahneman, A. Tversky	Prospect Theory - Analysis of Decision Under Risk	1979	5,844
2	H. White	A Heteroskedasticity-Consistent Covariance-Matrix Estimator and a Direct Test for Heteroskedasticity	1980	5,416
3	R.F. Engle, C.W.J. Granger	Cointegration and Error Correction Representation, Estimation, and Testing	1987	4,252
4	J.J. Heckman	Sample Selection Bias as a Specification Error	1979	3,966
5	R.F. Engle	Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation	1982	3,035
6	J.A. Hausman	Specification Tests in Econometrics	1978	2,495
7	W.K. Newey, K.D. West	A Simple, Positive Semidefinite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix	1987	2,295
8	L.P. Hansen	Large Sample Properties of Generalized-Method of Moments Estimators	1982	2,095
9	D.A. Dickey, W.A. Fuller	Likelihood Ratio Statistics for Autoregressive Time-Series with a Unit-Root	1981	1,887
10	J.W. Pratt	Risk-Aversion in the Small and In the Large	1964	1,680
11	G.C. Chow	Tests of Equality Between Sets of Coefficients in 2 Linear Regressions	1960	1,575
12	J.F. Nash	The Bargaining Problem	1950	1,517

13	C.A. Sims	Macroeconomics and Reality	1980	1,514
14	S. Johansen	Estimation and Hypothesis-Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models	1991	1,433
15	P. Perron	The Great Crash, The Oil Price Shock, and the Unit-Root Hypothesis	1989	1,326
16	H. White	Maximum-Likelihood Estimation of Mis-Specified Models	1982	1,304
17	J.C. Cox, J.E. Ingersoll, S.A. Ross	A Theory of the Term Structure of Interest-Rates	1985	1,219
18	J.F. Muth	Rational-Expectations and the Theory of Price Movements	1961	1,184
19	A. Rubinstein	Perfect Equilibrium in a Bargaining Model	1982	1,154
20	J.D. Hamilton	A New Approach to the EconomicAnalysis of Nonstationary TimeSeries and the Business-Cycle	1989	1,139
21	J. Tobin	Estimation of Relationships for Limited Dependent-Variables	1958	1,121
22	R. Koenker, G. Bassett	Regression Quantiles	1978	1,022
23	A.S. Kyle	Continuous Auctions and Insider Trading	1985	1,015
24	F.E. Kydland, E.C. Prescott	Time To Build and Aggregate Fluctuations	1982	987
25	D.B. Nelson	Conditional Heteroskedasticity in Asset Returns - A New Approach	1991	973

Note: Data downloaded from ISI on 28 April 2010.

Table 6

25 Most Highly Cited Papers in Review of Economics and Statistics

Rank	Author(s)	Title	Year	Citations
1	J. Lintner	The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets	1965	1,319
2	R.M. Solow	Technical Change and the Aggregate Production Function	1957	1,298
3	P.A. Samuelson	The Pure Theory of Public Expenditure	1954	1,129
4	L.R. Christenson, D.W. Jorgenson, L.J. Lau	Transcendental Logarithmic Production Frontiers	1973	654
5	R.C. Merton	Lifetime Portfolio Selection under Uncertainty - Continuous-Time Case	1969	591
6	K.J. Arrow, H.B. Chenery, B.S. Minhas, R.M. Solow	Capital-Labor Substitution and Economic-Efficiency	1961	589
7	E.R. Berndt, D.O. Wood	Technology, Prices, and Derived Demand for Energy	1975	438
8	T. Bollerslev	A Conditionally Heteroskedastic Time-Series Model for Speculative Prices and Rates of Return	1987	413
9	J.F. McDonald, R.A. Moffitt	The Uses of Tobit Analysis	1980	411
10	B.R. Moulton	An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Units	1990	373
11	J. Tobin	The Interest-Elasticity of Transactions Demand for Cash	1956	370
12	T. Bollerslev	Modeling the Coherence in ShortRun Nominal Exchange-Rates - A	1990	357

		Multivariate Generalized ARCH Model		
13	P.A. Samuelson	Lifetime Portfolio Selection by Dynamic Stochastic Programming	1969	351
14	M. Olson, R. Zeckhauser	Economic Theory of Alliances	1966	329
15=	I. Krinsky, A.L. Robb	On Approximating the Statistical Properties of Elasticities	1986	313
$15=$	D.E. Farrar, R.R. Glauber	Multicollinearity in Regression Analysis - Problem Revisited	1967	313
17	H.S. Houthakker, S.P. Magee	Income And Price Elasticities in World Trade	1969	277
18	P.A. Samuelson	Theoretical Notes on Trade Problems	1964	274
19	W. Leontief	Environmental Repercussions and Economic Structure - Input-Output Approach	1970	272
20=	J.H. Bergstrand	The Gravity Equation in International-Trade - Some Microeconomic Foundations and Empirical-Evidence	1985	271
20=	P.A. Samuelson	Diagrammatic Exposition Of A Theory Of Public Expenditure	1955	271
22	R.C. Fair	Effect of Economic Events on Votes for President	1978	242
23	M. Baxter, R.G. King	Measuring Business Cycles: Approximate Band-Pass Filters for Economic Time Series	1999	240
24	W.S. Comanor, T.A. Wilson	Advertising Market Structure and Performance	1967	236
25	M.E. Porter	Structure within Industries and Companies Performance	1979	232

Note: Data downloaded from ISI on 28 April 2010.

Table 7
25 Most Highly Cited Papers in Journal of Econometrics

Rank	Author(s)	Title	Year	Citations
1	T. Bollerslev	Generalized Autoregressive Conditional Heteroskedasticity	1986	2,370
2	D. Kwiatkowski, P.C.B. Phillips, P. Schmidt, Y.C. Shin	Testing The Null Hypothesis of Stationarity Against The Alternative of a Unit-Root - How Sure are we that Economic Time-Series have a Unit-Root	1992	1,211
3	T. Bollerslev, R.Y. Chou, K.F. Kroner	ARCH Modeling in Finance - A Review of the Theory and Empirical-Evidence	1992	859
4	R. Blundell, S. Bonds	Initial Conditions and Moment Restrictions in Dynamic Panel Data Models	1998	666
5	R.F. Engle, B.S. Yoo	Forecasting and Testing in Co-Integrated Systems	1987	641
6	K.S. Im, M.H. Pesaran, Y. Shin	Testing for Unit Roots in Heterogeneous Panels	2003	528
7	J. Jondrow, C.A.K. Lovell, I.S. Materov, P. Schmidt	On the Estimation of Technical Inefficiency in the Stochastic Frontier Production Function Model	1982	519
8	M. Arellano, O. Bover	Another Look at the Instrumental Variable Estimation of Error-Components Models	1995	514
9	W.L. Goffe, G.D. Ferrier, J. Rogers	Global Optimization of Statistical Functions with Simulated Annealing	1994	499
10	S. Hylleberg, R.F. Engle, C.W.J. Granger, B.S. Yoo	Seasonal Integration and Cointegration	1990	424
11	A. Levin, C.F. Lin, C.S.J. Chu	Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties	2002	387

12	C.W.J. Granger	Some Properties of Time-Series Data and their use in Econometric-Model Specification	1981	386
13	P.C.B. Phillips	Understanding Spurious Regressions in Econometrics	1986	372
$14=$	S. Johansen, K. Juselius	Testing Structural Hypotheses In a Multivariate Cointegration Analysis of the PPP and the UIP for UK	1992	358
$14=$	C.W.J. Granger	Some Recent Developments in a Concept of Causality	1988	358
16	L.M. Seiford, R.M. Thrall	Recent Developments in DEA - the Mathematical-Programming Approach to Frontier Analysis	1990	348
17	B.R. Moulton	Random Group Effects and the Precision of Regression Estimates	1986	326
18	A. Charnes, W.W. Cooper, B. Golany, L. Seiford, J. Stitz	Foundations of Data Envelopment Analysis for Pareto-Koopmans Efficient Empirical Production-Functions	1985	308
19	C.W.J. Granger	Long Memory Relationships and the Aggregation of Dynamic-Models	1980	301
20	T. Amemiya	Tobit Models - A Survey	1984	286
21	R.T. Baillie	Long memory processes and Fractional Integration in Econometrics	1986	283
22	J.L. Powell	Least Absolute Deviations Estimation for the Censored Regression-Model	1984	275
23	Z. Griliches, J.A. Hausman	Errors in Variables in Panel Data	1986	268
24	M.H. Pesaran, R. Smith	Estimating Long-Run Relationships from Dynamic Heterogeneous Panels	1995	266
25	F.R. Forsund, C.A.K. Lovell, P. Schmidt	A Survey of Frontier Production-Functions and of their Relationship to Efficiency Measurement	1980	263

Note: Data downloaded from ISI on 28 April 2010.

Table 8
25 Most Highly Cited Papers in Econometric Theory

Rank	Author(s)	Title	Year	Citations
1	R.F. Engle, K.F. Kroner	Multivariate Simultaneous Generalized ARCH	1995	351
2	D.B. Nelson	Stationarity and Persistence in the $\operatorname{GARCH}(1,1)$ Model	1990	208
3	A.R. Gallant, G. Tauchen	Which Moments to Match?	1996	203
4=	P. Saikkonen	Asymptotically Efficient Estimation of Cointegration Regressions	1991	198
$4=$	J.Y. Park, P.C.B. Phillips	Statistical-Inference in Regressions with Integrated Processes .1.	1988	198
6	J.Y. Park, P.C.B. Phillips	Statistical-Inference in Regressions with Integrated Processes .2.	1989	142
7	S.W. Lee, B.E. Hansen	Asymptotic Theory for the $\operatorname{GARCH}(1,1)$ Quasi-Maximum Likelihood Estimator	1994	131
8	P. Pedroni	Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis	2004	122
9	D. Pollard	Asymptotics for Least Absolute Deviation Regression-Estimators	1991	116
10	S. Chib, E. Greenberg	Markov Chain Monte Carlo Simulation Methods in Econometrics	1996	103
11	Y.C. Shin	A Residual-Based Test of the Null of Cointegration against the Alternative of no Cointegration	1994	101
12	P.C.B. Phillips	Partially Identified EconometricModels	1989	100
13	E. Masry, D. Tjostheim	Nonparametric-Estimation and Identification Of Nonlinear ARCH Time-Series - Strong-Convergence	1995	99

		and Asymptotic Normality		
14	J.M. Wooldridge	A Unified Approach to Robust, Regression-Based Specification Tests	1990	90
15	S.Q. Ling, M. McAleer	Asymptotic Theory for a Vector ARMA-GARCH Model	2003	87
16=	S.Q. Ling, M. McAleer	Necessary and Sufficient Moment Conditions for the $\operatorname{GARCH}(\mathrm{r}, \mathrm{s})$ and Asymmetric Power GARCH(r,s) Models	2002	82
16=	M. Carrasco, X.H. Chen	Mixing and Moment Properties of Various GARCH and Stochastic Volatility Models	2002	82
$16=$	W.K. Newey	Kernel Estimation of Partial Means and a General Variance Estimator	1994	82
16=	A.W. Lo	Maximum-Likelihood Estimation of Generalized Ito Processes with Discretely Sampled Data	1988	82
20=	B.H. Baltagi, P.X. Wu	Unequally Spaced Panel Data Regressions with AR(1) Disturbances	1999	81
20=	B.E. Hansen	Convergence to Stochastic Integrals for Dependent Heterogeneous Processes	1992	81
22	M. McAleer	Automated Inference snd Learning in Modeling Financial Volatility	2005	74
23	T. Jeantheau	Strong Consistency of Estimators for Multivariate ARCH Models	1998	72
24	S. Johansen	A Representation of Vector Autoregressive Processes Integrated of Order-2	1992	71
25	B.M. Potscher	Effects of Model Selection on Inference	1991	70

Note: Data downloaded from ISI on 28 April 2010.

Table 9
25 Most Highly Cited Papers in Journal of Business \& Economic Statistics

Rank	Author(s)	Title	Year	Citations
1	E. Zivot, D.W.K. Andrews	Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis	1992	636
2	F.X. Diebold, R.S. Mariano	Comparing Predictive Accuracy	1995	634
3	G.W. Schwert	Tests for Unit Roots - A MonteCarlo Investigation	1989	360
4	A.Banerjee, R.L. Lumsdaine, J.H. Stock	Recursive and Sequential-Tests of the Unit-Root and Trend-Break Hypotheses - Theory and International Evidence	1992	329
5	K.M. Murphy, R.H. Topel	Estimation and Inference in 2-Step Econometric-Models	1985	319
6	E. Jacquier, N.G. Polson, P.E. Rossi	Bayesian-Analysis of Stochastic Volatility Models	1994	261
7	P. Perron	Testing for a Unit-Root in a TimeSeries with a Changing Mean	1990	252
8	B.E. Hansen	Tests for Parameter Instability in Regressions with I(1) Processes	1992	241
9	R.T. Baillie, T. Bollerslev	The Message In Daily ExchangeRates - A Conditional-Variance Tale	1989	231
10	L.C. Alwan, H.V. Roberts	Time-Series Modeling for Statistical Process-Control	1988	225
11	P. Perron, T.J. Vogelsang	Nonstationarity and Level Shifts with An Application to Purchasing Power Parity	1992	217
12	J.H. Stock, J.H. Wright, M. Yogo	A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments	2002	214

13	R. Engle	Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models	2002	206
14	R.B. Litterman	Forecasting with Bayesian Vector Autoregressions - 5 Years of Experience	1986	200
$15=$	B.D. Meyer	Natural and Quasi-Experiments in Economics	1995	199
$15=$	D.A. Dickey, S.G. Pantula	Determining the Order of Differencing in Autoregressive Processes	1987	199
17	D.E. Runkle	Vector Autoregressions and Reality	1987	191
18	J.H. Stock, M.W. Watson	Macroeconomic Forecasting using Diffusion Indexes	2002	177
19	W. Enders, C.W.J. Granger	Unit-Root Tests and Asymmetric Adjustment with an Example Using the Term Structure of Interest Rates	1998	176
20	L.J. Christiano	Searching for a Break In GNP	1992	170
21	A. Hall	Testing for a Unit-Root in TimeSeries with Pretest Data-Based Model Selection	1994	168
22	S.G. Pantula, G. Gonzalezfarias, W.A. Fuller	A Comparison of Unit-Root Test Criteria	1994	167
23	A.C. Harvey	Trends and Cycles in Macroeconomic Time-Series	1985	185
24	D.A. Hsieh	Modeling Heteroscedasticity in Daily Foreign-Exchange Rates	1989	157
25	C.G. Lamoureux, W.D. Lastrapes	Persistence in Variance, StructuralChange, and the GARCH Model	1990	155

Note: Data downloaded from ISI on 28 April 2010.

Table 10
25 Most Highly Cited Papers in Journal of Applied Econometrics

Rank	Author(s)	Title	Year	Citations
1	D. McFadden, K. Train	Mixed MNL Models for Discrete Response	2000	333
2	M.H. Pesaran, Y.C. Shin, R.J. Smith	Bounds Testing Approaches to the Analysis of Level Relationships	2001	287
3	J. Bai, P. Perron	Computation and Analysis of Multiple Structural Change Models	2003	223
4	S.N. Durlauf, P.A. Johnson	Multiple Regimes and Cross-Country Growth-Behavior	1995	215
5	A,C. Harvey, A. Jaeger	Detrending, Stylized Facts and the Business-Cycle	1993	192
6	A.B. Bernard, S.N. Durlauf	Convergence In International Output	1995	187
7	A. Han, J.A. Hausman	Flexible Parametric-Estimation of Duration and Competing Risk Models	1990	168
8	J.G. Mackinnon	Numerical Distribution Functions for Unit Root and Cointegration Tests	1996	161
9	W.K. Newey	Semiparametric Efficiency Bounds	1990	149
10	F.X. Diebold, M. Nerlove	The Dynamics of Exchange-Rate Volatility - A Multivariate Latent Factor ARCH Model	1989	146
11	S.M. Potter	A Nonlinear Approach to US GNP	1995	145
12	L.E. Papke, J.M. Wooldridge	Econometric Methods for Fractional Response Variables with an Application to 401(K) Plan Participation Rates	1996	138
13	R.T. Baillie, R.J. Myers	Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge	1991	134
14	R.T. Baillie, C.F. Chung,	Analysing Inflation by the Fractionally Integrated ARFIMA-GARCH Model	1996	132

	M.A. Tieslau			
15	J.G. Mackinnon, A.A. Haug, L. Michelis	Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration	1999	123
16	K. Lee, M.H. Pesaran, R. Smith	Growth and Convergence in a Multi- Country Empirical Stochastic Solow Model	1997	113
17	A. Pagan, F. Vella	Diagnostic-Tests for Models Based on Individual Data - A Survey	1989	107
$18=$	F. Vahid, R.F. Engle	Common Trends and Common Cycles	1993	101
$18=$	A. Pagan, A. Ullah	The Econometric-Analysis of Models with Risk Terms	1988	101
20	P.C.B. Phillips	To Criticize the Critics - An Objective Bayesian-Analysis of Stochastic Trends	1991	97
21	T. Terasvirta, H.M. Anderson	Characterizing Nonlinearities In Business Cycles Using Smooth Transition Autoregressive Models	1992	96
22	L. Bauwens, S. Laurent, J.V.K. Rombouts	Multivariate GARCH Models: A Survey	2006	85
23	A.M. Jones 24 B.E. Hansen T. Liu	A Double-Hurdle Model of Cigarette Consumption	The Likelihood Ratio Test under Nonstandard Conditions: Testing The Markov Switching Model of GNP Feedforward and Recurrent Neural Networks	1989

Note: Data downloaded from ISI on 28 April 2010.

Table 11
10 Most Highly Cited Papers in Annals of Statistics

Rank	Author(s)	Title	Year	Citations
1	G. Schwarz	Estimating Dimension of a Model	1978	6,098
2	B. Efron	1977 Rietz Lecture - Bootstrap Methods - Another Look at the Jackknife	1979	3,248
3	J.H. Friedman	Multivariate Adaptive Regression Splines	1991	1,192
4	P.K. Andersen, R.D. Gill	Cox Regression-Model for Counting- Processes - A Large Sample Study	1982	1,021
5	L. Tierney	Markov-Chains for Exploring Posterior Distributions	1994	1,020
6	T.S. Ferguson	Bayesian Analysis of Some Nonparametric Problems	1973	789
7	R.J. Gray	A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk	1988	784
8	C.F.J. Wu	On the Convergence Properties of the EM Algorithm	1983	729
9	J. Friedman, T. Hastie, R. Tibshirani	Additive Logistic Regression: A Statistical View of Boosting	2000	694
10	Y. Benjamini, D. Yekutieli	The Control of the False Discovery Rate in Multiple Testing under Dependency	2001	689

Note: Data downloaded from ISI on 19 May 2010.

Table 12
10 Most Highly Cited Papers in Biometrika

Rank	Author(s)	Title	Year	Citations
1	K.Y. Liang, S.L. Zeger	Longitudinal Data-Analysis using Generalized Linear-Models	1986	5,902
2	S.S. Shapiro, M.B. Wilk	An Analysis of Variance Test for Normality (Complete Samples)	1965	3,354
3	E.A. Gehan	A Generalized Wilcoxon Test for Comparing Arbitrarily Singly-Censored Samples	1965	2,841
4	P.R. Rosenbaum, D.B. Rubin	The Central Role of the Propensity Score in Observational Studies for Causal Effects	1983	2,188
5	D.L. Donoho, I.M. Johnstone	Ideal Spatial Adaptation by Wavelet Shrinkage	1994	2,022
6	W.K. Hastings	Monte-Carlo Sampling Methods Using Markov Chains and their Applications	1970	1,997
7	P.C.B. Phillips, P. Perron	Testing For a Unit-Root in Time-Series Regression	1988	1,711
8	H. Scheffe	A Method for Judging all Contrasts in the Analysis of Variance	1953	1,567
9	H.D. Patterson, R. Thompson	Recovery of Inter-Block Information when Block Sizes are Unequal	1971	1,524
10	D.B. Rubin	Inference and Missing Data	1976	1,482

Note: Data downloaded from ISI on 19 May 2010.

Table 13
10 Most Highly Cited Papers in JASA

Rank	Author(s)	Title	Year	Citations
1	E.L. Kaplan, P. Meier	Nonparametric-Estimation from Incomplete Observations	1958	34,010
2	C.W. Dunnett	A Multiple Comparison Procedure for Comparing Several Treatments with a Control	1955	4,089
3	J.H. Ward	Hierarchical Grouping to Optimize an Objective Function	1963	3,299
4	D.A. Dickey, W.A. Fuller	Distribution of The Estimators for Autoregressive Time-Series with a Unit Root	1979	2,828
5	W.S. Cleveland	Robust Locally Weighted Regression and Smoothing Scatterplots	1979	2,751
6	N. Mantel	Chi-Square Tests aith 1 Degree of Freedom - Extensions of Mantel-Haenszel Procedure	1963	2,740
7	A.E. Gelfand, A.F.M. Smith	Sampling-Based Approaches to Calculating Marginal Densities	1990	2,121
8	R.E. Kass, A.E. Raftery	Bayes Factors	1995	1,960
9	A. Zellner	An Efficient Method of Estimating Seemingly Unrelated Regressions and Tests for Aggregation Bias	1962	1,727
10	W. Hoeffding	Probability-Inequalities for Sums Bounded Random-Variables	1963	1,355

Note: Data downloaded from ISI on 19 May 2010.

Table 14
10 Most Highly Cited Papers in JRSSB

Rank	Author(s)	Title	Year	Citations
1	D.R. Cox	Regression Models and Life-Tables	1972	24,475
2	G.E.P. Box, D.R. Cox	An Analysis of Transformations	1964	3,642
3	M. Stone	Cross-Validatory Choice and Assessment of Statistical Predictions	1974	1,743
4	D.J. Spiegelhalter, N.G. Best, B.R. Carlin, A. van der Linde.	Bayesian Measures of Model Complexity and Fit	2002	1,150
5	J.D. Storey 6	D.Y. Lindley, A.F.M. Smith	A Direct Approach to False Discovery Rates	2002
7	J.B. Ramsey	Tests for Specification Errors in Classical Linear Least-Squares Regression Analysis	1969	625
8	A.P. Dempster, H. Weisberg	A Generalization of Bayesian Inference	1968	491
9	D.R. Cox	Further Results on Tests of Separate Families of Hypotheses	1962	455
10	H. Scheffe	Experiments with Mixtures	1972	797

Note: Data downloaded from ISI on 19 May 2010.

Table 15
100 Most Highly Cited Econometrics Papers in Leading Econometrics Journals

Rank	Author	Year	Journal	Citations
1	H. White	1980	Econometrica	5416
2	R.F. Engle and C.W.J. Granger	1987	Econometrica	4252
3	J.J. Heckman	1979	Econometrica	3966
4	R.F. Engle	1982	Econometrica	3035
5	J.A. Hausman	1978	Econometrica	2495
6	T. Bollerslev	1986	J. Econometrics	2370
7	W.K. Newey and K.D. West	1987	Econometrica	2295
8	L.P. Hansen	1982	Econometrica	2095
9	D.A. Dickey and W.A. Fuller	1981	Econometrica	1887
10	G.C. Chow	1960	Econometrica	1575
11	C.A. Sims	1980	Econometrica	1514
12	S. Johansen	1991	Econometrica	1433
13	P. Perron	1989	Econometrica	1326
14	J. Lintner	1965	REStat	1319
15	H. White	1982	Econometrica	1304
16	R.M. Solow	1957	REStat	1298
17	D. Kwiatkowski, P.C.B. Phillips,	1992	J. Econometrics	1211
18	P. Schimdt and Y. Shin			
19	J.D. Hamilton	1989	Econometrica	1139
20	J. Tobin	1958	Econometrica	1121
21	R. Koenker and G. Bassett	1978	Econometrica	1022
22	D.B. Nelson	1991	Econometrica	973
23	T. Bollerslev, R.Y. Chou and K.F. Kroner	1997	Econometrica	876
24	D.W.K. Andrews	1991	Econometrics	859
25	Z. Griliches	1957	Econometrica	793

26	D. Staiger and J.H. Stock	1997	Econometrica	725
27	J. Heckman and B. Singer	1984	Econometrica	722
28	J. Hausman, B.H. Hall and Z. Griliches	1984	Econometrica	721
29	R. Davidson and J.G. Mackinnon	1981	Econometrica	667
30	R. Blundell and S. Bond	1998	J. Econometrics	666
31	L.R. Chistenson, D.W. Jorgenson and L.J. Lau	1973	REStat	654
	L.P. Hansen and K.J. Singleton	1982	Econometrica	650
32	T.S. Breusch and A.R. Pagan	1979	Econometrica	642
33	R.F. Engle and B.S. Yoo	1987	J. Econometrics	641
34	E. Zivot and D.W.K. Andrews	1992	JBES	636
35	F.X. Diebold and R.S. Mariano	1995	JBES	634
36	G. Elliott, T.J. Rothenberg and J.H. Stock	1996	Econometrica	630
37	K.J. Arrow, H.B. Chenery, B.S. Minhas	1961	REStat	589
38	and R.M. Solow			
39	D.W.K. Andrews	1993	Econometrica	579
40	J. Durbin	1970	Econometrica	552
41	Q.H. Vuong	1989	Econometrica	548
42	K.S. Im, M.H. Pesaran and Y. Shin	2003	J. Econometrics	528
43	J. Jondrow, C.A.K. Lovell, I.S. Materov	1982	J. Econometrics	519
44	and P. Schmidt			
45	R.F. Engle, D.F. Hendry and J.F. Richard	1993	J. Econometrics	514
46	J. Heckman	1974	Econometrica	512
47	F. Hayashi	1982	Econometrica	505
48	W.L. Goffe, G.D. Ferrier and J. Rogers	1994	J. Econometrics	500
49	J.J. Heckman	1982	Econometrica	496
50	J.H. Stock and M.W. Watson	1993	Econometrica	495
51	P.K. Clark	1973	Econometrica	494
52	S. Nickell	1981	Econometrica	492
53	J.A. Hausman and W.E. Taylor	1981	Econometrica	475
54	D. Heath, R. Jarrow and A. Morton	1992	Econometrica	468
55	J. Neyman and E.L. Scott	1948	Econometrica	467
56	H.B. Mann	1945	Econometrica	459

57	Y. Mundlak	1978	Econometrica	447
58	P.M. Robinson	1988	Econometrica	445
59	E.R. Berndt and D.O. Wood	1975	REStat	438
60	R.F. Engle, D.M. Lilien and R.P. Robins	1987	Econometrica	435
61	J.S. Bai and P. Perron	1998	Econometrica	426
$62=$	J.S. Stock	1987	Econometrica	425
62=	J. Tobin	1965	Econometrica	425
64	S. Hylleberg, R.F. Engle, C.W.J. Granger and B.S. Yoo	1990	J. Econometrics	424
65	T. Bollerslev	1987	REStat	413
66=	P.C.B. Phillips and S. Ouliarris	1990	Econometrica	411
66=	J.F. McDonald and R.A. Moffitt	1980	REStat	411
68	C.A. Sims, J.H. Stock and M.W. Watson	1990	Econometrica	404
69	S. Almon	1965	Econometrica	401
70	J. Hausman and D. McFadden	1984	Econometrica	392
71	A. Levin, C.F. Lin and C.S.J. Chu	2002	J. Econometrics	387
72	C.W.J. Granger	1981	J. Econometrics	386
73	Z. Griliches	1967	Econometrica	378
74	J. Geweke	1989	Econometrica	375
75	B.R. Moulton	1990	REStat	373
76	P.C.B. Phillips	1986	J. Econometrics	372
77	J. Tobin	1956	REStat	370
78	L.-F. Lee	1983	Econometrica	363
79	T. Lancaster	1979	Econometrica	362
80	G.W. Schwert	1989	JBES	360
81=	S. Johansen and K. Juselius	1992	J. Econometrics	358
81=	C.W.J. Granger	1988	J. Econometrics	358
83	T. Bollerslev	1990	REStat	357
84	A.W. Lo, AW	1983	Econometrica	354
85	R.F. Engle and K.F. Kroner	1995	ET	351
86	L.M. Seiford and R.M. Thrall	1990	J. Econometrics	348
87	D.W.K. Andrews and W. Ploberger	1994	Econometrica	347

88	G.W. Imbens and J.D. Angrist	1994	Econometrica	334
$89=$	D. McFadden and K. Train	2000	J. Applied Econometrics	333
$89=$	J.G. Cragg	1971	Econometrica	333
91	W.E. Diewert and T.J. Wales	1987	Econometrica	330
92	A.Banerjee, R.L. Lumsdaine and J.H. Stock	1992	JBES	329
$93=$	D. McFadden	1989	Econometrica	326
$93=$	B.R. Moulton	1986	J. Econometrics	326
$95=$	S. Ng, S, and P. Perron	2001	Econometrica	320
$95=$	P.C.B. Phillips	1991	Econometrica	320
$95=$	T. Amemiya	1973	Econometrica	320
98	K.M. Murphy and R.H. Topel	1985	JBES	319
$99=$	I. Krinsky and A.L. Robb	1986	REStat	313
$99=$	D.E. Farrar and R.R. Glauber	1967	REStat	313

Notes: Data downloaded from ISI on 28 April 2010. There are 7 Nobel Laureates in the 100 Most Highly Cited Papers in major econometrics journals. [K.J. Arrow (NL) has one citation (CES production function), though his significant contributions to economics would not generally be regarded as econometric in nature.]
(1) Econometrica: 64 (9/10, 16/20, 24/30, 29/40, 35/50, 44/60, 51/70, 55/80, 59/90)
(2) Journal of Econometrics (J. Econometrics): 17
(3) Review of Economics and Statistics (REStat): 12
(4) Journal of Business and Economic Statistics (JBES): 5
(5) Econometric Theory (ET): 1
(6) Journal of Applied Econometrics (J. Applied Econometrics): 1

Table 16
Authors with Two or More in 100 Most Highly Cited Econometrics Papers

	Author	Nobel Laureate	Number of papers	Sole authored
1	R.F. angle	$*$	7	1
2	J.H. Stock		6	1
3	P.C.B. Phillips		5	2
4	C.W.J. Granger	$*$	4	1
5	J.J. Heckman	$*$	4	3
6	J.A. Hausman		4	1
7	D.W.K. Andrews		4	2
8	T. Bollerslev		4	3
9	J. Tobin	$*$	3	3
10	D. McFadden	$*$	3	-
11	Z. Griliches		3	2
12	P. Perron		3	1
13	R.M. Solow	$*$	2	1
14	H. White		2	2
15	S. Johansen		2	1
16	C. Sims		2	1
17	L.P. Hansen		2	1
18	P. Schmidt		2	-
19	M.W. Watson		2	-
20	Y. Shin		2	1
21	B.S. Yoo		2	-

Notes: Data downloaded from ISI on 28 April 2010. There are 7 Nobel Laureates in the 100 Most Highly Cited Papers in Econometrics, who contributed 9 distinct papers, and 24 papers in total.

Table 17
Highly Cited Econometrics Papers in Other Leading Journals in Economics and Statistics

Year Citations		
Review of Economic Studies	1991	1,495
M. Arellano and S. Bond	1980	583
T.S. Breusch and A.R. Pagan	1990	536
P.C.B. Phillips and B.E. Hansen		
Oxford Bulletin of Economics and Statistics		
S. Johansen and K. Juselius	1990	1,692
K. Osterwald-Lenum	1992	671
C.W.J. Granger	1986	549
International Economic Review		
A.R. Pagan	1984	575
L.-F. Lee	1978	441

Note: Data downloaded from ISI on 19 May 2010.

[^0]: * The authors wish to thank Dennis Fok, Philip Hans Franses and Jan Magnus for helpful discussions. For financial support, the first author acknowledges the National Science Council, Taiwan; the second author acknowledges the Australian Research Council, National Science Council, Taiwan, and the Japan Society for the Promotion of Science; and the third author acknowledges the Royal Society of New Zealand, Marsden Fund.

