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Abstract

We study a standard two period exchange economy with one nominal asset. As is

well known there is a continuum of sunspot equilibria around each efficient equilib-

rium. A sunspot equilibrium is inefficient but some household may gain in sunspot

equilibria relative to the efficient equilibrium. We show that a household’s equilib-

rium utility level is either locally maximized or locally minimized at the efficient

equilibrium, and derive a condition which identifies whether or not a household’s

utility is locally minimized or maximized.

1 Introduction

Consider a standard two period competitive exchange economy with inside money where

households are all risk averse. Using inside money as a medium of exchange, households

can borrow or save in the first period. Under standard assumptions, a competitive

equilibrium exists and any competitive equilibrium is Pareto efficient. Generically in

endowments, there are finitely many such competitive equilibria. However, there may be

sunspot equilibria where the second period consumption depends on extrinsic signals.1

∗The financial support by Grant-in-Aid for the 21st Century COE Program and Grant-in-Aid for

Scientific Research is gratefully acknowledged. The author thanks Sergio Currarini, Aditya Goenka, Piero

Gottardi, Chiaki Hara and for their helpful comments. The auhtor is solely responsible for remaining

errors and omissions.
1For the economic implications of sunspot equilibria, see Cass and Shell (1983).
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In fact, it can be shown that a continuum of sunspot equilibria also exists around each

of these efficient competitive equilibria.2

A sunspot equilibrium is Pareto inefficient, and therefore in each sunspot equilibrium

there must be at least one household who is worse off than in the respective efficient

equilibrium. One can consider various scenarios about welfare distributions associated

with sunspot equilibria. Of course, the inefficiency does not imply that all the households

are worse off, but it certainly seems plausible and intuitive if this is the case. It may even

appear that this will be a prevailing case, since a sunspot equilibrium is “contaminated”

by extrinsic, welfare irrelevant randomization by construction, and risk averse households

do not appreciate such randomization.

In general, it is true that if the expected real return from an asset is kept constant,

increasing the volatility of its returns is welfare worsening to any household. But notice

that there is a general equilibrium effect through changing prices, which is overlooked in

the observation above. The expected real returns are determined in equilibrium. In the

simple set up we consider where a nominal bond (inside money) is the only asset, if its

average real returns in a sunspot equilibria benefits a particular household, and if the

benefit is large enough to offset the loss from the increasing volatility, such a household

could gain by sunspots.

As far as we know, this important implication of general equilibrium effects on wel-

fare gains and losses in sunspot equilibria is not addressed well in the literature, until

Goenka-Préchac (2006): although they considered only a special symmetric model of

two households, they derived a simple condition expressed in the derivatives of utility

functions, under which the utility level of the borrower (the seller of the asset) is locally

minimized at the efficient equilibrium, and that of the saver is locally maximized.

The Goenka-Préchac condition says that the households are prudent enough at the

efficient equilibrium, i.e., the third derivative of utility function is positive and large

enough relative to its second derivative. The condition is satisfied for the log utility case,

as well as for a wide range of popular parametric classes of utility functions. Thus within

their setup, the borrower are benefitted from sunspots in a large class of economies.

It is however hard to see the general equilibrium intuition in their condition on the

prudence. This is so because of the special symmetric structure of their model. Not only

2See Cass (1992). See also Pietra (1992) and Suda-Tallon-Villanacci (1992).
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there are just two households, but also it is assumed that households have identical pref-

erences represented by a time separable and time invariant utility function. Moreover,

the total endowment is the same in the two periods, and households’ endowments are

symmetric in the sense that household 1’s first period endowment is equal to household

2’s second period endowment. Thus although their condition gives an impression that

individual risk preferences determine the beneficiary from sunspots, the general equilib-

rium effect is possibly concealed in the special structure. More importantly, it may well

be the case that the general class of economies where the borrower is benefitted from

sunspots is not as large as it seems.

The purpose of this paper is to obtain a deeper understanding of welfare gains and

losses in sunspot equilibria. Given discussions above, it is desirable not to rely on sym-

metry up front. We therefore study a very general model: except that we keep the

assumption of single consumption good in each period, the number of households is

arbitrary, and their utility functions and endowments are general. Our analysis takes

advantage of symmetry about sunspot states, but nothing else.

In such a general framework with S sunspot states, the equilibrium utility level is

expressed by a function of S−1 variables. We find a condition which tells whether or not

a household’s equilibrium utility level is locally minimized or maximized at the efficient

equilibrium (Proposition 6). Our condition says that the net benefit from sunspots is

the sum of two terms, where the first negative term corresponds to the risk effect, and

the second term represents the general equilibrium effect, so it confirms the intuition we

outlined above.

Interestingly enough, even when the equilibrium welfare function as above has more

than one variables, it is either locally concave or convex at the efficient equilibrium.

Using this condition, we show that either all the savers’ or all the borrowers’, or all

the households’ equilibrium utility level is locally maximized at the efficient equilibrium

(Corollary 8).

The structure of the paper is as follows. Section 2 sets up the model. The main

analysis and the results mentioned above are contained in Section 3. We elaborate the

results by relating the model to the standard simple portfolio problem in Section 4. We

also discuss in Section 4 why it tends to be a borrower if there is a household who is

benefitted from sunspots. The Goenka-Préchac condition is re-examined in the light of
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our results in Section 5 to see how the general equilibrium effects and the risk effect are

mixed in their simple condition. Section 6 contains a few remarks.

2 The Model

We consider a standard competitive two-period exchange economy. There is one per-

ishable consumption good in each period to be traded. There are H ≥ 2 households,

labelled by h = 1, 2, ...H. Household h is endowed with e0
h units of good in the first

period (period 0) and e1
h units in the second period (period 1). We write eh =

(
e0
h, e1

h

)
.

In the first period, period 0, a nominal asset which pays off one unit in units of account

in the second period is traded. The net supply of the asset is zero, so it is inside money

whose real returns are to be determined in the markets.

At the beginning of the second period, a state s = 1, 2, ..., S occurs which is publicly

observed. We assume that these are sunspot states, and they are equally probable.3

Denote by rs > 0 the real return of the asset in units of the first period consumption

good when the state is s; that is, the price of the asset is normalized to be one, and

if z units of the asset is held at the end of the first period, rsz units of consumption

good is delivered at the beginning of the second period. Writing zh for the asset holding

of household h, the consumption of household h is therefore e0
h − zh in period 0 and

e1
h + zhrs in state s in period 1.4 If zh > 0, then household h is referred to as a saver,

and if zh < 0, then household h is referred to as a borrower.

The preferences of household h are represented by a von Neumann Morgenstern

utility function uh : R
2
++ → R; that is, given a vector of returns r = (rs)S

s=1 ∈ R
S
++, if

household h chooses zh such that e0
h − zh > 0 and e1

h + zhrs > 0 for every s = 1, ..., S,

the level of (normalized) utility is given by

S∑

s=1

uh

(
e0
h − zh, e1

h + zhrs
)
. (1)

3The assumption of equal probability is not restrictive. See Section 6.
4This is of course a reduced form and it is equivalent to the standard sequential budget constraints.

If we write x0 and p0 for the first period consumption and the (nominal) price of good, and xs and ps for

the consumption in state s and the (nominal) price of good in state s, the sequential budget constraints

are: p0
`

x0
− e0

´

+ ẑ = 0, and ps
`

xs
− e1

´

= ẑ for s = 1, ..., S. Then setting rs = ps/p0 and z = p0ẑ, we

get the reduced form in the text.
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A household is a price taker by assumption and so household h’s problem is to choose

zh ∈ R to maximize the expected utility, which is formally written below:

max
zh

S∑

s=1

uh

(
e0
h − zh, e1

h + zhrs
)

(2)

subject to e0
h − zh > 0 and e1

h + zhrs > 0, s = 1, .., S.

Note that the problem (2) is nothing but a standard, simple portfolio choice problem

between consumption and a risky asset, but with possibly time non-separable utility

function.5 The inside money constitutes a risky asset since although the nominal return

is fixed by assumption, its real return can be random.

It is assumed that uh is C3, differentiably strictly increasing (i.e., for any xh ∈ R
2
++,

the gradient Duh (xh) is strictly positive), differentiably strictly concave (i.e., for any

xh ∈ R
2
++, the Hessian D2uh(xh) is negative definite), and the closure in R

2 of each level

set is contained in R
2
++. The assumption of thrice differentiability is needed since the

second derivatives of demand functions are important in our analysis.

Under these assumptions, the objective function in (2) is concave in zh and the

optimal choice is characterized by a solution to the first order condition as follows:

−
S∑

s=1

∂

∂x0
uh

(
e0
h − zh, e1

h + zhrs
)

+
S∑

s=1

∂

∂x1
uh

(
e0
h − zh, e1

h + zhrs
)
rs = 0, (3)

where ∂
∂x0

uh and ∂
∂x1

uh are derivatives with respect to the first period consumption

and the second period consumption, respectively. The solution is unique if it exists

by the strict concavity. Since our analysis will be done locally around a competitive

equilibrium where the optimal choice is well defined, we will assume that a solution

exists in the relevant domain. For a vector of returns r = (· · · , rs, · · · ) ∈ R
S
++, let Zh (r)

be the unique solution to (3); that is, Zh (r) is the quantity demanded by household h

for the asset. Let Z (r) :=
∑H

h=1 Zh (r) which is the market excess demand function for

the asset. It can be shown that each Zh is a C2 function, and so is Z. Utilizing the

symmetric nature of the model, the following properties can be readily checked: for each

5The connection is apparent if we re-write the objective function in (2) equivalently as

Er̃

ˆ

uh

`

e0

h − zh, e1

h + zhr̃
´˜

, where E is the expectation operator.
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h and any pair of states s and s′, and any positive number ρ,

∂

∂rs
Zh (ρ, · · · , ρ) =

∂

∂rs′
Zh (ρ, · · · , ρ) , (4)

∂

∂rs
Z (ρ, · · · , ρ) =

∂

∂rs′
Z (ρ, · · · , ρ) . (5)

Definition 1 An equilibrium is a vector of returns r = (· · · , rs, · · · ) ∈ R
S
++ such that

Z (r) = 0. Equivalently, r is an equilibrium if there exists a vector of asset holdings

z = (zh)H
h=1 ∈ R

H with
∑H

h=1 zh = 0, where each zh solves the utility maximization

problem (2), for h = 1, ..., H.

When S = 1, our model is a standard two period model of consumption and saving,

and so every equilibrium is efficient. An equilibrium for the case of S = 1 is called a

certainty equilibrium. If r̄ ∈ R+ is a certainty equilibrium, it can be readily seen that the

vector (r̄, · · · , r̄) ∈ R
S
++ is an equilibrium for any S > 1: this is an equilibrium where the

households think the sunspot states do not affect the real returns, although they know

that sunspot states are to be observed. Such an equilibrium is called a non-sunspot

equilibrium when S > 1. By the fundamental theorem of welfare economics and risk

aversion, a non-sunspot equilibrium is Pareto efficient. To simplify notation we write r̄

instead of (r̄, · · · , r̄) whenever it is clear from the context. An equilibrium r is called a

sunspot equilibrium if rs 6= rs′ for some s and s′.

Example 2 Let H = 2, and uh (x, y) = v (x)+v (y) for both h, where v′ > 0 and v′′ < 0.

e1 = (α, 1 − α) and e2 = (1 − α, α), α ∈ (1
2 , 1]. There is a unique certainty equilibrium

r̄ = 1 where both households consume 1
2 in both periods. Thus Z1 (r̄) > 0 > Z2 (r̄). This

is the setup Goenka-Préchac (2006) studied.

We are interested in the structure of the set of utility profiles associated with equi-

libria, especially around a non-sunspot equilibrium. For this purpose it is useful to learn

the differential structure of the set. It is known6 that for any S > 1, generically in

endowments, there are finitely many non-sunspot equilibria and for any non-sunspot

equilibrium (r̄, · · · , r̄), ∂
∂rs Z (r̄, · · · , r̄) 6= 0 for s = 1, ..., S, and moreover Zh 6= 0 for any

equilibrium around r̄. Thus in particular Z can be solved implicitly around a non-sunspot

6This can be established as a simple corollary to the geneneric regularity result of Cass (1992) on

non-sunspot equilibria. See also the leading example of Cass (1989).
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equilibrium (r̄, · · · , r̄); there is a C2 function φ defined locally around (r̄, · · · , r̄) ∈ R
S−1
++

such that Z
(
r1, ..., rS−1, φ

(
r1, ..., rS−1

))
= 0 for r1, ..., rS−1 in the domain.

Throughout this paper, we assume that the functions are well defined and the asserted

properties are true; that is, the endowments are chosen in such a way that a non-

sunspot equilibrium exists and these properties hold. As described above, such a choice

is generic, which justifies this assumption. From now on, we set S > 1 and fix a non-

sunspot equilibrium (r̄, · · · , r̄). We summarize below the key maintained assumptions

throughout this paper:

Regularity Assumption: r̄ > 0 and Z (r̄, · · · , r̄) = 0. ∂
∂rs Z (r̄, · · · , r̄) 6= 0 for s =

1, ..., S and so there is a C2 function φ defined a neighborhood R ⊆ R
S−1
++ around

(r̄, · · · , r̄) ∈ R
S−1
++ such that

Z
(
r1, ..., rS−1, φ

(
r1, ..., rS−1

))
= 0 (6)

Zh

(
r1, ..., rS−1, φ

(
r1, ..., rS−1

))
6= 0, for every h = 1, ..., H (7)

for any
(
r1, ..., rS−1

)
∈ R

A generic element of R is denoted by r−S =
(
r1, ..., rS−1

)
. By construction, φ (r̄−S) =

r̄, and the set of equilibrium asset holdings around a non-sunspot equilibrium (· · · , r̄, · · · )

can be found by changing rs around r̄ for s = 1, ..., S − 1. For each h, define Ẑh and Ûh

on R by the following rule:

Ẑh (r−S) := Zh (r−S , φ (r−S)) ,

Ûh (r−S) :=

S−1∑

s=1

uh

(
e0
h − Ẑh (r−S) , e1

h + Ẑh (r−S) rs
)

+ uh

(
e0
h − Ẑh (r−S) , e1

h + Ẑh (r−S) φ (r−S)
)

.

Namely, Ẑh (r−S) is household h’s asset holding and Ûh (r−S) is the corresponding utility

level in equilibrium (r−S , φ (r−S)). Then, the set of profiles of equilibrium asset holdings

is {
(
Ẑh (r−S)

)H

h=1
: r−S ∈ R}. We shall refer to this set as the equilibrium manifold

(around the non-sunspot equilibrium), which has dimension S − 1. The corresponding

level of utility is

U := {
(
Ûh (r−S)

)H

h=1
: r−S ∈ R}. (8)
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Our purpose is to study the local structure of this set around the non-sunspot equilib-

rium.7

3 The Analysis: Characterization in Derivatives

We shall first learn how the equilibrium demand Ẑh above behaves around r̄. It turns out

that the first order effect on Ẑh is null: if returns are changed marginally from the non-

sunspot equilibrium, the corresponding consumption remains the same. The following

result stating this formally holds from the symmetry.

Lemma 3 For any state s = 1, .., S − 1, ∂
∂rs φ (r̄−S) = −1. For any household h and

state s = 1, .., S − 1, ∂
∂rs Ẑh (r̄−S) = 0 where r̄−S = (· · · , r̄, · · · ) ∈ R

S−1
++ .

Proof. By the symmetry (5), ∂
∂rs Z (r̄) = ∂

∂rS Z (r̄) holds for s = 1, ..., S − 1. Differenti-

ating (6) with respect to rs, s 6= S, we have, for any r−S ∈ R,

∂

∂rs
Ẑ (r−S) =

∂

∂rs
Z (r−S) +

∂

∂rS
Z (r−S)

∂

∂rs
φ (r−S) = 0. (9)

Evaluating this at r̄−S = (· · · , r̄, · · · ) (thus φ (r̄−S) = r̄), using ∂
∂rs Z (r̄) = ∂

∂rS Z (r̄), we

have ∂Z(r̄)
∂rs + ∂Z(r̄)

∂rs

∂φ(r̄−S)
∂rs = 0. So ∂

∂rs φ (r̄−S) = −1 must hold for s = 1, .., S − 1, since

∂Z(r̄)
∂rs 6= 0 by the regularity assumption.

Now similarly to (9), for any h and state s = 1, .., S − 1, we have ∂
∂rs Ẑh = ∂

∂rs Zh+

∂
∂rS Zh

∂
∂rs φ from (7). Then using the symmetry (4) and ∂

∂rs φ (r̄−S) = −1, we have

∂
∂rs Ẑh (r̄−S) = 0.

To interpret, recall that
∑S−1

s=1 rs +φ (rs) is (proportional to) the average equilibrium

returns. So Lemma 3 says that when the return in state s changes, the corresponding

equilibrium average returns remain unchanged up to the first order. In fact, the first

order effect on the equilibrium utility level is also null. We show this by computing

the derivative of the equilibrium utility level Ûh (r−S) at the non-sunspot equilibrium

r̄−S := (· · · , r̄, · · · ). To simplify notation, we write ūh for Ûh evaluated at r−S = r̄−S ;

7Alternatively, one can directly study the constrained maximization problem of a household’s utility

given equilibrium system of equations, i.e., the first order conditions and the market clearing condition,

analogously to the general method developed in Citanna-Kajii-Villanacci (1998). Indeed, this is the path

which Goenka-Préchac (2006) followed. But for the single commodity case, using the excess demand

functions appears more tractable, at least for the purpose of this paper.
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that is, ūh := uh

(
e0
h − Ẑh (r̄−S) , e1

h + Ẑh (r̄−S) r̄
)
. A similar convention will be used for

derivatives of uh, e.g., ∂ūh

∂x1
and ∂2ūh

∂(x1)2
.

Lemma 4 For any household h and any state s = 1, .., S − 1, ∂
∂rs Ûh (r̄−S) = 0.

Proof. This can be verified by direct computation as follows: notice that the usual

envelop argument using (3), which nullifies the effects through d/dẐ, so for any r−S ∈ R,

we have:

∂

∂rs
Ûh (r−S) =

∂

∂rs

S−1∑

k=1

uh

(
e0
h − Ẑh (r−S) , e1

h + Ẑh (r−S) rk
)

+
∂

∂rs
uh

(
e0
h − Ẑh (r−S) , e1

h + Ẑh (r−S) φ (r−S)
)

,

=

(
∂

∂x1
uh

(
e0
h − Ẑh (r−S) , e1

h + Ẑh (r−S) rs
))

Ẑh (r−S)

+

(
∂

∂x1
uh

(
e0
h − Ẑh (r−S) , e1

h + Ẑh (r−S) φ (r−S)
))

Ẑh (r−S)
∂

∂rs
φ (r−S) ,

(10)

where the envelope property is used to derive the second equation. Therefore, from the

fact ∂
∂rs φ (r̄−S) = −1 shown in Lemma 3, and φ (r̄−S) = r̄, it follows:

∂

∂rs
Ûh (r−S)

∣∣∣∣
r−S=r̄−S

=

(
∂

∂x1
ūh

)
Ẑh (r̄−S) +

(
∂

∂x1
ūh

)
Ẑh (r̄−S)

∂

∂rs
φ (r̄−S)

= 0

So the non-sunspot equilibrium constitutes a local minimum, a local maximum, or a

saddle point of Ûh for all h. To distinguish these cases, we shall check the Hessian matrix

of Ûh, denoted by D2Uh (r̄−S), which will depend on the first and the second order effects

though the equilibrium function φ. We have already seen the first order effects in Lemma

3. Interestingly enough, the Hessian matrix Dφ (r̄−S) at the non-sunspot equilibrium is

either negative or positive definite unless it is zero, as is shown in the next result. Let

ζ :=
1

∂
∂r1 Z (r̄)

(
∂2

∂r1∂r2
Z (r̄) −

∂2

∂ (r1)2
Z (r̄)

)
(11)

which is well defined by the regularity assumption.
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Lemma 5 The Hessian matrix D2φ (r̄−S) is as follows:

D2φ (r̄−S) = ζ




2 1 · · · 1

1 2
. . .

...
...

. . .
. . . 1

1 · · · 1 2




. (12)

Thus D2φ (r̄−S) is positive (resp. negative) definite if ζ > 0 (resp. ζ < 0)

Proof. Differentiate the equilibrium identity Ẑ (r−S) = 0 twice: differentiating the

identity (9) and evaluating it at z̄, we have, for any s = 1, ..., S − 1:

∂2

∂ (rs)2
Ẑ (r̄−S) =

{
∂2Z (r̄)

∂ (rs)2
+

∂2Z (r̄)

∂rs∂rS

∂φ (r̄−S)

∂rs

}
+

∂2Z (r̄)

∂rs∂rS

∂φ (r̄−S)

∂rs

+
∂2Z (r̄)

∂ (rS)2

(
∂φ (r̄−S)

∂rs

)2

+
∂Z (r̄)

∂rS

∂2φ (r̄−S)

∂ (rs)2
, (13)

= 0,

and for s′ = 1, ..., S − 1 with s′ 6= s:

∂2

∂rs∂rs′
Ẑ (r̄−S) =

{
∂2Z (r̄)

∂rs∂rs′
+

∂2Z (r̄)

∂rs∂rS

∂φ (r̄−S)

∂rs′

}
+

∂2Z (r̄)

∂rs′∂rS

∂φ (r̄−S)

∂rs

+
∂2Z (r̄)

∂ (rS)2

(
∂φ (r̄−S)

∂rs

∂φ (r̄−S)

∂rs′

)
+

∂Z (r̄)

∂rS

∂2φ (r̄−S)

∂rs∂rs′
, (14)

= 0.

Write z̄s := ∂
∂rs Z (r̄) and z̄ss′ := ∂2

∂rs∂rs′
Z (r̄). Recall that by the symmetry of excess

demand functions with respect to sunspot states, we have z̄s = z̄1 and z̄ss = z̄11, and

z̄ss′ = z12 for any s, s′ with s 6= s′. Also
∂φ(r̄−S)

∂rs = −1 for every s by Lemma 3. Rewrite

equations (13) and (14) using these properties, we have

2 (z̄11 − z̄12) = −z̄1
∂2φ (r̄−S)

∂ (rs)2
,

(z̄11 − z̄12) = −z̄1
∂2φ (r̄−S)

∂rs∂rs′
,

where s, s′ = 1, ..., S − 1 and s 6= s′. From these equations we have:

D2φ (r̄−S) =
z̄12 − z̄11

z̄1




2 1 · · · 1

1 2
. . .

...
...

. . .
. . . 1

1 · · · 1 2




,

10



which is (12).

The last part follows since the matrix




2 1 · · · 1

1 2
. . .

...
...

. . .
. . . 1

1 · · · 1 2




is positive definite.

Recall that the first order effect on the equilibrium average returns is null (Lemma

3). Lemma 5, which identify the sign of the second order effect, then says that the sign of

ζ determines the direction of the equilibrium average returns. We shall elaborate more

on this in the next section.

Now we are ready to state the main characterization result for the sign of the Hessian

matrix DÛh (r̄−S): for each h = 1, ..., H, let ξh be a scaler given by the following formula:

ξh :=
∂2ūh

∂ (x1)
2 (Zh (r̄))2 +

∂ūh

∂x1
Zh (r̄)

1
∂

∂r1 Z (r̄)

(
∂2

∂r1∂r2
Z (r̄) −

∂2

∂ (r1)2
Z (r̄)

)
(15)

=
∂2ūh

∂ (x1)
2 (Zh (r̄))2 +

∂ūh

∂x1
Zh (r̄) ζ,

where ζ is the number defined in (11).

Proposition 6 For each household h, the Hessian matrix D2Ûh (r̄−S) is

D2Ûh (r̄−S) = ξh ×




2 1 · · · 1

1 2
. . .

...
...

. . .
. . . 1

1 · · · 1 2




. (16)

Thus D2Ûh (r̄−S) is negative (resp. positive) definite if ξh < 0 (resp. ξh > 0). Con-

sequently; (1) the utility level of household h is locally maximized at the non-sunspot

equilibrium if ξh < 0, and it is locally minimized if ξh > 0. (2) conversely, if the utility

level of household h is locally maximized (resp. minimized) at the non-sunspot equilib-

rium, then ξh ≥ 0 (resp. ξh ≤ 0) must hold.

Proof. We shall show that for each h, the Hessian matrix of Ûh at r̄−S is as follows:

D2Ûh (r̄−S) = κh




2 1 · · · 1

1 2
. . .

...
...

. . .
. . . 1

1 · · · 1 2




+

(
∂ūh

∂x1

)
Zh (r̄) Dφ (r̄−S) , (17)

11



where κh =
(

∂2ūh

∂(x1)2

)(
Ẑh (r̄−S)

)2
. Once this is shown, substituting D2φ (r̄−S) in (12)

into (17), we find that (16) holds. Then D2Ûh (r̄−S) is a positive definite matrix multi-

plied by a scaler ξh, so it is negative definite if ξh < 0, and positive definite if ξh > 0, as

asserted.

Now to see (17) holds, keeping the envelope property (10) in mind, for any s and s′,

∂2

∂rs∂rs′
Ûh (r−S) =

{
∂

∂rs′

(
∂

∂x1
uh

(
e0
h − Ẑh (r−S) , e1

h + Ẑh (r−S) rs
)

Ẑh (r−S)

)}

+

{
∂

∂rs′

(
∂

∂x1
uh

(
e0
h − Ẑh (r−S) , e1

h + Ẑh (r−S) φ (r−S)
)

Ẑh (r−S)
∂

∂rs
φ (r−S)

)}
.

(18)

To evaluate (18) at r−S = r̄−S , notice that since ∂
∂rs Ẑh (r̄−S) = 0 by Lemma 3, the

effects through d/dẐ are all zero; for example,
(

∂
∂x0

ūh

)(
− ∂

∂rs Ẑh (r̄−S)
)

= 0 and so all

the terms multiplied by ∂
∂x0

ūh vanish. So we have: if s = s′,

∂2

∂ (rs)2
Ûh (r̄−S) =

{(
∂2ūh

∂ (x1)
2

) (
Ẑh (r̄−S)

)2
}

+

(
∂2ūh

∂ (x1)
2

)(
Ẑh (r̄−S)

∂

∂rs
φ (r̄−S)

)2

+

(
∂ūh

∂x1

)
Ẑh (r−S)

∂2

(∂rs)2
φ (r̄−S) ,

= 2

(
∂2ūh

∂ (x1)
2

) (
Ẑh (r̄−S)

)2
+

(
∂ūh

∂x1

)
Ẑh (r−S)

∂2

(∂rs)2
φ (r̄−S) , (19)

where we used the fact ∂
∂rs φ (r̄−S) = −1 for the last equation. And similarly, if s 6= s′,

∂2

∂rs∂rs′
Ûh (r̄−S) =

(
∂2ūh

∂ (x1)
2

) (
Ẑh (r̄−S)

)2
+

(
∂ūh

∂x1

)
Ẑh (r−S)

∂2

∂rs∂rs′
φ (r̄−S) . (20)

Writing (19) and (20) together in a matrix form, we find that the S − 1 dimensional

Hessian matrix DÛh (r̄−S) has the form (17).

Remark 7 Notice that given the non-sunspot equilibrium r̄, which can be found from

the case of S = 1, Lemma 6 is a characterization result in the primitives of the model:

the derivatives of the excess demand function can be computed, in principle, from the

first order condition (3), and so ξh can be found without solving the equilibrium system

for sunspot equilibria.

Therefore, the key parameter to determine the welfare property around the non-

sunspot equilibrium is the sign of ξh defined by (15). Recall that ∂2ūh

∂(x1)2
is negative by

strict concavity and that ∂ūh

∂x1
is positive by monotonicity. So the first term in (15) is

12



always negative, and the sign of ξh depends on the common parameter ζ and household

h’s position Zh (r̄). This observation leads to the following result:

Corollary 8 If ζ ≥ 0, for every household h with Ẑh (r̄−S) < 0, the level of equilibrium

utility Ûh (r−S) is locally maximized at r−S = r̄−S, i.e., at the non-sunspot equilibrium;

If ζ ≤ 0, for every household h with Ẑh (r̄−S) > 0, the level of equilibrium utility Ûh (r−S)

is locally maximized at r−S = r̄−S. Thus the non-sunspot equilibrium constitutes the

(locally) most preferred equilibrium allocation at least for all borrowers, or for all savers.

Proof. This follows from Lemmas 4, 6 and 5, since ζ ≥ 0 or ζ ≤ 0 holds.

It is of course not surprising that some household’s utility must be maximized at

the non-sunspot equilibrium; otherwise we would have a sunspot equilibrium improving

upon the efficient allocation. The interesting implication of Corollary 8 is that all the

households on one side of the market must dislike sunspot equilibria.

As discussed in Introduction, we can give an intuitive reason for this result: since

increased volatility is always welfare worsening, thus the welfare improving general equi-

librium effect must be through the change in average returns. An increase in average

returns will hurt all the borrowers and a decrease will hurt all the savers. It should be

noted here that the sign of changes are determined by the second order terms, as the

results in this section have shown. This point is not an obvious point.

Remark 9 Since our analysis is only local, the assumptions on utility functions need to

hold only locally around the consumption vector at the non-sunspot equilibrium. So the

results hold for quadratic utility models, for instance.

There are classes of examples where all the households’ level of utility is maximized

at the non-sunspot equilibrium. We give one of them as an example below.

Example 10 Let each uh be a discounted sum of a quadratic utility function: uh (x, y) :=
(
ahx − x2

)
+ δh

(
ahy − y2

)
where ah > 0 and δh > 0, and assume that a non-sunspot

equilibrium exists and the regularity assumptions are satisfied around the non-sunspot

equilibrium. By inspection of the first order condition, it can be easily checked that

the excess demand function Zh can be written as Zh (r) = αh + βh/
(∑S

s=1 rs
)

where

αh and βh are constants. Then ∂2

∂r1∂r2 Z (r̄) = ∂2

∂(r1)2
Z (r̄) and so ζ = 0 (and ξh =

13



∂2ūh

∂(x1)2
(Zh (r̄))2 < 0). Hence by Corollary 8, for every household, the level of equilibrium

utility Ûh (r−S) is locally maximized at r−S = r̄−S.

Examples where a household’s utility is locally minimized at the non-sunspot equi-

librium can be constructed.

Example 11 Let H = 2, and set u1 (x, y) := log (x) + log (y) and e1 = (1, 0). Then, by

direct calculation, we see that for any r >> 0, Z1 (r) = 1
2 . Thus the derivatives of the

market excess demand function coincide with those of Z2. Given this freedom, it is then

possible to find Z2 (and underlying utility function u2) such that ξ2 > 0. For instance,

set u2 (x, y) := log (x) + log (y) and e2 = (0, 1), and by direct computations it can be

shown that ξ2 > 0: this is the leading example of Goenka-Préchac (2006).

Note that it would be easier to construct an example, if utility functions are not

identical to each other in the example above. Since the characterization result (Lemma

6) does not require any symmetry across the households, we contend that the existence

of households who are benefitted by sunspots does not depend on the symmetry of

households’ characteristics.

4 Discussion: Who will be benefitted from sunspots?

Proposition 6 shows that the local property of Ûh at the non-sunspot equilibrium is

captured by a single parameter ξh defined in (15). We shall first interpret the parameter

ξh. Re-writing (15), we have

ξh

∂ūh

∂x1

=

∂2ūh

∂(x1)2

∂ūh

∂x1

(Zh (r̄))2 + Zh (r̄) ζ. (21)

The first term of the right hand side of (21) is always negative by risk aversion.

Notice that this term is determined by household h’s preferences given the (non-random)

real return r̄ at the non-sunspot equilibrium. So this can be interpreted as the direct

negative risk effect of increasing volatility. The second term on the other hand represents

the general equilibrium effect through markets, since the parameter ζ defined in (11) is

determined by the market excess demand. The parameter ζ is multiplied by individual

excess demand, and therefore by Proposition 6, other things being equal, it tends to be

those households with large net trade is large who are possibly benefitted from sunspots.

14



Dividing both sides of (21) by (Zh (r̄))2, and applying Proposition 6, we know that

the beneficiaries are exactly those households for which the condition

−

∂2ūh

∂(x1)2

∂ūh

∂x1

<
1

Zh (r̄)
ζ (22)

holds. Note that −
(

∂2ūh

∂(x1)2
/∂ūh

∂x1

)
Zh (r̄) is the coefficient of relative risk aversion, relative

to no trade. So for instance when ζ < 0 and Zh (r̄) < 0, it is the households with high

enough coefficient of risk aversion who is benefitted from sunspots, other things being

equal.

As is shown in Corollary 8, all the households on one side of the market dislike

sunspots, and the households on the other side may or may not be benefitted from

sunspots. Indeed, in the Goenka-Préchac model of symmetric two households, the bor-

rower, i.e., the household with Zh (r̄) < 0, is benefitted under some assumption.

Is this general? That is, does it tend to be borrowers who are benefitted from

sunspots? We shall study this question in the rest of this section.

The question is whether ζ ≤ 0 holds under some reasonable conditions, in view of

(22). Recall that by Lemma 5, we know ζ ≤ 0 holds if and only if D2φ (r̄−S) is negative

semi-definite, which should be equivalent to the average equilibrium returns falling at

the margin by Lemma 3. We shall formally state this point below.

Lemma 12 D2φ (r̄) is negative semi-definite if φ (r−S) ≤ Sr̄ −
∑S−1

s=1 rs holds for any

small enough r−S in R. D2φ (r̄) is positive semi-definite if φ (r−S) ≥ Sr̄−
∑S−1

s=1 rs holds

for any small enough r−S in R.

Proof. If for any small enough r−S in R, φ (r−S) ≤ Sr̄ −
∑S−1

s=1 rs holds, r−S = r̄−S

is a maximizer of the function φ (r−S) +
∑S−1

s=1 rs, since φ (r̄−S) = r̄. Thus the Hessian

matrix of this function, which is just D2φ (r̄), must be negative semi-definite. The other

statement can be shown analogously.

This result suggests the following comparative statics question. Starting from a fixed,

sure return r̄, suppose that the returns get slightly risky in the sense that the average

returns is unchanged. Notice that any of such a small risk around r̄ can be written as(
r−S , Sr̄ −

∑S−1
s=1 rs

)
. We shall discuss two conditions to determine the sign of ζ.

The first condition is about ∂
∂r1 Z. First recall that that t 7→ Z (t, t, ..., t) corresponds

the standard market excess demand function in an exchange economy with two goods.
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The standard law of demand corresponds to Z is increasing in r’s: increasing r means

that the relative price of period 0 consumption increases, and thus household saves more.

So let us say that the excess demand respects the law of demand at the non-sunspot

equilibrium if ∂
∂r1 Z (r̄) > 0. Note that by continuity, this means that Z is increasing

function of r around r̄. Obviously the law of demand is respected for all household, i.e.,

∂
∂r1 Zh (r̄) > 0 for all h, then clearly ∂

∂r1 Z (r̄) > 0 holds.

The law of demand is not a general property in our general equilibrium model. But if

there is a unique certainty equilibrium, i.e., Z (t, t, ..., t) = 0 if and only if t = r̄, then the

graph of this function cut zero from below once, and so d
dt

Z (r̄) =
∑S

s=1
∂Z(r̄)
∂rs > 0 holds.

In general, there exists at least one certainty equilibrium where the law of demand is

respected.

The second condition states the behavior of the excess demand against small risks.

Let us say that the excess demand exhibits risk-sensitivity if for any r in a neighborhood

of r̄, Z
(
r−S , Sr̄ −

∑S−1
s=1 rs

)
≥ Z (r̄) holds.

This condition does not hold in general, and we believe it tends to be more stringent

than the law of demand. However, a simple foundation can be given from the view point

of an individual portfolio choice problem. To elaborate on this, let us study the simple

portfolio problem (2) when u is a discounted sum of a concave utility function vh; that

is uh (x, y) = vh (x) + δhvh (y).8 Then the first order condition (3) simplifies and it can

be written as follows:

−v′h
(
e0
h − zh

)
+

S∑

s=1

1

S
v′h

(
e1
h + zhrs

)
rs = 0. (23)

The second term in the left hand side of (23) is the expected value of the function

x 7→ v′h
(
e1
h + zhx

)
x with respect to a random variable r. Now suppose the expected

value of r is r̄, i.e.,
∑S

s=1 rs = Sr̄. By the usual argument of risk aversion, if the function

ηh (x; zh) := v′h
(
e1
h + zhx

)
x is convex in x,

∑S
s=1

1
S
v′h

(
e1
h + zhrs

)
rs ≥

∑S
s=1

1
S
v′h

(
e1
h + zhr̄

)
r̄.

On the other hand, given vector r >> 0, the left hand side of (23) is decreasing in zh.

So we conclude that Zh (r) > z̄h := Zh (r̄) if r is close enough to r̄, if ηh (x; zh) is convex

in a neighborhood of z̄h.

By differentiating twice, we see that a sufficient condition for the convexity of ηh (x; zh)

8The following comparative statics analysis is very standard. See for instance Chapter II of Gollier

(2001).
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in x around r̄ is v′′′h

(
e1
h + z̄hr̄

)
(z̄h)2 r̄ + 2v′′h

(
e1
h + z̄hr̄

)
z̄h > 0. When household h is pru-

dent, that is, v
′′′

h > 0, then the inequality is automatically satisfied if z̄h < 0, i.e., h is

a borrower. When z̄h > 0, then the convexity depends on the size of relative prudence:

dividing the inequality by zh and collecting terms, we have

−
v′′′h

(
e1
h + z̄hr̄

)

v′′h
(
e1
h + z̄hr̄

) z̄hr̄ > 2. (24)

That is, the coefficient of relative prudence (relative to net trade) at the equilibrium

consumption is more than 2.

To sum up, if all the house holds are prudent, and the condition (24) holds for every

h, then every household’s excess demand exhibits risk-sensitivity, and so does the market

excess demand.

The next result gives a condition where if there is a household who is benefitted

from sunspots, it must be a borrower.

Proposition 13 Suppose at the non-sunspot equilibrium r̄, the excess demand function

respects the law of demand, and exhibits risk-sensitivity. Then D2φ (r̄) is negative semi-

definite, i.e., ζ ≤ 0.

Proof. Since every household is a risk-sensitive investor, Z
(
r−S , Sr̄ −

∑S−1
s=1 rs

)
≥

Z (r̄) = 0, that is, there is an excess demand for the asset for small risk
(
r−S , Sr̄ −

∑S−1
s=1 rs

)
.

Since around r̄ the law of demand holds and Z is locally an increasing function, the re-

turn in state S must become less attractive: i.e.,., φ (r−S) ≤ Sr̄ −
∑S−1

s=1 rs. Thus the

conclusion follows from Lemma 12.

5 Relation to The Goenka-Préchac Condition.

With our results in hand, we shall now examine the Goenka-Préchac model of sym-

metric two households (see examples 2) more closely. Goenka and Préchac (2006) have

shown that household 2’s equilibrium utility is locally minimized at the non-sunspot

equilibrium, hence household 2 is benefitted from sunspots, if

v′′
(

1

2

)
+

(
α −

1

2

)
v′′′

(
1

2

)
> 0, (25)

holds.
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By symmetry, there is a unique equilibrium in this model, where both households

consume 1
2 in both periods. Write ε :=

(
α − 1

2

)
> 0 which is nothing but the equilibrium

excess demand of household 1, the saver. Recall that v′′ < 0 and α > 1
2 , dividing both

sides of (25) by −v′′
(

1
2

)
> 0, we get

−
v′′′

(
1
2

)

v′′
(

1
2

) ε > 1. (26)

That is, one way to read the Goenka-Préchac condition is that the coefficient of relative

prudence (in terms of net trade) of the saver is higher than 1. Goenka and Préchac

interpret (26) as the borrower ’s coefficient of absolute prudence is greater than 1/ε, but

then the threshold depends on the size of trade. These observations are very curious

since the relevant parameter should be the borrower ’s degree of risk aversion relative to

the general equilibrium effect by Proposition 6.

We shall demonstrate below that the condition (25) is in fact the sum of the risk

aversion term and the general equilibrium effect term, and therefore the Goenka-Préchac

condition does correspond to our characterization. We therefore conclude that the two

observations given above are misleading.

In their model the first order condition (3) is reduced to the following:

−Sv′
(
e0
h − z

)
+

S∑

s=1

v′
(
e1
h + zrs

)
= 0. (27)

Since the equilibrium consumption is 1
2 for both households and both periods, all the

derivatives of v are to be evaluated at 1
2 , so from now on we omit the reference to 1

2

to simplify the notation. By differentiating (27) with respect to r1, evaluating at the

unique equilibrium r̄ = 1, we find the first derivative of the excess demand function of

household h is − (v′ + v′′Zh (r̄)) /2Sv′′. Adding these up we have

∂Z

∂r1
(r̄) =

−v′

Sv′′
, (28)

which is always positive. This is of course not surprising since there is a unique non-

sunspot equilibrium in their model and so the law of demand must be satisfied at the

equilibrium.

Differentiating (27) again in rs, s = 1, 2, and evaluating them at r̄, we find the second

derivatives of households’ excess demand functions. Adding them up, omitting tedious
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calculations, we have

∂2Z

∂ (r1)2
(r̄) =

2v′ − v′′′ε2 (S − 1)

S2v′′
, (29)

∂2Z

∂r1∂r2
(r̄) =

2v′ − v′′′ε2

S2v′′
. (30)

Using (28), (29) and (30), the general equilibrium effect ζ in (11) is given as follows:

ζ = −
v′′′

v′
ε2. (31)

Notice that ζ < 0 given prudence v′′′ > 0, so it must be the borrower (household 2)

if some household is ever benefitted from sunspots under prudence. The condition (24)

does not matter here because of the symmetry of the model; when v′′′ > 0, household

2 may decrease the demand against risks. But it turns out that household 1’s demand

increases more because they have the same utility function v, and that the aggregate

demand exhibits risk-sensitivity.

Now from (31), we can find ξ2 in (15), which is shown below:

ξ2 = v′′ (−ε)2 + v′ (−ε) ζ

= ε2
(
v′′ + εv′′′

)
.

By Proposition 6, household 2 is locally benefitted from sunspots if (and almost only

if) ξ2 > 0, but this is exactly the condition (31) says. This is what we wanted to

demonstrate.

6 Concluding Remarks

To conclude, let us provide a few remarks concerning the restriction of our analysis.

First of all, the assumption of equally probable sunspots is not restrictive. Notice

that our analysis does not exclude sunspot equilibria where the return rs is constant on

a subset of states. Since the method of our proofs does not depend on the number of

states directly, our results can be readily translated for the case where probabilities are

rational numbers. We believe that applying continuity, the case of irrational numbers

can be treated as well.

If there are multiple consumption goods, the set of sunspot equilibria is still parametrized

by S − 1 variables. A complication arises due to changes in equilibrium relative prices of
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goods within each spot markets. This will make the analysis potentially involved, but it

appears to us that the nature of the analysis will not change. Thus we conjecture that

similar results obtain if the assumption of a single consumption good is relaxed.

In the case of multiple goods, however, there is an extension which is not covered

in our analysis, which is the case of a real asset. In our case the sunspot equilibria

are parametrized by real returns, but this will not happen if the real return is fixed

independent of sunspots. Indeed, when there is one consumption good, if the real asset

is fixed, there is no sunspot equilibrium as shown in Mas-Colell (1992).9 But when there

are multiple goods, Gottardi and Kajii (1999) established an existence result of a sunspot

equilibrium: a sunspot equilibrium exists because relative prices of goods may depend

on sunspots, which in effect makes the real return of the single real asset dependent on

sunspots. It is not clear at this point whether or not the technique developed in this

paper can be applied in this case.
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