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Abstract

This paper proposes a class of weak additivity concepts for an operator on the set of

real valued functions on a finite state space Ω, which include additivity and comonotonic

additivity as extreme cases. Let E ⊆ 2Ω be a collection of subsets of Ω. Two functions x

and y on Ω are E-coextrema if, for each E ∈ E , the set of minimizers of x restricted on E

and that of y have a common element, and the set of maximizers of x restricted on E and

that of y have a common element as well. An operator I on the set of functions on Ω is

E-coextrema additive if I(x+y) = I(x)+I(y) whenever x and y are E-coextrema. The main

result characterizes homogeneous E-coextrema additive operators.

JEL classification: C71, D81, D90.

Keywords: Choquet integral; comonotonicity; non-additive probabilities; capacities.

1 Introduction

The purpose of this paper is to characterize operators on the set of real valued functions on a
finite set which is coextrema additive: let Ω be a finite set and let E ⊆ 2Ω be a collection of
subsets of Ω. Two functions x and y on Ω are said to be E-coextrema if, for each E ∈ E , the
set of minimizers of function x restricted on E and that of function y have a common element,
and the set of maximizers of x restricted on E and that of y have a common element as well.
An operator I on the set of functions on Ω is E-coextrema additive if I(x + y) = I(x) + I(y)
whenever x and y are E-coextrema. Note that if two functions are comonotonic, then they are
E-extrema, a fortiori.

The main result shows that a homogeneous coextrema additive operator I can be represented
as I (x) =

∑
E∈E{λE maxω∈E x (ω) + µE minω∈E x (ω)}, where λE and µE are unique constants,
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knowledges financial support by MEXT, Grant-in-Aid for Scientific Research.
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§Faculty of Economics, Yokohama National University. E-mail: oui@ynu.ac.jp (T. Ui).
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when the collection E satisfies a certain regularity condition. This expression can also be written
as the Choquet integral with respect to a certain non-additive (signed) measure. Therefore, a
homogeneous coextrema additive operator corresponds to a special class of the Choquet integral,
which is expressed as a weighted sum of “optimistic evaluation” maxω∈E x (ω) and “pessimistic
evaluation” minω∈E x (ω). For the case where I (1) = 1, we have

∑
E∈E (λE + µE) = 1, and then

these weights can be interpreted as beliefs on events in E ∈ E if these are non-negative numbers.
As a corollary, our result shows that for the special case where E consists of singletons and

the whole set Ω, a homogeneous E-coextrema operator is exactly the Choquet integral of a
NEO-additive capacity, which is axiomatized by Chateaunuff, Eichberger, and Grant (2002).
Thus, our result provides a natural, and important generalization of the NEO-additive capacity
result. Eichberger, Kelsey, and Schipper (2006) applied a NEO-additive capacity model to the
Bertrand and Cournot competition models to study combined effects of optimism and pessimism
in economic environments.

While in the NEO-additive capacity, optimism and pessimism are about the whole states of
the world, our model can accommodate more delicate combinations of optimism and pessimism
measured in a family of events. Thus our E-coextrema additivity model provides a rich framework
for analyzing effects optimism and pessimism in economic problems.

Kajii, Kojima, and Ui (2007) considered the class of cominimum additive operators, and
each cominimum additive operator is shown to be a weighted sum of minimums. The class of
comaximum operators is defined and characterized similarly. However, the class of coextrema
additive operators is not the intersection of the two, and the characterization result reported in
this paper cannot be done by adopting these results. In fact, the reader will see that the issue of
characterization is far more technically involved.

Ghirardato, Maccheroni, and Marinacci (2004) axiomatized the following class of operators
called the α-MEU functional: I (x) = α minq∈C

∫
xdq+(1 − α)maxq∈C

∫
xdq where C is a convex

set of additive measures. It can be readily verified that the NEO-additive capacity model is a
special class of the α-MEU functional, and so E-coextrema additive operators are also α-MEU
functionals, when E consists of singletons and the whole set Ω. But for general E , there is no
direct connection as far as we can tell.

The organization of this paper is as follows. After a summary of basic concepts and pre-
liminary results in Section 2, a formal definition of the coextrema operator is given in Section
3. Section 3 also contains some discussions on the operator, including potential applications to
economics and social sciences. The main result is stated in Section 4, and a proof is provided in
Section 5.
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2 The model and preliminary results

Let Ω be a finite set, whose generic element is denoted by ω. Denote by F the collection of all non-
empty subsets of Ω, and by F1 the collection of singleton subsets of Ω. A typical interpretation
is that Ω is the set of the states of the world and a subset E ⊆ Ω is an event.

We shall fix a collection E ⊆ F , E ≠ ∅, throughout the analysis. Write σ (E) for the algebra
of Ω generated by E , i.e., the smallest σ-algebra containing each element of E . Let Π(E) ⊆ F
be the collection of minimal elements of σ (E), which constitutes a well defined partition of Ω,
since Ω is a finite set. A generic element of partition Π(E) will be denoted by S. For each
F ∈ F , let κ(F ) ∈ σ(E) denote the minimal σ(E)-measurable set containing F ; that is, κ(F ) :=
∩{E ∈ σ (E) : F ⊆ E}.

Remark 2.1 Note that every element of Π(E) belongs to σ (E) and that any element E ∈ σ (E)
is the union of some elements of Π(E). So in particular, for every E ∈ E and every S ∈ Π(E),
either S ⊆ E or S ⊆ Ec holds. By construction, κ (F ) = ∪{S ∈ Π(E) : S ∩ F ̸= ∅}, i.e., κ(F )
is the union of elements in partition Π (E) intersecting F . It is readily verified that if E ∈ σ(E),
then κ(E ∩ F ) = E ∩ κ(F ) holds for any F ∈ F , and so in particular κ(E) = E.

Example 2.1 Let Ω = {1, 2, · · · , 8} and E = {E1, E2, E3, E4} where E1 = {1, 2, 3, 4}, E2 =
{3, 4, 5, 6}, E3 = {1, 2, 5, 6}, E4 = {5, 6, 7, 8}. Then, Π(E) = {S1, . . . , S4}, where S1 = {1, 2},
S2 = {3, 4}, S3 = {5, 6}, S4 = {7, 8}. In this case, E1 = S1 ∪ S2, E2 = S2 ∪ S3, E3 = S1 ∪ S3,
E1 = S3 ∪ S4. For instance, for R = {1, 3, 5, 7}, we have κ (R) = Ω, because every S ∈ Π(E)
intersects R.

A set function v : 2Ω → R with v(∅) = 0 is called a game or a non-additive signed measure.
Since each game is identified with a point in RF , we denote by RF the set of all games. For a
game v ∈ RF , we use the following definitions:

• v is non-negative if v(E) ≥ 0 for all E ∈ 2Ω.

• v is monotone if E ⊆ F implies v(E) ≤ v(F ) for all E, F ∈ 2Ω. A monotone game is
non-negative.

• v is additive if v(E ∪ F ) = v(E) + v(F ) for for all E, F ∈ 2Ω with E ∩ F = ∅, which is
equivalent to v(E) + v(F ) = v(E ∪ F ) + v(E ∩ F ) for all E,F ∈ 2Ω.

• v is convex (or supermodular) if v(E) + v(F ) ≤ v(E ∪ F ) + v(E ∩ F ) for all E, F ∈ 2Ω.

• v is normalized if v(Ω) = 1.

• v is a non-additive measure if it is monotone. A normalized non-additive measure is called
a capacity.
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• v is a measure if it is non-negative and additive. A normalized measure is called a probability
measure.

• The conjugate of v, denoted by v′, is defined as v′(E) = v(Ω) − v(Ω\E) for all E ∈ 2Ω.
Note that (v′)′ = v and (v + w)′ = v′ + w′ for v, w ∈ RF .

For T ∈ F , let uT ∈ RF be the unanimity game on T defined by the rule: uT (S) = 1 if
T ⊆ S and uT (S) = 0 otherwise. Let wT be the conjugate of uT . Then wT (S) = 1 if T ∩ S ̸= ∅
and wT (S) = 0 otherwise. Note that when T = {ω}, i.e., T is a singleton set, uT = wT and
they are additive. The following result is well known as the Möbius inversion in discrete and
combinatorial mathematics (cf. Shapley, 1953).

Lemma 2.1 The collection {uT }T∈F is a linear base for RF , so is the collection {wT }T∈F .
The unique collection of coefficients {βT }T∈F satisfying v =

∑
T∈F βT uT is given by βT =∑

E⊆T,E ̸=∅(−1)|T |−|E|v(E).

By convention, we shall omit the empty set in the summation indexed by subsets of Ω. By
the definition of uT , we have v(E) =

∑
T⊆E βT for all E ∈ F . The collection of coefficients

{βT }T∈F is referred to as the Möbius transform of v. If v =
∑

T∈F βT uT , then the conjugate v′

is given by v′ =
∑

T∈F βT wT . Using the formula in Lemma 2.1, by direct computation, one can
show that for each E ∈ F :

wE =
∑
T⊆E

(−1)|T |−1
uT . (1)

Remark 2.2 If v =
∑

T∈F βT uT , the game v is additive if and only if βT = 0 unless |T | = 1.
Obviously,

∑
ω∈Ω β{ω}u{ω} is an additive game. So, we can also write v = p +

∑
T∈F,|T |>1 βT uT

where p is an additive game.

By convention, a function x : Ω → R is identified with an element of RΩ, and we denote by
1E the indicator function of event E ∈ F . For a function x ∈ RΩ, and an event E, we write
minE x := minω∈E x (ω) and arg minE x := arg minω∈E x (ω). Similarly, we write maxE x :=
maxω∈E x (ω) and arg maxE x := arg maxω∈E x (ω).

Definition 2.1 For x ∈ RΩ and v ∈ RF , the Choquet integral of x with respect to v is defined
as ∫

xdv =
∫ x̄

x

v(x ≥ α)dα + xv(Ω), (2)

where x̄ = maxΩ x, x = minΩ x, and v(x ≥ α) = v({ω ∈ Ω : x(ω) ≥ α}).

By definition,
∫

1Edv = v(E). A direct computation reveals that, for any two sets E and F

in F , ∫
(1E + 1F ) dv = v (E ∪ F ) + v (E ∩ F ) . (3)
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Then for each event T , we see from (2) that
∫

xduT = minT x and
∫

xdwT = maxT x. Also it
can be readily verified that the Choquet integral is additive in games. Recall that for a game v,
there is a unique set of coefficients {βT : T ∈ F} such that v =

∑
T βT uT by Lemma 2.1. Using

additivity, therefore, we have
∫

xdv =
∑

T βT minT x, as is pointed out in Gilboa and Schmeidler
(1994).

Note that the additivity implies the following property: for any T ∈ F and real numbers λ

and µ,
∫

xd (λwT + µuT ) =
∫

xd (λwT ) +
∫

xd (µuT ) = λmaxT x + µminT x, and so∫
xd

( ∑
E∈F ′

λEwE + µEuE

)
=

∑
E∈F ′

{λE maxE x + µE minE x}, (4)

for any collection of events F ′ ⊆ F and collections of real numbers {λE : E ∈ F ′} and {µE : E ∈ F ′} .

Definition 2.2 Let E ⊆ F be a collection of events. Two functions x, y ∈ RΩ are said to be
E-cominimum, provided arg minE x ∩ arg minE y ̸= ∅ for all E ∈ E . Two functions x, y ∈ RΩ are
said to be E-comaximum, provided arg maxE x ∩ arg maxE y ̸= ∅ for all E ∈ E.

Remark 2.3 Clearly, x and y are E-cominimum, if and only if −x and −y are E-comaximum.
Also, the E-cominimum and the E-comaximum relations are invariant of adding a constant. In
particular, if two indicator functions 1A and 1B are E-cominimum, 1Ω\A (=1 − 1A) and 1Ω\B

(=1 − 1B) are E-comaximum, and vice versa.

A function I : RΩ → R is referred to as an operator.

Definition 2.3 An operator I is said to be homogeneous if I(αx) = αI (x) for any α > 0.

Kajii, Kojima, and Ui (2007) studied E-cominimum and E-comaximum operators defined as
follows:

Definition 2.4 An operator I : RΩ → R is E-cominimum (resp. comaximum) additive provided
I(x + y) = I(x) + I(y) whenever x and y are E-cominimum (resp. comaximum).

A pair of functions x and y are said to be comonotonic if (x (ω) − x (ω′)) (y (ω) − y (ω′)) ≥ 0
for any ω, ω′ ∈ Ω. Notice that if E = F , a pair of functions x and y are comonotonic if and only if
they are E-cominimum, as well as E-comaximum. So when E = F , the E-cominimum additivity, as
well as the E-comaximum additivity, is equivalent to the comonotonic additivity which Schmeidler
(1986) characterized. Then in general both the E-cominimum and the E-comaximum additivity
imply the comonotonic additivity. Therefore, the following can be obtained from Schmeidler’s
theorem in a straightforward manner.1

1Schmeidler (1986) assumes monotonicity instead of homogeneity of the operator, but the method of his proof

can be adopted for this result with little modification.
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Theorem 2.1 If an operator I : RΩ
+ → R is homogenous and satisfies E-cominimum additivity

(or E-comaximum additivity), then there exists a unique game v ∈ RF such that I(x) =
∫

xdv

for all x ∈ RΩ. Moreover, game v is defined by the rule v(E) = I(1E).

We say that a game v is E-cominimum additive (resp. E-comaximum additive) if the operator
I (x) :=

∫
xdv is E-cominimum additive (resp. E-comaximum additive). Since E-cominimum ad-

ditivity as well as E-comaximum additivity implies comonotonic additivity, Theorem 2.1 assures
that this is a consistent terminology.

Obviously, the properties of E-cominimum additive or E-comaximum additive operators de-
pend on the structure of the family E .

Definition 2.5 Let E ⊆ F be a collection of events. An event T ∈ F is E-complete provided,
for any two distinct points ω1 and ω2 in T , there is E ∈ E such that {ω1, ω2} ⊆ E ⊆ T . The
collection of all E-complete events is called the E-complete collection and denoted by Υ(E). A
collection E is said to be complete if E = Υ(E).

Note that a singleton set is automatically E-complete, so is any E ∈ E . For each T , consider
the graph where the set of vertices is T and the set of edges consists of the pairs of vertices
{ω1, ω2} with {ω1, ω2} ⊆ E ⊆ T for some E ∈ E . This graph is a complete graph if and only if
T is E -complete.

Remark 2.4 For E, E′ ∈ E , E ∪ E′ is not necessarily E-complete. However, by definition, for
any T ∈ Υ(E) with |T | > 1, T coincides with the union of sets in E which are included in T , thus
T is the union of (partition) elements in Π(E) which are included in T . In particular, T must
contain at least one element of Π(E).

It can be shown that for any E ⊆ F , Υ(E) is complete, i.e., Υ(E) = Υ(Υ(E)). See Kajii,
Kojima, and Ui (2007) for further discussions on this concept, as well as for the proofs of the
results shown in the rest of this section.

Example 2.2 In Example 2.1, S = S1∪S2∪S3 = {1, 2, 3, 4, 5, 6} is E-complete, but S2∪S3∪S4 =
{3, 4, 5, 6, 7, 8} is not E-complete since there is no E ∈ E with {3, 7} ⊆ E ⊆S2 ∪ S3 ∪ S4.

The completeness plays a crucial role in our analysis, as is indicated in the next result:

Lemma 2.2 Two functions x and y are E-cominimum (resp. E-comaximum) if and only if they
are Υ(E)-cominimum (resp. Υ(E)-comaximum).

The idea of “cominimum” can be stated in terms of sets by looking at the indicator functions.
Say that a pair of sets A and B is an E-decomposition pair if for any E ∈ E , E ⊆ A ∪ B implies
that E ⊆ A or E ⊆ B or both. Then the following can be shown:
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Lemma 2.3 Two indicator functions 1A and 1B are E-cominimum if and only if the pair of sets
A and B constitutes an E-decomposition pair.

Remark 2.5 From Lemma 2.3 and Remark 2.3, we see that two indicator functions 1A and
1B are E-comaximum if and only if for any E ∈ E , E ⊆ Ω\ (A ∩ B) implies that E ⊆ Ω\A or
E ⊆ Ω\B or both.

Finally, a characterization of cominimum additive and comaximum additive operators is given
below.

Theorem 2.2 Let v ∈ RF be a game, and let I (x) =
∫

xdv. Write v =
∑

T∈F βT uT =∑
T∈F ηT wT . Then,

(1) the following three statements are equivalent: (i) operator I is E-cominimum additive; (ii)
v (A) + v (B) = v (A ∪ B) + v (A ∩ B) for any E-decomposition pair A and B; (iii) βT = 0 for
any T /∈ Υ(E), and
(2) the following three statements are equivalent: (i) operator I is E-comaximum additive; (ii);
v (Ac) + v (Bc) = v (Ac ∪ Bc) + v (Ac ∩ Bc) for any E-decomposition pair A and B; (iii) ηT = 0
for any T /∈ Υ(E).

3 Coextrema additive operators

In this paper we study pairs of functions which share both a minimizer and a maximizer for events
in a given collection E , which is fixed throughout.

Definition 3.1 Two functions x, y ∈ RΩ are said to be E-coextrema, provided they are both E-
cominimum and E-comaximum; that is, arg minE x∩arg minE y ̸= ∅ and arg maxE x∩arg maxE y ̸=
∅ for all E ∈ E.

Analogous to the cases of cominimum and comaximum functions, the notion of E-coextrema
functions induces the following additivity property of an operator I : RΩ → R.

Definition 3.2 An operator I : RΩ → R is E-coextrema additive provided I(x+y) = I(x)+I(y)
whenever x and y are E-coextrema.

The completion Υ(E) plays an important role here again: the following is an immediate
consequence of the definition and Lemma 2.2.

Lemma 3.1 Two functions x and y are E-coextrema if and only if they are Υ(E)-coextrema.

By definition, the E-coextrema additivity implies the comonotonic additivity. So by Theorem
2.1, we obtain the following result.
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Lemma 3.2 If an operator I : RΩ → R is homogeneous and E-coextrema additive for some
E ⊆ F , then there exists a unique game v such that I(x) =

∫
xdv for any x ∈ RΩ. Moreover, v

is defined by the rule v(E) = I(1E).

Thus the following definition is justified:

Definition 3.3 A game v is said to be E-coextrema additive provided
∫

(x+y)dv =
∫

xdv+
∫

ydv

whenever x and y are E-coextrema.

Our goal is to establish that a game v is E-coextrema additive if and only if v can be expressed
in the form

v =
∑

E∈Υ(E)

{λEwE + µEuE}. (5)

Note that from (4), this is equivalent to say that the original operator I can be written as

I (x) =
∑

E∈Υ(E)

{λE maxE x (ω) + µE minE x (ω)}. (6)

In addition, if E is complete, i.e., E = Υ(E), we have the expression written in Introduction.

Remark 3.1 Note that by definition u{ω} = w{ω}, and they are the probability measure δω

which assigns probability one to {ω}. Since Υ(E) contains all the singleton subsets of Ω, the (5)
has a trivial redundancy for E with |E| = 1. Taking this into account, (5) can be written as:

v = p +
∑

E∈Υ(E)\F1

{λEwE + µEuE}, (7)

where p is an additive measure given by p :=
∑

ω∈Ω(λ{ω}+µ{ω}}δω. Similarly, (6) can be written
as

I (x) =
∫

xdp +
∑

E∈Υ(E)\F1

{λE maxE x + µE minE x}. (8)

We will also show that these expressions are unique under some conditions.

As we mentioned before, a leading case for our set up is to interpret Ω as the set of states
describing uncertainty and function x as a random variable over Ω. Then the class of operators
which can be written as in (8) with underlying capacity of the form (7) has a natural interpretation
that the value of x is the sum of its expected value

∫
xdp and a weighted average of the most

optimistic outcome and the most pessimistic outcomes on events in Υ (E). That is, I (x) is the
expectation biased by optimism and pessimism conditional on various events in Υ(E).

Alternatively, interpret Ω as a collection of individuals (i.e., a society), and x (ω) as the wealth
allocated to individual ω. Then

∫
xdp can be seen as the (weighted) average income of the society,

and maxE x and minE x correspond to the wealthiest and the poorest in group E, respectively.
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In particular, when p is the uniform distribution and λE = −1 and µE = 1, then the problem
of maximizing (8) subject to

∫
xdp being held constant means that that of reducing the sum of

wealth differences in various groups in Υ(E).
An interesting special subclass of (8) is the class of NEO-additive capacities obtained by

Chateaunuff, Eichberger, and Grant (2002): a NEO-additive capacity is a capacity of the form
v = (1 − λ − µ) q + λwΩ + µuΩ, i.e., E = {Ω} in (8) and I (1Ω) = 1.2 More generally, let E be a
partition of Ω, and write E = {E1, ..., EK}. Then (8) is essentially v = p +

∑
λkwEk

+ µkuEk
,

where p is an additive game. Not only this is a generalization of the NEO-additive capacity, but
also it is a generalization of the E-capacities of Eichberger and Kelsey (1999), which correspond
to the case where λk = 0 for all k.

4 Main characterization result

One direction of the characterization can be readily established, as is shown below.

Lemma 4.1 Let v =
∑

E∈Υ(E){λEwE + µEuE}. Then v is E-coextrema additive.

Proof. Let x and y be E-coextrema functions. Then by Lemma 3.1, x and y are Υ(E)-coextrema.
For every E ∈ Υ(E), let ω̄ ∈ arg maxE x ∩ arg maxE y and ω ∈ arg minE x ∩ arg minE y. Then,
maxE(x+y) = (x + y) (ω̄) = x (ω̄)+y (ω̄) = maxE x+maxE y, and minE(x+y) = (x + y) (ω) =
x (ω) + y (ω) = minE x + minE y.

Using these relations, since the Choquet integral is additive in games (see (4)), we have∫
(x + y)dv =

∫
(x + y)d[

∑
E∈Υ(E)

{λEwE + µEuE}],

=
∑

E∈Υ(E)

{λE maxE(x + y) + µE minE(x + y)},

=
∑

E∈Υ(E)

{λE (maxE x + maxE y) + µE (minE x + minE y)},

=
∑

E∈Υ(E)

{λE maxE x + µE minE x} +
∑

E∈Υ(E)

{λE maxE y + µE minE y},

=
∫

xdv +
∫

ydv,

which completes the proof.
The other direction is far more complicated. Observe first that since both {uT : T ∈ F} and

{wT : T ∈ F} constitute linear bases, if the collection of events Υ(E) contains a sufficient variety
of events, not only coextrema additive games but also many other games can be expressed as in

2When λ = 0, i.e., there is no part for optimism, this type of capacity is also referred to as an ε-contamination.

See Kajii, Kojima, and Ui (2007) for more discussions.
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(5) or (6). In other words, for these expressions to be interesting, it is important to establish
the uniqueness, and one can easily expect that the collection Υ(E) should not contain too many
elements for this purpose. On the other hand, E must be rich enough relative to Ω as the following
example shows.

Example 4.1 Let |Ω| ≥ 3 and E = {{1, 2, 3}}. Then Υ(E)\F1 = E . Notice that in general when
|E| = 3, if x and y are coextrema on E, then x and y are automatically comonotonic on E. So
any non-game v of the form v =

∑
T⊆{1,2,3} βT uT is E-coextrema additive, in particular u{1,2} is

E-coextrema additive. But it can be shown that u{1,2} cannot be written in the form (5).

To exclude cases like Example 4.1, we need to guarantee that Υ(E) does not contain too many
elements. The key condition formally stated below roughly says that the elements of E , as well
as their intersections, are not too small, i.e., the collection E are “coarse” enough:

Coarseness Condition |E| ≥ 4 for every E ∈ E and |S| ≥ 2 for every S ∈ Π(E).

The Coarseness Condition is satisfied in Example 2.1, but it is violated in Example 4.1.

Remark 4.1 Obviously, if E is coarse, it contains no singleton set. However, as far as the
representation result stated below is concerned, singletons are inessential since Υ (E) automati-
cally contains all the singletons anyway. Put it differently, we could state the condition by first
excluding singletons from E and then construct the relevant field and partition.

We are now ready to state the main result of this paper.

Theorem 4.1 Let E be a collection of events which satisfies the coarseness condition. Let v be
a game. Then the following two conditions are equivalent:
(i) v is E-coextrema additive; (ii) there exist an additive game p and two sets of real numbers,
{λE : E ∈ Υ(E) \F1} and {µE : E ∈ Υ(E) \F1} , such that

v = p +
∑

E∈Υ(E)\F1

{λEwE + µEuE}. (9)

Moreover, (9) is unique; that is, if v = p′ +
∑

E∈Υ(E)\F1
{λ′

EwE + µ′
EuE} where p′ is additive,

then p = p′, and λ′
E = λE and µ′

E = µE hold for every E ∈ Υ(E)\F1.

We shall prove this result in the next section, but we note here that the coarseness condition
is indispensable for Theorem 4.1. Recall that in Example 4.1 the coarseness condition is violated
and there is a coextrema additive game which cannot be expressed in the form (9). The next
example is also instructive for this point.

Example 4.2 Let Ω = {1, 2, 3, 4} , E = {{1, 2, 3} , {1, 2, 4} , {3, 4}}. In this case, it is Υ(E)\F1 =
E ∪ {Ω}. But if x and y are E-coextrema, then it is comonotonic on both {1, 2, 3} and {1, 2, 4} ,

and hence it is comonotonic on Ω. So any non-additive measure v is E-coextrema additive.
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Let us conclude this section with a couple of applications of Theorem 4.1. The first concerns
a characterization of the generalized NEO-additive, E-capacities outlined before. Let E be a
partition of Ω, and write E = {E1, ..., EK} as before. It can be readily verified that Υ (E) = E∪F1.
Trivially, Π(E) = E . So if |Ek| ≥ 4 for every k = 1, ...,K, by Theorem 4.1, E satisfies the
coarseness condition and then v is E-coextrema additive if and only if v can be written as
v = p +

∑
λkwEk

+ µkuEk
, where p is an additive game.

The second is a generalization of the variation averse operator proposed in Gilboa (1989). Let
T > 1 and M ≥ 2 be integers and set Ω = {(m, t) : m = 1, ..., 2M, t = 1, ..., T}. The intended
interpretation is that t is the time and at each time t there are m states representing some
uncertainty. Let E be the collection of all sets of the following forms: {(m, t) : m = 1, ..., 2M};
{(m, t) : m = 1, ..., M}∪ {(m, t + 1) : m = 1, ...,M}; and {(m, t) : m = M + 1, ..., 2M}∪
{(m, t + 1) : m = M + 1, ..., 2M}. It can be readily verified that Υ (E) = E ∪F1, and every set in
Π(E) contains M points. So the coarseness condition is met, and by Theorem 4.1, an E-extrema
additive capacity has the form in 8). Arguing analogously as in Kajii, Kojima, and Ui (2007),
the coefficients for the E-events of the form {(m, t) : m = 1, ..., 2M} represent measurements of
optimism and pessimism about the uncertainty, whereas the coefficients for the E-events of the
other forms represent measurements of (conditional) degrees of variation loving and variation
aversion.

5 The proof

This section is devoted to the proof of Theorem 4.1. Since Lemma 3.2 has already shown that (ii)
implies (i), it suffices to establish the other direction. The proof consists of several steps: basically,
starting with an E-coextrema game v, we shall first show that a restriction of v is E-comaximum.
Then we show that this construction is invariant of the way the restriction is chosen as long as
a certain condition is satisfied, which then implies the existence of a well-defined E-comaximum
additive game v1. We then show that the game v2 := v − v1 is E-cominimum additive. Theorem
2.2 can be applied to v1 and v2 to obtain the desired expression.

Let v be an E-coextrema additive game with v =
∑

T∈F βT uT . For any R ∈ F , let v|R be
the game defined by the rule v|R(E) = v(E ∩ R) for all E ∈ F , i.e., v|R =

∑
T⊆R βT uT . Define

E∩R = {E ∩ R |E ∈ E , E ∩ R ̸= ∅}, which is the collection of intersections of elements of E and
R, and also define E⊆R = {E |E ∈ E , E ⊆ R}, which is the collection of elements of E contained
in R. Note that E⊆R ⊆ E∩R.

To construct the desired E-comaximum additive game v1, we first observe the following prop-
erty.

Lemma 5.1 Let v be E-coextrema additive. Let R ∈ F be such that E⊆R = ∅ and E∩R ̸= ∅.
Then, v|R is E∩R-comaximum additive.
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Proof. Let 1S and 1T be E∩R-comaximum. It is enough to show that v|R(S ∪T )+ v|R(S ∩T ) =
v|R(S)+v|R(T ), which is rewritten as v((S∩R)∪(T∩R))+v((S∩R)∩(T∩R)) = v(S∩R)+v(T∩R).
Therefore, it suffices to show that 1S∩R and 1T∩R are E-coextrema because v is E-coextrema
additive.

Fix any E ∈ E . Since E⊆R = ∅, either E ∩ R = ∅, or E ∩ R ̸= ∅ and E\R ̸= ∅. If E ∩ R = ∅,
then 1S∩R and 1T∩R are 0 on E and thus have a common minimizer and maximizer on E. If
E ∩R ̸= ∅ and E\R ̸= ∅, then 1S∩R and 1T∩R have a common maximizer in E ∩R ⊆ E since 1S

and 1T are E∩R-comaximum, and 1S∩R and 1T∩R have a common minimizer in E\R ⊆ E since
1S∩R and 1T∩R are 0 on Rc. Therefore, 1S∩R and 1T∩R are E-coextrema.

By this lemma and Theorem 2.2, v|R has a unique expression

v|R =
∑
ω∈R

νR
{ω}w{ω} +

∑
E′∈Υ(E∩R)\F1

νR
E′wE′ . (10)

To obtain the desired game v1 which will constitute a part of the expression (9), we want the
second part of the right hand side of (10) in the following form:

∑
E∈Υ(E)\F1

νR
E∩RwE∩R. Since

each E′ ∈ E∩R\F1 is written as E′ = E ∩ R for some E ∈ E , one way to proceed is to associate
each E′ with the corresponding E. Of course, this procedure is not well defined in general, since
there may be many such E for candidates. So our next step is to find a condition on the set R

so that this procedure in fact unambiguously works. It turns out that the following property is
suitable for this purpose.

Definition 5.1 A set R ∈ F is a representation of E if E⊆R = ∅, κ(R) = Ω, and |R ∩ E| ≥ 2 for
all E ∈ E . Moreover we say that R ∈ F is a minimal representation of E if R is a representation
of E ∈ E and any proper subset of R is not a representation.

In Example 2.1, the set R is a representation for E . Another example follows below.

Example 5.1 Let Ω = {1, 2, 3, 4, 5, 6}, and set E = {{1, 2, 3, 4} , {3, 4, 5, 6}}. Then Π (E) =
{{1, 2} , {3, 4} , {5, 6}}. R = {3, 4} is not a representation, since κ(R) = {3, 4} ̸= Ω. R =
{2, 3, 4, 6} is a representation but not minimal. R = {2, 4, 6} is a minimal representation.

Lemma 5.2 When E is coarse, if T ∈ F satisfies E∩T = ∅, then there is a representation R such
that T ⊆ R.

Proof. Construct R by the following procedure: first set R = T and then for each S ∈ Π(E);
if S ∈ E and |T ∩ S| ≤ 1, then add a point or two to R from S\T (recall that |S| ≥ 4 if S ∈ E
by the coarseness) so that two points from S are contained in R; if S ∈ E and |T ∩ S| ≥ 2, do
nothing; if S ̸∈ E and T ∩ S = ∅, then add a point to R (note S\R ̸= ∅ by the coarseness); if
S ̸∈ E and T ∩ S ̸= ∅, do nothing. Then by construction, κ(R) = Ω, and |R ∩ E| ≥ 2 for all
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E ∈ E . Notice also that for any E ∈ E , there is some point which is not added to R, so E⊆R = ∅
follows.

Note that if R is a representation of E , κ(R) = Ω holds by definition and so every S ∈ Π(E)
must necessarily intersect R. Roughly speaking, a representation is obtained by choosing some
representative elements from each S in Π (E) when E is coarse. Formally, we have the following
result:

Lemma 5.3 If E is coarse, there exists a minimal representation, which can be constructed by the
following rule: for each S ∈ Π(E), choose two distinct elements from S if S ∈ E, and one element
if S ̸∈ E, and set R to be the set of chosen elements. Moreover, every minimal representation
can be constructed in this way, and so in particular minimal representations contain exactly the
same number of points.

Proof. The set R constructed as above is well defined since by the coarseness condition every S

has at least two elements. We claim that R is a representation. For all E ∈ E , there is S ∈ Π(E)
with S ⊆ E. If S = E, R contains exactly two points belonging to E. If S ( E, then there is
another S′ ̸= S with S′ ⊆ E because E is the union of some elements in Π (E). Since R contains
one element of S and S′, it contains at least two points belonging to E. Therefore, |R ∩ E| ≥ 2
for all E ∈ E . Also, every S ∈ Π(E) intersects with R and so κ(R) = Ω. Finally, notice that
E ⊆ R is possible only if E ∈ Π(E). But by the coarseness condition, |E| ≥ 4 and so this case
cannot occur in the construction, thus E⊆R = ∅.

Next we claim that R is minimal. Let R′ be a proper subset of R and pick any ω ∈ R\R′.
Let S ∈ Π(E) be the set where ω is chosen from. If S ∈ E , then R contains exactly two elements
of S by construction. Then |R′ ∩ S| = 1, and so R′ is not a representation. If S ̸∈ E , then ω is
the only one element from S. Then S ∩ R′ = ∅ which implies κ(R′) ⊆ Ω\S, and so R′ is not a
representation.

Finally, let R be a minimal representation. Then S∩R ̸= ∅ for every S ∈ Π (E) so R contains
at least one point from each S. If S ∈ Π(E) and S ∈ E , then |R ∩ S| ≥ 2 so at least two points
from such S must be contained in R. Let R′ the collection of all these points in the intersections,
which is a minimum representation as we have shown above. Since R′ ⊆ R, we conclude R′ = R,
which completes the proof.

Example 5.2 In Example 2.1, none of elements in Π(E) belongs to E . So to obtain a minimal rep-
resentation one can choose exactly one point from each S ∈ Π (E). For instance, R = {1, 3, 5, 7}
is a minimal representation.

When R constitutes a representation of E , we can associate each E ∈ Υ(E∩R)\F1 to some
unique element in Υ(E)\F1, as is shown in the next result.
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Lemma 5.4 Assume that E is coarse, and let R ∈ F be a representation of E. Then κ (F ) ∈
Υ(E)\F1 for any F ∈ Υ(E∩R)\F1. Conversely, if E ∈ Υ(E)\F1, then E ∩R is a unique element
of Υ(E∩R)\F1 such that κ (E ∩ R) = E. In short, given R, the restriction of κ, denoted by
κR, constitutes a bijection between Υ(E∩R)\F1 and Υ(E)\F1 by the rule κR (F ) = κ (F ) for all
F ∈ Υ(E⊆R) \F1, and κ−1

R (E) = E ∩ R for all E ∈ Υ(E)\F1.

Proof. Note that E and E∩R contain no singleton since E is coarse and R is a representation of
E . Also note that from the basic property of κ and κ (R) = Ω by the definition of representation,
we have for each E ∈ E , E ∩ R ∈ E∩R and κ(E ∩ R) = κ(E) ∩ κ(R) = κ(E) ∩ Ω = κ(E) = E.

We first show that κ(F ) ∈ Υ(E)\F1 for all F ∈ Υ(E∩R)\F1. Fix any F ∈ Υ(E∩R)\F1. Choose
two distinct points ω1, ω2 ∈ κ(F ) arbitrarily, and we shall show that there is an E ∈ E such that
{ω1, ω2} ⊆ E ⊆ κ(F ). By the construction of κ(F ), there are S1, S2 ∈ Π(E) (possibly S1 = S2)
such that ω1 ∈ S1, ω2 ∈ S2, and both S1∩F and S2∩F are non-empty. Suppose first that S1 ̸= S2.
Then we can select two distinct points ω′

1 ∈ S1 ∩ F and ω′
2 ∈ S2 ∩ F . Since F ∈ Υ(E∩R)\F1,

there exists F ′ ∈ E∩R such that ω′
1, ω

′
2 ∈ F ′ ⊆ F by the definition of completeness. By the

definition of E∩R, there is E ∈ E with F ′ = E ∩ R. Using the property of κ (see Remark 2.1),
and the definition of a representation, κ (F ′) = E ∩ κ (R) = E and κ (F ′) ⊆ κ (F ). So we have
{ω1, ω2} ⊆ F ′ ⊆ κ (F ′) = E ⊆ κ(F ), as we wanted. Suppose then S1 = S2 (= Ŝ). Recall that
F ∈ Υ(E∩R)\F1 implies that F is the union of some elements in E∩R. Since Ŝ ∈ Π (E), this
means that there is at least one E ∈ E such that Ŝ ⊆ E and E ∩ R ⊆ F . Then again by the
definition of representation, E = κ (E ∩ R) ⊆ κ (F ), and so this E has the desired property.

Next, we show that the restriction κR is a map from Υ(E∩R)\F1 onto Υ(E)\F1. Fix any
E ∈ Υ(E)\F1. Since E ∈ σ(E), κR(E ∩ R) = κ(E) ∩ κ(R) = κ(E) ∩ Ω = κ(E) = E; that is,
E∩R is in the inverse image of κR. Thus, it is enough to show that E ∩R ∈ Υ(E∩R)\F1. By the
definition of completeness, there exist E1, . . . , EK ∈ E such that E =

∪K
k=1 Ek and that for any

pair of points ω, ω′ ∈ E, ω, ω′ ∈ Ek holds for some k. So in particular, for any distinct points
ω, ω′ ∈ E ∩R ⊆ E, there exists k with ω, ω′ ∈ Ek and thus ω, ω′ ∈ Ek ∩R ∈ E∩R since ω, ω′ ∈ R.
Therefore, κR is onto.

Finally we show that κR is one to one, i.e., κR(F ) = E occurs for F ∈ Υ(E∩R)\F1 only
if F = E ∩ R. Note that F ∈ Υ(E∩R)\F1 implies that there exist E1, . . . , EK ∈ E such that
F =

∪K
k=1(Ek ∩ R) = (

∪K
k=1 Ek) ∩ R. Since R is a representation, R must intersect any Π (E)

-component of Ek for all k, and so κ (F ) = κ((
∪K

k=1 Ek)∩R) =
∪K

k=1 Ek. So κR(F ) = E implies∪K
k=1 Ek = E and so F = E ∩ R must hold. This completes the proof.

By Lemma 5.4, if R be a representation of E , then, by rewriting (10), we have

v|R =
∑
ω∈R

λR
{ω}w{ω} +

∑
E∈Υ(E)\F1

λR
EwE∩R (11)

where λR
E = νR

E∩R for each E ∈ Υ(E). By construction, the coefficients
{
λR

E : E ∈ Υ(E)
}

are
uniquely determined with respect to a representation R except for singletons. It turns out
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that these do not depend upon the choice of representation R, which we shall demonstrate in the
following in a few lemmas. Let R, R′ ∈ F be representations of E , and so there are corresponding
expressions of the form (11). We write R $ R′ if λR

{ω} = λR′
{ω} for all ω ∈ R ∩ R′ and λR

E = λR′
E

for all E ∈ Υ(E)\F1. Note that the first part holds vacuously if R ∩ R′ = ∅.

Lemma 5.5 Assume that E is coarse and let v be E-coextrema additive. Let R,R′, R′′ ∈ F be
representations of E. Suppose that R $ R′ and R′ $ R′′. Then, R $ R′′ holds if R ∩ R′′ ⊆ R′.

Proof. By definition, λR
{ω} = λR′′

{ω} for all ω ∈ R ∩ R′ ∩ R′′ (= R ∩ R′′) and λR
E = λR′′

E for all
E ∈ Υ(E)\F1.

Lemma 5.6 Assume that E is coarse and let v be E-coextrema additive. Let R, R′ ∈ F be
representations of E. Then R $ R′ holds if R ∩ R′ is a representation. In particular, if R ⊆ R′,
R $ R′ holds.

Proof. Set R∗ = R ∩ R′. Note that by construction, for all T ∈ F , v|R∗(T ) = v|R(T ∩ R∗) =
v|R′(T ∩ R∗). Using (11) on the other hand, we have

v|R(T ∩ R∗) =
∑
ω∈R

λR
{ω}w{ω}(T ∩ R∗) +

∑
E∈Υ(E)\F1

λR
EwE∩R(T ∩ R∗)

=
∑

ω∈R∗
λR
{ω}w{ω}(T ) +

∑
E∈Υ(E)\F1

λR
EwE∩R∗(T )

and
v|R′(T ∩ R∗) =

∑
ω∈R∗

λR′
{ω}w{ω}(T ) +

∑
E∈Υ(E)\F1

λR′
E wE∩R∗(T ).

Thus, for all T ∈ F ,∑
ω∈R∗

λR
{ω}w{ω}(T ) +

∑
E∈Υ(E)\F1

λR
EwE∩R∗(T ) =

∑
ω∈R∗

λR′
{ω}w{ω}(T ) +

∑
E∈Υ(E)\F1

λR′
E wE∩R∗(T ).

Since R∗ is also a representation by assumption, by Lemma 5.4, Υ(E|R∗)\F1 and Υ(E)\F1

are isomorphic. Since {wT : T ∈ F} are linearly independent, this means that the games in
{w{ω}}ω∈R∗ ∪{wE∩R∗}E∈Υ(E)\F1 are linearly independent. Therefore, the respective coefficients
on the both sides of the above equation must coincide each other, which completes the proof.

Lemma 5.7 Assume that E is coarse and let v be E-coextrema additive. Let R, R′ ∈ F be
minimal representations of E. Then R $ R′.

15



Proof. If R = R′, then obviously R $ R′, and so let R ̸= R′. By Lemma 5.3, |R| = |R′|
and so there is ω′ ∈ R′\R. Let S ∈ Π(E) be the unique element with ω′ ∈ S. Recall that
a representation intersects every elements of Π (E), and hence we can pick an ω ∈ R ∩ S. By
construction ω ̸= ω′. Set R1 = (R\{ω}) ∪ {ω′}, i.e., R1 is obtained by substituting ω with ω′

both of which belong to S. So R1 is also a minimal representation by Lemma 5.3.
We shall show that R $ R1. For this, consider first R̂ = R ∪ {ω′}. Notice that R̂ is a

representation; since R ⊆ R̂ and R is a representation, it is clear that κ(R̂) = Ω, and
∣∣∣R̂ ∩ E

∣∣∣ ≥ 2
for all E ∈ E . Since E is coarse and R is minimal, for all E ∈ E , we have |E\R| ≥ 2 and so∣∣∣E\R̂

∣∣∣ ≥ 1. Hence E⊆R̂ = ∅, which proves that R̂ is a representation. By construction, both

R ∩ R̂ = R and R1 ∩ R̂ = R1 are representations, so by Lemma 5.6, R $ R̂ and R̂ $ R1. Note
that R ∩ R1 ⊆ R̂, which implies that R $ R1 by Lemma 5.5.

Recall that both R and R′ are finite and they can be obtained by the method described in
Lemma 5.3, so repeating the argument above, i.e., replacing one ω in R with another ω′ ∈ R′\R,
we can construct a sequence of minimal representations R0 (= R) R1, R2, · · · , Rk = R′ such
that Rm−1 $ Rm for each m = 1, .., k. By definition, λRm−1

E = λRm

E holds for all E ∈ Υ(E)\F1

for every m = 1, ..., k, hence λR
E = λR′

E holds for all E ∈ Υ(E)\F1. For any ω ∈ R ∩ R′, since
such ω is never replaced along the sequence above, we have λRm−1

{ω} = λRm

{ω} for every m = 1, ..., k,
and hence λR

{ω} = λR′
{ω}. Therefore, we conclude that R $ R′.

Lemma 5.8 Assume that E is coarse and let v be E-coextrema additive. Let R, R′ ∈ F be
representations of E. Then R $ R′.

Proof. Choose any two minimal representations Γ and Γ′ such that Γ ⊆ R, Γ′ ⊆ R′, and
Γ ∩ Γ′ ⊆ R ∩ R′. Notice that by Lemma 5.3 such minimal representations always exist and can
be constructed as follows: for any ω ∈ R ∩ R′, then select this ω from S ∈ Π(E) which contains
ω. Now by Lemma 5.6, R $ Γ and Γ′ $ R′ hold. Also, by Lemma 5.7, Γ $ Γ′ holds. These
imply that λR

E = λR′
E for all E ∈ Υ(E)\F1 and that λR

{ω} = λR′
{ω} for all ω ∈ Γ ∩ Γ′. Since the

choice of Γ ∩ Γ′ ⊆ R ∩ R′ is arbitrary as is pointed out above, we must have λR
{ω} = λR′

{ω} for all
ω ∈ R ∩ R′. Therefore, we conclude that R $ R′.

Since there is a representation containing any ω ∈ Ω, Lemma 5.8 implies that there exists
a unique collection of constants {λE}E∈Υ(E) such that, for any representation R of E , v|R =∑

ω∈R λ{ω}w{ω} +
∑

E∈Υ(E)\F1
λEwE∩R. Using this collection, define two games v1 and v2 by

the following rule:
v1 =

∑
E∈Υ(E)

λEwE and v2 = v − v1. (12)

By Theorem 2.2, v1 is E-comaximum additive. To show that v2 is E-cominimum additive, we use
the following property of v2.
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Lemma 5.9 Assume that E is coarse and let v be E-coextrema additive. Then for any T ∈ F ,

v2(T ) = v2(
∪

E∈E⊆T

E). (13)

Proof. Case 1: E⊆T = ∅, i.e., no element in E is contained in T . Then, v2(
∪

E∈E⊆T
E) =

v(∅) − v1(∅) = 0, so we need to show that v2(T ) = v(T ) − v1(T ) = 0. Note that there exists a
representation R of E such that T ⊆ R (see Lemma 5.2). Then, v(T ) = v(T ∩ R) = v|R(T ) =∑

E∈Υ(E), E∩T ̸=∅ λE = v1(T ), as claimed.
Case 2: E⊆T ̸= ∅. Let E∗ =

∪
E∈E⊆T

E and T ∗ = T\E∗. We want to show that v2 (T ) =
v2 (E∗). By construction, E∗ ∈ σ (E) is the union of some elements in Π (E), choose one point
from each of these elements and let A be the collection of these points. Note that κ(A) = E∗,
and that E⊆A = E⊆T∗∪A = ∅ follows from the coarseness. Thus, Case 1 applies to A and T ∗ ∪A,
and we have

v2(A) = v2(T ∗ ∪ A) = 0. (14)

Now we claim that 1E∗ and 1T∗∪A are E-coextrema. Note first that E∗ ∩ (T ∗ ∪ A) = A by
construction. To see that they are E-comaximum, recall Remark 2.5, and pick F ∈ E with F ⊆
Ω\A. Then F ∩ E∗ = ∅ must follow, since both F and E∗ are in σ (E) and so for any S ∈ Π(E)
with S ⊆ F, A ∩ S ̸= ∅ would hold if S ⊆ E∗. Then F ⊆ Ω\E∗ as desired. To see that they
are E-cominimum as well, notice that if F ∈ E and F ⊆ E∗ ∪ (T ∗ ∪ A) = T , then F ⊆ E∗ by
construction. Thus E∗ and (T ∗ ∪ A) are an E-decomposition pair, and so apply Lemma 2.3.

By the coextrema additivity of v, v(E∗ ∪ (T ∗ ∪A))+ v(E∗ ∩ (T ∗ ∪A)) = v(E∗) + v(T ∗ ∪A),
which can be re-written as

v(E∗ ∪ T ∗) + v(A) = v(E∗) + v(T ∗ ∪ A). (15)

On the other hand, since 1E∗ and 1T∗∪A are E-comaximum and v1 is E-comaximum additive,

v1(E∗ ∪ T ∗) + v1(A) = v1(E∗) + v1(T ∗ ∪ A). (16)

Subtracting (16) from (15), and using the definition of v2, and the fact T = E∗ ∪ T ∗, we have

v2(T ) + v2 (A) = v2 (E∗) + v2(T ∗ ∪ A).

Applying (14) here, we obtain the desired equation.

Now we are ready to show that v2 is E-cominimum additive.

Lemma 5.10 Assume that E is coarse and let v be E-coextrema additive. Then, v2 is E-
cominimum additive and thus it has a unique expression

v2 =
∑

E∈Υ(E)

µEuE .
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Proof. Let 1A and 1B be E-cominimum, i.e., A and B constitute an E-decomposition pair by
Lemma 2.3. We need to show that v2(A ∪ B) + v2(A ∩ B) = v2(A) + v2(B).

Note that for each S ∈ Π(E) such that there is an E ∈ E with S ⊆ E ⊆ A∪B, if S ̸⊆ A∩B,
then either S ∩ (B\A) ̸= ∅ or S ∩ (A\B) ̸= ∅, but not both; if both hold then A and B would
not be an E-decomposition pair.

For each S ∈ Π(E) with S ̸⊆ A ∩ B, choose a point ωS from S ∩ (A\B) if S ∩ (A\B) ̸= ∅, or
from S∩(B\A) if S∩(B\A) ̸= ∅. Let Ω∗ be the set of chosen points. Finally, set A∗ = A∪(B\Ω∗)
and B∗ = B ∪ (A\Ω∗). Notice that A∗ ∪ B∗ = A ∪ B by construction.

We claim that if E ∈ E satisfies E ⊆ A∗, then E ⊆ A. Indeed, suppose that there is a
point ω ∈ E ∩ (A∗\A). Since E ∈ E , we can find (a unique) S ∈ Π(E) with ω ∈ S ⊆ E,
and ω ∈ S ∩ (B\A). By the construction of Ω∗, this means that S ∩ ((B\A) ∩ Ω∗) ̸= ∅ so
E ∩ ((B\A) ∩ Ω∗) ̸= ∅, which is impossible since E ⊆ A∗ = A ∪ (B\Ω∗).

Similarly, if E ∈ E satisfies E ⊆ B∗, then E ⊆ B. To sum up, the collections of E-elements
contained in A∗, B∗, A∗ ∪ B∗ and A∗ ∩ B∗ coincide with those of A, B, A ∪ B and A ∩ B,
respectively. Therefore, by Lemma 5.9, we are done if v2(A∗∪B∗)+v2(A∗∩B∗) = v2(A∗)+v2(B∗).
For this, it suffices to show that 1A∗ and 1B∗ are E-coextrema. Indeed, since v is E-coextrema
additive, we have v(A∗ ∪ B∗) + v(A∗ ∩ B∗) = v(A∗) + v(B∗), and since v1 is E-comaximum
additive, we have v1(A∗ ∪ B∗) + v1(A∗ ∩ B∗) = v1(A∗) + v1(B∗). Since v2 = v − v1, the desired
equation is established from these two equations.

To see 1A∗ and 1B∗ are E-cominimum, notice that A and B constitutes a decomposition pair
by assumption, and so do A∗ and B∗; if E ⊆ A∗∪B∗ with E ∈ E , then E ⊆ A∪B, which implies
E ⊆ A or E ⊆ B and hence E ⊆ A∗ or E ⊆ B∗ as we have shown above. Thus 1A∗ and 1B∗ are
E-cominimum by Lemma 2.3.

It remains to show that 1A∗ and 1B∗ are E-comaximum. Pick any E ∈ E with E ⊆
Ω\ (A∗ ∩ B∗). We need to show that E ⊆ Ω\A∗ or E ⊆ Ω\B∗ or both (see Remark 2.5).
Suppose E ∩ (A∗ ∪ B∗) ̸= ∅ or else the implication holds trivially, and so it suffices to show that
E ∩ (A∗\B∗) = ∅ or E ∩ (B∗\A∗) = ∅. If neither of these holds, then pick ωA ∈ E ∩ (A∗\B∗) and
ωB ∈ E ∩ (B∗\A∗). Note that A∗\B∗ = A\B∗ and B∗\A∗ = B\A∗ holds, and thus ωA and ωB

must belong to Ω∗ by the construction of A∗ and B∗. Since E ∈ E , there must be SA ∈ Π(E)
and SB ∈ Π (E) and EA ∈ E and EB ∈ E such that ωA ∈ SA ⊆ EA ∩E ⊆ A∪B and ωB ∈ SB ⊆
EB ∩E ⊆ A∪B. But then, by the coarseness, both SA ∩B∗ and SB ∩A∗ are non-empty, which
implies E∩ (A∗ ∩ B∗) ̸= ∅, a contradiction. This completes the proof.

Since v1 is E-comaximum additive and v2 is E-cominimum additive, we have the desired
expression v = v1 + v2 =

∑
E∈Υ(E) λEwE +

∑
E∈Υ(E) µEuE = p +

∑
E∈Υ(E)\F1

(λEwE + µEuE)
where p =

∑
ω∈Ω p{ω}u{ω} and p{ω} = λ{ω} + µ{ω}. It remains to show that this is a unique

representation.
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Lemma 5.11 Assume that E is coarse and let v be E-coextrema additive. Then, the expression
v =

∑
ω∈Ω p{ω}u{ω} +

∑
E∈Υ(E)\F1

(λEwE + µEuE) is unique; that is, if v =
∑

ω∈Ω p′{ω}u{ω} +∑
E∈Υ(E)\F1

(λ′
EwE + µ′

EuE) then p{ω} = p′{ω} for all ω ∈ Ω, λE = λ′
E, and µE = µ′

E for all
E ∈ Υ(E)\F1.

Proof. Let R ∈ F be a representation of E . Then,

v|R =
∑
ω∈R

p{ω}u{ω} +
∑

E∈Υ(E)\F1

λEwE∩R =
∑
ω∈R

p′{ω}u{ω} +
∑

E∈Υ(E)\F1

λ′
EwE∩R.

By Lemma 5.4, Υ(E∩R)\F1 and Υ(E)\F1 are isomorphic and thus {w{ω}}ω∈R∪{wE∩R}E∈Υ(E)\F1

are linearly independent. Therefore, p{ω} = p′{ω} for all ω ∈ R and λE = λ′
E for all E ∈ Υ(E)\F1.

Since the choice of R was arbitrary, p{ω} = p′{ω} for all ω ∈ Ω. The linear independence also
guarantees that the expression v − ∑

ω∈Ω p{ω}w{ω} − ∑
E∈Υ(E)\F1

λEwE =
∑

E∈Υ(E)\F1
µEuE

must also be unique.

The proof of Theorem 4.1 is now complete.
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