
 
 
 
 
 
 
 

Discussion Paper No. 656 
 
 

“A Double-Track Auction for Substitutes and Complements ” 
 

 

Ning Sun  and  Zaifu Yang 
 

 

 

July 2008

KYOTO UNIVERSITY 

KYOTO, JAPAN 

http://www.kier.kyoto-u.ac.jp/index.html 

KYOTO INSTITUTE 
OF 

ECONOMIC RESEARCH 

KIER DISCUSSION PAPER SERIES 



A Double-Track Auction for Substitutes and Complements1

Ning Sun2 and Zaifu Yang3

This revision: June 16, 2008

Abstract: We propose a new tâtonnement process called a double-track auc-

tion for efficiently allocating multiple heterogeneous indivisible items in two

distinct sets S1 and S2 to many buyers who view items in the same set as sub-

stitutes but items across the two sets as complements. The auctioneer initially

announces sufficiently low prices for items in one set, say S1, but sufficiently

high prices for items in the other set S2. In each round, the buyers respond

by reporting their demands at the current prices and the auctioneer adjusts

prices upwards for items in S1 but downwards for items in S2 based on buyers’

reported demands until the market is clear. Unlike any existing auction, this

auction is a blend of a multi-item ascending auction and a multi-item descend-

ing auction. We prove that the auction finds an efficient allocation and its

market-clearing prices in finitely many rounds. Based on the auction we also

establish a dynamic, efficient and strategy-proof mechanism.
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1 Introduction

Tâtonnement processes or auctions are fundamental instruments for discovering market-

clearing prices and efficient allocations. The study of such processes provides one way of

addressing the question of price formation and has long been a major issue of economic

research. In 1874 Leon Walras formulated a first tâtonnement process-a type of auction.

Samuelson (1941), Arrow and Hurwicz (1958), were among the first to study the conver-

gence of certain tâtonnement processes. They proved that such processes converge globally

to an equilibrium for any economy with divisible goods when the goods are substitutable.

This study then generated great hope that such processes might also work for a larger class

of economies with divisible goods. But Scarf (1960) soon dashed such hopes by showing

that when goods exhibit complementarity, such processes can oscillate and will never tend

towards equilibrium. Later it was Scarf (1973) who developed a remarkable process that

can find an equilibrium in any reasonable economy with divisible goods.

The current paper explores adjustment processes for markets with indivisible goods.4

To motivate it, let us review the related literature. In a seminal paper, Kelso and Craw-

ford (1982) developed an auction-like process that allows each firm to hire several workers.5

They showed that their process efficiently allocates workers with competitive salaries to

firms, provided that every firm views all the workers as substitutes. This condition is

called gross substitutes (GS) and has been widely used, adapted and extended in auction,

matching, and equilibrium models.6 Gul and Stacchetti (2000) devised an elegant ascending

auction that finds a Walrasian equilibrium in finitely many steps when all goods are substi-

tutes. While their analysis is mathematically sophisticated and quite demanding, Ausubel

(2006) significantly simplified the analysis by developing a simpler and more elegant dy-

namic auction. Based on his auction, he also proposed a novel dynamic strategy-proof

procedure yielding a Vickrey-Clarke-Groves outcome. As in Kelso and Crawford (1982),

Milgrom (2000) proposed a less information demanding auction for finding an approximate

equilibrium but converging to an equilibrium in the limit. However, all these processes were

designed and work only for substitutes. It is widely recognized7 that complementarities

4For a related but different problem, Scarf (1986) introduced a theory of testing optimality of production
plans in the presence of indivisibility.

5Special but well-studied models typically assume that every consumer demands at most one item or
every person needs only one opposite sex partner. See Gale and Shapley (1962), Shapley and Scarf (1974),
Crawford and Knoer (1981), Demange, Gale and Sotomayor (1986) among others.

6See Roth and Sotomayor (1990), Bikhchandani and Mamer (1997), Laan, Talman and Yang (1997),
Ma (1998), Bevia, Quinzii and Silva (1999), Gul and Stacchetti (1999), Fujishige and Yang (2003), Milgrom
(2004), Crawford (2005), Hatfield and Milgrom (2005), and Ostrovsky (2007) among others.

7The current state of the art is well documented in Milgrom (2000), Jehiel and Moldovanu (2003),
Klemperer (2004) and Maskin (2005). We quote from Milgrom (2000, p. 258): “The problem of bidding
for complements has inspired continuing research both to clarify the scope of the problem and to devise
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pose a challenge for designing dynamic mechanisms for discovering market-clearing prices

and efficient allocations.

This paper aims to show that certain typical patterns of complementarity together with

substitutability can be handled by a new dynamic auction design. More specifically, we

study a market model where a seller wishes to sell two distinct sets S1 and S2 of several

heterogeneous items to a number of buyers. The buyers view items in the same set as

substitutes but items across the two sets as complements. This condition is called gross

substitutes and complements (GSC), generalizing the GS condition. Many typical situations

fit this general description, stretching from the sale of computers and software packages to

consumers, to the allocation of workers and machines to firms, take-off and landing slots to

airliners, etc.8 In our earlier analysis (Sun and Yang (2006B)), we showed that if all agents

in an exchange economy have GSC preferences, the economy has a Walrasian equilibrium.

But the method is non-constructive, and so in particular, the important issue of how to

find the equilibrium prices and allocation is not dealt with. The existing auctions, however,

are hindered by the exposure problem and cannot handle this situation. In contrast, in this

paper we propose a new tâtonnement process –a double-track auction that can discover a

Walrasian equilibrium. The auction proceeds as follows. The auctioneer initially calls out

sufficiently low prices for items in one set, say S1, but sufficiently high prices for items in the

other set S2 so that all items in S1 are over-demanded but those in S2 are under-demanded.

In each round, buyers are asked to report their demands at the current prices. Based on

buyers’ reported demands, the auctioneer adjusts prices upwards for those over-demanded

items in S1 but downwards for those under-demanded items in S2 until the market is clear.

In finitely many rounds the auction pinpoints an efficient allocation and its market-clearing

prices. Unlike traditional tâtonnement processes that typically adjust prices continuously,

the auction process adjusts prices only in integer or fixed quantities.

The proposed auction circumvents the exposure problem confronting the existing auc-

tions and differs markedly from them in that it adjusts simultaneously prices of items in S1

and S2 respectively in opposite directions,9 whereas the existing auctions typically adjust

all prices simultaneously only in one direction (either ascending or descending). When

practical auction designs that overcome the exposure problem.” The so-called exposure problem refers to
a phenomenon concerning an ascending auction that at the earlier stages of the auction, all items were
over-demanded, but as the prices are going up, some or all items may be exposed to the possibility that
no bidder wants to demand them anymore, because complementary items have become too expensive. As
a result, the ascending auction will get stuck in disequilibrium.

8Ostrovsky (2007) independently proposed a similar condition for a supply chain model where prices
of goods are fixed and a non-Walrasian equilibrium (weak core) solution is used. See also Shapley (1962),
Samuelson (1974), Rassenti, Smith and Bulfin (1982), Krishna (2002) and Milgrom (2007).

9This double-track idea can be used elsewhere such as to extend Kelso-Crawford’s job-matching model
by permitting complementarities among employees; see Sun and Yang (2006A).
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all items are substitutes (i.e., either S1 = ∅ or S2 = ∅), the proposed auction coincides

with Ausubel’s (2006) auction and is similar to Gul and Stacchetti (2000). In general the

proposed auction deals with the circumstances including complements that go beyond the

existing models with substitutes. Another attractive feature of the proposed auction is

that it only requires the buyers to report their demands at several price vectors along a

finite path rather than their entire values over all possible bundles so that their privacy

can be protected. This is important, because businessmen generally do not like to reveal

their values or costs. Based upon the proposed auction, we also establish a dynamic, ef-

ficient and strategy-proof mechanism for the environments with complements. So there

is no benefit to any buyer from acting strategically rather than bidding truthfully in this

mechanism. To design the new auction, it is crucial to introduce a new characterization

of the GSC condition called generalized single improvement (GSI), generalizing the single

improvement (SI) property of Gul and Stacchetti (1999). GSI plays the same important

role in our auction design as SI does in Ausubel (2006), Gul and Stacchetti (2000).

This paper proceeds as follows. Section 2 introduces the market model. Section 3

presents the double-track auction and discusses its basis, its properties and its convergence.

Section 4 introduces a dynamic, efficient and incentive compatible procedure based on the

double-track auction. Section 5 concludes.

2 The Market Model

An auctioneer (or seller) wishes to sell a set N = {β1, β2, · · · , βn} of n indivisible items

to a finite group I of buyers (or bidders). The items may be heterogeneous and can be

divided into two sets S1 and S2 (i.e., N = S1 ∪ S2 and S1 ∩ S2 = ∅). For instance, one can

think of S1 as computers and of S2 as software packages. Items in the same set can also be

heterogeneous. Every buyer i has a utility function ui : 2N → IR specifying his valuation

ui(B) (in units of money) on each bundle B with ui(∅) = 0, where 2N denotes the family

of all bundles of items. It is standard to assume that ui is weakly increasing, every buyer

can pay up to his value and has quasi-linear utilities in money, and the seller values every

bundle at zero. Note, however, that weak monotonicity can be dropped; see Sun and Yang

(2006A-B).

A price vector p = (p1, · · · , pn) ∈ IRn specifies a price ph for each item βh ∈ N . Buyer

i’s demand correspondence Di(p), the net utility function vi(A, p), and the indirect utility

function V i(p), are defined respectively by

Di(p) = arg maxA⊆N{ui(A)−∑
βh∈A ph},

vi(A, p) = ui(A)−∑
βh∈A ph, and

V i(p) = maxA⊆N{ui(A)−∑
βh∈A ph}.

(2.1)
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It is known that for any utility function ui : 2N → IR, the indirect utility function V i is a

decreasing, continuous and convex function.

An allocation of items in N is a partition π = (π(i), i ∈ I) of items among all buy-

ers in I, i.e., π(i) ∩ π(j) = ∅ for all i 6= j and ∪i∈Iπ(i) = N . Note that π(i) = ∅ is

allowed. At allocation π, buyer i receives bundle π(i). An allocation π is efficient if∑
i∈I ui(π(i)) ≥ ∑

i∈I ui(ρ(i)) for every allocation ρ. Given an efficient allocation π, let

R(N) =
∑

i∈I ui(π(i)). We call R(N) the market value of the items which is the same for

all efficient allocations.

Definition 2.1 A Walrasian equilibrium (p, π) consists of a price vector p ∈ IRn
+ and an

allocation π such that π(i) ∈ Di(p) for every i ∈ I.

It is well-known that every equilibrium allocation is efficient, but an equilibrium may not

always exist. To ensure the existence of an equilibrium, we need to impose some condi-

tions on the model. The most important one is called gross substitutes and complements

condition, which is defined below.10

Definition 2.2 The utility function ui of buyer i satisfies the gross substitutes and com-

plements (GSC) condition if for any price vector p ∈ IRn, any item βk ∈ Sj for j = 1 or 2,

any δ ≥ 0, and any A ∈ Di(p), there exists B ∈ Di(p+δe(k)) such that [A∩Sj]\{βk} ⊆ B

and [Ac ∩ Sc
j ] ⊆ Bc.

GSC says that buyer i views items in each set Sj as substitutes, but items across the two

sets S1 and S2 as complements, in the sense that if the buyer wants to demand a bundle

A at prices p and if now the price of some item βk ∈ Sj is increased, then he would still

want to demand the items both in A and in Sj whose prices did not rise, but he would not

want to demand any item in another set Sc
j which was not in his choice set A at prices p.

In particular, when either S1 = ∅ or S2 = ∅, GSC reduces to the gross substitutes (GS)

condition of Kelso and Crawford (1982). GS excludes complements and requires that all

the items be substitutes. This case has been studied extensively in the literature; see e.g.,

Kelso and Crawford (1982), Gul and Stacchetti (1999, 2000), Milgrom (2000), and Ausubel

(2006). Now we state the assumptions for the current model:

(A1) Integer private values: Every buyer i’s utility function ui : 2N → Z+ takes integer

values and is his private information.

10The following piece of notation is used throughout the paper. For any positive integer k ≤ n, e(k)
denotes the kth unit vector in IRn. Let Zn stand for the integer lattice in IRn and 0 the n-vector of 0’s.
For any subset A of N , let e(A) =

∑
βk∈A e(k). When A = {βk}, we also write e(A) as e(k). For any

subset A of N , let Ac denote its complement, i.e., Ac = N \A. For any vector p ∈ IRn and any set A ∈ 2N ,
let p(A) =

∑
βk∈A pke(k). So we have p(N) = p for any p ∈ IRn. For any finite set A, ](A) denotes the

number of elements in A. For any set D ⊆ IRn, co(D) denotes its convex hull.
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(A2) Gross substitutes and complements: Every buyer i’s utility function ui satisfies the

GSC condition with respect to the two sets S1 and S2.

(A3) The auctioneer’s knowledge: The auctioneer knows some integer value U∗ greater

than any buyer’s possible maximum value.

The essence and difficulty of designing a mechanism for locating a Walrasian equilibrium

in this market lie in the facts that every buyer’s valuation of any bundle of goods is

private information and is therefore unobservable to the auctioneer (A1); and that there

are multiple indivisible substitutes and complements for sale (A2). We point out that (A3)

is merely a technical assumption used only in Theorem 3.9.

3 The Double-Track Adjustment Process

3.1 The Basis

This subsection provides the basis on which the double-track procedure will be established

for finding a Walrasian equilibrium in the market described in the previous section. We

begin with a new characterization of the GSC condition.

Definition 3.1 The utility function ui of buyer i has the generalized single improvement

(GSI) property if for any price vector p ∈ IRn and any bundle A 6∈ Di(p), there exists a

bundle B ∈ 2N such that vi(A, p) < vi(B, p) and B satisfies exactly one of the following

conditions:

(i): A ∩ Sj = B ∩ Sj, and ][(A \B) ∩ Sc
j ] ≤ 1 and ][(B \ A) ∩ Sc

j ] ≤ 1 for either j = 1, or

j = 2;

(ii): either B ⊆ A and ][(A \B) ∩ S1] = ][(A \B) ∩ S2] = 1, or A ⊆ B and ][(B \ A) ∩ S1]

= ][(B \ A) ∩ S2] = 1.

GSI says that for buyer i, every suboptimal bundle A at prices p can be strictly improved

by either adding an item to it, or removing an item from it, or doing both in either set

A ∩ Sj. The bundle A can be also strictly improved by adding simultaneously one item

from each set Sj to it, or removing simultaneously one item from each set A∩Sj, j = 1, 2.

We call bundle B a GSI improvement of A. When either S1 or S2 is empty, GSI coincides

with the single improvement (SI) property of Gul and Stacchetti (1999) which in turn is

equivalent to the GS condition. The GSI property plays a crucial role both in proving

several of our main results and in our auction design. We now state the following theorem

whose proof together with those of Theorems 3.3, 3.5 and 3.10 and Lemmas 3.4, 3.6 and 3.8

is deferred to the Appendix.
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Theorem 3.2 Conditions GSC and GSI are equivalent.

Let p, q ∈ IRn be any vectors. With respect to the order (S1, S2), we define their

generalized meet s = (s1, · · · , sn) = p ∧g q and join t = (t1, · · · , tn) = p ∨g q by

sk = min{pk, qk}, βk ∈ S1, sk = max{pk, qk}, βk ∈ S2;

tk = max{pk, qk}, βk ∈ S1, tk = min{pk, qk}, βk ∈ S2.

Note that the two operations are different from the standard meet and join operations. A

subset W of IRn is called a generalized lattice if p ∧g q, p ∨g q ∈ W for any p, q ∈ W . A

generalized lattice is a rotated standard lattice. Given a generalized lattice W , we say a

function f : W → IR is a generalized submodular function if f(p∧gq)+f(p∨gq) ≤ f(p)+f(q)

for all p, q ∈ W . A useful characterization of the generalized submodular function is given

in Lemma 3 in the Appendix. Ausubel and Milgrom (2002, Theorem 10) showed that

items are substitutes for a buyer if and only if his indirect utility function is submodular.

Our next theorem generalizes their result from GS to GSC preferences and will be used to

establish Theorem 3.5 below.

Theorem 3.3 A utility function ui satisfies the GSC condition if and only if the indirect

utility function V i is a generalized submodular function.

For the market model, define the Lyapunov function L : IRn → IR by

L(p) =
∑

βh∈N

ph +
∑
i∈I

V i(p) (3.2)

where V i is the indirect utility function of buyer i ∈ I. This type of function is well-known

in the literature for economies with divisible goods (see e.g., Arrow and Hahn (1971) and

Varian (1981)) but was only recently explored ingeniously by Ausubel (2005, 2006) in the

context of indivisible goods. His Proposition 1 in both papers shows that if an equilibrium

exists, then the set of equilibrium price vectors coincides with the set of minimizers of

the Lyapunov function. The following Lemma 3.4 strengthens this result by providing a

necessary and sufficient condition for the existence of an equilibrium.

Lemma 3.4 For the market model, p∗ ∈ IRn is a Walrasian equilibrium price vector if and

only if it is a minimizer of the Lyapunov function L defined by (3.2) with its value L(p∗)

equal to the market value R(N).

Given a subset W of IRn, we define a new order on W ×W with respect to the order

(S1, S2) as follows: for any p, q ∈ W , p ≤g q if and only if p(S1) ≤ q(S1) and p(S2) ≥ q(S2).

A point p∗ ∈ W is called a smallest element if p∗ ≤g q for every q ∈ W . Similarly, a

point q∗ ∈ W is called a largest element if q∗ ≥g p for every p ∈ W . It is easy to verify

that a compact generalized lattice has a unique smallest (largest) element in it. A set
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D ⊆ IRn is integrally convex if D = co(D) and x ∈ D implies x ∈ co(D ∩ N(x)), where

N(x) = {z ∈ Zn | ||z − x||∞ < 1} and || · ||∞ means the maximum norm, i.e., every point

x ∈ D can be represented as a convex combination of integral points in N(x) ∩D. Favati

and Tardella (1990) originally introduced this concept for discrete subsets of Zn. The

following theorem will be used to prove the convergence of the double-track procedure.

Theorem 3.5 Assume that the market model satisfies Assumptions (A1) and (A2). Then

(i) the Lyapunov function L defined by (3.2) is a continuous, convex and generalized sub-

modular function;

(ii) the set of Walrasian equilibrium price vectors in the model forms a nonempty, com-

pact, integrally convex and generalized lattice, implying that all its vertices including both its

smallest and largest equilibrium price vectors, denoted by p and p̄ respectively, are integer

vectors.

The theorem asserts that (i) the Lyapunov function is a well-behaved function meaning

that a local mimimum is also a global mimimum; and (ii) the set of Walrasian equilibrium

price vectors possesses an elegant geometry: (1) the set is an integral polyhedron, i.e., all

vertices including p and p̄ are integer vectors; and (2) the intersection of the set with any

unit hypercube {x} + [0, 1]n for x ∈ Zn is integrally convex and thereby all of its vertices

are integer vectors.

3.2 An Illustration

The existing auctions typically adjust all prices simultaneously in one direction, are either

ascending or descending, and generally do not work in the environments with complements.

It is helpful to use a simple example to illustrate how an ascending (or descending) auction

might be plagued by the exposure problem and how the new auction proposed in this

paper overcomes the problem and succeeds in finding a Walrasian equilibrium. Consider

now a market where a seller wishes to sell two volumes A and B of a book to two buyers.

Each buyer knows his values privately and the seller knows only that all values are below 6.

Buyers’ values are given in the Table 1, and the seller values every bundle at zero. Observe

that every buyer views A and B as complements.

Table 1: Buyers’ values over items.
∅ A B AB

Buyer 1 0 2 2 5

Buyer 2 0 2 2 5

The ascending auction: In an ascending auction, the seller initially announces a low

price vector of p(0) = (pA(0), pB(0)) = (0, 0) so that every buyer demands both A and B.
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Buyers respond by reporting their demand sets at p(0): D1(p(0)) = D2(p(0)) = {AB}.
According to the reported demand sets, the seller subsequently adjusts the price vector

p(0) to the next one p(1) = p(0) + δ(0) = (1, 1) by increasing the price of every good by

1, because both goods are over-demanded at p(0). The seller faces a similar situation at

p(1) and p(2). The auction ends up with the price vector p(3) = (3, 3) at which no bidder

wants to demand the items anymore, and thus gets stuck in disequilibrium. We summarize

the entire process in the Table 2. The reader can also verify that starting with a high

price vector p(0) = (pA(0), pB(0)) = (q, q) for any integer q ≥ 6 so that no buyer demands

any item, a descending auction will terminate with the price vector p̄ = (2, 2) at which

both buyers demand both items, and thus get stuck in disequilibrium, too. We remind the

reader that prices in auction processes are adjusted in integer or fixed quantities.

Table 2: The data created by the ascending auction for the example.
Price vector Buyer 1 Buyer 2 Price variation

p(0) = (0, 0) {AB} {AB} δ(0) = (1, 1)

p(1) = (1, 1) {AB} {AB} δ(1) = (1, 1)

p(2) = (2, 2) {AB} {AB} δ(2) = (1, 1)

p(3) = (3, 3) {∅} {∅} δ(3) = (0, 0)

The double-track auction: Unlike the previous two cases, in the current double-track

auction, the seller initially announces a price vector of p(0) = (pA(0), pB(0)) = (0, 6) (a

low price for item A but a high price for item B) so that every buyer demands only item

A and not item B. Buyers respond by reporting their demand sets at p(0): D1(p(0)) =

D2(p(0)) = {A}. Using the reported demands, the seller subsequently adjusts the price

vector p(0) to the next one p(1) = p(0)+δ(0) = (1, 5) by increasing the price of A by 1 but

decreasing the price of B by 1, because A is over-demanded but B is under-demanded at

p(0). At p(1), the seller faces a similar situation. An interesting moment occurs when p(1)

advances to p(2) = (2, 4) at which B is clearly still under-demanded, but A can be seen

as either over-demanded or balanced. According to the rule of the double-track auction

(to be discussed soon in detail), the seller treats A as balanced and so she adjusts p(2) to

p(3) = (2, 3) by decreasing the price of B by 1 and holding the price of A constant. At p(3),

the market reaches an equilibrium in which the seller can assign items A and B to buyer

1 and asks him to pay 5, while buyer 2 gets nothing and pays nothing. We can summarize

the entire process in the Table 3. Observe that in this process, the seller increases the

price of item A (since it is over-demanded) but decreases the price of item B (since it is

under-demanded) until the market is clear. So to a large extent, this double-track auction

is also similar to the classical Walrasian tâtonnement process.
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Table 3: The data created by the double-track auction for the example.
Price vector Buyer 1 Buyer 2 Price variation

p(0) = (0, 6) {A} {A} δ(0) = (1,−1)

p(1) = (1, 5) {A} {A} δ(1) = (1,−1)

p(2) = (2, 4) {∅, A} {∅, A} δ(2) = (0,−1)

p(3) = (2, 3) {∅, A, AB} {∅, A, AB} δ(3) = (0, 0)

3.3 The Formal Procedure

We are now ready to give a formal description of the double-track adjustment process.11

This process can be seen as an extension of Ausubel (2006) from GS to GSC preferences

environments and thus from the standard order ≤ to the new order ≤g.
12 More specifically,

when either S1 = ∅ or S2 = ∅ (i.e., all items are substitutes to the buyers), this new process

coincides exactly with Ausubel’s. The new order ≤g differs from the standard order ≤ used

by the existing auctions in that the new process adjusts prices of items in one set upwards

but at the same time adjusts prices of items in the other set downwards. Therefore, we

define an n-dimensional cube for price adjustment by

2 = {δ ∈ IRn | 0 ≤ δk ≤ 1,∀βk ∈ S1, −1 ≤ δl ≤ 0,∀βl ∈ S2 }.

For any buyer i ∈ I, any price vector p ∈ Zn and any price variation δ ∈ 2, choose

S̃i ∈ arg min
S∈Di(p)

{
∑

βh∈S

δh}. (3.3)

The next lemma asserts that for any buyer i, any p ∈ Zn and any δ ∈ 2, his optimal

bundle S̃i in (3.3) chosen from Di(p) remains constant for all price vectors on the line

segment from p to p + δ. This property is crucial for the auctioneer to adjust the current

price vector to the next one and is a consequence of the GSI property.

Lemma 3.6 If Assumptions (A1) and (A2) hold for the market model, then for any i ∈ I,

any p ∈ Zn and any δ ∈ 2, the solution S̃i of Formula (3.3) satisfies S̃i ∈ Di(p + λδ)

and the Lyapunov function L(p + λδ) is linear in λ, for any parameter λ ≥ 0 such that

0 ≤ λδk ≤ 1 for every βk ∈ S1 and −1 ≤ λδl ≤ 0 for every βl ∈ S2.

Given a current price vector p(t) ∈ Zn, the auctioneer first asks every buyer i to report

his demand Di(p(t)). Then she uses every buyer’s reported demand Di(p(t)) to determine

the next price vector p(t + 1). The underlying rationale for the auctioneer is to choose a

11We refer to Yang (1999) for various adjustment processes for finding Walrasian equilibria, Nash equi-
libria and their refinements in the continuous models.

12This process can be also viewed as a direct generalization of Gul and Stacchetti (2000) from GS to
GSC environments. We adopt here the Lyapunov function approach instead of matroid theory used by
Gul and Stacchetti, because the former is more familiar in economics and much simpler than the latter.
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direction δ ∈ 2 so as to reduce the value of the Lyapunov function L as large as possible.

To achieve this, she needs to solve the following problem

max
δ∈2

{L(p(t))− L(p(t) + δ)} (3.4)

Note that the above formula involves every buyer’s valuation of every bundle of goods,

so it uses private information. Apparently, it is impossible for the auctioneer to know

such information unless the buyers tell her. Fortunately, she can fully infer the difference

between L(p(t)) and L(p(t) + δ) just from the reported demands Di(p(t)) and the price

variation δ. To see this, we know from the definition of the Lyapunov function that for

any given p(t) ∈ Zn and δ ∈ 2, the difference is given by

L(p(t))− L(p(t) + δ) =
∑
i∈I

(V i(p(t))− V i(p(t) + δ))−
∑

βh∈N

δh (3.5)

Although, at prices p(t), each buyer i may have many optimal choices, his indirect

utility V i(p(t)) at p(t) is unique since every optimal choice gives him the same indirect

utility. Lemma 3.6 tells us that some S̃i of his optimal choices remains unchanged when

prices vary from p(t) to p(t)+δ. It is immediately clear that his indirect utility V i(p(t)+δ)

at prices p(t) + δ equals V i(p(t))−∑
βh∈S̃i δh. Now we obtain the change in indirect utility

for buyer i when prices move from p(t) to p(t) + δ. This change is unique and is given by

V i(p(t))− V i(p(t) + δ) = min
S∈Di(p(t))

∑
βh∈S

δh =
∑

βh∈S̃i

δh (3.6)

where S̃i is a solution given by (3.3) for buyer i with respect to price vector p(t) and the

variation δ. Consequently, the equation (3.5) becomes the following simple formula whose

right side involves only price variation δ and optimal choices at p(t):

L(p(t))− L(p(t) + δ) =
∑
i∈I

(
min

S∈Di(p(t))

∑
βh∈S

δh

)
−

∑
βh∈N

δh =
∑
i∈I

∑
βh∈S̃i

δh −
∑

βh∈N

δh (3.7)

The next result shows that the set of solutions to Problem (3.4) is a generalized lat-

tice and both its smallest and largest elements are integral, resembling Theorem 3.5 and

following also from the generalized submodularity of the Lyapunov function.

Lemma 3.7 If Assumptions (A1) and (A2) hold for the market model, then the set of

solutions to Problem (3.4) is a nonempty, integrally convex and generalized lattice and both

its smallest and largest elements are integer vectors.

Given the current price vector p(t), the next price vector p(t + 1) is given by p(t + 1) =

p(t) + δ(t), where δ(t) is the unique smallest element as described in the above lemma.

Since δ(t) is an integer vector, this implies that the auctioneer does not need to search

everywhere in the cube 2 for achieving a maximal decrease in the value of the Lyapunov
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function. It suffices to search only the vertices (i.e., the integer vectors) of the cube 2

and doing so will lead to the same maximal value decrease of the Lyapunov function. Let

∆ = 2 ∩ Zn. By (3.7), the decision Problem (3.4) of the seller boils down to computing

the unique smallest solution δ(t) (in the order ≤g) of the optimization problem:

max
δ∈∆

{∑
i∈I

(
min

S∈Di(p(t))

∑
βh∈S

δh

)
−

∑
βh∈N

δh

}
(3.8)

The max-min in the above formula has a meaningful and interesting interpretation: when

the prices are adjusted from p(t) to p(t + 1) = p(t) + δ(t), all buyers try to minimize their

losses in indirect utility whereas the seller strives for the highest gain. Nevertheless, the

entire computation for (3.8) is carried out solely by the seller according to buyers’ reported

demands Di(p(t)). The computation of (3.8) is fairly simple because the seller can easily

calculate the value (minS∈Di(p(t))

∑
βh∈S δh) for each given δ ∈ ∆ and buyer i. Now we

summarize the adjustment process as follows.

The dynamic double-track (DDT) auction

Step 1: The auctioneer announces an initial price vector p(0) ∈ Zn
+ with p(0) ≤g p.

Let t := 0 and go to Step 2.

Step 2: After the announcement of p(t), the auctioneer asks every buyer i to report

his demand Di(p(t)). Then according to (3.8) and reported demands Di(p(t)), the

auctioneer computes the unique smallest element δ(t) (in the order ≤g) and obtains

the next price vector p(t+1) := p(t)+ δ(t). If p(t+1) = p(t), then the auction stops.

Otherwise, let t := t + 1 and return to Step 2.

First, observe that this auction simultaneously adjusts prices upwards for items in S1

and downwards for items in S2. So on the side of S1, the auction runs like an English

auction, while on the other side of S2, it does like a Dutch auction. But the auction

does not run two sides independently. Second, the auction rules adhere to the Wilson

doctrine (Wilson (1987)) in the sense that they are simple, transparent and detail-free to

the bidders. Third, to ensure p(0) ≤g p, the auctioneer just needs to set the initial prices of

items in S1 so low and those of items in S2 so high that all items in S1 are over-demanded

but all items in S2 are under-demanded. This can be easily done because every buyer’s

utility function ui is weakly increasing with ui(∅) = 0 and is bounded above from U∗ given

in Assumption (A3). For instance, the auctioneer can simply take p(0) = (p1(0), · · · , pn(0))

by setting pk(0) = 0 for any βk ∈ S1 and pk(0) = U∗ for any βk ∈ S2. Note that the choice

of initial prices of the items can have an effect on the speed of the auction’s convergence.

Observe from the proof of the following Lemma 3.8 in the Appendix that Lemma 3.8

(i) and (ii) are independent of the choice of p(0).
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Lemma 3.8 Under Assumptions (A1) and (A2), the DDT auction has the following prop-

erties:

(i) p(t) ≤g p implies p(t + 1) ≤g p.

(ii) p(t + 1) = p(t) implies p(t) ≥g p.

We are ready to establish the following convergence theorem for the DDT auction.

Theorem 3.9 For the market model under Assumptions (A1)–(A3), the DDT auction

converges to the smallest equilibrium price vector p, in a finite number of rounds.

Proof: Recall that by Theorem 3.5 (ii), the market model has not only a nonempty set

of equilibrium price vectors but also a unique smallest equilibrium price vector p. Let

{p(t), t = 0, 1, · · ·} be the sequence of price vectors generated by the auction. Note that

p(t+1) = p(t)+δ(t), δ(t) ∈ 2∩Zn for t = 0, 1, · · ·, and that p(t) ≤g p(t+1) for t = 0, 1, · · ·,
and all p(t) are integer vectors. Step 1 of the auction implies that p(0) ≤g p and Lemma 3.8

(i) implies that p(t) ≤g p for all t. Since δ(t) is an integer vector for any t and the sequence

{p(t), t = 0, 1, · · ·} is bounded above from p, the sequence must be finite. This means that

p(t∗) = p(t∗ + 1) for some t∗, i.e., the sequence can be written as {p(t), t = 0, 1, · · · , t∗}.
Note that p(t) 6= p(t + 1) and δ(t) 6= 0 for any t = 0, 1, · · · , t∗ − 1. By Lemma 3.8 (ii),

p(t∗) ≥g p. Because of p(t∗) ≤g p, it is clear p(t∗) = p. This shows that the auction indeed

terminates with the smallest equilibrium price vector p, in a finite number of rounds. 2

The DDT auction has the drawback that it converges to an equilibrium price vector

only if p(0) ≤g p. To overcome this shortcoming, we propose the following modified DDT

auction which can start from any integer price vector and still converges to an equilibrium

price vector. Analogous to the discrete set ∆, define the discrete set ∆∗ = −∆. Through

∆∗, we lower prices of items in S1 but raise prices of items in S2.

The global dynamic double-track (GDDT) auction

Step 1: Choose any initial price vector p(0) ∈ Zn
+. Let t := 0 and go to Step 2.

Step 2: The auctioneer asks every buyer i to report his demand Di(p(t)) at p(t). Then

based on reported demands Di(p(t)), the auctioneer computes the unique smallest

element δ(t) (in the order ≤g) according to (3.8). If δ(t) = 0, go to Step 3. Otherwise,

set the next price vector p(t + 1) := p(t) + δ(t) and t := t + 1. Return to Step 2.

Step 3: The auctioneer asks every buyer i to report his demand Di(p(t)) at p(t). Then

based on reported demands Di(p(t)), the auctioneer computes the unique largest

element δ(t) (in the order ≤g) from the following problem of type (3.8):

max
δ∈∆∗

{∑
i∈I

(
min

S∈Di(p(t))

∑
βh∈S

δh

)
−

∑
βh∈N

δh

}
, (3.9)
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If δ(t) = 0, then the auction stops. Otherwise, set the next price vector p(t + 1) :=

p(t) + δ(t) and t := t + 1. Return to Step 3.

First, observe that Step 2 of the GDDT auction is the same as Step 2 of the DDT auction

and Step 3 of the GDDT auction is also the same as Step 2 of the DDT auction except that

in Step 3 we switch the role of S1 and S2 by moving from ∆ to ∆∗. Second, the GDDT

auction terminates in Step 3 and never goes from Step 3 to Step 2. Third, because the

order ≤g is defined in the specified order of (S1, S2), the auctioneer computes the unique

largest element δ(t) in Step 3 (which is equivalent to the unique smallest element if we

redefine the order ≤g in the order of (S2, S1)). Note that Theorem 3.10 dispenses with

Assumption (A3).

Theorem 3.10 For the market model under Assumptions (A1) and (A2), starting with

any integer price vector, the GDDT auction converges to an equilibrium price vector in a

finite number of rounds.

4 The Dynamic Strategy-Proof Procedure

We now address the strategic issue such as When confronting an auction, is honesty the

best policy for every bidder? More specifically, does sincere bidding constitute a Nash

equilibrium (or its variants) of the auction game? If it is the case, the auction is said to be

strategy-proof. The (sealed-bid) Vickrey-Clarke-Groves (VCG) auction is strategy-proof.

The dynamic auction of Ausubel (2006) not only possesses this important strategy-proof

property but also offers advantages of informational efficiency, transparency and privacy

preservation. The auction of Demange, Gale and Sotomayor (1986) also has the same

properties but applies to a less general model in which every buyer can demand only one

item. The outcome yielded by a dynamic strategy-proof auction often coincides with the

VCG outcome. According to Gul and Staachetti (1999, 2000), the VCG outcome typically

lies outside the set of Walrasian equilibria in the sense that the VCG payment is generally

below the Walrasian equilibrium payment. Ausubel and Milgrom (2002) further observed

that in the presence of complementarity, the VCG outcome may lie outside the core.

Built upon the proposed GDDT auction, we will develop a dynamic strategy-proof

auction for the current more general environment with both complements and substitutes,

thus extending Ausubel’s auction for substitutes. We use the following notation. Let M
denote the market with the set I of bidders and the set N of items, and for each bidder

i ∈ I, let M−i denote the market M without bidder i. Let I−i = I \ {i} for every i ∈ I

and for convenience also let M−0 = M, I−0 = I, M = I ∪ {0}, and M−i = M \ {i} for

i ∈ M . Furthermore, let U denote the family of all utility functions u : 2N → Z+ satisfying

Assumptions (A1) and (A2).
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We now introduce the following PGDDT auction mechanism in which every bidder

acts strategically and may not behave as a price-taker. The mechanism runs the GDDT

auction for all markets M−m (m ∈ M) simultaneously in parallel and in coordination. The

GDDT auction works for every market M−m exactly as described in Section 3 but needs

the following modifications: Consider any market M−m. At t ∈ Z+ and p−m(t) ∈ Zn
+,

every bidder i ∈ I−m reports a choice set Ci
−m(t) ⊆ 2N (which need not be his demand set

Di(p−m(t))) and the problem (3.8) or (3.9) becomes the next one for ∆ or ∆∗ respectively,

max
δ∈∆( or ∆∗)

{ ∑
i∈I−m

(
min

S∈Ci
−m(t)

∑
βh∈S

δh

)
−

∑
βh∈N

δh

}
(4.10)

If the auctioneer finds a unique smallest (largest) solution σ−m(t) of (4.10) for ∆ (∆∗) in

the order ≤g, she obtains the next price vector p−m(t + 1) = p−m(t) + δ−m(t) whenever

δ−m(t) 6= 0. We say the GDDT auction finds an allocation π−m in M−m if δ−m(t) = 0

for ∆∗ (i.e., in Step 3 of the auction) and π−m(i) ∈ Ci
−m(t) for all i ∈ I−m. The GDDT

auction needs to go back to Step 2 from Step 3 if δ−m(t) = 0 for ∆∗ but it finds no

allocation π−m in M−m such that π−m(i) ∈ Ci
−m(t) for all i ∈ I−m—this modification is

meant to tolerate minor mistakes or manipulations committed by bidders. The GDDT

auction detects serious manipulation if it finds no unique smallest (largest) solution δ−m(t)

of (4.10) for ∆ (∆∗), or if p−m
h (t+1) < 0 for some βh ∈ N , or if it never finds an allocation

in M−m in which case the auction is said to stop at time ∞. Now we have

The parallel global dynamic double-track (PGDDT) auction13

Step 1: Run the GDDT auction simultaneously in parallel for every market M−m

(m ∈ M) by starting with a common initial price vector p−m(0) = p(0) ∈ Zn
+. At

t ∈ Z+ and p−m(t) ∈ Zn, every bidder i ∈ I−m reports a choice Ci
−m(t) ⊆ 2N and the

auctioneer finds the next price vector p−m(t + 1) = p−m(t) + δ−m(t). If the GDDT

auction detects serious manipulations in any market, go to Step 3. Otherwise, the

GDDT auction continues until it finds an allocation π−m in every market M−m

(m ∈ M) at p−m(T−m) ∈ Zn
+, and T−m ∈ Z+. Go to Step 2.

Step 2: In this case all markets are clear. For every bidder i ∈ I, every m ∈ M−i and

every t = 0, 1, · · · , T−m− 1, let ∆−m
i (t) denote the “indirect utility change” of bidder

i in I−m when prices move from p−m(t) to p−m(t + 1), where

∆−m
i (t) = min

S∈Ci
−m(t)

∑
βh∈S

δ−m
h (t) (4.11)

13We can also use the DDT auction to construct a similar parallel auction.
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Every bidder i ∈ I is assigned the bundle π−0(i) of the allocation π−0 found in the

market M−0 = M and required to pay qi and then the auction stops, where

qi =
∑

j∈I−i

(T−0−1∑
t=0

∆−0
j (t)−

T−i−1∑
t=0

∆−i
j (t)

)
+

∑
βh∈N

p−i
h (T−i)−

∑
βh∈N\π−0(i)

p−0
h (T−0) (4.12)

Step 3: In this case every bidder receives no item but is assigned a payoff of −∞.

The auction stops.

The payment qi of bidder i has an intuitive interpretation: qi is equal to the accumu-

lation of “indirect utility changes” of his opponents l ∈ I−i along the path from p−i(T−i)

to p(0) (in the market M−i) and the path from p(0) to p−0(T−0) (in the market M )

by subtracting
∑

βh∈N\π−0(i) p−0
h –the equilibrium payments by bidder i’s opponents in the

market M, and adding
∑

βh∈N p−i
h (T−i)–the equilibrium payments by bidder i’s opponents

in the market M−i.

It is simple but important to observe that the PGDDT auction tolerates minor mistakes

or manipulations committed by bidders and allows them to correct so that for any time

t∗ ∈ Z+, no matter what has happended before t∗, as long as from t∗ on every bidder i bids

according to his GSC utility function ui, the auction will find a Walrasian equilibrium in

every market in finitely many rounds and thus terminates in Step 2, because the GDDT

auction converges to a Walrasian equilibrium from any integer price vector.

To study the incentive properties of the PGDDT auction mechanism, we will formulate

this auction as an extensive-form dynamic game of incomplete information in which bidders

are players. Prior to the start of the (auction) game, nature reveals to every player i ∈
I only his own utility function ui ∈ U of private information and a joint probability

distribution F (·) from which the profile {ui}i∈I is drawn. Let H t
i be the part of the

information (or history) of play that player i has observed just before he submits his choice

sets at time t ∈ Z+. A natural and sensible specification is that H t
i comprises the complete

set of all observable price vectors and all players’ choice sets, i.e.,

H t
i = {p−m(t), p−m(s), Cj

−m(s) | m ∈ M, j ∈ I, 0 ≤ s < t,m 6= j}

Note that H t
i = H t

j for all i, j ∈ I, namely, all bidders share a common history just like in

an English auction. Let T ∗ be the time when the PGDDT auction stops at Steps 2 or 3. If

the auction has found an allocation in anyM−m, for consistency and convenience, we define

Ci
−m(t) = Ci

−m(T−m) and p−m(t) = p−m(T−m) for any i ∈ I−m and any t ∈ Z+ between

T−m and T ∗. After any history H t
i and at any time t ∈ Z+, each player i updates his

posterior beliefs µi(· | t, H t
i , u

i) over opponents’ utility functions; see also Ausubel (2006).

We stress that even after the auction is finished, player i may not know his opponents’

utility functions precisely.
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A (dynamic) strategy σi of player i(i ∈ I) is a set-valued function {(t, m,H t
i , u

i) | t ∈
Z+, m ∈ M−i, u

i ∈ U} → 2N , which tells him to bid σi(t, m,H t
i , u

i) ⊆ 2N for every market

M−m(m ∈ M−i) at each time t ∈ Z+ when he observes H t
i . Let Σi denote player i′s

strategy space of all such strategies σi. We say that σi is a sincerely bidding strategy for

player i if he always reports his demand set Di(p−m(t)) as defined by (2.1)with respect to

his true utility function ui for any t ∈ Z+, m ∈ M−i and p−m(t) ∈ Zn, i.e.,

σi(t, m,H t
i , u

i) = Ci
−m(t) = Di(p−m(t)) = arg max

A⊆N
{ui(A)−

∑
βh∈A

p−m
h (t)}

Clearly, the strategy space Σi of player i contains sincere bidding strategies and also various

other strategies.

Given the auction rules, the outcome of this auction game depends entirely upon the

realization of utility functions and the strategies the bidders take. When every bidder i ∈ I

takes a strategy σi and the PGDDT auction terminates in Step 2, then bidder i ∈ I receives

bundle π−0(i) and pays qi given by (4.12). When every bidder i ∈ I takes a strategy σi

and the PGDDT auction stops in Step 3, every bidder gets nothing but a payoff of −∞.

In summary, every player i′s payoff function Wi(·, ·) is given by

Wi

(
{σj}j∈I , {uj}j∈I

)
=

{
ui(π−0(i))− qi if the auction stops in Step 2,

−∞ if the auction stops in Step 3.

For auction games of incomplete information, the ex post equilibrium was used by

Crémer and McLean (1985) for a sealed-bid auction (see also Krishna (2002)) and the

ex post perfect equilibrium by Ausubel (2006) for a dynamic auction. Stronger than

Bayesian equilibrium or perfect Bayesian equilibrium, these notions of equilibrium have a

number of additional desirable properties, i.e., they are not only robust against any regret

but also independent of any probability distribution. Following Ausubel (2006), the ](I)-

tuple {σi}i∈I is an ex post perfect equilibrium if for any time t ∈ Z+, any history profile

{H t
i}i∈I , and any realization {ui}i∈I of profile of utility functions of private information, the

continuation strategy σi(· | t, H t
i , u

i) of every player i ∈ I (i.e., σi(s, m,Hs
i | t, H t

i , u
i) ⊆ 2N

for all s ≥ t, m ∈ M−i and Hs
i ) constitutes his best response against the continuation

strategies {σj(· | t, H t
j , u

j)}j∈I−i
of player i’s opponents of the game even if the realization

{ui}i∈I becomes common knowledge.

Before presenting our next result, we briefly review the VCG auction for the marekt M.

In this auction every bidder i ∈ I reports his utility function ui to the auctioneer. Then

she computes an efficient allocation π with respect to all bidders’ reported ui and assigns

bundle π(i) to bidder i and charges him a payment of q∗i = ui(π(i)) − R(N) + R−i(N),

where R(N) and R−i(N) are the market values of the markets M and M−i based on ui

(i ∈ I), respectively. Bidder i’s VCG payoff equals R(N)−R−i(N).
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Theorem 4.1 Suppose that the market M satisfies Assumptions (A1) and (A2).

(i) When every bidder bids sincerely, the PGDDT auction converges to a Walrasian equi-

librium and yields a Vickrey-Clarke-Groves outcome for the market M in a finite number

of rounds.

(ii) Sincere bidding is an ex post perfect equilibrium in the PGDDT auction.

Proof: We first prove (i). By the argument in Section 3, we see that when every bidder i

bids sincerely according to his true GSC utility function ui , the auction terminates at Step

2 and finds a Walrasian equilibrium (p−m(T−m), π−m) in every market M−m, m ∈ M . By

the rules, every bidder i receives bundle π−0(i) and pays qi of (4.12). It follows from (3.6)

that

∆−m
i (t) = min

S∈Ci
−m(t)

∑
βh∈S

δ−m
h (t) = V i(p−m(t))− V i(p−m(t + 1))

for all i ∈ I and m ∈ M (i 6= m), where Ci
−m(t) = Di(p−m(t)) and V i is bidder i’s indirect

utility function based on ui. Using these equations, we will show that qi coincides with the

VCG payment q∗i = ui(π−0(i))−R(N) + R−i(N), where R(N) =
∑

j∈I uj(π−0(j)) and

R−i(N) =
∑

j∈I−i
uj(π−i(j)). Observe that payment qi of (4.12) satisfies

qi =
∑

j∈I−i

(∑T−0−1
t=0 (V j(p−0(t))− V j(p−0(t + 1)))

−
∑T−i−1

t=0 (V j(p−i(t))− V j(p−i(t + 1)))
)

+
∑

βh∈N p−i
h (T−i)−

∑
βh∈N\π−0(i) p−0

h (T−0)
=

∑
j∈I−i

(
(V j(p−0(0))− V j(p−0(T−0)))− (V j(p−i(0))− V j(p−i(T−0)))

)
+

∑
βh∈N p−i

h (T−i)−
∑

βh∈N\π−0(i) p−0
h (T−0)

=
(∑

j∈I−i
V j(p−i(T−0)) +

∑
βh∈N p−i

h (T−i)
)

−
(∑

j∈I−i
V j(p−0(T−0)) +

∑
βh∈N\π−0(i) p−0

h (T−0)
)

=
∑

j∈I−i
uj(π−i(j))−

∑
j∈I−i

uj(π−0(j))
= ui(π−0(i))−R(N) + R−i(N)
= q∗i .

Bidder i′s payoff ui(π−0(i))− qi equals his VCG payoff R(N)−R−i(N).

Now we prove (ii). Consider any time t∗ ∈ Z+, any history profile {H t∗
j }j∈I (which

may be on or off the equilibrium path), and any realization {uj}j∈I of profile of utility

functions in U I of private information.14 Take any player i ∈ I. Suppose that in the

continuation game from time t∗ on, every opponent j(j ∈ I−i) of player i bids sincerely at

any t ∈ Z+(t ≥ t∗) and any M−m (m ∈ M−j), namely,

σj(t, m,H t
j , u

j) = Cj
−m(t) = Dj(p−m(t)) = arg max

A⊆N
{uj(A)−

∑
βh∈A

p−m
h (t)}

14In this case, the outcome of the game depends on the histories Ht∗

j and the strategies that all bidders
will take in the continuation game starting from t∗. Bidders cannot change histories but can influence the
path of the future from t∗ on.
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Clearly, in this continuation game from time t∗, when all opponents of player i choose

sincere bidding strategies, because of the payoff of −∞, bidder i strictly prefers a strategy

which results in the auction terminating at Step 2, to any other strategies which result in the

auction stopping at Step 3. Therefore, it sufficient to compare the sincere bidding strategy

with any other strategies which also result in the auction finishing at Step 2. Suppose that

σ′i(· | t∗, H t∗
i , ui) (σ′i in short) is such a continuation strategy of player i resulting in an

allocation ρ for M, and that bidder i’s (continuation) sincere bidding strategy results in

an allocation π for M. Without any loss of generality, we assume that by the time t∗, the

auction for the markets M and M−i has not yet finished, i.e., t∗ < T−0 and t∗ < T−i.

When player i chooses the strategy σ′i, his payment q′i given by (4.12) is

q′i =
∑

j∈I−i

(∑t∗−1
t=0 ∆−0

j (t) +
∑T−0−1

t=t∗ [V j(p−0(t))− V j(p−0(t + 1))]

−
∑t∗−1

t=0 ∆−i
j (t)−

∑T−i−1
t=t∗ [V j(p−i(t))− V j(p−i(t + 1))]

)
+

∑
βh∈N p−i

h (T−i)−
∑

βh∈N\ρ(i) p−0
h (T−0)

=
∑

j∈I−i

(∑t∗−1
t=0 [∆−0

j (t)−∆−i
j (t)] + V j(p−0(t∗)) + V j(p−i(T−i))− V j(p−i(t∗))

)
+

∑
βh∈N p−i

h (T−i)
−

(∑
j∈I−i

V j(p−0(T−0)) +
∑

βh∈N\ρ(i) p−0
h (T−0)

)
= constant−

∑
j∈I−i

uj(ρ(j)),

where V j is bidder j’s indirect utility function based on uj and constant is given by

constant =
∑

j∈I−i

(∑t∗−1
t=0 [∆−0

j (t)−∆−i
j (t)]

)
+

∑
j∈I−i

(
V j(p−0(t∗)) + V j(p−i(T−i))− V j(p−i(t∗))

)
+

∑
βh∈N p−i

h (T−i)

Observe that constant is totally determined by the history profile {H t∗
j }j∈I and the market

M−i without bidder i, and does not depend on player i’s strategy σ′i, (and that ∆−0
j (t) and

∆−i
j (t) for t < t∗ cannot be expressed by V j, because player j may not have bid according

to uj before t∗). Analogously we can show that when bidder i uses the (continuation)

sincere bidding strategy, his payment q̃i will be q̃i = constant − ∑
j∈I−i

uj(π(j)), where

constant is the same as the previous one. Furthermore, we know from the argument in

Section 3 that (in the continuation game) when bidders bid sincerely according to their

utility functions ui, i ∈ I, the resulted allocation π must be efficient for M. This implies

that

ui(π(i)) +
∑

j∈I−i

uj(π(j)) ≥ ui(ρ(i)) +
∑

j∈I−i

uj(ρ(j)).

Consequently, for bidder i′s payoff W̃i with the sincere bidding strategy and his payoff W ′
i

with the strategy σ′i, we have

W̃i = ui(π(i))− q̃i = ui(π(i))− (constant−∑
j∈I−i

uj(π(j)))

= ui(π(i)) +
∑

j∈I−i
uj(π(j))− constant

≥ ui(ρ(i)) +
∑

j∈I−i
uj(ρ(j))− constant = ui(ρ(i))− q′i

= W ′
i .
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This shows that sincere bidding is an ex post perfect equilibrium. 2

The current dynamic procedure yields the same outcome as that of the VCG auction,

but offers several advantages over the VCG auction: First, it utilizes information from

every buyer efficiently and judiciously in that it only requires him to report his demand

sets on a number of price vectors, whereas the VCG auction is sealed-bid and requires every

buyer to report his entire values. In reality, businessmen generally do not like to reveal their

values even if truth-telling may be theoretically a dominant strategy; see e.g., Rothkopf

(2007). Second, the current procedure gives a simple and transparent way of computing

efficient allocations, equilibrium prices and VCG payments using observable information,

whereas the VCG auction tells only a way of computing VCG payments assuming that all

buyers’ values and efficient allocations are already given.

While both the current dynamic procedure and Ausubel’s (2006) compute a Walrasian

equilibrium in every market M−m (m ∈ M) somehow like the VCG auction that needs

to compute every market M−m value R−m(N), the current procedure and analysis differ

from Ausubel’s in several aspects: First, the current procedure applies to the environment

with both complements and substitutes, while Ausubel’s applies to the environment with

substitutes. Second, his procedure and payment rule are not symmetric, whereas the

current procedure and payment rule are symmetric and simpler. Third, Ausubel’s analysis

on the VCG outcome focuses on economies with divisible goods and relies on calculus and

Theorem 1 of Krishna and Maenner (2001) but he mentioned that his analysis can be

analogously done for his model with indivisible goods under the GS condition, whereas the

current analysis is quite different from his and in fact very elementary and simple.

5 Concluding Remarks

We conclude with a short summary highlighting the main contributions of the current

paper and pointing out some open question. We proposed the (G)DDT auction that finds

Walrasian equilibria and tells us about Walrasian equilibria in the circumstances containing

complements that move beyond those we could handle before. The essential feature of the

proposed dynamic auction is that it adjusts the prices of items in one set upwards but those

of items in the other set downwards. Based upon the GDDT auction, we also introduced

a dynamic, efficient and strategy-proof mechanism for the same environments. The GSI

property plays a crucial role in establishing these procedures.

The current model is of private value. For models with interdependent values, we refer

to Milgrom and Weber (1982), Cremér and McLean (1985), and more recently to Dasgupta

and Maskin (2000), Jehiel and Moldovanu (2001), Krishna (2002), Perry and Reny (2002,

2005), and Ausubel (2004). It is of considerable interest but also significantly more difficult
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to extend the current model to the interdependent value framework.

Appendix

The following lemma gives a different formulation of the GSC condition, saying that

instead of adjusting the price of a single item, one can actually simultaneously increase the

prices of several items in one set Sj and decrease the prices of several items in another set

Sc
j . The original definition of GSC has the advantage of simplicity and is easy to use in

checking whether a utility function has the GSC property or not, whereas this alternative

shows the rich properties of GSC and is very useful in mechanism design and proving

theorems.

Lemma 1 A utility function ui : 2N → IR satisfies the GSC condition if and only if for

any price vectors p, q ∈ IRn with qk ≥ pk for all βk ∈ Sj for j = 1 or 2 and ql ≤ pl for all

βl ∈ Sc
j , and for any bundle A ∈ Di(p), there exists a bundle B ∈ Di(q) such that

{βk | βk ∈ A ∩ Sj and qk = pk} ⊆ B and {βl | βl ∈ Ac ∩ Sc
j and ql = pl} ⊆ Bc.

Proof: “Sufficiency” is obvious. Let us prove “Necessity”. First, recall that Lemma 1 of

Sun and Yang (2006B) says a utility function ui : 2N → IR satisfies the GSC condition if

and only if for any p ∈ IRn, any βk ∈ Sj for j = 1 or 2, any δ ≥ 0, and any A ∈ Di(p),

there exists B ∈ Di(p− δe(k)) such that [Ac ∩ Sj] \ {βk} ⊆ Bc and [A ∩ Sc
j ] ⊆ B.

For any p ∈ IRn and any A ∈ Di(p), we consider the following three basic cases and the

other cases can be proved in an analogously recursive way.

Case (i), p̃ = p + δke(k) + δk′e(k
′), where the two different objects βk and βk′ are both in

Sj and δk > 0, δk′ > 0. By the definition of the GSC condition, there exists B′ ∈ Di(p +

δke(k)) such that [A∩Sj]\{βk} ⊆ B′ and [Ac∩Sc
j ] ⊆ B′c. Since p̃ = (p+δke(k))+δk′e(k

′), for

B′ ∈ Di(p+δke(k)), there is B ∈ Di(p̃) such that [B′∩Sj]\{βk′} ⊆ B and [B′c∩Sc
j ] ⊆ Bc.

Thus we have [A ∩ Sj] \ {βk, βk′} ⊆ B and [Ac ∩ Sc
j ] ⊆ Bc, namely,

{βx | βx ∈ A ∩ Sj and p̃x = px} ⊆ B and {βy | βy ∈ Ac ∩ Sc
j and p̃y = py} ⊆ Bc.

Case (ii), p̃ = p− δle(l)− δl′e(l
′), where the two different objects βl and βl′ are both in Sc

j

and δl > 0, δl′ > 0. It follows from the above equivalent formulation of the GSC condition

that there exists B′ ∈ Di(p − δle(l)) such that [Ac ∩ Sc
j ] \ {βl} ⊆ B′c and [A ∩ Sj] ⊆ B′.

Since p̃ = (p − δle(l)) − δl′e(l
′), for B′ ∈ Di(p − δle(l)) there is B ∈ Di(p̃) such that

[B′c ∩ Sc
j ] \ {βl′} ⊆ Bc and [B′ ∩ Sj] ⊆ B. Thus we obtain that [Ac ∩ Sc

j ] \ {βl, βl′} ⊆ Bc

and [A ∩ Sj] ⊆ B, namely,

{βx | βx ∈ A ∩ Sj and p̃x = px} ⊆ B and {βy | βy ∈ Ac ∩ Sc
j and p̃y = py} ⊆ Bc.
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Case (iii), p̃ = p + δke(k) − δle(l), where βk ∈ Sj, βl ∈ Sc
j , and δk > 0, δl > 0. By the

definition of the GSC condition, there exists B′ ∈ Di(p+δke(k)) such that [A∩Sj]\{βk} ⊆
B′ and [Ac∩Sc

j ] ⊆ B′c. Note that p̃ = (p+δke(k))−δle(l). Then, it follows from the above

equivalent formulation of the GSC condition that for B′ ∈ Di(p+δke(k)) there is B ∈ Di(p̃)

such that [B′c ∩ Sc
j ] \ {βl} ⊆ Bc and [B′ ∩ Sj] ⊆ B. So we have [Ac ∩ Sc

j ] \ {βl} ⊆ Bc and

[A ∩ Sj] \ {βk} ⊆ B, namely,

{βx | βx ∈ A ∩ Sj and p̃x = px} ⊆ B and {βy | βy ∈ Ac ∩ Sc
j and p̃y = py} ⊆ Bc.

2

To prove Theorem 3.2, we need to introduce an auxiliary lemma.

Lemma 2 A utility function ui : 2N → IR satisfies the GSI condition, if and only if, for

any price vector p ∈ IRn and any set A 6∈ Di(p), there exists another set B(6= A) satisfying

one of the conditions (i) and (ii) of Definition 3.1 and vi(A, p) ≤ vi(B, p).

Proof “Necessity” is obvious. Let us prove “Sufficiency”. Suppose that for any price

vector p ∈ IRn and any set A 6∈ Di(p), there exists a set B(6= A) satisfying one of the

conditions (i) and (ii) of Definition 3.1 and vi(A, p) ≤ vi(B, p). Continuity of the indirect

utility function V i(·) and the net utility function vi(A, ·) both in the price vector implies

that there is a sufficiently small ε > 0 such that V i(q) > vi(A, q) for q = p+ε e(Ac)−ε e(A).

That is, A 6∈ Di(q). Thus, for the price vector q, there exists a set B(6= A) satisfying one

of the conditions (i) and (ii) of Definition 3.1 and vi(A, q) ≤ vi(B, q). This leads to

vi(B, p)− vi(A, p) = vi(B, q)− vi(A, q) + [](A \B) + ](B \ A)]ε > vi(B, q)− vi(A, q) ≥ 0.

2

Proof of Theorem 3.2 We first prove that GSC implies GSI. By Lemma 2, it is

sufficient to show that for any price vector p ∈ IRn and any set A 6∈ Di(p), there exists

another set B(6= A) satisfying one of the conditions (i) and (ii) of Definition 3.1 and

vi(A, p) ≤ vi(B, p).

First, observe that since the utility obtained by consuming any bundle of items is finite,

regardless of the prices of other items the buyer i will never demand item βk when its price

is too high but will always demand it when its price is very low (may be quite negative).

Formally, for the given price vector p there exists a large real number M∗ such that for

any price vector q ∈ IRn, any T ∈ Di(q) and any βk ∈ N , qk ≥ pk + M∗ implies βk 6∈ T ,

and qk ≤ pk −M∗ implies βk ∈ T .

Now choose any set C ∈ Di(p). Since A 6∈ Di(p), we clearly have vi(C, p) = V i(p) >

vi(A, p) and thus C 6= A. There are two possibilities. Case (1) C \ A 6= ∅, and Case (2)

C \A = ∅ and A\C 6= ∅. Define p̂ = p+M∗e(Ac ∩ Cc). Then, we still have C ∈ Di(p̂) and

vi(C, p̂) = V i(p̂) = V i(p) > vi(A, p) = vi(A, p̂), and consequently A 6∈ Di(p̂). It might be

helpful to draw figures when considering the following cases with respect to various sets.
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In Case (1), i.e., C \ A 6= ∅, choose an item βk ∈ C \ A and assume βk ∈ Sj for some

j = 1 or 2. Let p̆ = p̂ + M∗e([C \ (A ∪ {βk})] ∩ Sj) − M∗e(A ∩ Sc
j ). Note that when

p̂ changes to p̆, the price of item βk does not change. Then, with regard to C ∈ Di(p̂)

and βk ∈ C ∩ Sj, it follows from the GSC condition and Lemma 1 that there exists a set

C̄ ∈ Di(p̆) such that βk ∈ C̄. Clearly, {βk} ⊆ (C̄ \ A) ∩ Sj. Meanwhile, observe that

p̆ = p + M∗e(Ac \ [(C ∩ Sc
j ) ∪ {βk}]) −M∗e(A ∩ Sc

j ). Then, by the definition of M∗ and

the construction of p̆, we have (C̄ \A)∩ Sj ⊆ {βk} and A∩ Sc
j ⊆ C̄. In summary, it yields

(C̄ \ A) ∩ Sj = {βk} and A ∩ Sc
j ⊆ C̄.

In Subcase (1-1) in which (C̄ \ A) ∩ Sc
j 6= ∅, select an item βh ∈ (C̄ \ A) ∩ Sc

j . Let

p̃ = p̆ + M∗e([C \ (A ∪ {βh})] ∩ Sc
j ) −M∗e(A ∩ Sj). Note that when p̆ changes to p̃, the

price of item βh does not change. Then, with regard to C̄ ∈ Di(p̆) and βh ∈ C̄ ∩ Sc
j , it

follows from the GSC condition and Lemma 1 that there exists a bundle B ∈ Di(p̃) such

that βh ∈ B. Observe that p̃ = p + M∗e(Ac \ {βk, βh})−M∗e(A). Then the definition of

M∗ and the construction of p̃ imply that A ⊆ B, and B \ A ⊆ {βk, βh}. Thus we have

A \ B = ∅, and B \ A = {βh, βk} or {βh}. Namely, the set B satisfies the condition (i) or

(ii) of Definition 3.1.

In Subcase (1-2) in which (C̄ \ A) ∩ Sc
j = ∅ and (A \ C̄) ∩ Sj 6= ∅, choose an item

βh ∈ (A \ C̄)∩Sj. Let p̃ = p̆+M∗e((C \A)∩Sc
j )−M∗e((A∩Sj) \{βh})). Note that when

p̆ changes to p̃, the price of item βh does not change. Then, with regard to C̄ ∈ Di(p̆)

and βh ∈ Sj \ C̄, it follows from the GSC condition and Lemma 1 that there exists a set

B ∈ Di(p̃) such that βh /∈ B. Next, observe that p̃ = p+M∗e(Ac \ {βk})−M∗e(A \ {βh}).
Then the definition of M∗ and the construction of p̃ imply that A \B ⊆ {βh} and B \A ⊆
{βk}. Therefore we have A \B = {βh}, and B \A = {βk} or ∅. This shows that the set B

satisfies the condition (i) or (ii) of Definition 3.1.

In Subcase (1-3) in which C̄ = A ∪ {βk}, let p̃ = p̆ and B = C̄. Then, B satisfies the

condition (i) of Definition 3.1.

In Case (2), i.e., C ⊆ A and A \C 6= ∅, choose an item βk ∈ A \C and assume βk ∈ Sj

for some j = 1 or 2. Let p̆ = p̂ −M∗e((A \ {βk}) ∩ Sj). Note that when p̂ changes to p̆,

the price of item βk does not change. Then, with regard to C ∈ Di(p̂) and βk ∈ Sj \ C,

it follows from the GSC condition and Lemma 1 that there exists a set C̄ ∈ Di(p̆) such

that βk /∈ C̄. Meanwhile, note that p̆ = p + M∗e(Ac) −M∗e((A ∩ Sj) \ {βk}). Then, by

the definition of M∗ and the construction of p̆, we have C̄ ⊆ A and (A \ C̄) ∩ Sj ⊆ {βk}.
Consequently, it leads to C̄ ⊆ A and (A \ C̄) ∩ Sj = {βk}.

In Subcase (2-1) in which (A \ C̄) ∩ Sc
j 6= ∅, choose an item βh ∈ (A \ C̄) ∩ Sc

j . Let

p̃ = p̆−M∗e((A\{βh})∩Sc
j ). Note that when p̆ changes to p̃, the price of item βh does not

change. Then, with regard to C̄ ∈ Di(p̆) and βh ∈ Sc
j \C̄, it follows from the GSC condition

and Lemma 1 that there exists a bundle B ∈ Di(p̃) such that βh 6∈ B. Next, note that
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p̃ = p+M∗e(Ac)−M∗e(A\{βk, βh}). Then the definition of M∗ and the construction of p̃

imply that B ⊆ A and A \B ⊆ {βh, βk}. Therefore, we have B ⊆ A, and A \B = {βh, βk}
or {βh}. Thus the set B satisfies the condition (i) or (ii) of Definition 3.1.

In Subcase (2-2) in which C̄ = A \ {βk}, let p̃ = p̆ and B = C̄. Then, B satisfies the

condition (i) of Definition 3.1.

By summing up all above cases, we conclude that there always exist a price vector p̃

and a set B ∈ D(p̃) satisfying one of the condition (i) and (ii) of Definition 3.1. By the

construction of B, we see B 6= A in each case. Then, it follows from B ∈ Di(p̃) that

vi(B, p̃) = V i(p̃) ≥ vi(A, p̃). Furthermore, by the construction of p̃, we see p̃([A \B]∪ [B \
A]) = p([A\B]∪ [B \A]). As a result, we have vi(B, p)−vi(A, p) = vi(B, p̃)−vi(A, p̃) ≥ 0.

In this way we proved that GSC implies GSI.

It remains to show that GSI implies GSC. Choose any price vector p ∈ IRn, βk ∈ Sj for

some j = 1 or 2, δ ≥ 0, and A ∈ Di(p). It is clear that if βk /∈ A, then A ∈ Di(p + δe(k)).

If we choose B = A, then the GSC condition is immediately satisfied. Now we assume that

βk ∈ A. Let δ∗ = V i(p)− V i(p + δe(k)). Then we have 0 ≤ δ∗ ≤ δ, A ∈ Di(p + εe(k)) and

V i(p + εe(k)) = V i(p)− ε for all ε ∈ [0, δ∗]. We need to consider two separate cases. First,

if δ∗ = δ, then we have A ∈ Di(p + δe(k)) and we can choose B = A. Clearly, the GSC

condition is satisfied. In the rest, we deal with the case of δ∗ < δ. In this case we have

V i(p + εe(k)) = V i(p + δ∗e(k)) and A 6∈ Di(p + εe(k)) for all ε > δ∗. In particular, we have

A 6∈ Di(p+ δe(k)). Now let {δν} be any sequence of positive real numbers which converges

to 0. Since A 6∈ Di(p + (δ∗ + δν)e(k)), it follows from the GSI condition that there exists a

GSI improvement set Bν of A such that vi(Bν , p+(δ∗ + δν)e(k)) > vi(A, p+(δ∗ + δν)e(k)).

Notice that βk does not belong to any such GSI improvement set Bν . Suppose that this

statement is false. Then for some ν we would have vi(Bν , p+δ∗e(k))−δν = vi(Bν , p+(δ∗+

δν)e(k)) > vi(A, p+(δ∗+δν)e(k)) = vi(A, p+δ∗e(k))−δν . This leads to vi(Bν , p+δ∗e(k)) >

vi(A, p + δ∗e(k)) = V i(p + δ∗e(k)), yielding a contradiction. Meanwhile, since the number

of sets Bν is finite, without loss of generality we can assume that there exists a positive

integer ν∗ such that Bν = B for all ν ≥ ν∗. Then by the continuity of net utility function

vi(B, ·), we have vi(B, p + δ∗e(k)) = vi(A, p + δ∗e(k)) = V i(p + δ∗e(k)) = V i(p + δe(k)).

In addition, since βk 6∈ B, we have vi(B, p + δe(k)) = vi(B, p + δ∗e(k)) = V i(p + δe(k)).

This implies B ∈ Di(p + δe(k)). Furthermore, since B is a GSI improvement set of A and

βk 6∈ B, it satisfies either

(i): A ∩ Sc
j = B ∩ Sc

j , and (A \B) ∩ Sj = {βk} and ][(B \ A) ∩ Sj] ≤ 1; or

(ii): B ⊆ A, and (A \B) ∩ Sj = {βk} and ][(A \B) ∩ Sc
j ] = 1.

This concludes that [A ∩ Sj] \ {βk} ⊆ B and Ac ∩ Sc
j ⊆ Bc and thus the GSC condition is

satisfied. 2

The next lemma extends a well-known property of a submodular function to its new
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generalization, saying that (i) the marginal utility of an additional item decreases if the

bundle of items to which it is added gets smaller in its complement set (gets larger in its

same set for (ii)). Property (i) is new but (ii) is familiar.

Lemma 3 A function f is a generalized submodular function if and only if

(i): for any x ∈ IRn, any βk ∈ Sj, any βl ∈ Sc
j , any δk > 0 and δl > 0,

f(x + δke(k)− δle(l))− f(x− δle(l)) ≤ f(x + δke(k))− f(x); and

(ii): for any x ∈ IRn, any distinct βk, βl ∈ Sj, any δk > 0 and δl > 0,

f(x + δke(k) + δle(l))− f(x + δle(l)) ≤ f(x + δke(k))− f(x).

Proof: Suppose that f is a generalized submodular function. In the case of (i), let p =

x + δke(k) and q = x − δle(l). Then p ∧g q = x and p ∨g q = x + δke(k) − δle(l). Clearly

(i)’s conclusion holds. It is also easy to check the case of (ii).

Suppose that both (i) and (ii) hold. Take any p, q ∈ IRn. With respect to S1 and S2,

let

JS1 = {j | pj > qj and βj ∈ S1}

KS1 = {k | pk < qk and βk ∈ S1}

JS2 = {j | pj > qj and βj ∈ S2}

KS2 = {k | pk < qk and βk ∈ S2}.

We consider the most general case, namely, all the above four sets are nonempty. So

there exists a nonnegative vector δ = (δ1, · · · , δn) � 0, such that pj = qj + δj for all

j ∈ JS1∪JS2 and pj = qj−δj for all j ∈ KS1∪KS2 . Let JS1 = {h1, · · · , hs}, KS1 = {i1, · · · , it},
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JS2 = {j1, · · · , ju}, and KS2 = {k1, · · · , kv}. Then we have

f(p)− f(p ∧g q)

= f(p)− f
(
p−∑s

l=1 δhl
e(hl) +

∑v
l=1 δkl

e(kl)
)

=
∑s

l=1

[
f

(
p−∑l−1

r=1 δhre(hr))− f
(
p−∑l

r=1 δhre(hr)
)]

+
∑v

l=1

[
f

(
p−∑s

r=1 δhre(hr) +
∑l−1

r=1 δkre(kr)
)

−f
(
p−∑s

r=1 δhre(hr) +
∑l

r=1 δkre(kr)
)]

≥ ∑s
l=1

[
f

(
p−∑l−1

r=1 δhre(hr) + δi1e(i1)
)
− f

(
p−∑l

r=1 δhre(hr) + δi1e(i1)
)]

+
∑v

l=1

[
f

(
p−∑s

r=1 δhre(hr) +
∑l−1

r=1 δkre(kr) + δi1e(i1)
)

−f
(
p−∑s

r=1 δhre(hr) +
∑l

r=1 δkre(kr)) + δi1e(i1)
)]

...

≥ ∑s
l=1

[
f

(
p−∑l−1

r=1 δhre(hr) +
∑t

r=1 δire(ir)
)

−f
(
p−∑l

r=1 δhre(hr) +
∑t

r=1 δire(ir)
)]

+
∑v

l=1

[
f

(
p−∑s

r=1 δhre(hr) +
∑l−1

r=1 δkre(kr) +
∑t

r=1 δire(ir)
)

−f
(
p−∑s

r=1 δhre(hr) +
∑l

r=1 δkre(kr) +
∑t

r=1 δire(ir)
)]

≥ ∑s
l=1

[
f

(
p−∑l−1

r=1 δhre(hr) +
∑t

r=1 δire(ir)− δj1e(j1)
)

−f
(
p−∑l

r=1 δhre(hr) +
∑t

r=1 δire(ir)− δj1e(j1)
)]

+
∑v

l=1

[
f

(
p−∑s

r=1 δhre(hr) +
∑l−1

r=1 δkre(kr) +
∑t

r=1 δire(ir)− δj1e(j1)
)

−f
(
p−∑s

r=1 δhre(hr) +
∑l

r=1 δkre(kr) +
∑t

r=1 δire(ir)− δj1e(j1)
)]

...

≥ ∑s
l=1

[
f

(
p−∑l−1

r=1 δhre(hr) +
∑t

r=1 δire(ir)−
∑u

r=1 δjre(jr)
)

−f
(
p−∑l

r=1 δhre(hr) +
∑t

r=1 δire(ir)−
∑u

r=1 δjre(jr)
)]

+
∑v

l=1

[
f

(
p−∑s

r=1 δhre(hr) +
∑l−1

r=1 δkre(kr) +
∑t

r=1 δire(ir)−
∑u

r=1 δjre(jr)
)

−f
(
p−∑s

r=1 δhre(hr) +
∑l

r=1 δkre(kr) +
∑t

r=1 δire(ir)−
∑u

r=1 δjre(jr)
)]

=
∑s

l=1

[
f

(
p ∨g q −∑l−1

r=1 δhre(hr)
)
− f

(
p ∨g q −∑l

r=1 δhre(hr)
)]

+
∑v

l=1

[
f

(
p ∨g q −∑s

r=1 δhre(hr) +
∑l−1

r=1 δkre(kr)
)

−f
(
p ∨g q −∑s

r=1 δhre(hr) +
∑l

r=1 δkre(kr)
)]

= f(p ∨g q)− f(q)

Therefore we have f(p ∧g q) + f(p ∨g q) ≤ f(p) + f(q). In the above derivation, the first

two inequalities follow from case (ii) and the last two follow from case (i). 2

Proof of Theorem 3.3 Necessity: Choose any two distinct items βk, βl ∈ N , any

p ∈ IRn, any δk > 0, and any δl > 0. If V i(p) − V i(p + δke(k)) = 0, the monotonicity of

V i(·) implies that V i(p + δle(l) + δke(k)) − V i(p + δle(l)) ≤ 0 = V i(p + δke(k)) − V i(p)

and V i(p − δle(l) + δke(k)) − V i(p − δle(l)) ≤ 0 = V i(p + δke(k)) − V i(p). We can

now assume that V i(p) − V i(p + δke(k)) = εk > 0. Then it follows that 0 < εk ≤ δk,
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V i(p + εke(k)) = V i(p + δke(k)) = V i(p) − εk, and there are a bundle A ∈ Di(p) and a

bundle B ∈ Di(p + εke(k)) (for example, B = A) with βk ∈ A ∩ B. We need to consider

the following two situations.

Case 1: βl and βk are in the same set Sj. With regard to A ∈ Di(p) and B ∈
Di(p + εke(k)), it follows from the GSC condition and βk ∈ A ∩ B that there are two

bundles C ∈ Di(p + δle(l)) with βk ∈ C and D ∈ Di(p + δle(l) + εke(k)) with βk ∈ D. As

a result, we have

V i(p + δle(l) + δke(k))− V i(p + δle(l))
≤ V i(p + δle(l) + εke(k))− V i(p + δle(l))
= vi(D, p + δle(l) + εke(k))− V i(p + δle(l))
= vi(D, p + δle(l))− εk − V i(p + δle(l))
≤ −εk = V i(p + δke(k))− V i(p).

Case 2: βl and βk are not in the same set Sj. With regard to A ∈ Di(p) and B ∈
Di(p+ εke(k)), it follows from the GSC condition, Lemma 1 and βk ∈ A∩B that there are

two bundles C ∈ Di(p− δle(l)) with βk ∈ C and D ∈ Di(p− δle(l) + εke(k)) with βk ∈ D,

which leads to

V i(p− δle(l) + δke(k))− V i(p− δle(l))
≤ V i(p− δle(l) + εke(k))− V i(p− δle(l))
= vi(D, p− δle(l) + εke(k))− V i(p− δle(l))
= vi(D, p− δle(l))− εk − V i(p− δle(l))
≤ −εk = V i(p + δke(k))− V i(p).

In summary, we see through Lemma 3 that V i is a generalized submodular function.

Sufficiency: Suppose to the contrary that there are some p ∈ IRn, βk ∈ Sj, δk > 0, and

A ∈ Di(p) such that for every B ∈ Di(p+δke(k)) we have [A∩Sj]\{βk} 6⊆ B or Ac∩Sc
j 6⊆ Bc.

Let εk = V i(p)−V i(p+ δke(k)). Clearly, 0 ≤ εk ≤ δk, V i(p+ εke(k)) = V i(p+ δke(k)), and

A ∈ Di(p+ εke(k)). Since A /∈ Di(p+δke(k)), it holds that Di(p+ εke(k)) 6= Di(p+δke(k))

and εk < δk. Let q = p+εke(k) and θk = δk−εk > 0. Then V i(q) = V i(q+θke(k)). Observe

that A ∈ Di(q) and B /∈ Di(q + θke(k)) for every bundle B satisfying [A ∩ Sj] \ {βk} ⊆ B

and Ac ∩ Sc
j ⊆ Bc. This means that V i(q + θke(k)) > vi(B, q + θke(k)) for every bundle B

satisfying [A∩ Sj] \ {βk} ⊆ B and Ac ∩ Sc
j ⊆ Bc. Furthermore, the continuity of V i(·) and

vi(B, ·) implies that there exists a sufficiently small positive number θ so that

V i
(
q + θke(k)− θe([A ∩ Sj ] \ {βk}) + θe(Ac ∩ Sc

j )
)

> vi
(
B, q + θke(k)− θe([A ∩ Sj ] \ {βk}) + θe(Ac ∩ Sc

j )
)

for every bundle B satisfying [A ∩ Sj] \ {βk} ⊆ B and Ac ∩ Sc
j ⊆ Bc. This means that

if B ∈ Di
(
q + θke(k) − θe([A ∩ Sj] \ {βk}) + θe(Ac ∩ Sc

j )
)
, then [A ∩ Sj] \ {βk} 6⊆ B or
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Ac∩Sc
j 6⊆ Bc. Then choosing B ∈ Di

(
q + θke(k)− θe([A∩Sj] \ {βk})+ θe(Ac∩Sc

j )
)

yields

V i
(
q + θke(k)− θe([A ∩ Sj ] \ {βk}) + θe(Ac ∩ Sc

j )
)

= vi(B, q + θke(k)− θe([A ∩ Sj ] \ {βk}) + θe(Ac ∩ Sc
j ))

= vi(B, q + θke(k) + p̄)
= vi(B, q + θke(k))−

∑
βk∈B p̄k

= vi(B, q + θke(k)) + ](B ∩ ([A ∩ Sj ] \ {βk}))θ − ](B ∩ (Ac ∩ Sc
j ))θ

< vi(B, q + θke(k)) + ]([A ∩ Sj ] \ {βk})θ
≤ V i(q + θke(k)) + ]([A ∩ Sj ] \ {βk})θ,

where p̄ = −θe([A ∩ Sj] \ {βk}) + θe(Ac ∩ Sc
j ). Therefore we have

V i
(
q − θe([A ∩ Sj ] \ {βk}) + θe(Ac ∩ Sc

j )
)

= V i(q) + ]([A ∩ Sj ] \ {βk})θ
= V i(q + θke(k)) + ]([A ∩ Sj ] \ {βk})θ
> V i

(
q + θke(k)− θe([A ∩ Sj ] \ {βk}) + θe(Ac ∩ Sc

j )
)
.

Let x = q and y = q +θke(k)−θe([A∩Sj]\{βk})+θe(Ac∩Sc
j ). Then the above inequality

leads to

V i(x ∧g y) + V i(x ∨g y) = V i
(
q − θe([A ∩ Sj ] \ {βk}) + θe(Ac ∩ Sc

j )
)

+ V i(q + θke(k))

> V i(q) + V i
(
q + θke(k)− θe([A ∩ Sj ] \ {βk}) + θe(Ac ∩ Sc

j )
)

= V i(x) + V i(y),

contradicting the hypothesis that V i is a generalized submodular function. 2

Proof of Lemma 3.4 Suppose that p∗ is an equilibrium price vector. Then we know

from Gul and Stacchetti (1999, Lemma 6) that for any efficient allocation π∗, (p∗, π∗)

constitutes an equilibrium. Clearly,
∑

i∈I ui(π∗(i)) = R(N) the market value of the objects.

Furthermore, we have L(p∗) =
∑

i∈I V i(p∗) +
∑

βh∈N p∗h =
∑

i∈I(u
i(π∗(i)) −∑

βh∈π∗(i) p∗h) +∑
βh∈N p∗h = R(N). Note that for any p ∈ IRn and i ∈ I, V i(p) ≥ ui(π∗(i)) −∑

βh∈π∗(i) ph.

Thus for any p ∈ IRn, we have

L(p) =
∑
i∈I

V i(p) +
∑

βh∈N

ph ≥
∑
i∈I

ui(π∗(i)) = R(N) = L(p∗).

Hence, L(p∗) = minp∈IRn L(p), i.e., p∗ is a minimizer of the function L with L(p∗) = R(N).

Suppose that p̂ is a minimizer of L with its value L(p̂) = R(N). Let ρ be any efficient

allocation of the model. We will show that (p̂, ρ) is an equilibrium. Clearly, we have V i(p̂) ≥
ui(ρ(i))−∑

βh∈ρ(i) p̂h for every i ∈ I. We need to show that V i(p̂) = ui(ρ(i))−∑
βh∈ρ(i) p̂h

for every i ∈ I. Suppose to the contrary that V j(p̂) > uj(ρ(j)) − ∑
βh∈ρ(j) p̂h for some

bidder j. Adding the previous inequalities over all bidders leads to L(p̂) > R(N). This

contradicts the hypothesis that p̂ is a minimizer of L with L(p̂) = R(N). Thus (p̂, ρ) must

be an equilibrium. 2
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Proof of Theorem 3.5 By Theorem 3.1 of Sun and Yang (2006B) the model has an

equilibrium. Then by Lemma 3.4 the set of equilibria is equal to the set of minimizers of

the Lyapunov function L. Let

Λ = arg min{L(p) | p ∈ IRn}.

It follows from Theorem 3.3 and the remark after Formula (2.1) that the Lyapunov

function L is a continuous, convex and generalized submodular function. Now we prove

statement (ii). We first show that Λ is a generalized lattice. Take any p, q ∈ Λ. So we have

L(p) = L(q) = R(N), where R(N) is the market value. Clearly, R(N) ≤ L(p∧gq) ≤ L(p)+

L(q)−L(p∨g q) ≤ 2R(N)−R(N) = R(N). This shows that L(p∧g q) = L(p∨g q) = R(N)

and p∧g q, p∨g q ∈ Λ. So the set Λ is a nonempty, convex and generalized lattice. Clearly,

Λ is also compact.

Next, we prove that Λ is also an integrally convex set. Suppose the statement is false.

Define

A = {p ∈ Λ | p 6∈ co(Λ ∩N(p))},

where N(p) = {z ∈ Zn | ‖z − p‖∞ < 1}. Then A is a nonempty subset of Λ. Observe

that p ∈ co(Λ ∩ N(p)) for every p ∈ Λ ∩ Zn because N(p) = {p} for every p ∈ Zn. And

so, A ∩ Zn = ∅. Let p∗ ∈ A be a vector that has at least as many integral coordinates as

any other vector in A has. Thus, the number of integral coordinates of p∗ is the largest

among all vectors in A. Since co(N(p∗)) is a hypercube, it is a generalized lattice. Let

q∗ be the generalized smallest element of co(N(p∗)). Obviously, q∗ ∈ Zn, q∗ 6= p∗, and

q∗h = p∗h whenever p∗h is an integer. Let δ∗ = p∗ − q∗. Clearly, δ∗h = 0 whenever p∗h is an

integer. Then, δ∗ ∈ 2 (defined before Lemma 3.6), δ∗ 6∈ Zn, and 0 < ‖δ∗‖∞ < 1. Define

λ̄ = 1/‖δ∗‖∞ > 1. By Lemma 3.615 we know that L(q∗ + λδ∗) is linear in λ on the interval

[0, λ̄]. Recall that p∗ is a minimizer of the Lyapunov function L. Thus, if q∗ 6∈ Λ, i.e.,

L(q∗) > L(p∗) = L(q∗ + δ∗), then L(p∗) > L(q∗ + λ̄δ∗), yielding a contradiction. We now

consider the case where q∗ ∈ Λ, i.e., L(q∗) = L(p∗) = L(q∗ + δ∗). Then, it follows from the

linearity of L in λ that L(p∗) = L(q∗ + λ̄δ∗). That is, q∗ + λ̄δ∗ ∈ Λ. By the construction

of λ̄, q∗ + λ̄δ∗ has more integral coordinates than p∗. Therefore, by the choice of p∗, we

see that q∗ + λ̄δ∗ ∈ Λ \ A. That is, q∗ + λ̄δ∗ ∈ co(Λ ∩ N(q∗ + λ̄δ∗)). Moreover, observe

that N(q∗ + λ̄δ∗) ⊆ N(p∗), q∗ ∈ co(Λ ∩N(p∗)), and p∗ is a convex combination of q∗ and

q∗+ λ̄δ∗. As a result, we have p∗ ∈ co(Λ∩N(p∗)), contradicting the hypothesis that p∗ ∈ A.

Finally, by definition, we know that every vertex of an integrally convex set is an integral

vector and thus every vertex of Λ must be integral as well. So all the vertices of Λ, including

the generalized smallest and largest equilibrium price vectors p and p̄, are integral vectors.

15Note tha Lemma 3.6 and its proof are independent of the current theorem and its proof.
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Furthermore, since the set Λ is bounded, Λ has a finite number of vertices. Clearly, Λ is

an integral polyhedron. 2

We extend and modify the arguments of Propositions 2 and 5 of Ausubel (2006) under

the GS condition to prove the following two lemmas under the GSC condition.

Proof of Lemma 3.6 Assume by way of contradiction that there exists λ > 0 such

that 0 ≤ λδk ≤ 1 for any βk ∈ S1 and −1 ≤ λδl ≤ 0 for any βl ∈ S2 but S̃i 6∈ Di(p + λδ).

By the GSI property, for S̃i there exists a GSI improvement bundle A with vi(A, p+λδ) >

vi(S̃i, p + λδ). By the construction of S̃i, we see that vi(S̃i, p + λδ) ≥ vi(C, p + λδ) for all

C ∈ Di(p), and hence A 6∈ Di(p). Then it follows from Assumption (A1) and p ∈ Zn that

vi(A, p) ≤ vi(S̃i, p)− 1.

On the other hand, since 0 ≤ λδk ≤ 1 for any βk ∈ S1 and −1 ≤ λδl ≤ 0 for any βl ∈ S2,

and A is a GSI improvement bundle of S̃i, we must have |∑βh∈S̃i λδh −
∑

βh∈A λδh| ≤ 1

and thus∑
βh∈S̃i

λδh − 1 ≤
∑

βh∈A

λδh.

The two inequalities imply that vi(A, p + λδ) ≤ vi(S̃i, p + λδ), yielding a contradiction.

We now prove that the Lyapunov function L(p + λδ) is linear in λ for any λ > 0 such

that 0 ≤ λδk ≤ 1 for any βk ∈ S1 and −1 ≤ λδl ≤ 0 for any βl ∈ S2. By the first part of the

lemma, for any such λ and any bidder i ∈ I we know S̃i ∈ Di(p + λδ), which immediately

yields

L(p + λδ) = L(p) + λ(
∑

βh∈N

δh −
∑
i∈I

∑
βh∈S̃i

δh).

This shows that L(p + λδ) is indeed linear in λ on the interval. 2

Proof of Lemma 3.8 (i) Suppose to the contrary that in the DDT auction process

there exists a price vector p(t) such that p(t) ≤g p but p(t + 1) 6≤g p. Then, we have

p(t) ∧g p = p(t) but

p(t) ≤g (p(t + 1) ∧g p) ≤g p(t + 1) and (p(t + 1) ∧g p) 6= p(t + 1) (∗)

On the other hand, recall from Lemma 3.4 that, since p is the smallest equilibrium price

vector in the order of ≤g, it minimizes L(·) and so L(p) ≤ L(p(t + 1) ∨g p). Since L(·) is

a generalized submodular function by Theorem 3.5 (i), we have L(p(t + 1)∨g p) +L(p(t +

1)∧g p) ≤ L(p(t + 1)) +L(p). Adding the previous inequalities leads to L(p(t + 1)∧g p) ≤
L(p(t+1)). By the construction of p(t+1), this implies that L(p(t+1)∧g p) = L(p(t+1))

and so p(t + 1) ≤g (p(t + 1) ∧g p), contradicting inequality (∗).
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(ii) Suppose to the contrary that there exists a price vector p(t) such that p(t+1) = p(t)

but p(t) 6≥g p. Then p(t) ∧g p is less than p in at least one component in the order of ≤g.

Since p is the smallest equilibrium price vector in the order of ≤g, we know that p(t) ∧g p

is not an equilibrium price vector of the market model. Applying Lemma 3.4, this implies

that L(p) < L(p(t) ∧g p). Since L(·) is a generalized submodular function, we also have

that L(p(t)∨g p) +L(p(t)∧g p) ≤ L(p(t)) +L(p). Adding the previous inequalities implies

that L(p(t)∨g p) < L(p(t)). Since (p(t)∨g p) ≥g p(t) and (p(t)∨g p) 6= p(t), there exists p′, a

strict convex combination of p(t) and p(t)∨g p, such that p′ ∈ p(t)+2 and L(p′) < L(p(t))

due to the convexity of L(·) by Theorem 3.5 (i) and the previous strict inequality. By

Lemma 3.7, we know that L(p(t)+δ(t)) < L(p(t)), and hence p(t+1) 6= p(t), contradicting

the hypothesis. 2

Proof of Theorem 3.10 By Theorem 3.5 (ii) the market has a Walrasian equilibrium

and by Lemma 3.4 the Lyapunov function L(·) attains its mimimum value at any equilib-

rium price vector and is bounded from below. Since the prices and utility functions take

only integer values, the Lyapunov function is an integer valued function and it lowers by

a positive integer value in each round of the GDDT auction. This guarantees that the

auction terminates in finitely many rounds, i.e., δ(t∗) = 0 in Step 3 for some t∗ ∈ Z+.

Let p(0), p(1), · · · , p(t∗) be the generated finite sequence of price vectors. Let t̄ ∈ Z+ be

the time when the GDDT auction finds δ(t̄) = 0 at Step 2. We claim that L(p) ≥ L(p(t̄))

for all p ≥g p(t̄). Suppose to the contrary that there exists some p ≥g p(t̄) such that

L(p) < L(p(t̄)). By the convexity of L(·) via Theorem 3.5 (i), there is a strict convex

combination p′ of p and p(t̄) such that p′ ∈ p(t̄) + 2 and L(p′) < L(p(t̄)). By Lemma 3.7

we know that L(p(t̄) + δ(t̄)) < L(p(t̄)), and so δ(t̄) 6= 0 in Step 2 of the GDDT auction,

yielding a contradiction. Therefore, we have L(p∨g p(t̄)) ≥ L(p(t̄)) for all p ∈ IRn, because

p ∨g p(t̄) ≥g p(t̄) for all p ∈ IRn. We will further show that L(p ∨g p(t)) ≥ L(p(t)) for

all t = t̄ + 1, t̄ + 2, · · · , t∗ and p ∈ IRn. By induction, it sufficies to prove the case of

t = t̄ + 1. Notice that p(t̄ + 1) = p(t̄) + δ(t̄), where δ(t̄) ∈ ∆∗ is determined in Step

3 of the GDDT auction. Assume by way of contradiction that there is some p ∈ IRn

such that L(p ∨g p(t̄ + 1)) < L(p(t̄ + 1)). Then if we start the GDDT auction from

p(t̄ + 1), we can by the same previous argument find a δ(6= 0) ∈ ∆ in Step 2 such that

L(p(t̄ + 1) + δ) < L(p(t̄ + 1)). Since L(·) is a generalized submodular function, we have

L(p(t̄)∨g (p(t̄ + 1) + δ)) +L(p(t̄)∧g (p(t̄ + 1) + δ)) ≤ L(p(t̄) +L(p(t̄ + 1) + δ). Recall that

L(p(t̄)∨g (p(t̄+1)+δ)) ≥ L(p(t̄)). It follows that L(p(t̄)∧g (p(t̄+1)+δ)) ≤ L(p(t̄+1)+δ) <

L(p(t̄ + 1)). Observe that δ′ = 0 ∧g (δ(t̄) + δ) ∈ ∆∗ and p(t̄) ∧g (p(t̄ + 1) + δ) = p(t̄) + δ′.

This yields L(p(t̄) + δ′) < L(p(t̄) + δ(t̄)) and so δ′ 6= δ(t̄), contradicting the definition of

δ(t̄) ∈ ∆∗ by which L(p(t̄) + δ(t̄)) = minδ∈∆∗ L(p(t̄) + δ).

By the symmetry between Step 2 and Step 3, as above we can also show that L(p ∧g
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p(t∗)) ≥ L(p(t∗)) for all p ∈ IRn. We proved above that L(p ∨g p(t∗)) ≥ L(p(t∗)) for

all p ∈ IRn. Since L(·) is a generalized submodular function, we have L(p) + L(p(t∗)) ≥
L(p ∨g p(t∗)) + L(p ∧g p(t∗)) ≥ 2L(p(t∗)) for all p ∈ IRn. This shows that L(p(t∗)) ≤ L(p)

holds for all p ∈ IRn and by Lemma 3.4, p(t∗) is an equilibrium price vector. 2
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