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Abstract

In an exchange economy in which there is a complete set of markets for macroeconomic risks
but no market for idiosyncratic risks, we consider how the efficient risk-sharing rules for the
macroeconomic risk are affected by the heterogeneity in the consumers’ risk attitudes and
idiosyncratic risks. We provide sufficient conditions under which an idiosyncratic risk increases
cautiousness (the derivative of the reciprocal of the absolute risk aversion), the determinant of
the curvatures of the efficient risk-sharing rules. While the curvature of the risk-sharing rules
at high consumption levels are governed by the consumers’ risk attitudes, the curvature at low
consumption levels depend not only on the risk attitudes but also on the lower tail distributions
of the idiosyncratic risks.

JEL Classification Codes: D51, D58, D81, G11, G12, G13.

Keywords: Efficient risk-sharing rules, relative risk aversion, absolute risk tolerance, Inada
condition, idiosyncratic risks, background risks, incomplete markets.



1 Introduction

The characterization of efficient risk allocation in complete asset markets has been well studied
in the literature. The most celebrated result is the mutual fund theorem: Assume that all con-
sumers have expected utility functions. Define the (absolute) risk tolerance as the reciprocal
of the Arrow-Pratt measure of absolute risk aversion, and call its first derivative (absolute)
cautiousness. Assume also that they have the same probabilistic belief over all states of the
world. It is then easy to establish that at every efficient allocation, each consumer’s realized
consumption levels can be written as a strictly increasing function of realized aggregate con-
sumption levels. This function is called an efficient risk-sharing rule. The theorem then asserts
that if all consumers have a constant, common cautiousness, then their risk-sharing rules are
linear (or, to be more precise, affine). The more general case, in which the cautiousness is not
constant or common, was investigated in the companion paper, Hara, Huang, and Kuzmics
(2006), henceforth HHK, and the references therein. A benchmark result for this case (Propo-
sition 3 of HHK) is that the curvature of the risk-sharing rule and the level of cautiousness
have a one-to-one correspondence. More specifically, the curvature is a linear function of the
difference between the individual consumer’s cautiousness and the representative consumer’s
counterpart.

The characterization of efficient risk allocation in incomplete asset markets is much more
difficult. The reason is that the risk-sharing rules depend not only on the individual consumers’
risk aversion but also on the risks that they cannot hedge due to the incompleteness of asset
markets. Franke, Stapleton, and Subrahmanyam (1998) (henceforth FSS) exploited a nicely
tractable approach to this difficult problem.1 They considered an environment in which two
disjoint types of risks are present. The first one is the macroeconomic risks, which would affect
all consumers’ consumption levels and for which there is a complete set of markets. Hence, via
asset transactions, they can attain, subject to the budget constraint, any consumption pattern
as long as it is a function of the aggregate endowments of the economy. The second type of risks
are idiosyncratic risks. These are risks affecting the individual consumers’ initial endowments,
which are independently distributed from the macroeconomic risks, and for which there is no
asset market at all. Each individual consumers must therefore bear all of his own idiosyncratic
risk.

Mathematically, if an individual consumer with an expected utility function v shares the
risk ζ of the macroeconomic risk and owns the idiosyncratic risk ξ, then his expected utility
equals E(v(ζ + ξ)). By the law of iterated expectation, this can be rewritten E(E(v(ζ + ξ) |
ζ)). Here, by the assumption of stochastic independence between the macroeconomic and
idiosyncratic risks, if we define an induced utility function u by u(x) = E(v(x + ξ)) for every
deterministic consumption level x, then the expected utility can be written as E(u(ζ)). To
characterize efficient risk allocation in this incomplete market setting, therefore, it is sufficient

1Prior to this, for example, Weil (1992) also used the same approach although his model was for the equity
premium and risk-free rate puzzles and imposed ex-ante homogeneity assumptions on consumers’ risk attitudes
and initial endowments.

1



to apply the results on efficient risk allocations in complete markets in which the original utility
function v has been replaced by the induced utility function u. It is for this reason that the
idiosyncratic risks ξ can synonymously be called background risks. It is also at the heart of
the FSS approach. They identified a case in which the curvature of a risk-sharing rule can be
unambiguously characterized (Theorem 3): if all consumers’ original utility functions u exhibit
common constant cautiousness and if some consumers have background risks but others do
not, then the sharing rule for any consumer without background risk is a concave function of
aggregate consumption.

In this paper, we extend their analysis on efficient risk-sharing rules in three ways. We do
not restrict attention to original utility functions being in the class of constant cautiousness
(or, equivalently, hyperbolic absolute risk aversion, HARA for short), and we incorporate two
types of heterogeneity. One is with regards to the consumers’ original utility function and the
other is with regards to the distributions of background risks.

Proposition 3 of HHK identifies cautiousness as the determinant of the curvature of risk-
sharing rules. In our first result (Theorem 1) in this paper, we find sufficient conditions on
the original utility function under which the cautiousness is increased by the presence of a
background risk at any level of consumption. These conditions are met not only by HARA
utility functions, which therefore implies that Theorem 3 of FSS can be derived directly from
this result, but also by other, more general utility functions. More importantly in the present
context, it also points to the directions along which Theorem 3 of FSS cannot be generalized.
Specifically, we show that even in an economy of two consumers who have the same original
utility function and of which one has a riskier background risk than the other in the sense
of second-order stochastic dominance, if the cautiousness of the common original function is
strictly decreasing or if the two background risks are both nonzero, then the consumer with
the less risky background risk may well have a convex, rather than concave, risk-sharing rule.

While no general result in the spirit of Theorem 3 of FSS can be obtained, we can say more
about the behavior of cautiousness and of risk-sharing rules for the cases of very low and very
high realizations of aggregate consumption. Our first result there is that at high aggregate
consumption levels, the effect of the background risks on the curvature of the risk-sharing rules
is almost negligible (Proposition 2) and, as identified in Proposition 3 of HHK, the curvature
is determined solely by the cautiousness of the original utility functions (Proposition 3). The
second result shows that for the curvature at low consumption levels, the lower tail distribution
of the idiosyncratic risk is a key factor (Theorem 2). If it puts a strictly positive probability
on the minimum levels that these risks can attain (as in the case of a discrete random variable
taking finitely many values), then the curvature is again determined solely by the cautiousness
of the original utility functions. On the other hand, if the cumulative distribution function of
the idiosyncratic risk of a consumer is continuous from the right at the minimum level (as in
the case of a continuous random variable), then the curvature depends intricately on the degree
of non-zero coefficients of the Taylor series expansion of the cumulative distribution function.
In particular, the curvature no longer has a one-to-one correspondence with the cautiousness
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of the original utility functions (Proposition 4).
Although our result for high aggregate consumption levels are intuitive, the results for

low aggregate consumption levels are not quite so. The driving force behind them is the
Inada condition of the original utility functions. The condition is often considered merely as a
technical assumption to guarantee the interior consumptions, but it in fact turns out to be an
important property to capture the asymptotic cautiousness of the induced utility functions as
well.

The curvature of the risk-sharing rules do indeed matter to the prediction of equilibrium
prices and allocations. The mutual fund theorem clarifies when the risk-sharing rules are linear
and how the (constant) slopes are related to the individual consumers’ risk attitudes. Whenever
the theorem fails and the risk-sharing rules have nonzero curvatures, one way for consumers
to attain their optimal consumption patterns (implied by their risk-sharing rules) is to buy
or sell options written on the aggregate consumption. As can be seen from Leland (1980),
Brennan and Solanki (1981), and Proposition 5 of Huang (2005), the curvature measures how
much options a consumer should buy or sell in proportion to the consumer’s share in the
aggregate consumption. Moreover, as can easily be derived from equation (3) of Lemma 1
of HHK (which is due to Wilson (1968)), the cautiousness and relative risk aversion of the
representative consumer are the weighted averages of the individual counterparts where the
weights are the slopes of the risk-sharing rules. Nonzero curvatures in the risk-sharing rules
are, therefore, responsible for the variation of the representative consumer’s risk attitudes
as aggregate consumption levels vary. This has important implications on asset pricing, as
explained in HHK. Hara (2006) explored implications in a continuous-time model via Ito’s
Lemma.

This paper is organized as follows. The formal model and preliminary results are presented
in the next section. The effect of the presence of background risks on induced utility functions
for all consumption levels is investigated in Section 3 in which we also investigate the robustness,
by means of examples, of Theorem 3 of FSS by relaxing any one of the main assumptions made
in that theorem. We then show in Section 4 that the asymptotic behavior of the cautiousness
of the induced utility function for high consumption levels is the same as that for the original
utility function. Implications of this result on the risk-sharing rules are also given. Section
5 investigates the asymptotic cautiousness for low consumption levels, and presents the most
intricate result in this paper, on the influence of the lower tail distribution of the background
risk on cautiousness. Again, implications of these results on the efficient risk-sharing rules are
explored. Section 6 concludes, suggesting a future direction of research.

2 Model

There are I consumers, i ∈ {1, . . . , I} . Consumer i has a von-Neumann Morgenstern (also
known as Bernoulli) utility function vi : (ci,∞) → R, where ci > −∞. Note that the domain is
assumed to be bounded from below but not from above. We assume that vi is infinitely many
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times differentiable and satisfies v′i(xi) > 0 and v′′i (xi) < 0 for every xi > ci. As we alluded to
in the introduction, we impose the Inada condition, v′i(xi) → ∞ as xi → ci and v′i(xi) → 0 as
xi → ∞. This condition allows us to apply results in HHK. We also assume, to simplify the
exposition, that the limit lim

xi→ci

si(xi) exists and equals zero, and that the limits lim
xi→∞

s′i(xi) and

lim
xi→ci

s′i(xi) exist and are finite. These assumptions are satisfied by utility functions exhibiting

strictly decreasing linear risk tolerance (or, equivalently, strictly increasing hyperbolic absolute
risk aversion).

Each consumer faces two sources of risks. The first one is the risk about the macroeconomic
risk, which can be completely shared among consumers. This risk is described by a probability
measure space (Ω, F , P ), for which the expectation operator is given by E. The second one is
the idiosyncratic component, which is the risk each consumer must bear without hedging. This
risk is described by a probability measure space (Θ, G , Q), for which the expectation operator
is denoted by EQ. The probability measure space describing the entire risk of the economy
is therefore the product one, (Ω×Θ,F ⊗ G , P ⊗Q), so that the two probability measures P

and Q are stochastically independent. The corresponding expectation operator is denoted by
EP⊗Q.2

We assume that each consumer i owns endowments ξi : Θ → R on the idiosyncratic
component. The cumulative distribution function of ξi is denoted by Gi : R → [0, 1], with
Gi(zi) = Q ({θ ∈ Θ | ξi(θ) ≤ zi}) for every zi ∈ R. For simplicity, we use the following assump-
tions throughout the paper. First, the support of the distribution of Gi is bounded, that is,
there are two numbers ei and ei such that Gi (ei) = 0 and Gi (ei) = 1. Second, ξi has zero mean,

that is,
∫ ei

ei

yi dGi(yi) = 0. The first assumption guarantees that all the expected values that

we consider in the subsequent analysis are well defined and Leibnitz’s rule is applicable, so that
the order of integration and differentiation for smooth functions can be swapped. The second
is a normalization and implies that ei ≤ 0 and ei ≥ 0. Note also that while the idiosyncratic
risks are stochastically independent of the macroeconomic risks, the ξi may well be correlated
with one another.

If ζi : Ω → R is consumer i’s share of the aggregate marketed endowment, his final con-
sumption is ζi + ξi, from he obtains the expected utility level EP⊗Q (vi (ζi + ξi)). By Fubini’s
Theorem, this expected utility equals

E
(
EQ (vi (ζi + ξi))

)
. (1)

Hence, if we define his induced utility function

ui (xi) = EQ (vi (xi + ξi)) ,

then the expected utility level (1) equals E (ui (ζi)). Hence identifying properties of the efficient
2Although we assume throughout the paper that there is a single probability measure Q on Θ, we could easily

accommodate the case in which consumers have differing probabilities on Θ.
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allocations of the aggregate endowment ζ with respect to the original utility functions vi in
the presence of the idiosyncratic risks ξi is equivalent to identifying those with respect to the
induced utility functions ui without any idiosyncratic risk. Since the idiosyncratic risks ξi have
been put in the background of the induced utility function ui, these risk shall henceforth be
referred to as background risks as well.

In this reformulation, the realized consumption level, inclusive of the realized background
risk, must of course be in the domain (ci,∞) almost surely. To guarantee this, we concentrate
on the consumption levels xi > ci − ei. Denote di = ci − ei, then the domain of the induced
utility function ui is (di,∞).

Define the consumer’s original (absolute) risk tolerance, si : (ci,∞) → R++, by

si (xi) = − v′i(xi)
v′′i (xi)

.

This is just the reciprocal of the consumer’s Arrow-Pratt coefficient of absolute risk aversion
ai (xi) = −v′′i (xi)/v′i(xi). The (absolute) risk tolerance of the corresponding induced utility
function ui shall be denoted by ti : (ci,∞) → R++. By Leibnitz’s rule,

ti (xi) = −EQ (v′i (xi + ξi))
EQ (v′′i (xi + ξi))

.

Following the terminology coined by Wilson (1968) the derivative of risk tolerance shall
be called (absolute) cautiousness. The consumer’s original cautiousness is therefore given by
s′i(xi), while the consumer’s induced (absolute) cautiousness is given by t′i(xi) for xi in the
respective domain.

Denote by ψi (xi) the prudence of vi of Kimball (1990):

ψi (xi) = −v′′′i (xi)
v′′i (xi)

.

Also denote by ϕi the prudence of the induced utility function ui, then we have

ϕi (xi) = −EQ (v′′′i (xi + ξi))
EQ (v′′i (xi + ξi))

.

The following relationship among the risk tolerance, prudence, and cautiousness is easy to
prove and yet useful.

Lemma 1 1. For every xi > ci, s′i(xi) = si(xi)ψi(xi)− 1.

2. For every xi > di, t′i(xi) = ti(xi)ϕi(xi)− 1.

In HHK we analyzed efficient risk sharing rules for consumers who were heterogeneous with
respect to their risk-attitudes, but who did not face these idiosyncratic background risks. To
characterize efficient allocations in the present context, all we need is to find implications of
the background risks ξi on the induced utility functions ui. This is the task of this paper.
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The following is a review of HHK. Let d =
∑

di. An infinitely differentiable function
f : (d,∞) → (d1,∞) × · · · × (dI ,∞) is an efficient risk-sharing rule with respect to the in-
duced utility functions ui if there exists a vector of strictly positive utility weights, (λ1, . . . , λI),
such that for every stochastic aggregate endowment ζ of the economy, the social welfare func-
tion

∑
λiE(ui(ζi)) is maximized under the resource constraint

∑
ζi = ζ at (ζ1, . . . , ζI) =

(f1(ζ), . . . , fI(ζ)). This means that the allocation (f1(ζ), . . . , fI(ζ)) is a Pareto-efficient allo-
cation of the macroeconomic ζ with respect to the induced utility functions (u1, . . . , uI). This
is equivalent to saying that (f1(ζ) + ξ1, . . . , fI(ζ) + ξI) is a constrained efficient allocation of
ζ +

∑
ξi with respect to the original utility functions (v1, . . . , vI) subject to the constraint

that each consumer i must consume his own idiosyncratic risk ξi. Corresponding to this social
welfare maximization problem, we can define an expected utility function u : (d,∞) → R of the
representative consumer so that u(x) =

∑
λiui(fi(x)) and hence E(u(ζ)) =

∑
λiE(ui(fi(ζ))).

Denote by t : (d,∞) → R the risk tolerance of u.
The following lemma was more or less established in HHK.

Lemma 2 Assume that ui satisfies the Inada condition for every i.

1. For every i and x ∈ (
d, d

)
,

f ′′i (x)
f ′i(x)

=
1

t(x)
(
t′i (fi(x))− t′(x)

)
. (2)

2. Suppose that lim
xi→∞

t′i(xi) exists (and may be ∞) for every i. Define I as the set of

consumers i such that lim
xi→∞

t′i(xi) ≥ lim
xj→∞

t′j(xj) for every j. Then lim
x→∞ t′(x) exists and

equals lim
xi→∞

t′i(xi) for every i ∈ I. Moreover, both lim
x→∞

∑

i∈I

fi(x)/x and lim
x→∞

∑

i∈I

f ′i(x)

exist and equal 1. Furthermore, f ′′i (x) < 0 for every i 6∈ I and every sufficiently large
x > d.

3. Suppose that lim
xi→di

t′i(xi) exists (and may be ∞ or −∞) for every i. Define I as the set

of consumers i such that lim
xi→ci

t′i(xi) ≤ lim
xj→cj

t′j(xj) for every j. Then lim
x→d

t′(x) exists

and equals lim
xi→di

t′i(xi) for every i ∈ I. Moreover, both lim
x→d

∑

i∈I

(fi(x)− di) / (x− d) and

lim
x→d

∑

i∈I

f ′i(x) exist and equal 1. Furthermore, f ′′i (x) > 0 for every i 6∈ I and every

sufficiently small x > d.

Proof of Lemma 2 Part 1 is nothing but Proposition 3 of HHK. The first statement of part
2 is part 2 of Proposition 10 of HHK. The second statement is part 1 of the same proposition.
The third statement follows from part 1 of this lemma, the first statement of this part, and the
fact, proved in that paper, that fi(x) →∞ as x →∞. The third part follows analogously. ///
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3 Cautiousness and Risk-Sharing Rules for All Consumption

Levels

3.1 Cautiousness

Gollier and Pratt (1996, Propositions 2 and 3) gave sufficient conditions under which, if ξi

has a positive variance, then ti (xi) < si (xi), that is, the background risk makes the consumer
less risk tolerant (more risk averse). They called utility functions having this property risk
vulnerable. The following result provides sufficient conditions under which t′i (xi) ≥ s′i (xi).

Theorem 1 If s′i(xi) ≥ 0, s′′i (xi) ≤ 0, and s′′′i (xi) ≥ 0 for every xi > ci, then t′i(xi) ≥ s′i(xi)
for every xi > di. The inequality is strict if, in addition, s′i(xi) 6= 0 for every xi > ci.

This theorem says that at any given consumption level xi > di, the cautiousness t′i(xi)
of the induced utility function ui is not exceeded by the cautiousness s′i(xi) of the original
utility function vi if the cautiousness s′i is a non-negative, non-increasing, and convex function
of consumption levels. The first condition sign is nothing but non-increasing absolute risk
aversion (DARA). The second sign condition is that the risk tolerance si be concave, which
implies that the absolute risk aversion ai is convex.3

Proof of Theorem 1 Let xi > di. By Lemma 1 and direct calculation,

t′i (xi) =
EQ (v′i (xi + ξi))EQ (v′′′i (xi + ξi))

(EQ (v′′i (xi + ξi)))
2 − 1

= EQ

(
v′i (xi + ξi) v′′′i (xi + ξi)

(v′′i (xi + ξi))
2

(v′′i (xi + ξi))
2

v′i (xi + ξi)

)
EQ (v′i (xi + ξi))

(EQ (v′′i (xi + ξi)))
2 − 1

= EQ

(
(
s′i (xi + ξi) + 1

) (v′′i (xi + ξi))
2

v′i (xi + ξi)

)

×EQ

(
v′i (xi + ξi)
−v′′i (xi + ξi)

−v′′i (xi + ξi)
EQ (−v′′i (xi + ξi))

)
1

EQ (−v′′i (xi + ξi))
− 1.

3The converse, however, does not hold. Even when the absolute risk aversion is convex, the absolute risk
tolerance may not be concave. An undesirable implication of concave absolute risk tolerance, which is not
implied by convex absolute risk aversion, is increasing relative risk aversion: Let ci = 0, then, by the Inada
condition, si (xi) → 0 as xi → 0. Thus the concavity of si implies that its elasticity is not greater than one;
and it is strictly less than one beyond any point at which s′′i is strictly negative. But it can be shown that the
elasticity is strictly less than one if and only if the first derivative of the relative risk aversion is strictly positive.
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By applying Jensen’s inequality to the hyperbolic function and noting that the function zi 7→
−v′′i (xi + zi) /EQ (−v′′i (xi + ξi)) has the property of a Radon-Nikodym derivative, we obtain

EQ

(
v′i (xi + ξi)
−v′′i (xi + ξi)

−v′′i (xi + ξi)
EQ (−v′′i (xi + ξi))

)

≥ 1

EQ

(−v′′i (xi + ξi)
v′i (xi + ξi)

−v′′i (xi + ξi)
EQ (−v′′i (xi + ξi))

)

=
EQ (−v′′i (xi + ξi))

EQ

(
(v′′i (xi + ξi))

2

v′i (xi + ξi)

) ,

where the weak inequality ≥ holds as a strict inequality unless s′i (xi + ξi) = 0. Thus

t′i (xi) ≥ EQ

(
(
s′i (xi + ξi) + 1

) (v′′i (xi + ξi))
2

v′i (xi + ξi)

)
1

EQ

(
(v′′i (xi + ξi))

2

v′i (xi + ξi)

) − 1.

Since −v′′i (xi + zi) /v′i (xi + zi) and −v′′i (xi + zi) are non-increasing functions of zi, so is their
product (v′′i (xi + zi))

2 /v′i (xi + zi). Since s′′i ≤ 0, s′i (xi + zi) is also a non-increasing function
of zi. Thus

EQ

(
(
s′i (xi + ξi) + 1

) (v′′i (xi + ξi))
2

v′i (xi + ξi)

)
≥ EQ

((
s′i (xi + ξi) + 1

))
EQ

(
(v′′i (xi + ξi))

2

v′i (xi + ξi)

)
.

Hence
t′i (xi) ≥ EQ

(
s′i (xi + ξi) + 1

)− 1 = EQ
(
s′i (xi + ξi)

)

Finally, since s′′′i (xi + zi) ≥ 0, s′i (xi + zi) is a convex function of zi. Thus, by Jensen’s inequal-
ity, EQ (s′i (xi + ξi)) ≥ s′i (xi), which completes the proof. ///

The sign restrictions on the first two derivatives of si are sufficient for the original utility
function vi to be risk-vulnerable in the sense of Gollier and Pratt (1996). The sign restrictions
on the first three derivatives of si also imply that the prudence of the induced utility function
exceeds the prudence of the original utility function, that is, ϕi(xi) ≥ ψi(xi) for all xi >

di. Indeed, Theorem 1 established that t′i(xi) ≥ s′i(xi), which is equivalent to ϕi(xi)ti(xi) ≥
ψi(xi)si(xi) by Lemma 1. Risk-vulnerability means that ti(xi) ≤ si(xi). These two inequalities
together imply that ϕi(xi) ≥ ψi(xi).

To obtain t′i(xi) > s′i(xi) locally, it is, of course, sufficient that the three conditions are
satisfied for the range of the background risk only, that is, for all zi such that xi + ei ≤ zi ≤
xi + ei. However, if we assume the three conditions to hold globally, the assumption of DARA
(s′i being always nonnegative) becomes redundant. Indeed, suppose then that there were to
exist an x0 > ci such that s′i(x0) < 0. Let ε ∈ (0,−s′i(x0)). Then, by the assumption that
s′′i (xi) ≤ 0 for all xi ≥ ci, s′i(xi) ≤ −ε < 0 for all xi ≥ x0. But then there must be an x̄i such
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that si(xi) < 0 for all xi > x̄i. We thus arrive at a contradiction.
The conditions for Theorem 1 satisfied by every HARA utility function, with the second

and third derivatives being always zero.

Assumption 1 There exist a τi ∈ R and a γi ∈ R++ such that si (xi) = τi + γixi for every
xi > ci.

Corollary 1 Under Assumption 1, if Var(ξi) > 0, then t′i (xi) > s′i(yi) for every xi > di and
every yi > di

Corollary 1 shows that if the cautiousness s′i of the original utility function vi is constant,
then we have t′i(xi) > s′i(yi) regardless of the choice of xi > di and yi > di. Although Theorem
1 still holds if the cautiousness is strictly decreasing, we then lose such unambiguous ranking
in cautiousness between the original and the induced utility functions. Suppose, for instance,
that the original utility function is given by vi(xi) = ln (1− exp(−xi)). It is easy to check
that v′i(xi) > 0 and v′′i (xi) < 0 for every xi > 0, and that the Inada condition is satisfied.
Then the risk tolerance is si(xi) = 1 − exp(−xi) and the cautiousness is s′i(xi) = exp(−xi),
which is exponentially decreasing. Moreover, s′′i (xi) < 0 and s′′i (xi) > 0, and hence si satisfies
the conditions of Theorem 1. Consider two consumers. The first consumer has a background
risk, which takes values 1 or −1 with probability 1/2 each, while the second consumer has no
background risk. Figure 1 illustrates that both the original cautiousness s′i (solid curve) as
well as the induced cautiousness t′i (dashed curve) are strictly decreasing. While the induced
cautiousness is higher than the original cautiousness for every given level of consumption,
the induced cautiousness at sufficiently high levels of consumption is in fact smaller than the
original cautiousness at sufficiently low levels of consumption.

While Theorem 1 compares the cautiousness of the original utility function and the induced
utility function, it has nothing to say on the comparison of the cautiousness of two induced
utility functions, for which one background risk is riskier than the other in the second order
stochastic dominance relation. To see this, consider the following example. Assume that
both consumers’ original utility functions are vi(xi) = −x−3

i /3, exhibiting constant relative
risk aversion 4. The first consumer has a background risk that takes values 1 or −1 with
probability 1/2 each (variance 1), while the second consumer has a background risk that takes
values 1, 0, and −1 with probability 1/3 each (variance 2/3). Note that the second consumer’s
background risk second-order stochastically dominates the first consumer’s background risk.

The cautiousness ti for the induced utility functions ui are depicted in Figure 2. It shows
that cautiousness for each consumer increases up to a point, after which it decreases; and that
neither is uniformly higher than the other.

3.2 Risk-Sharing Rules

The main qualitative result (Theorem 3) of FSS can be immediately derived from Corollary 1.
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Figure 1: Cautiousness of a utility function exhibiting exponentially decreasing cautiousness
without background risk, and the same utility function with a two-point (probability 1/2 on
−1 and 1 each) background risk.

Proposition 1 (Theorem 3 of FSS) Under Assumption 1, suppose in addition that γ1 =
· · · = γI , there is a consumer i such that Var(ξi) = 0, and there is another consumer j such
that Var(ξj) > 0. Then, for every consumer i with Var(ξi) = 0, we have f ′′i (x) < 0 for every x.

Proof of Proposition 1 If Var(ξi) = 0, then, by part 1 of Lemma 2 and Corollary 1,
f ′′i (x)/f ′i(x) ≤ f ′′j (x)/f ′j(x) for every j, and strict inequality for some j, as Var(ξj) > 0 for
some j. We cannot have f ′′i (x) ≥ 0 for any x, because, if we had, then f ′′j (x) ≥ 0 for every j,
with strict inequality for some j, which would contradict

∑
j f ′′j (x) = 0. Hence f ′′i (x) < 0 for

every x. ///

Two crucial assumptions of Proposition 1 (Theorem 3 in FSS) are that the original utility
functions exhibit constant cautiousness (which is, in addition, assumed to be common across
consumers) and that there exists at least one consumer who is not exposed to any background
risk. In this subsection, we show, by using the two examples of the preceding subsection, that if
we relax either of these two assumptions, then the proposition loses its validity. This is true even
when all consumers in the economy have the same original utility function.4 In these examples,

4It is easy to see that if consumers have different original utility functions then generally whether a consumer
has a concave or convex risk-sharing rule depends also on the now different levels of original cautiousness and
not solely on the background risk.
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Figure 2: Cautiousness of a utility function exhibiting constant relative risk aversion 4 without
background risk, the same utility function with a two-point (probability 1/2 on −1 and 1 each)
background risk, and the same utility function with 3-point background risk (probability 1/3
on −1, 0, and 1 each).

the values of the utility weights λi become crucial for the determination of the curvature of
sharing rules.5 This is in stark contrast with our results for high and low consumption levels
in sections 4 and 5, Theorem 3 of FSS, all the results in HHK, and the mutual fund theorem,
which hold for all specifications of utility weights and thus for all efficient risk-sharing rules.

Let us now present our first class of examples. We assume that both consumers have
the same original utility function vi(xi) = ln (1− exp(−xi)) as discussed above. As before
(see Figure 1) the first consumer has a background risk, which takes values 1 or −1 with
probability 1/2 each, while the second consumer has no background risk. Since t2(x2) = s2(x2),
t′1(xi) > t′2(xi) for every xi > 0 by Theorem 1. This means that in the presence of the
background risk, the first consumer is more cautious than the second whenever they enjoy the
same consumption level.

According to (2), f ′′1 (x) > 0 > f ′′2 (x), that is, the risk-sharing rule for the first consumer is
locally convex and that for the second consumer is locally concave, if and only if t′1(f1(x)) >

t′2(f2(x)), that is, the first consumer is more cautious than the second, when their consumption
levels are as implied by the sharing rules fi. Recall here that the sharing rules do depend on

5If the efficient risk-sharing rule corresponds to an equilibrium allocation, then the utility weights depend, in
turn, on initial endowments.
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the utility weights λi and hence the consumers do not necessarily enjoy the same consumption
level. We are thus led to consider three cases, λ1/λ2 ∈ {1, 2, 3}. The results are demonstrated
in Figures 3 and 4. When λ1/λ2 = 1, the risk-sharing rule of the first consumer, who has
a background risk, is uniformly convex; when λ1/λ2 = 3, it is uniformly concave; and when
λ1/λ2 = 2, it is convex up to a unique inflection point, beyond which it is concave.

This class of examples illustrates a weakness of Proposition 1 (Theorem 3 of FSS). Since
all consumers are assumed to have the same constant cautiousness, any consumer with no
background risk has a lower cautiousness than any consumer with a background risk, regardless
of their individual consumptions levels, and hence regardless of the utility weights λi and
aggregate consumption levels x. On the other hand, even if a consumer with no background
risk has a lower cautiousness than a consumer with a background risk whenever they enjoy
the same consumption level, the former may in fact be higher than the latter when their
consumption levels are different. The difference can indeed arise, and this accounts for our
finding that the curvature of the sharing rules depends quite sensitively on the choice of utility
weights λi and aggregate consumption level x.

Let us now move on to the second class of examples. We assume that both consumers’
original utility functions are vi(xi) = −x−3

i /3, exhibiting constant relative risk aversion 4.
The first consumer has a background risk that takes values 1 or −1 with probability 1/2 each
(variance 1), while the second consumer has a background risk that takes values 1, 0, and −1
with probability 1/3 each (variance 2/3). This implies that the second consumer’s background
risk second-order stochastically dominates the first consumer’s background risk. This is the
example with a comparison between the original and induced cautiousness given in Figure 2,
which shows that an SOSD ranking of consumers’ background risks does not in general lead
to a ranking of the consumers’ levels of cautiousness. As in our first class of examples, the
curvatures of the risk-sharing rules depend on the weights λi. We considered three cases,
λ1/λ2 ∈ {1/3, 1, 3}. The results are demonstrated in Figures 5 and 6. When λ1/λ2 = 1/3
and when λ1/λ2 = 1, the risk-sharing rule of the first consumer, who has a larger background
risk, is concave up to a unique inflection point after which it is convex; when λ1/λ2 = 3, it is
uniformly concave.

Since Proposition 1 (Theorem 3 of FSS) is concerned only with the extreme case where
at least one consumer has no background risk, it would be natural to hope to extend the
proposition to the case where two consumers’ background risks are comparable according to
second-order stochastic dominance. This class of examples, however, dashes such a hope.
The underlying reasoning is that even if we start with an original utility function exhibiting
constant cautiousness, the presence of one background risk makes the cautiousness increase up
to some point, after which it decreases. This non-monotonicity in cautiousness makes Theorem
1 inapplicable to predict the change in cautiousness when a mean-preserving spread is added.
The result is then that the curvature of the risk-sharing rules depends sensitively on the utility
weights λi and the aggregate consumption level x.
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While these examples demonstrate that no broad generalizations of Proposition 1 are pos-
sible, one can obtain more insight into the behavior of the induced cautiousness as well as that
of the risk-sharing rules for the limits when aggregate consumption tends to its lowest and its
highest values, respectively. This is done in the next two sections.

4 Cautiousness and Risk-Sharing Rules for High Consumption

Levels

The following proposition identifies the asymptotic behavior of the cautiousness t′i (xi) as xi →
∞.

Proposition 2 If lim
xi→∞

s′i (xi) > 0, then lim
xi→∞

t′i (xi) exists and equals lim
xi→∞

s′i (xi), and u′i(xi) →
0 as xi →∞.

Proof of Proposition 2 Let xi > di and Hi be the probability measure defined in the proof
of Theorem 1. Then, by the mean value theorem, there exist a z1

i ∈ [ei, ei] and a z2
i ∈ [ei, ei]

such that si(xi + z1
i ) = EQi (si (xi + ξi)) = ti(xi) and ψi(xi + z2

i ) = EQi (ψi (xi + ξi)) = ϕi(xi).
Hence, by Lemma 1,

t′i (xi) = ti (xi) ϕi (xi)− 1

= si

(
xi + z1

i

)
ψi

(
xi + z2

i

)− 1

=
si

(
xi + z1

i

)

si

(
xi + z2

i

) (
s′i

(
xi + z2

i

)
+ 1

)− 1.

Write γi = lim
xi→∞

s′i (xi). By assumption, s′i
(
xi + z2

i

)
+ 1 → γi + 1 as xi → ∞. Moreover,

si(xi) →∞ as xi →∞ and |si(xi + z1
i )− si(xi + z2

i )| ≤ 2γi(ei − ei) for every sufficiently large

xi. Hence
si

(
xi + z1

i

)

si

(
xi + z2

i

) → 1 as xi →∞. Thus t′i (xi) → γi.

The upper side of the Inada condition, u′i(xi) → 0 as xi → ∞, follows from u′i(xi) ≤
v′i(xi + ei) and v′i(xi + ei) → 0 as xi →∞. ///

Proposition 2 shows that its asymptotic behavior of the cautiousness of the induced utility
function, as the consumption level tends unboundedly large, is the same as the cautiousness of
the original utility function.

The implications of Proposition 2 on the risk-sharing rules are given in the following propo-
sition.

Proposition 3 Define I as the set of consumers i such that lim
xi→∞

s′i(xi) ≥ lim
xj→∞

s′j(xj) for

every j. Then, for every efficient risk-sharing rule f and the corresponding representative
consumer’s cautiousness t′, lim

x→∞ t′(x) exists and equals lim
xi→∞

s′i(xi) for every i ∈ I, both

lim
x→∞

∑

i∈I

fi(x)/x and lim
x→∞

∑

i∈I

f ′i(x) exist and equal 1, and f ′′i (x) < 0 for every i 6∈ I and

every sufficiently large x > d.
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This proposition can be proved by Proposition 2 and part 2 of Lemma 2. The following
proposition is the main result, which is concerned with low consumption levels.

5 Cautiousness and Risk-Sharing Rules for Low Consumption

Levels

In this section we present the second main result of this paper, which is concerned with the
asymptotic behavior of cautiousness as the consumption levels tend to the minimum level di.
We will see that if the cumulative distribution function Gi is polynomial on the right side of
its minimum value ei, then the asymptotic cautiousness, lim

xi→di

t′i(xi), depends on the rate of

convergence of the distribution function as xi → ei from right, as measured by the minimum
degree of non-zero coefficients of the polynomial. By saying that vi satisfies Assumption 1
on

(
ci, ci + δ

]
with δ > 0, we mean that there exist a τi ∈ R and a γi ∈ R++ such that

si (xi) = τi + γixi for every xi ∈
(
ci, ci + δ

]
.

Theorem 2 Suppose that there exist a δ > 0 such that vi satisfies Assumption 1 on
(
ci, ci + δ

]
,

and that there exists a sequence (κ0, κ1, κ2, . . . ) of real numbers such that κn = 0 for every
sufficiently large n and

Gi(zi) =
∞∑

n=0

κn
(zi − ei)

n

n!
(3)

for every zi ∈
[
ei, ei + δ

]
. Let Ni be the nonnegative integer such that κNi 6= 0 and κn = 0 for

every n < Ni. If Niγi < 1, then u′i(xi) →∞ as xi → di, and lim
xi→di

t′i(xi) exists and equals

γi

1−Niγi
.

The first condition of this theorem says that the original utility function vi is a HARA-
utility function on some lower tail interval of its domain (ci,∞). In Remark 2 after the proof
of this theorem, we will explain how to dispense with this assumption.

The second condition says that the cumulative distribution function Gi is a polynomial on
the right side of ei. The nonnegative integer Ni designates the minimum degree of nonzero
coefficients of the polynomial. Since Gi(zi) > 0 for every zi ∈

(
ei, ei + δ

]
, there must be such

an Ni, and it must satisfy κNi > 0. In Remark 1 after the proof of the theorem, we will explain
why it is difficult to weaken this assumption to the assumption that Gi is merely real analytic,
so that κn = 0 for possibly infinitely many n. If κ0 > 0, then Ni = 0, Gi is not continuous
from left at ei, and κ0 equals the probability that the background risk takes ei. On the other
hand, if κ0 = 0, then Ni ≥ 1, Gi is continuous from left at ei, and Ni equals the minimum
degree of differentiation for which the right derivative of Gi at ei is nonzero. Note that this
condition accommodates the case in which the background risk is a discrete random variable
with only finitely many possible realizations: We can take δ to be smaller than the difference
between the smallest and the second smallest realizations and κn = 0 for every n ≥ 0.
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The third condition, Niγi < 1, is a joint assumption on the original utility function vi and
the cumulative distribution function Gi. This imposes no restriction on vi if Ni = 0, that
is, there is a strictly positive probability on the realization on ei. Otherwise, it requires the
cautiousness γi be smaller than the reciprocal of the minimum degree of nonzero coefficients
of the polynomial for Gi. Without this condition, the induced utility function ui may not
satisfy the lower side of the Inada condition. Note that these conditions do not impose any
restriction on the variance of the idiosyncratic risks or on the value of κNi , except that it is
strictly positive. What this means, for the case in which Gi is a uniform distribution and
κn = 0 for every n 6= 1, is that the asymptotic cautiousness does not depend on the length of
the support.

The conclusion of the theorem is that we need to multiply 1 − Niγi to the asymptotic
cautiousness of the original utility function vi to obtain the asymptotic cautiousness of the
induced utility function ui. The latter is therefore larger. Also, the thinner the lower tail
distribution of Gi, the larger the multiplier. If ci = 0, then γi equals the reciprocal of the
relative risk aversion. If 0 < Niγi < 1, then the relative risk aversion is greater than Ni in the
limit as the consumption level is close to zero.

The Inada condition, u′i(xi) →∞ as xi → di, is also guaranteed by Theorem 2. In fact, it
is guaranteed by the conditions of Proposition 3 of Huang (2002a), which are weaker than the
conditions of this theorem. However, we are not sure if his conditions guarantee that the limit
of its cautiousness t′i exists as the consumption level converges to the minimum subsistence level
di. Since the existence of this limit is needed to characterize the curvature of the risk-sharing
rules near the minimum subsistence level, we opt for the stronger conditions.

The proof of the theorem is relegated to the appendix. We now turn to its implications on
the risk sharing rules.

Proposition 4 Suppose that the same set of assumptions as in Theorem 2 is met for every
consumer i. Define I as the set of consumers i such that

γi

1−Niγi
≤ γj

1−Njγj

for every j. Then, for every efficient risk-sharing rule f and the corresponding representative
consumer’s cautiousness t′, both lim

x→d
t′(x) exists and equals γi/(1 − Niγi) for every i ∈ I,

lim
x→d

∑

i∈I

(fi(x)− di) / (x− d) and lim
x→d

∑

i∈I

f ′i(x) exist and equal 1, and f ′′i (x) > 0 for every i 6∈ I

and every sufficiently small x > d.

This can be proved by Theorem 2 and part 3 of Lemma 2.
A special case of interest is where the original utility functions exhibit constant relative risk

aversion. In this case, Propositions 3 and 4 can be merged into a simple proposition.

Corollary 2 Assume that for every i:

1. vi exhibit constant relative risk aversion βi > 0.
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2. There exist a δ
i
> 0 and a sequence (κi

0, κ
i
1, κ

i
2, . . . ) of real numbers such that κi

n = 0 for
every sufficiently large n and

Gi(zi) =
∞∑

n=0

κi
n

(zi − ei)
n

n!

for every zi ∈
[
ei, ei + δ

i
]
. Denote by Ni the nonnegative integer such that κi

Ni
6= 0 and

κi
n = 0 for every n < Ni.

3. βi > Ni.

Define I as the set of consumers i such that βi ≤ βj for every j ∈ {1, . . . , I}, and I as the set
of consumers i such that βi −Ni ≥ βj −Nj for every j ∈ {1, . . . , I}. Then, for every efficient
risk-sharing rule f ,

1. Both lim
x→∞

∑

i∈I

fi(x)/x and lim
x→∞

∑

i∈I

f ′i(x) exist and equal 1, and f ′′i (x) < 0 for every i 6∈ I

and every sufficiently large x > −
I∑

i=1

ei.

2. Both lim
x→d

∑

i∈I

(fi(x)− di) / (x− d) and lim
x→d

∑

i∈I

f ′i(x) exist and equal 1, and f ′′i (x) > 0 for

every i 6∈ I and every sufficiently small x > −
I∑

i=1

ei.

The first conclusion tells us that the risk sharing rule is concave over some region of high
consumption levels unless the consumer is the least risk averse one. The second conclusion is
quite illustrative. The relevant number for the asymptotic curvature for low consumption levels
is βi−Ni, the constant relative risk aversion minus the minimum degree of differentiation with
a nonzero derivative of the cumulative distribution function, the latter of which measures how
thin the lower tail distribution is. It tells us that the risk-sharing rule is likely to be convex
the smaller the number βi−Ni is, that is, the less risk averse he is or the thinner the lower tail
distribution is.

The corollary can be proved by s′i(xi) = 1/βi for every xi > ci and

lim
xi→ci

s′i(xi)

1−Ni lim
xi→ci

s′i(xi)
=

1
βi −Ni

.

Let us now provide two examples on the curvature of risk-sharing rules. For both examples,
suppose that there are two consumers i = 1, 2. Each consumer i’s original utility function vi

exhibits constant relative risk aversion βi > 1. The second consumer has no background risk,
so that N2 = 0.

Suppose first that the first consumer’s background risk follows a uniform distribution. Then
N1 = 1. According to Corollary 2, if, moreover, 0 < β1 − β2 < 1, then, over some range of

16



high consumption levels, the risk sharing rule is concave for the first consumer and convex for
the second (because β1 > β2); but over some range of low consumption levels, it is convex
for the first consumer and concave for the second (because β1 −N1 < β2 −N2). Hence there
must at least one inflection point for each consumer’s risk sharing rule, and neither of them
is convex or concave over the entire region (d,∞) of consumption levels. In particular, the
risk-sharing rule for the second consumer is concave up to the smallest inflection point, and
convex beyond the largest inflection point.6 According to part 3 of Theorem 17 of HHK, this
is something you can never observe in complete markets in which every consumer exhibits
constant cautiousness, however many consumers there are, however many states there are,
and whatever the probability distribution of the aggregate endowment is. In this sense, this
risk-sharing rule is characteristic of incomplete markets.

Suppose second that the first consumer’s background risk may take only finitely many
values. Then N1 = 0. According to Corollary 2 and Theorem 1, if, moreover, β1 − β2 is
positive but sufficiently small, then over some range of high consumption levels and also over
some range of low consumption levels, the risk sharing rule is concave for the first consumer
and convex for the second; but over some range of intermediate consumption levels, it is convex
for the first consumer and concave for the second. Hence there must at least two inflection
point for each consumer’s risk sharing rule, and, again, neither of them is convex or concave
over the entire region (d,∞) of consumption levels. Again, this is something you can never
observe in complete markets in which every consumer exhibits constant cautiousness. These
risk-sharing rules are a sign of incomplete markets.

6 Conclusion

In a model of a static exchange economy under uncertainty, we have investigated how the cau-
tiousness (the derivative of the reciprocal of the Arrow-Pratt measure of absolute risk aversion)
for macroeconomic risks is affected by the presence of idiosyncratic (background) risks. We
gave sufficient conditions (Theorem 1) on the original utility function under which the cautious-
ness, at any given level of consumption, is higher in the presence of a background risk than
in its absence. We also showed that while the cautiousness over a range of high consumption
levels is left almost unaffected (Proposition 2) by its presence, the cautiousness over a range
of low consumption levels is affected by the lower tail distribution of the idiosyncratic risks
(Theorem 2).

We have also explored some implications of these results on the curvature of risk-sharing
rules. While FSS concluded that the riskier the background risk, the more likely it is for the
consumer’s risk-sharing rule to be convex, our results indicate that such a claim cannot be
easily established beyond the case they looked into. Even in an economy consisting of two
consumers with the same original utility function and SOSD-rankable background risks, if the
cautiousness of the original utility function is strictly decreasing (rather than constant), or if

6There may well be only one inflection point, in which case the largest and smallest inflection points coincide.
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both consumers do indeed have background risks, then the consumer with a riskier background
risk may well have an everywhere concave risk-sharing rule, depending on the utility weights
to be used in the social welfare function. Moreover, regardless of the choice of these utility
weights, the impact of the background risks on the curvature of the risk-sharing rule for high
consumption levels is almost negligible (Proposition 3), and the lower tail distributions, rather
than the variance, of the background risks matter for the curvature of the risk-sharing rules
for low consumption levels (Proposition 4).

An interesting direction of future research is to extend the present analysis to a dynamic
setting. Extending a static analysis to a dynamic setting tends to be more difficult when the
markets are incomplete than when they are complete, because the possibility of dynamic asset
trading may diminish the relevance of market incompleteness for risk sharing, as exemplified by
Levine and Zame (2002). On the other hand, as subsequently shown by Kubler and Schmedders
(2001), the relevance of market incompleteness depends subtly on both the persistence of
endowment shocks and the time-discount rates. When assessing the impact of background
risks on sharing rules, we will have to carefully specify these two.

A Proof of Theorem 2

Throughout this appendix, we assume that the original utility function vi and the cumulative
distribution function Gi satisfies the conditions of Theorem 2, and ui is the induced utility
function derived from vi and Gi. The case of Ni = 0 is not difficult to prove, so we concentrate
on the case of Ni ≥ 1. Then γi < 1 and vi can be written in the form of

vi(xi) = χ(1− 1/γi)−1(xi − ci)
1−1/γi + η

for some constants χ > 0 and η on some lower tail interval of (ci,∞). We can assume without
loss of generality that η = 0. Then let D0vi = vi and, for each positive integer n < 1/γi, we
can inductively let D−nvi : (ci,∞) → R be a particular integral of D−(n−1)vi : (ci,∞) → R,
so that (−1)nD−nvi(xi) can be written in the form of

(−1)nD−nvi(xi) =
χn

(n + 1)− 1/γi
(xi − ci)

(n+1)−1/γi , (4)

where χn is a positive constant dependent on n. All the integrals that appear in the sequel are
up to the order of Ni < 1/γi and understood to be these particular ones.

Theorem 2 will be proved after a series of lemmas.
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Lemma 3 For every xi > di,

ui(xi) =
∞∑

n=0

κn(−1)nD−nvi(xi + ei)

−
∞∑

n=0

( ∞∑

`=n

κ`
δ
`−n

(`− n)!

)
(−1)nD−nvi(xi + ei + δ) +

∫ ei

ei+δ
vi(xi + zi) dGi(zi).

Proof of Lemma 3 For each non-negative integer m, each strictly positive integer n, and
each xi > di, define

I m,n(xi) =
∫ ei+δ

ei

(−1)mD−mvi(xi + zi)
(zi − ei)

n−1

(n− 1)!
dzi,

where δ > 0 is as in Theorem 2. We shall first prove that

I m,n(xi) = (−1)m+nD−(m+n)vi(xi + ei)−
n∑

`=1

(−1)m+`D−(m+`)vi(xi + ei + δ)
δ
n−`

(n− `)!
. (5)

Indeed, by definition,

I m,1(xi) =
∫ ei+δ

ei

(−1)mD−mvi(xi + zi) dzi

=(−1)m+1D−(m+1)vi(xi + ei)− (−1)m+1D−(m+1)vi

(
xi + ei + δ

)
. (6)

By integration by parts, for n ≥ 2,

I m,n(xi) =

[
(−1)mD−(m+1)vi(xi + zi)

(zi − ei)
n−1

(n− 1)!

]zi=ei+δ

zi=ei

−
∫ ei+δ

ei

(−1)mD−(m+1)vi(xi + zi)
(zi − ei)

n−2

(n− 2)!
dzi

=I m+1,n−1 − (−1)m+1D−(m+1)vi

(
xi + ei + δ

) δ
n−1

(n− 1)!
. (7)

Based on these results, we shall now prove (5) by an induction argument on n. The case of
n = 1 follows immediately from (6). Now let n ≥ 2 and suppose that (5) hold for n − 1 and
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every m ≥ 0. Then, by (7),

I m,n(xi) =I m+1,n−1(xi)− (−1)m+1D−(m+1)vi

(
xi + ei + δ

) δ
n−1

(n− 1)!

= (−1)m+nD−(m+n)vi(xi + ei)

−
n−1∑

`=1

(−1)m+1+`D−(m+1+`)vi(xi + ei + δ)
δ
n−1−`

(n− 1− `)!

− (−1)m+1D−(m+1)vi

(
xi + ei + δ

) δ
n−1

(n− 1)!

= (−1)m+nD−(m+n)vi(xi + ei)−
n∑

`=1

(−1)m+`D−(m+`)vi(xi + ei + δ)
δ
n−`

(n− `)!
.

Equality (5) has thus been proved.
Now, by letting m = 0, we obtain

∫ ei+δ

ei

vi(xi + zi)
(zi − ei)

n−1

(n− 1)!
dzi

=(−1)nD−nvi(xi + ei)−
n∑

`=1

δ
n−`

(n− `)!
(−1)`D−`vi(xi + ei + δ). (8)

Hence

ui(xi)

=
∫ ei+δ

ei

vi(xi + zi) dGi(zi) +
∫ ei

ei+δ
vi(xi + zi) dGi(zi)

=κ0vi(xi + ei) +
∫ ei+δ

ei

vi(xi + zi)

( ∞∑

n=1

κn
(zi − ei)

n−1

(n− 1)!

)
dzi +

∫ ei

ei+δ
vi(xi + zi) dGi(zi)

=κ0vi(xi + ei) +
∞∑

n=1

κn

(∫ ei+δ

ei

vi(xi + zi)
(zi − ei)

n−1

(n− 1)!
dzi

)
+

∫ ei

ei+δ
vi(xi + zi) dGi(zi)

=κ0vi(xi + ei) +
∞∑

n=1

κn

(
(−1)nD−nvi(xi + ei)−

n∑

`=1

(−1)`D−`vi(xi + ei + δ)
δ
n−`

(n− `)!

)

+
∫ ei

ei+δ
vi(xi + zi) dGi(zi)

=
∞∑

n=0

κn(−1)nD−nvi(xi + ei)

−
∞∑

n=1

( ∞∑

`=n

κ`
δ
`−n

(`− n)!

)
(−1)nD−nvi(xi + ei + δ) +

∫ ei

ei+δ
vi(xi + zi) dGi(zi).

Note that we swapped the order of the sum and the integral to obtain the third equality, and
the order of the two sums over different indices to obtain the last equality. This is justified
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because κn = 0 for every sufficiently large n. ///

For future references, we need to take care of the case where the asymptotic cautiousness
is larger than one.

Lemma 4 Let c ∈ R, δ > 0, and v : (c,∞) → R be an infinitely many times differentiable
function satisfying v′(x) > 0 and v′′(x) < 0 for every x ∈ (c, c + δ]. Let s : (c, c + δ] → R be
the risk tolerance for v, that is, s(x) = −v′(x)/v′′(x). Suppose that lim

x→c
s(x) exists and equals

zero, and lim
x→c

s′(x) > 1. Then v is bounded from below on (c, c + δ].

Proof of Lemma 4 For a sufficiently small ε > 0, taking δ > 0 smaller if necessary, we can
assume that s(x) >

x− c

1− ε
for every x ∈ (c, c + δ]. Then, for every y ∈ (c, c + δ],

∫ c+δ

y

dw

s(w)
<

∫ c+δ

y

1− ε

w − c
dw = (1− ε) log

δ

y − c
.

Hence, for every x ∈ (c, c + δ),

∫ c+δ

x
exp

(∫ c+δ

y

dw

s(w)

)
dy <

∫ c+δ

x

(
δ

y − c

)1−ε

dy =
δ1−ε

ε
(δε − (x− c)ε) <

δ

ε
.

This means that v is abounded from below because

v(x) =
∫ x

c+δ
exp

(
−

∫ y

c+δ

dw

s(w)

)
dy + v(c + δ)

for every x > c. ///

Lemma 5 Let c ∈ R, δ > 0, and v : (c,∞) → R be an infinitely many times differentiable
function satisfying v′(x) > 0 and v′′(x) < 0 for every x ∈ (c, c + δ]. If v′ is bounded from above
on (c, c + δ], then v is bounded from below on (c, c + δ].

Proof of Lemma 5 Since v′ is bounded from above on (c, c + δ], the integral
∫ c+δ

x
v′(y) dy

is uniformly bounded from above over all x ∈ (c, c + δ]. Since v(x) = v(c + δ)−
∫ c+δ

x
v′(y) dy,

this implies that v is bounded from below on (c, c + δ]. ///

Given our choice of particular integrals (4), the following one can be obtained by inductively
applying Lemma 1. We omit a formal proof.

Lemma 6 Let n be a nonnegative integer. If n lim
xi→ci

s′i(xi) < 1, then there exists an n-th order

integral D−nvi of vi such that:

1. D ((−1)nD−nvi) (xi) →∞ as x → ci.
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2. There exists a δn > 0 such that D ((−1)nD−nvi) (xi) > 0 and D2 ((−1)nD−nvi) (xi) < 0
for every xi ∈ (ci, δ

n].

3. Define tni : (ci, ci + δn] → R++ by

tni (xi) = −D1((−1)nD−nvi)(xi)
D2((−1)nD−nvi)(xi)

,

then lim
xi→ci

tni (xi) exists and equals zero.

4. lim
xi→ci

Dtni (xi) exists and equals

lim
xi→ci

s′i(xi)

1− n lim
xi→ci

s′i(xi)
.

Lemma 7 Let n and N be two nonnegative integers such that n > N , and suppose that
N lim

xi→ci

s′i(xi) < 1. Then both

lim
xi→ci

D ((−1)nD−nvi) (xi)
D ((−1)ND−Nvi) (xi)

and lim
xi→ci

D2 ((−1)nD−nvi) (xi)
D2 ((−1)ND−Nvi) (xi)

exist and equal zero.

Proof of Lemma 7 We shall first prove that the limit

lim
xi→ci

D ((−1)nD−nvi) (xi)
D ((−1)ND−Nvi) (xi)

(9)

exists and equals zero. Note first that D
(
(−1)ND−Nvi

)
(xi) → ∞ as xi → ci by the Inada

condition for the case of N = 0 and by part 1 of Lemma 6 for the case of N ≥ 1. If lim
xi→ci

s′i(xi) <

1 < n lim
xi→ci

s′i(xi), then let m < n be the positive integer such that 1/(m + 1) < lim
xi→ci

s′i(xi) <

1/m. If lim
xi→ci

s′i(xi) > 1, then let m = 0. Then, by assumption for the case of m = 0 and by

part 4 of Lemma 6 for the case of m ≥ 1, lim
xi→ci

Dtmi (xi) > 1, where tmi is defined as in Lemma 6.

Hence, by Lemma 4, D((−1)m+1D−(m+1)v) is bounded from above. Thus, by applying Lemma
5 iteratively if necessary, we see that D((−1)nD−nv) is bounded from above. Thus (9) follows.

Suppose now that n lim
xi→ci

s′i(xi) < 1. Then, by part 4 of Lemma 6,

lim
xi→ci

Dtni (xi) =
lim

xi→ci

s′i(xi)

1− n lim
xi→ci

s′i(xi)
>

lim
xi→ci

s′i(xi)

1−N lim
xi→ci

s′i(xi)
= lim

xi→ci

DtNi (xi).

Let γn and γN lie strictly between the above two values satisfying γn > γN . Let δ > 0 be
sufficiently small that

tni (xi) > γn(xi − ci) and tNi (xi) < γN (xi − ci)
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for every xi ∈ (ci, ci + δ]. Note also that

D
(
(−1)ND−Nvi

)
(xi) = D

(
(−1)ND−Nvi

)
(ci + δ) exp

(∫ ci+δ

xi

dw

tNi (w)

)
,

and analogously for D ((−1)nD−nvi) (xi). Hence

D ((−1)nD−nvi) (xi)
D ((−1)ND−Nvi) (xi)

=
D ((−1)nD−nvi) (ci + δ)
D ((−1)ND−Nvi) (ci + δ)

exp
(∫ ci+δ

xi

(
1

tni (w)
− 1

tNi (w)

)
dw

)

<
D ((−1)nD−nvi) (ci + δ)
D ((−1)ND−Nvi) (ci + δ)

exp
(∫ ci+δ

xi

(
1

γn(w − ci)
− 1

γN (w − ci)

)
dw

)

=
D ((−1)nD−nvi) (ci + δ)
D ((−1)ND−Nvi) (ci + δ)

exp
((

1
γn

− 1
γN

)∫ ci+δ

xi

dw

w − ci

)

=
D ((−1)nD−nvi) (ci + δ)
D ((−1)ND−Nvi) (ci + δ)

(
xi − ci

δ

)1/γN−1/γn

.

Since 1/γN − 1/γn > 0, the far right hand side converges to zero as xi → ci. The proof is thus
completed for (9).

As for the ratio of the second derivatives, note that

D2 ((−1)nD−nvi) (xi)
D2 ((−1)ND−Nvi) (xi)

=
D

(
(−1)n−1D−(n−1)vi

)
(xi)

D
(
(−1)N−1D−(N−1)vi

)
(xi)

.

We can thus apply the previous result to n− 1 and N − 1 if N ≥ 1. If N = 0, then

D2 ((−1)nD−nvi) (xi)
D2 ((−1)ND−Nvi) (xi)

=
(−1)Dvi(xi)

D2vi(xi)
(−1)nD−(n−2)vi(xi)

(−1)Dvi(xi)
= si(xi)

D
(
(−1)n−1D−(n−1)vi

)
(xi)

Dvi(xi)
.

Since si(xi) converges to zero and the fraction on the far right hand side converges to one (if
n = 1) or zero (if n ≥ 1 by the result on the ratio of the first derivatives) as xi → ci, this
completes the proof. ///

Proof of Theorem 2 Differentiate both sides of Lemma 3 with respect to xi, then we obtain

u′i(xi) =
∞∑

n=0

κnD((−1)nD−nvi)(xi + ei)

−
∞∑

n=1

( ∞∑

`=n

κ`
δ
`−n

(`− n)!

)
D((−1)nD−nvi)(xi + ei + δ) +

∫ ei

ei+δ
v′i(xi + zi) dGi(zi).
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Hence

u′i(xi)
D((−1)NiD−Nivi)(xi + ei)

=
∞∑

n=Ni

κn
D((−1)nD−nvi)(xi + ei)

D((−1)NiD−Nivi)(xi + ei)

−
∞∑

n=1

( ∞∑

`=n

κ`
δ
`−n

(`− n)!

)
D((−1)nD−nvi)(xi + ei + δ)
D((−1)NiD−Nivi)(xi + ei)

+

∫ ei

ei+δ
v′i(xi + zi) dGi(zi)

D((−1)NiD−Nivi)(xi + ei)
.

As xi → di, xi + ei → ci. Hence, by part 1 of Lemma 6, D((−1)NiD−Nivi)(xi + ei) →∞. By
Lemma 7, every fraction in the first term on the right hand side, except for n = Ni, converges to
zero, and hence the infinite sum converges to κNi . Also, as xi → di, xi+ei+δ → ci+δ and hence,
for every n, D((−1)nD−nvi)(xi+ei+δ) remain bounded from above by D((−1)nD−nvi)(ci+δ).
Each fraction in the second term thus converges to zero, and so does the second term itself. The
last term converges to zero because the numerator remains bounded from above by v′i(ei + δ).
Thus

u′i(xi)
D((−1)NiD−Nivi)(xi + ei)

→ κNi

as xi → di. Thus, in particular, u′i(xi) →∞ as xi → di.
We can analogously prove that

u′′i (xi)
D2((−1)ND−Nvi)(xi + ei)

→ κNi

as xi → di. Hence, by part 4 of Lemma 6, lim
xi→di

− u′i(xi)
u′′i (xi)

exists and equals

lim
xi→di

− D((−1)NiD−Nivi)(xi + ei)
D2((−1)NiD−Nivi)(xi + ei)

=
lim

xi→ci

s′i(xi)

1−Ni lim
xi→ci

s′i(xi)
.

///

Remark 1 Theorem 2 assumes that κn = 0 for every sufficient large n in (3). This means
that the cumulative distribution function Gi is polynomial on some lower tail interval of [ei, ei].
It would be nice if we could dispense with this assumption, so that Gi may simply be a real
analytic function. We do not do this generalization, as we do not know any reasonable condition
to guarantee that the order of the integral of the now infinite sum can still (3) be swapped in
the proof of Lemma 3 when κn 6= 0 for infinitely many n.

Remark 2 Theorem 2 assumes that vi is a HARA-utility function on some lower tail interval
of (ci,∞). It would be nice to dispense with this assumption to accommodate general utility
functions in our analysis. As we alluded to when referring to Proposition 3 of Huang (2002a),
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the only difficulty in this generalization is to guarantee the validity of part 4 of Lemma 6, and,
in particular, the existence of lim

xi→ci

Dtni (xi). One way to do so is to assume that vi can be

written, on some lower tail interval, as

vi(xi) =
∞∑

m=0

χn
(xi − ci)1−1/γm

1− 1/γm
(10)

for some sequence (γ0, γ1, γ2, . . . ) of strictly positive numbers and some other sequence (χ0, χ1, χ2, . . . )
of nonnegative numbers such that χm = 0 for every sufficiently large m and Niγm < 1 for some
m with χm > 0. This means in short that vi is a finite sum of HARA-utility functions, and
the joint assumption with Gi must be met with the smallest γm involved in (10). We did not
explicitly give this generalization to simplify our exposition.

References

Brennan, M. J. & R. Solanki (1981) Optimal portfolio insurance. Journal of Financial and
Quantitative Analysis 16, 279–300.

Franke, G., H. Schlesinger, & R. C. Stapleton (2006) Multiplicative background risk. Man-
agement Science 52, 146–153.

Franke, G., R. C. Stapleton, & M. G. Subrahmanyam (1998) Who buys and who sells options:
The role of options in an economy with background risk. Journal of Economic Theory 82,
89–109.

Gollier, C. & J. W. Pratt (1996) Risk vulnerability and the tempering effect of background
risk. Econometrica 64, 1109–1123.

Hara, C. (2006) Heterogeneous risk attitudes in a continuous-time model. forthcoming in
Japanese Economic Review.

Hara, C., J. Huang, & C. Kuzmics (2006) Representative consumer’s risk aversion and
efficient risk-sharing rules. unpublished manuscript.

Huang, J. (2002) Existence of an optimal portfolio for every investor in an Arrow-Debreu
economy. Lancaster University Management School Working Paper 2002/012.

Huang, J. (2002) The role of options in an economy with background risk: A note. Lancaster
University Management School Working Paper 2002/013.

Huang, J. (2004) Cautiousness and tendency to buy options. Lancaster University Manage-
ment School Working Paper 2004/051.

Huang, J. (2005) Background risk, cautiousness, and the roles of options: A note. Lancaster
University Management School, unpublished manuscript.

Huang, J. (2006) The effect of background risks on risk-sharing and option pricing. Lancaster
University Management School, unpublished manuscript.

25



Kimball, M. S. (1990) Precautionary saving in the small and in the large. Econometrica 58,
53–73.

Kubler, F. & K. Schmedders (2001) Incomplete markets, transitory shocks, and welfare.
Review of Economic Dynamics 4, 747–766.

Leland, H. E. (1980) Who should buy portfolio insurance. Journal of Finance 35, 581–594.

Levine, D. K. & W. R. Zame (2002) Does market incompleteness matter?. Econometrica 70,
1805–1839.

Weil, P. (1992) Equilibrium asset prices with undiversifiable labor income risk. Journal of
Economic Dynamics and Control 16, 769–790.

Wilson, R. (1968) The theory of syndicates. Econometrica 36, 119–132.

26



Figure 3: Second derivatives of risk-sharing in a two-consumer economy. Both consumers
have the same original utility function vi which is such that its cautiousness is exponentially
decreasing s′i(xi) = exp(−xi). Only one consumer (solid line) has a background risk. This
background risk puts probability 1/2 on 1 and −1 each. The three graphs differ only in the
weight given the consumer with background risk (λ1/λ2 = 1, 2, and 3, respectively).
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Figure 4: Risk-sharing rules as a proportion of aggregate endowment in a two-consumer econ-
omy. Both consumers have the same original utility function vi which is such that its cau-
tiousness is exponentially decreasing s′i(xi) = exp(−xi). Only one consumer (solid curve) has
a background risk. This background risk puts probability 1/2 on 1 and −1 each. The three
graphs differ only in the weight given the consumer with background risk (λ1/λ2 = 1, 2, and
3, respectively).
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Figure 5: Second derivatives of risk-sharing in a two-consumer economy. Both consumers
have the same original utility function vi exhibiting constant relative risk aversion of 4). One
consumer (solid curve) has a discrete two-point background risk (probability 1/2 on −1 and
1 each, which leads to a variance of 1). The other consumer (dashed curve) has a discrete
three-point background risk (probability 1/3 on −1, 0, and 1 each, which leads to a variance of
2/3). The two graphs differ only in the weight given to the first consumer (λ1/λ2 ∈ {1/3, 1, 3}).
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Figure 6: Risk-sharing rules as a proportion of aggregate endowment in a two-consumer econ-
omy. Both consumers have the same original utility function vi exhibiting constant relative risk
aversion 4. One consumer (solid curve) has a discrete two-point background risk (probability
1/2 on −1 and 1 each, which leads to a variance of 1). The other consumer (dashed curve)
has a discrete three-point background risk (probability 1/3 on −1, 0, and 1 each, which leads
to a variance of 2/3). The two graphs differ only in the weight given to the first consumer
(λ1/λ2 ∈ {1/3, 1, 3}).
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