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1 Introduction

Recent availability of high-frequency data has been making realized-type es-

timators for volatility increasingly attractive. However, market microstruc-

ture noise has prevented researchers from using highest-frequency data such

as transaction or quote data. Researchers had been compelled to choose

moderate data frequency at which the effects of the noise might be negligi-

ble. For instance, Andersen et al. (2003), the most influential work among

realized volatility studies, selected 15-min returns of foreign exchange rates.

It was natural to desire a rigorous theory to select the data frequency. There-

fore, Bandi and Russell (2005a) provided the optimal frequency for realized

volatility based on finite sample MSE. On the other hand, for asymptotic

theory, Zhang et al. (2005) first provided a consistent realized estimator in

the presence of noise, which is called two-scale estimator (TSE). The realized

kernel developed by Barndorff-Nielsen et al. (2006) unified several estima-

tors including TSE and presented discussion of the asymptotic efficiency for

different kernels.

Compared to volatility estimation, co-volatility has not been well studied.

Only Bandi and Russell (2005b) and Griffin and Oomen (2006) derived the

optimal frequency for the realized covariance in the presence of noise. One

reason why we cannot apply the theories on realized estimators of volatil-

ity to those of co-volatility is nonsynchronicity of observations. Hayashi and

Yoshida (2005) proposed an unbiased and consistent covariance estimator for

asynchronous observation in the absence of noise. The estimator is still un-

biased for independent noise; therefore, Griffin and Oomen (2006) examined

how many observations should be used or discarded under a somewhat re-

stricted situation in which volatilities are constant and prices are observed in

a Poisson random manner. To handle nonsynchronicity and microstructure

noise together, in this paper we examine weighted realized covariance (WRC)

which was proposed as a general estimator by Kanatani (2004) under a more

general situation. We provide a framework to evaluate a finite sample MSE

of WRC to examine existing estimators and propose new estimators.
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The remainder of the paper is organized as follows. In Section 2, we

present assumptions on the true price process and microstructure noise. In

Section 3, we calculate the finite sample MSE of WRC. Section 4 presents

how to evaluate the MSE and some examples of weight functions are given in

Section 5. In Section 6, we confirm the theory through a Monte Carlo study

and Section 7 concludes the paper.

2 Assumptions

In this paper, we specifically examine a methodology for measuring covari-

ance between financial assets in the presence of market microstructure noise.

We consider a multi-dimensional vector of logarithmic asset price p(t) for

t ≥ 0. Without loss of generality, we set the dimension of p as 2. We assume

that p is a continuous stochastic volatility semimartingale (SVSMc) with

zero drift.1

p(t) =

∫ t

0

Σ(u)dz(u),

where Σ has elements that are all cadlag and z is a vector standard Brownian

motion. We set the drift vector as 0 for the purpose of simplification.2 The

instantaneous or spot covariance matrix is defined as

Ω(t) ≡ Σ(t)Σ(t)′;

that is to say, cross volatility between the first and second asset is denoted

as the (1, 2) or (2, 1) element of Ω:

ω12 (t) = σ11 (t) σ21 (t) + σ12 (t) σ22 (t) .

1See Barndorff-Nielsen and Shephard (2004) for the SVSMc,
2This simplification is acceptable not only because it indicates an efficient market in

financial economics, but also because, mathematically, the martingale component swamps
the predictable portion over short time intervals.
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Our target is not spot covariance, but integrated covariance over [0, T ]:

IC ≡
∫ T

0

ω12 (t) dt.

For the case of i = j, we call IVi ≡ ∫ T

0
ωii(t)dt =

∫ T

0
(σi1(t)

2 + σi2(t)
2)dt

the integrated variance. For estimation of the integrated covariance matrix,

the following quadratic variation formula is a theoretical basis for using the

sum of the outer product of the return vector. If all assets are synchronously

observed at simultaneous points

0 = t0 < t1 < · · · < tN <= T,

and

lim
N→∞

max
n

(tn − tn−1) = 0

then

p − lim
N→∞

N∑
n=1

(p(tn) − p(tn−1))(p(tn) − p(tn−1))
′ =

∫ T

0

Ω(t)dt.

See e.g. Barndorff-Nielsen and Shephard (2004).

However, each ith asset price is observed nonsynchronously at different

time points

0 = t0i
< t1i

< · · · < tNi
<= T.

Usually in practice, nonsynchronous data are transformed into synchronous

data using some data manipulation scheme such as previous-tick interpola-

tion. However, such manipulation should cause a bias on the realized covari-

ance estimator, which is known as the Epps effect. See e.g. Kanatani and

Renò (2007) or Zhang (2006). Using raw data, Hayashi and Yoshida (2005)

proposed a new estimator, which can solve the nonsynchronous bias problem

in the absence of the observation error.
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More crucially, the efficient prices are considered to be contaminated by

market microstructure noise. The noise is interpreted as an observation error

in the recent literature on realized volatility. Define the observed logarithmic

asset price as

po
i (tni

) ≡ pi(tni
) + ei(tni

),

where ei(t) is independent with any other variables and E(ei(t)) = 0, V (ei(t)) =

σ2
i .

3 Define observed return as

ro
i (tni

) ≡ ri(tni
) + ui(tni

),

where ro
i (tni

) ≡ po
i (tni

)− po
i (tni−1), ri(tni

) ≡ pi(tni
)− pi(tni−1), and ui(tni

) ≡
e(tni

) − e(tni−1). Notice that ri(tni
) and ui(tni

) have zero mean, but have

different variances of
∫ tni

tni−1
ωii(t)dt and 2σ2

i , which are respectively at orders

of O(tni
−tni−1) and O(1). Therefore, under a high-frequency situation where

tni
− tni−1 is sufficiently small, the true return ri(tni

) is overwhelmed by the

noise term ui(tni
).

We concentrate on measuring the integrated covariance from a given ob-

servation and do not make any hypothesis on the structure of the underlying

probability space. Therefore, our analysis is conditioned on {Σ(t)} and {tni
},

in other words, we can consider Σ(t) and tni
as deterministic functions.

3 MSE of weighted realized covariance

In this section, we investigate the weighted realized covariance (WRC), which

was proposed in Kanatani (2004). In fact, WRC is the general form of

realized estimators nesting low frequency RV, subsampling methods, TSE,

Fourier estimator, and Realized kernels; it enables us to unify the discussion

3Voev and Lunde (2007) consider a more general type of noise and examine its effect on
the Hayashi-Yoshida estimator. Ubukata and Oya (2007) propose how to test correlation
of noises between different assets.
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related to all of them. We specifically examine the finite sample MSE-based

analysis in this paper.

The WRC is defined as follows.

WRC = (ro
1)

′Wro
2,

where ro
i = (ro

i (0), ..., ro
i (tni

), ..., ro
i (T ))′ and W is N1 × N2 matrix. WRC is

decomposed into

WRC = r′1Wr2 + r′1Wu2 + u′
1Wr2 + u′

1Wu2,

where ri = (ri(0), ..., ri(tni
), ..., ri(T ))′ and ui = (ui(0), ..., ui(tni

), ..., ui(T ))′.

The first term represents the WRC in the absence of the noise. For conve-

nience, we introduce some notation. We denote the elements in W as{
wdiag

n1n2
if (tn1−1, tn1] ∩ (tn2−1, tn2] �= ∅,

woff
n1n2

otherwise.

We denote the piecewise integrated covariance as

ICn1n2 =

⎧⎪⎨
⎪⎩
∫ min{tn1 ,tn2}

max{tn1−1,tn2−1}
ω12(t)dt if (tn1−1, tn1] ∩ (tn2−1, tn2 ] �= ∅,

0 otherwise,

and also denote the piecewise integrated variance as IVni
=
∫ tni

tni−1
ωii(t)dt.

Using the properties of the independent increment of Brownian motion and

uncorrelated noise, the bias of WRC is calculated as

E[WRC − IC] =
∑
n1,n2

(wdiag
n1n2

− 1)ICn1n2. (3.1)

Therefore, WRC is unbiased if wdiag
n1n2

= 1. In the special case of wdiag
n1n2

= 1 and

woff
n1n2

= 0, WRC is equivalent with Hayashi and Yoshida (2005)’s estimator.

The independent noise does not affect the expectation of WRC, the bias

arises from nonsynchronicity only. However, the noise does affect the MSE,

6



which is calculated as

MSE = E[WRC − IC]2 (3.2)

= E[r′1Wr2 − IC]2︸ ︷︷ ︸
A

+ E[r′1Wu2]
2︸ ︷︷ ︸

B

+ E[u′
1Wr2]

2︸ ︷︷ ︸
C

+ E[u′
1Wu2]

2︸ ︷︷ ︸
D

,

where

A =
∑
n1,n2

(
wdiag

n1n2
ICn1n2

)2
+
∑
n1,n2

w2
n1n2

IVn1IVn2 +

{∑
n1,n2

(wdiag
n1n2

− 1)ICn1n2

}2

,

B = 2σ2
2

∑
n1,n2

wn1n2(wn1n2 − wn1n2−1)IVn1,

C = 2σ2
1

∑
n1,n2

wn1n2(wn1n2 − wn1−1n2)IVn2,

D = σ2
1σ

2
2

∑
n1,n2

wn1n2 {4wn1n2 + 2wn1−1n2−1 + 2wn1−1n2+1 − 4(wn1−1n2 + wn1n2−1)} ,

wn1n2 = 0 if ni ≤ 0 or ni ≥ Ni.

See Appendix for details of calculation. In those equations, A is the MSE

of WRC in the absence of noise. In the absence of noise, Kanatani (2004)

derived the optimal weight that minimizes A.

4 Feasible evaluation of MSE

Since WRC is a bit too general to minimize the MSE, we need to select

a specific form of weight function. In the next section, we present several

examples of one parameter function. Furthermore, for simplicity, we limit

our discussion to unbiased estimators; in other words, we set wdiag
n1n2

= 1. This

enables avoidance of evaluating the bias and
∑(

wdiag
n1n2

ICn1n2

)2
. If wdiag

n1n2
=

1, the bias is zero, and
∑(

wdiag
n1n2

ICn1n2

)2
is unknown, but it is constant.

Therefore, we do not need to evaluate piecewise integrated covariance ICn1n2 ,

which is difficult to estimate.

We still need the variance of noise σ2
i and the piecewise integrated volatil-

ity IVni
to evaluate the MSE (3.2). It is difficult to estimate the piecewise
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integrated volatility IVni
as well as ICn1n2 . To avoid evaluating IVni

, we im-

pose the assumption: “Volatility does not change so much over [0, T ].” This

assumption is described in Bandi and Russell (2006). Under this assumption,

the following approximation is valid.4

IVni
≈ IViΔtni

T
, (4.1)

where Δtni
= tni

− tni−1. For estimations of σ2
i and IVi, several established

methods exist, see e.g. Bandi and Russell (2005a), Zhang et al. (2005).

The estimation methods of those parameters are out of scope of this paper,

therefore we treat them as known parameters.

Now the minimization of the finite sample MSE of WRC reduces to

min
θ

(A′ + B′ + C ′ + D), (4.2)

where

A′ = T−2IV1IV2

∑
w2

n1n2
Δtn1Δtn2 ,

B′ = 2T−1IV1σ
2
2

∑
wn1n2(wn1n2 − wn1n2−1)Δtn1 ,

C ′ = 2T−1IV2σ
2
1

∑
wn1n2(wn1n2 − wn1−1n2)Δtn2 ,

wn1n2 =

{
1 if (tn1−1, tn1 ] ∩ (tn2−1, tn2 ] �= ∅,
f(tn1, tn2 ; θ) otherwise.

In the next section, we see concrete examples of the weight function.

5 Examples of weight function

The Fourier estimator was proposed originally by Malliavin and Mancino

(2002) in a different form of WRC. However, Kanatani (2004) shows that
4Bandi and Russell (2006) use the approximation IVni ≈ IVi/Ni to derive the optimal

frequency based on a finite sample MSE of the subsampling estimator. However, such
approximation implies the assumption that the “time difference does not change so much.”
Therefore, we use a less-restricted approximation (4.1) because we do not need to derive
the optimal frequency explicitly.
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this estimator is proved to be written in the form of WRC with the following

weight:

wn1n2 =

⎧⎨
⎩

1 if tn1 = tn2,

sin
(n+1)(tn1−tn2 )

2
cos

n(tn1−tn2 )

2

n sin
(tn1−tn2)

2

otherwise,
(5.1)

where n is the number of Fourier coefficients. Note that (3.1) and (5.1) imply

that this estimator is biased in finite samples. In this paper, we examine the

bias corrected version of the Fourier estimator, which has the weight matrix:

wn1n2 =

⎧⎨
⎩

1 if (tn1−1, tn1 ] ∩ (tn2−1, tn2] �= ∅,
sin

(n+1)(tn1−tn2 )

2
cos

n(tn1−tn2 )

2

n sin
(tn1−tn2)

2

otherwise.

We call the WRC with this weight the Modified Fourier Estimator (MFE).

Now we can select an optimal number of Fourier coefficients of MFE based

on finite sample MSE.

The next candidate of the unbiased weight function is

wn1n2 =

⎧⎨
⎩

1 if (tn1−1, tn1] ∩ (tn2−1, tn2] �= ∅,
exp

(
−
(

tn1−tn2

h

)2
)

otherwise,
(5.2)

where h > 0. We name the WRC with this weight the Error Function

weight estimator (EF). The h functions as a bandwidth to control how the

estimator should account for the noise. In extreme cases, when h goes to

zero, for given {tni
}Ni

ni=1, all elements of woff
n1n2

go to zero, then WRC reduces

to a Hayashi-Yoshida estimator. On the other hand, when h goes to infinity,

all elements go to unity, and WRC reduces to (po
1(T )−po

1(0))(po
2(T )−po

2(0)).

This estimation means that all data {pi(ti)}Ni−1
ni=1 are discarded. In moderate

cases, through the minimization (4.2), we can select a moderate value of the

optimal h.

Our framework of the minimization (4.2) is also applicable to the kernels

that are used in Barndorff-Nielsen et al. (2006). Although situations are

different between variance and covariance, in other words, for synchronicity
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Table 1: Kernels

k(x)

Bartlett 1 − x

Epanechnikov 1 − x2

Parzen 1 − 6x2 + 6x3 (0 ≤ x ≤ 1/2)

2(1 − x)3 (1/2 < x ≤ 1)

Tukey-Hanning (1 + cos(πx))/2

Mod. Tukey-Hanning (1 − cosπ(1 − x)2)/2

and for nonsynchronicity, we select and apply several kernels listed in Table

1. Barndorff-Nielsen et al. (2006) use those kernels as functions of the lead

and lag numbers, although we slightly modify the kernels as functions of time

difference |tn1 − tn2 |.

wn1n2 =

⎧⎪⎪⎨
⎪⎪⎩

1 if (tn1−1, tn1 ] ∩ (tn2−1, tn2] �= ∅,
k
( |tn1−tn2 |

H

)
if (tn1−1, tn1 ] ∩ (tn2−1, tn2] = ∅ and |tn1 − tn2| < H,

0 otherwise.

(5.3)

Therein, H > 0. Unlike the error function weight, these kernels have compact

supports. Not only can we select each optimal parameter of each weight func-

tion; we can also decide which function is the best among them by comparing

A′ + B′ + C ′ + D in (4.2).

As described above, Hayashi and Yoshida (2005) proposed an unbiased

estimator for nonsynchronous true observations; it has the following weight:

wn1n2 =

{
1 if (tn1−1, tn1 ] ∩ (tn2−1, tn2 ] �= ∅,
0 otherwise.

To mitigate the effect of the noise, Griffin and Oomen (2006) proposed a
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lower-frequency version of the Hayashi-Yoshida estimator (LHY) with weight:

wn1n2 =

{
1 if (tk(n1−1), tkn1] ∩ (tk(n2−1), tkn2] �= ∅,
0 otherwise,

where k is a positive integer. Griffin and Oomen (2006) calculate the MSE

to optimize k under the condition of constant volatilities and Poisson ran-

dom sampling. Now we can also select optimal k by minimizing the MSE

(3.2) under more general settings. However, we must unfortunately evaluate

piecewise integrated covariance IVkn1kn2 because
∑

(IVkn1kn2w
diag
kn1kn2

)2 is not

constant for different k. We cannot evaluate the MSE of LHY and compare

it with that of other previously mentioned estimators, unless we evaluate the

covariance process itself.

6 Monte Carlo study

We performed a Monte Carlo simulation to confirm our theory. In our sim-

ulation, the efficient price process is generated by(
dp1(t)

dp2(t)

)
=

(
σ11 (t) 0

σ21 (t) σ22 (t)

)(
dz1(t)

dz2(t)

)
, 0 ≤ t ≤ T,

dσij (t) = κ (θ − σij (t)) dt + γdzij (t) , i, j = 1, 2,

where κ = 0.1, θ = 1, γ = 0.1, T = 1(day). However, we generate a proxy of

the process with a time-step of Δ = 1/60×60×4.5 (one second precision for

Japanese stock exchanges). Time differences are drawn from an exponential

distribution:

F (tni
− tni−1) = 1 − exp {−λi (tni

− tni−1)} , i = 1, 2,

in which F (·) denotes a cumulative distribution function, λi = 1/60Δ.

Therefore, the average time difference is 60 s for each asset. At each time

point, the efficient price is observed with independent noise: e1(tn1) ∼ NID(0, 0.025),

e2(tn2) ∼ NID(0, 0.05).
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We performed 500 daily replications and computed the sample MSE:

MSE =
1

500

500∑
r=1

(
estimate(r) − IC(r)

)2
.

We compared performances of the 10 different estimators shown in Table 2.

The optimal parameters were selected by solving the minimization (4.2)

with true values of σ2
i and IVi. As described above, we need piecewise in-

tegrated covariance ICn1n2 for minimizing the MSE of low-frequency HY

estimator. In this simulation, using true IC, we approximated the piecewise

covariance as ICn1n2 ≈ IC/N12 where N12 = N1 + N2 −
∑

I({tn1 = tn2}).
The MSEs of estimators with weight functions (5.2) and (5.3) are not so

different, especially among EF, Bartlett, Parzen, and Mod. Tukey-Hanning.

This implies that the detailed form of function does not have a crucial role;

it is more important that we select reasonable bandwidth H or h through

optimization.

We also performed experiments under different parameter settings. As

shown in Table 2, in the case of σ2
1 = 0.005, σ2

2 = 0.01 and λiΔ = 1/60, the

effect of the noise is sufficiently small that it can be ignored in the estimation

by LHY. Consequently, k = 1 is selected as the optimal parameter of LHY

in every replication. All other kernel methods slightly improve the MSEs

compared to the HY estimator. For σ2
1 = 0.005, σ2

2 = 0.01 and λiΔ = 1/15,

even though the noise is small, the observations are numerous, so that the

effect of the noise is accumulated; therefore, it is not negligible. The Bartlett

kernel method is the best; however, it is not so different from EF, Parzen,

and Mod. Tukey-Hanning.

Figure 1 shows the accuracy of the approximation (4.1). We draw the

MSE minus constant of three different estimators for a realization. The true

line is drawn by
∑

n1,n2
w2

n1n2
IVn1IVn2 + B + C + D in (3.2) whereas the

approximation by A′ + B′ + C ′ + D in (4.2). The volatilities are modeled

by mean-reverting diffusion. Therefore, the approximation does not seem to

be harmful at all. Figure 2 presents the approximation accuracy in the case

in which the assumption is considered to be violated much more. We set
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Table 2: Sample MSE and average of optimal parameter

λiΔ 1/60 1/60 1/15

σ2
1 0.025 0.005 0.005

σ2
2 0.05 0.01 0.01

Daily Return 4.55 3.46 2.41

Hayashi-Yoshida 0.845 0.118 0.168

Low Frequency HY 0.469 0.118 0.105

(k̄∗ = 7.37) (k̄∗ = 1) (k̄∗ = 6.05)

Mod. Fourier Estimator 0.242 0.117 0.0485

(n̄∗ = 12.4) (n̄∗ = 25.3) (n̄∗ = 49.5)

Error Function 0.146 0.0911 0.0358

(h̄∗ = 0.0293) (h̄∗ = 0.0130) (h̄∗ = 0.00651)

Bartlett 0.145 0.0907 0.0348

(H̄∗ = 0.0509) (H̄∗ = 0.0226) (H̄∗ = 0.0117)

Epanechnikov 0.185 0.0978 0.0439

(H̄∗ = 0.0405) (H̄∗ = 0.0166) (H̄∗ = 0.00918)

Parzen 0.147 0.0920 0.0368

(H̄∗ = 0.0673) (H̄∗ = 0.0314) (H̄∗ = 0.0158)

Tukey-Hanning 0.153 0.0949 0.0380

(H̄∗ = 0.0506) (H̄∗ = 0.0231) (H̄∗ = 0.0117)

Mod. Tukey-Hanning 0.144 0.0924 0.0361

(H̄∗ = 0.081) (H̄∗ = 0.0377) (H̄∗ = 0.0194)
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Figure 1: MSE minus constant (κ = 0.1,γ = 0.1)

Note: a: λi = 1/60, σ2
1 = 0.025, σ2

2 = 0.05; b: λi = 1/60, σ2
1 = 0.005, σ2

2 = 0.01; c:
λi = 1/15, σ2

1 = 0.005, σ2
2 = 0.01 Both axes are log10-scaled.
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Figure 2: MSE minus constant (κ = 0.01,γ = 1)

Note: a: λi = 1/60, σ2
1 = 0.025, σ2

2 = 0.05; b: λi = 1/60, σ2
1 = 0.005, σ2

2 = 0.01; c:
λi = 1/15, σ2

1 = 0.005, σ2
2 = 0.01 Both axes are log10-scaled.
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κ = 0.01,γ = 1, that is to say, volatilities are more volatile and persistent.

Although the approximation is worse than that in the case of Fig. 1 (κ =

0.1,γ = 0.1), the shape of approximated line is similar to that of the true

one, therefore the approximation is not so harmful for minimization of the

MSE.

7 Concluding remarks

In this paper, we examined the finite sample MSE of weighted realized covari-

ance in the presence of microstructure (independent) noise. Evaluating the

MSE of WRC enables us to select not only the optimal parameter, but also

the form of the unbiased weighting function. In this paper, as the first-step

of application of WRC, we limited our discussion to the weight functions that

are unbiased and have only one parameter. Studying more general weight

functions is an important remaining task that is now under development.

A MSE of WRC

For A see Kanatani (2004).

Since

E(r1(tn1)u2(tn2)wn1n2r
′
1Wu2) = E(r1(tn1)u2(tn2)wn1n2)

2

+E(r1(tn1)
2u2(tn2)u2(tn2−1)wn1n2wn1n2−1) + E(r1(tn1)

2u2(tn2)u2(tn2+1)wn1n2wn1n2+1)

=2IVn1σ
2
2w

2
n1n2

− IVn1σ
2
2wn1n2wn1n2−1 − IVn1σ

2
2wn1n2wn1n2+1,

and ∑
n1,n2

wn1n2wn1n2−1IVn1 =
∑
n1,n2

wn1n2wn1n2+1IVn1 ,

we obtain B. By symmetry we get C.
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Since

E(u1(tn1)u2(tn2)wn1n2r
′
1Wu2) = E(u1(tn1)u2(tn2)wn1n2)

2

+E(u1(tn1)u1(tn1−1)u2(tn2)u2(tn2−1)wn1n2wn1−1n2−1)

+E(u1(tn1)u1(tn1−1)u2(tn2)u2(tn2+1)wn1n2wn1−1n2+1)

+E(u1(tn1)u1(tn1+1)u2(tn2)u2(tn2−1)wn1n2wn1+1n2−1)

+E(u1(tn1)u1(tn1+1)u2(tn2)u2(tn2+1)wn1n2wn1+1n2+1)

+E(u1(tn1)
2u2(tn2)u2(tn2−1)wn1n2wn1n2−1) + E(u1(tn1)

2u2(tn2)u2(tn2+1)wn1n2wn1n2+1)

+E(u1(tn1)u1(tn1−1)u2(tn2)
2wn1n2wn1−1n2) + E(u1(tn1)u1(tn1+1)u2(tn2)

2wn1n2wn1+1n2)

=4σ2
1σ

2
2w

2
n1n2

+σ2
1σ

2
2wn1n2wn1−1n2−1 + σ2

1σ
2
2wn1n2wn1−1n2+1 + σ2

1σ
2
2wn1n2wn1+1n2−1 + σ2

1σ
2
2wn1n2wn1+1n2+1

−2σ2
1σ

2
2wn1n2wn1n2−1 − 2σ2

1σ
2
2wn1n2wn1n2+1 − 2σ2

1σ
2
2wn1n2wn1−1n2 − 2σ2

1σ
2
2wn1n2wn1+1n2 ,

and∑
n1,n2

wn1n2wn1−1n2−1 =
∑
n1,n2

wn1n2wn1+1n2+1,
∑
n1,n2

wn1n2wn11n2−1 =
∑
n1,n2

wn1n2wn1n2+1,

∑
n1,n2

wn1n2wn1−1n2+1 =
∑
n1,n2

wn1n2wn1+1n2−1,
∑
n1,n2

wn1n2wn1−1n2 =
∑
n1,n2

wn1n2wn1+1n2 ,

then we get D.
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