
 
 
 
 
 
 
 

Discussion Paper No. 608 
 

Probabilistically Sophisticated Multiple Priors. 
 

by 
  Simon Grant 

and 
Atsushi Kajii 

 
October 2005 

KYOTO UNIVERSITY 

KYOTO, JAPAN 

 

http://www.kier.kyoto-u.ac.jp/index.html 

KYOTO INSTITUTE 
OF 

ECONOMIC RESEARCH 

KIER DISCUSSION PAPER SERIES 



17 October 2005

Probabilistically Sophisticated Multiple

Priors.�

Abstract

We characterize the intersection of the probabilistically sophisticated and multiple prior models. We
show this class is strictly larger than the subjective expected utility model and that its elements
can be generated from a generalized class of the "-contaminated priors, which we dub the "-
contaminated/ -truncated prior.

JEL Classi�cation: D81

Keywords: subjective probability, maximin expected utility, epsilon-contamined priors.

Simon Grant
Department of Economics,
Rice University

Atsushi Kajii
Institute of Economic Research,
Kyoto University

�We thank Massimo Marinacci and Zvi Safra for their constructive comments and suggestions. We accept
responsibility for any errors and shortcomings of the paper. Kajii acknowledges the �nancial support by
Grant-in-Aid for the 21st Century COE Program and Grant-in-Aid for Scienti�c Research.



1 Introduction

To what extent can the maximin expected utility (MEU) model of Gilboa and Schmeidler

(1989) and the probabilistically sophisticated model of Machina and Schmeidler (1992) co-

exist? The latter is a generalization of the models of de Finetti and Savage in which choice

may be viewed as being based on beliefs that can be represented by a convex-ranged prob-

ability measure. This provides a foundation for the non-expected utility models under risk

dealing with Allais-type paradoxes in the Savage framework of purely subjective uncertainty.

The explicit motivation o¤ered by Gilboa and Schmeidler (1989) for their maximin expected

utility (also known as the �multiple prior�) model is to accommodate choice patterns such

as those in the classic Ellsberg Paradoxes, where it can be shown that choice cannot be ra-

tionalized by beliefs that can be represented by �additive�probabilities; that is, the Ellsberg

paradox is not consistent with probabilistic sophistication. Thus, the question raised at the

beginning is natural and important.

It was Marinacci (2002) who raised this important question, and established, under some

conditions, that the only intersection of these two models is Savage�s subjective expected

utility (SEU) model. He maintains that the conditions are mild and thus he draws the con-

clusion that �once we wish to deal with Ellsberg-type phenomena with an MEU preference

relation, we can no longer accommodate Allais-type phenomena via probabilistic sophis-

tication, even �locally� on the collection of unambiguous events.� (Marinacci, 2002, p755,

emphasis added).

In this paper, we fully characterize the class of MEU preferences which are probabilisti-

cally sophisticated on a given su¢ ciently rich collection of unambiguous events, but, unlike

Marinacci, without any extra conditions. The class of such preferences obviously must in-

clude SEU preferences, but we show that it is strictly larger. We then derive Marinacci�s

result restricted to the MEU model as a corollary, by showing that among these preferences

we identify, only SEU preferences satis�es Marinacci�s condition. In this sense, the �rst con-

tribution of this paper is a generalization of Marinacci�s result applied to the MEU model,
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which provides a deeper understanding of the relation between MEU and probabilistic so-

phistication.

Obviously, our result above would be of little economic and decision theoretic interest

if those probabilistically sophisticated MEU preferences other than SEU turned out to be

pathological. We therefore investigate those probabilistically sophisticated MEU preferences,

which do not satisfy Marinacci�s condition.

The second contribution of this paper is that we characterize this class and show that they

can be generated from a generalized class of the so called "-contamination model; in fact, the

basis for the class of probability sophisticated MEU preferences is essentially expressed by a

two parameter family of sets of probability measures which is just one parameter richer than

the "-contamination model, which we dub the "-contaminated (upper) -truncated prior.

The "-contamination model has been applied in economic applications.1 Also, as we shall

demonstrate, the "-contaminated -truncated prior model is rich enough to accommodate

Allais�type behavior.

We contend that the "-contaminated -truncated prior model proposed in this paper is

simple and easy to handle, and so it is also useful in applications. Although the Marinacci

condition may appear mild in the particular setup he chose, it does rule out this important

class of preferences, and hence it may not be so innocuous for the original question of

identifying probabilistically sophisticated MEU.

2 Framework

The set-up consists of a set S of states of the world, a collection � of subsets of S and a set

of consequences X.

For any E � S, let Ec denote its complement. We shall refer to any subset E in � as

an (unambiguous) event. Marinacci (2002) focuses on Dynkin systems as the appropriate

structure for the collection of unambiguous events and so we shall take � to be a Dynkin

1 See for instance Carlier et al (2003), Lo (2000), Nishimura and Ozaki (2004).
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system: that is, (i) S 2 �, (ii) it is closed under complementation, that is, if E 2 � then

so Ec 2 � (hence ? 2 �) and (iii) for any countable sequence of pairwise disjoint events,

En 2 �, n = 1; 2; : : :,Ei \ Ej = ?, for all i 6= j, their countable union [1n=1En is also in �.

A function Q : �! [0; 1] is a convex-ranged probability measure if (i) Q (S) = 1, (ii) for

any countable sequence of pairwise disjoint events, fEng1n=1, Q ([1n=1En) =
P1

n=1Q (En),

and (iii) for all Q (E) > 0 and � in (0; 1), there exists an event E 0 � E such that Q (E 0) =

�Q (E). Let P be the set of all such measures.

Denote by �� the smallest �-�eld (that is, it also closed under intersections) containing

�. By Dynkin�s theorem, there is a unique extension of a convex-ranged probability measure

Q on ��. Abusing notation we shall simply call each element Q of P a probability measure,

and treat it as if a measure on �� in the sequel.

An act f : S ! X is a �� measurable function such that f (S) is a �nite set. The set

of such acts is denoted by F . The individual�s preferences over acts is denoted by a binary

relation % � F � F . With slight abuse of notation each x 2 X will also denote the constant

act that yields x no matter which s in S obtains. Thus, x % f means the act f is not

preferred to receiving the outcome x for sure.

For a given preference relation %, an event is deemed null if there is indi¤erence between
any two acts that only di¤er on that event. That is, E is null if for any pair of acts f; g 2 F ,

f (s) = g (s), for all s =2 E implies f � g. An event E is deemed universal if its complement

Ec is null.

Let U denote the set of utility indices, that is, the set of mappings of the form u : X ! R.

For given u 2 U and f 2 F , let u � f denote the random variable, where u � f (s) = u (f (s))

for all s in S. Since the range of f 2 F is �nite, u � f is �� measurable and the integralR
S
u � f dP is well de�ned and �nite for any P 2 P and any utility index u 2 U .

We consider the weak* topology on P with the set of these �� measurable random

variables of utilities as its dual: a sequence of probabilities fQn : n = 1; :::g converges to

Q 2 P i¤
R
S
u � f dQn !

R
S
u � f dQ for any f 2 F and any u 2 U , which is equivalent to
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Qn (E)! Q (E) for all E 2 �.2 In particular, note that if every Qn is absolutely continuous

with respect to a probability P , so is the limit Q.

3 Probabilistic Sophistication

The intuitive idea behind an individual being probabilistic sophisticated with respect to a

given probability measure P de�ned over a collection of unambiguous events is that the

e¤ect of assigning an outcome x to an event E that is deemed unambiguous depends solely

on the resulting contribution of probability P (E) the event makes to the overall probability

P (f�1 (x)) of obtaining x, rather than on any speci�c �state-dependence�between x and

E. That is, such events serve only as a randomization device, and they do not contain any

further information about preferences. Thus in evaluating an unambiguous act, that is, an

act that is measurable with respect to the collection of unambiguous events, a probabilis-

tically sophisticated individual appears as if he �rst works out the probability distribution

over outcomes (that is, a lottery) induced by the act, and then he evaluates the lottery

without further regard to how this lottery is generated. Another way of saying this is that

probabilistic sophistication requires any pair of unambiguous acts that are both mapped by

P to the same lottery over outcomes should come from the same indi¤erence class.

De�nition 1 An individual is said to be probabilistically sophisticated on F if there exists

a unique convex-ranged probability measure P 2 P, such that for any pair of acts f; g 2 F ,

P
�
f�1 (x)

�
= P

�
g�1 (x)

�
for all x 2 X ) f � g.

It is known that if an individual is probabilistically sophisticated, Ellsberg-type paradoxes

do not arise. But since probabilistic sophistication imposes no restriction on the preferences

over the induced lotteries, Allais-type paradoxes are consistent with probabilistic sophisti-

cation.3

2 In other words, this is the relative topology on the set of convex ranged measures induced from the
weak* topology of the set of all �nitely additive measures.

3 See Machina and Schmeidler (1992) and Grant (1995) for discussion.
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The subjective expected utility (SEU) model is the special case of a probabilistically

sophisticated individual whose preferences over acts can be completely determined by a

probability measure P and a utility index u:4 An SEU maximizer chooses among acts as if

she �rst uses her utility index to map consequences to �utilities�and then uses her subjective

probability measure to determine the (cumulative) probability distribution over utilities (a

unidimensional �outcome�set). She then compares alternative acts solely on the basis of the

means of the induced distributions over utilities.

In order to de�ne this class formally, it is convenient to associate with each act the cu-

mulative distribution over utilities induced by the utility index and the probability measure.

That is, �x a utility index u and a probability measure P 2 P, and for each act f 2 F

denote by F Pu�f (�) the cumulative distribution function over utilities induced by u and P ,

where for each z in R,

F Pu�f (z) := P (fs 2 S : u (f (s)) � zg) .

Note that by a change of variables,
R
R zdF

P
u�f (z) =

R
S
u � f dP .

De�nition 2 An individual is said to be a (Savage) subjective expected utility (SEU) maxi-

mizer if there exists a unique (up to positive a¢ ne transformations) utility index u 2 U , and

a unique probability measure P 2 P, such that for all pair of acts f; g 2 F , f % g if and

only if Z
zdF Pu�f (z) �

Z
zdF Pu�g (z) . (1)

4 Maximin Expected Utility

As we noted in the introduction, the MEU model of Gilboa and Schmeidler has been used

to generate preferences that can accommodate Ellsberg paradox patterns of behavior. We

4 Strictly speaking, in the SEU setup � is also a ��algebra. But we shall refer to the model here as SEU
as well.
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follow Marinacci and adopt the next de�nition as the analog of Gilboa and Schmeidler�s

MEU model in the Savage state-act framework of purely subjective uncertainty.5

De�nition 3 An individual is said to be a minimum expected utility (MEU) maximizer if

there exists a unique (up to positive a¢ ne transformations) utility index u 2 U , and a unique

non-empty weak�-compact and convex set C � P, such that for all pair of acts f; g 2 F ,

f % g if and only if

min
P2C

Z
zdF Pu�f (z) � min

P2C

Z
zdF Pu�g (z) . (2)

While probabilistic sophistication requires the existence of a unique probability measure

to evaluate acts, the maximin expected utility model postulates a set of probability mea-

sures and the individual maximizes the minimum expected utility where the minimum is

taken over the set of probabilities. Thus it may appear, and in fact we believe that it is a

common �intuition�shared in the literature, that only a �polar�case of an MEU maximizer

exhibits probabilistic sophistication, namely an SEU maximizer, and that any non-trivial

MEU preference relation, as it requires a multiplicity of underlying probability measures,

cannot be probabilistically sophisticated. Indeed, Marinacci showed the following result:6

Corollary to Marinacci�s Proposition 1 Suppose an individual is an MEU maximizer

with an associated set C � P of �multiple priors.� If there exists an event E 2 �, such

that

0 < min
P2C

P (E) = max
P2C

P (E) < 1,

5 Cassadesus-Masanell et al (2000) provide an axiomatization of the MEU model in a setting of purely
subjective uncertainty in which � is an algebra and X is connected and separable. The richness of the
outcome space allows them to work with either an in�nite or �nite state space. We are unaware of any
axiomatization of the MEU model in a setting analogous to that of Savage and that would as a consequence
require the set of probability measures in the MEU representation all to be convex-ranged.

6 Marrinacci actually establishes this result for any member of the ��MEU family, for which � 6= 1=2.
An ��MEU preference admits a representation of the form

V (f) = �min
P2C

Z
zdFPu�f (z) + (1� �)max

P2C

Z
zdFPu�f (z) .

Clearly, the MEU family corresponds to � = 1 .
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then the following two statements are equivalent:

1. The individual is probabilistically sophisticated.

2. The individual is a SEU maximizer.

In other words, this result con�rms that probabilistic sophistication and MEU implies

SEU, thus all the Allais-type paradoxes are not consistent with MEU, under the �regularity�

assumption that there is at least one event that is neither null nor universal and on which

all the probabilities measures in C assign the same probability.

Obviously, the strength of the regularity assumption needs to be examined to appreciate

the result above. Marinacci contends that it only entails there exists at least one proper

�unambiguous� event, and so it is mild and innocuous. This argument is especially con-

vincing if it has been established that the decision maker�s perception about ambiguity is

represented by the particular set of probabilities. In other words, the argument is valid if one

has already established that considerations about beliefs can be completely separated from

considerations over utilities. Ghirardato and Marinacci (2002) propose a notion of absolute

ambiguity aversion and an associated notion of ambiguity neutrality that builds upon a

particular notion of comparative ambiguity aversion that entails such a separation. Epstein

(1999), however, proposes a di¤erent notion of comparative ambiguity aversion that leads to

a di¤erent notion of ambiguity neutrality that need not result in a complete separation.7

What the appropriate notion of comparative ambiguity aversion is, remains a contentious

issue in the literature. But it is one that we do not need to directly confront in this paper.

Rather we simply note that we shall show in the sequel that the class of probabilistically

sophisticated MEU preferences is much larger than the class of SEU preferences, and it

contains an important class of MEU preferences. We discuss the key idea in the next section.

7 See also the discussion in Epstein & Zhang (2001).
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5 Subjective Rank Dependent Expected Utility

A popular generalization of expected utility under risk is the rank dependent expected utility

model (RDEU) of Quiggin (1982) and Yaari (1981). A Subjective Rank Dependent Expected

Utility (SRDEU) maximizer like his SEU counterpart, acts as if he associates with each act

the cumulative probability distribution over utilities induced by his utility index and his

subjective probability measure. But before taking any expectations, he �rst transforms

the cumulative probability distribution using his probability transformation function. By

de�nition a probability transformation is a function � : [0; 1] ! [0; 1], which is a non-

decreasing function with � (0) = 0 and � (1) = 1. He then compares acts solely on the basis

of the mean of each transformed induced distribution over utilities, which is ��F Pu�f (z). Note

that since each act f is assumed to be �nite range, � � F Pu�f (z) is a well de�ned cumulative

distribution function.

Denote by T the set of probability transformation functions, and by TCON the set of

probability transformation functions that are concave.

De�nition 4 An individual is said to be a subjective rank-dependent expected utility (SRDEU)

maximizer if there exists a unique (up to positive a¢ ne transformations) utility index u :

X ! R, a unique probability measure P 2 P, and a unique probability transformation

function � 2 T , such that for all pair of acts f; g 2 F , f % g if and only ifZ
zd � � F Pu�f (z) �

Z
zd � � F Pu�g (z) . (3)

Clearly, for any two acts f and g, if P (f�1 (x)) = P (g�1 (x)) for all x 2 X, then the

distribution functions � � F Pu�f (z) and � � F Pu�g (z) are identical. So, a SRDEU maximizer is

probabilistically sophisticated on F .

An SRDEU model is known to be a special case of the Choquet Expected Utility model

in which preferences are represented via the Choquet integral of utility with respect to a

non-additive measure or capacity over a �-�eld.8 For the SRDEU model the associated

8 See Wakker (1990).
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capacity is given by �� (E) := 1 � � (1� P (E)), and this is convex if and only if � is

concave.9 That is, one can write
R
zd � � F Pu�f (z) =

R
u � fd��, where the latter integral is

the Choquet integral. Recall our convention of treating P as a measure on �� and hence ��

is also a capacity over ��.

On the other hand, it is known10 that when the capacity is convex the Choquet integral

of a real-valued function admits an MEU representation: denote by Core(�) the core of

capacity �, which is by de�nition the set of all �nitely additive probability measures p with

p (E) � � (E) for all E 2 �. It can be shown that Core(�) is convex and compact. Then a

capacity � is convex i¤ (1) Core(�) 6= ? and (2) for every bounded measurable function f ,Z
fd� = min

p2Core(�)

Z
fdp: (4)

Combining these results, we conclude:

Proposition 1 For any � 2 TCON , the associated SRDEU maximizer with utility function

u and probability measure P is probabilistically sophisticated and also it is a MEU maximizer

with the set of probabilities C = Core (��).

Notice that the result above suggests that there are probabilistically sophisticated MEU

maximizers who are not SEU maximizers. But it does not characterize the whole class

of probabilistically sophisticated MEU maximizers; that is, there may be other types of

probabilistically sophisticated MEUmaximizers. Also, it does not say if a SRDEUmaximizer

9 To see this, recall a capacity is convex, if for all A;B 2 �,

� (A [B) + � (A \B) � � (A) + � (B) .

If we set p := P (A \Bc), q := P (B \Ac), and r := P (Ac \Bc), then for the SRDEU example, this
condition, becomes, for all p; q; r � 0, s.t. p+ q + r � 1,

� (r) + � (r + p+ q) � � (r + q) + � (r + p) ,

or equivalently,
� (r + p+ q)� � (r + p) � � (r + q)� � (r) .

10 See for instance Theorem 2.2 of Gilboa & Schmeidler (1995) and its references.
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is of economic and decision theoretic interest. In the next section, we �rst examine the latter

issue.

6 A Canonical Example: The Epsilon-Contaminated
Gamma-Truncated-Prior

The purpose of this section is to present a simple two parameter class of SRDEU prefer-

ences, which is straightforward to handle but rich enough to accommodate various economic

questions.

Consider the following two-parameter family of probability transformation functions:

�(";) (p) =

8>>>>>><>>>>>>:
0 if p = 0

"+ (1� ") p= (1� ) if p 2 (0; 1� ]

1 if p > 1� 

, where ("; ) 2 [0; 1)2 .

Since �(0;0) is the identity function, this corresponds to an SEU maximizer. Note that �(";)

is increasing and concave, thus it belongs to TCON . Thus by Proposition 1, an SRDEU

maximizer with utility function u, probability measure P and probability transformation

function �(";) admits an MEU representation for each ("; ) 2 [0; 1)
2.

We shall show below that for any ("; ), with " > 0, the preferences exhibit the �certainty�

e¤ect which is often given as an intuitive explanation for Allais paradox patterns of choices.

That is, this class of SRDEU preferences can generate choice patterns consistent with those

exhibited in standard Allais paradoxes.

To see this, it is convenient to de�ne

inf F = sup fz : F (z) = 0g

and F (z) =

8>>>>>><>>>>>>:
0 if F (z) = 0

F (z) = (1� ) if F (z) 2 (0; 1� ]

1 if F (z) > 1� 
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In words, inf F is the greatest lower bound of the support of a random variable with a cu-

mulative distribution function F , and F (�) is the cumulative distribution function obtained

by truncating the upper � tail of that random variable.

Notice that for any cumulative distribution function F on R, the transformed cumulative

distribution function �(";) � F is given by

�(";) � F (z) = "�inf F (z) + (1� ") [F (z)] ;

where �ẑ denotes the cumulative distribution function of a degenerate random variable which

assigns its unit probability to the real number ẑ. Applying this to the SRDEU formula (3),

we have that the preferences can be represented by the following functional11

V (f) = " inf F Pu�f + (1� ")

Z
zd
�
F

P
u�f (z)

�
. (5)

In the table below we list how this functional evaluates four acts, f; g; f 0; g0, that are

each measurable with respect to the partition fA;B;Cg of S and for which P (A) = 0:89,

P (B) = 0:1 and P (C) = 0:01. Without loss of generality we assume u (5) = 1, u (0) = 0

and u (1) = v 2 (0; 1), and for the purposes of rationalizing Allais-paradox choice behavior

we take  to be less than 0:1. In the last column of the table, the utility of each act is

computed from (3), or equivalently from (5).

act Event SRDEU V (:)

A B C

f 1 1 1 v

g 1 5 0 (1� ") [0:89v + (0:1� )] = (1� )

f 0 0 1 1 (1� ") (0:11� ) v= (1� )

g0 0 5 0 (1� ") (0:1� ) = (1� )

11 The reason that neither " = 1 nor  = 1 are valid parameter values is that the probability measure
P in the SRDEU representation is no longer unique, since any probability measure that is mutually and
absolutely continous with P could be used in place of P .
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For the SRDEU preference relation % that is rationalized by V (:) to generate the classic
Allais paradox, we require f % g and g � f . That is,

V (f)� V (g) = "v + (1� ")
[(0:11� ) v � (0:1� )]

(1� )
> 0

and V (g0)� V (f 0) = (1� ")
[(0:1� )� (0:11� ) v]

(1� )
> 0.

It is straightforward to verify that there exists a non-empty set of permissible values for the

three parameters v, " and  for which these two inequalities hold. Indeed, if f � g, then

"v = (1� ")
[(0:1� )� (0:11� ) v]

(1� )
,

in which case " > 0 implies g0 � f 0. So if there is close to indi¤erence between the �rst

pair a small perturbation of the parameters from expected utility exhibits the classic Allais

paradox.

For the purpose of applications, it will be useful and also instructive to consider the set

of extreme points of minp2Core(�)
R
fdp in (4), that is, the set of measures in Core (�) which

actually achieve the minimum for some act f . Let PP � P denote the set of probability

measures that are absolutely continuous with respect to P . That is, Q will be in PP , if

for every E 2 �, P (E) = 0 implies Q (E) = 0. And for each  in [0; 1), let PP be the

set of probability measures that can be obtained by updating the prior P conditional on an

event for which P assigns at least 1 � . More formally, write P (�jE) for the conditional

probability measure given event E with P (E) > 0: i.e., P (AjE) = P (A \ E) =P (E) for

every A 2 �. Then,

PP = fQ 2 PP : Q = P (�jE) for some E 2 � with P (E) � 1� g:

Now consider the set of priors de�ned as

CP(";) := "
�
PP
�
+ (1� ") co

�
PP

�
,

where co
�
PP

�
is the convex hull of PP .
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Notice that for the particular case of  = 0, the set of priors "
�
PP
�
+ (1� ") fPg is

sometimes referred to in the literature as an epsilon-contaminated prior. When " = 0, the

parameter  de�nes a cut-o¤ value of the upper tail distribution for the induced random

utility u � f . So intuitively, we may view the general case with non-zero " and , as de�ning

sets of probability measures �centered� around a focal prior belief P . Imprecision about

this focal prior P manifests itself by the inclusion of the epsilon convex mixtures of certain

measures that are absolutely continuous with this prior.

We shall refer to this two parameter family of MEU preferences theThe Epsilon-Contaminated

Gamma-Truncated-Prior model, as is de�ned below.

De�nition 5 An individual is said to be an "�contaminated �truncated prior MEU max-

imizer if there exists a unique (up to positive a¢ ne transformations) utility index u 2 U , a

probability P 2 P, and ("; ) 2 [0; 1)2, such that for all pair of acts f; g 2 F , f % g if and

only if

min
Q2CP

(";)

Z
zdFQu�f (z) � min

Q2CP
(";)

Z
zdFQu�g (z) . (6)

We want to show that the preference relation de�ned above with utility index u (�) and

parameters ("; ) 2 [0; 1)2 coincides with an SRDEU preference relation with utility index

u (�), underlying probability measure P and probability transformation function �(";) (�).

Hence in particular it shows an "�contaminated �truncated prior MEU maximizer has an

MEU representation as we have already argued. For this purpose, one can examine the core

of ��(";) , which is equivalent to establish the following result.

Proposition 2 For any act f ,
R
zd
�
�(";) � F Pu�f (z)

�
= minQ2CP

(";)

R
zdFQu�f (z).

Proof. We �rst establish thatZ
zd
�
F

P
u�f (z)

�
= min

Q2 PP

Z
zdFQu�f (z) = min

Q2co(PP )

Z
uzdFQu�f (z)

The second equality follows from the fact that PP is closed, and from the general property

of a support function in convex analysis: the support function of a set is identical to the
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support function of the closed convex hull of the set. For the �rst equality, notice thatZ
zd
�
F

P
u�f (z)

�
= min

Q2 PP

Z
zdFQu�f (z)

holds. Indeed, it is clear from the structure of PP that any minimizer Q� of the right hand

side must assign probability at most  on the event where u � f attains its maximum, but

then by de�nition
R
zd
�
F

P
u�f (z)

�
=
R
zdFQ

�

u�f (z).

Now the proposition can be established from the following calculation:Z
zd
�
�(";) � F Pu�f (z)

�
=

Z
zd f"�inf F (z) + (1� ") F (z)g

= " inf F Pu�f + (1� ")

Z
zd
�
F

P
u�f (z)

�
= "

�
min
Q2PP

Z
zdFQu�f (z)

�
+ (1� ")

�
min

Q2 PP

Z
zdFQu�f (z)

�

= "

�
min
Q2PP

Z
zdFQu�f (z)

�
+ (1� ")

�
min

Q2co(PP )

Z
zdFQu�f (z)

�

= min
Q2CP

(";)

Z
zdFQu�f (z) .

To sum up, we have established that an MEU maximizer with the set of priors CP(";) is an

SRDEU maximizer, and that in particular such a preference relation exhibits probabilistic

sophistication by Proposition 1.

Notice that for any ("; ) 6= (0; 0), Marinacci�s regularity condition does not hold for

the set CP(";) and so his theorem has no bite in this class. Nevertheless, as we have shown,

an "-contaminated -truncated-prior MEU maximizer is probabilistically sophisticated, and

can readily accommodate Allais paradox behavior. Since this class of preferences contains

an important class of MEU preferences such as the epsilon contamination model, we are

led to conclude that Marinacci�s regularity condition, which rules out this class, is not so

innocuous for the question he raised.
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7 The Characterization

The purpose of this section is to give a complete characterization of the class of probabilis-

tically sophisticated MEU model. As Proposition 1 suggests, it is larger than the class of

the "-contaminated -truncated-prior model. But we shall argue that in fact these canoni-

cal examples of �contaminated priors�provide a basis to identify the set of probabilistically

sophisticated MEU.

First, we show that if anMEUmodel is represented as an SRDEU as is the "-contaminated

 truncated-prior model, then it must be expressed as an �envelope�of the "-contaminated

 truncated-prior functionals.

Lemma 3 Fix a prior belief P , a utility index u, and a concave probability transformation

function �. Let C � P, be the set of priors for whichZ
zd
�
� � F Pu�f (z)

�
= min

Q2C

Z
zdFQu�f (z) for all f 2 F .

Then there exists D � (0; 1]2, such that

C =
\

(�;)2D

CP(";).

Proof. Consider the epigraph of � on (0; 1]; i.e., f(p; q) 2 (0; 1]� R : � (p) � qg. Since

� is concave, the epigraph is a closed convex set and thus it is the intersection of half spaces

restricted on (0; 1] � R containing it. Notice that a half space restricted on (0; 1] � R is

exactly the epigraph of �(";) for some ("; ). That is, if we de�ne D = f("; ) 2 (0; 1]2 :

�(";) (p) � � (p) for all p 2 (0; 1]g, we have � = inf(";)2D �(";). Then, by construction, the

corresponding set of measures C is exactly the intersection of CP(";), i.e., C =
T

(�;)2D
CP(";).

Essentially, we can build up any probabilistically sophisticated set of priors by taking

intersections of CP(";) sets and then take the convex hull of the unions of these intersections.

In this sense the contaminated prior class discussed in the previous section provides a basis

for the entire class of probabilistically sophisticated sets of multiple priors.
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In general, the class of probabilistically sophisticated MEU maximizers is larger than the

class of SRDEU maximizers. The following provides a characterization.

Theorem 4 Fix a preference relation % that admits a non-trivial MEU representation

V (f) = min
Q2C

Z
zdFQu�f (z)

where C � P is a closed and convex set, and the range of u (:) has non-empty interior. Then

the following two statements are equivalent.

1. The relation % is probabilistically sophisticated on F .

2. There exists a unique convex-ranged probability measure P : � ! [0; 1], and a set of

probability transformation functions � � TCON , such that for all f 2 F

V (f) = min
�2�

Z
zd
�
� � F Pu�f (z)

�
. (7)

Proof. (1) ) (2). Let P be the probability with respect to which % is probabilistically
sophisticated. We regard (S; P ) a probability space. Denote by U the range of utility index

u, i.e., U = u (X). Hereafter we shall simply say a random variable for a random variable

from S to U . For each act f , note that u � f is a random variable. Conversely, for any given

random variable f̂ , there is an act f with u � f = f̂ .

By the assumption of MEU preferences, the utility of an act f is determined by the

corresponding random variable u�f only. So we can unambiguously de�ne a utility function

V � for random variables by the rule V �
�
f̂
�
:= V (f) with f̂ = u � f .12

We claim that V � exhibits distribution invariance: that is, if two random variables f̂

and f̂ 0 induce the same lottery with respect to P then V �
�
f̂
�
= V �

�
f̂ 0
�
. To see this, for

12 Notice that this follows from MEU assumption and it is not a direct consequence of probabilistic
sophistication since u � f = u � f 0 does not imply that the induced distributions of outcomes are identical.
Assumption of MEU implies that outcomes are already transformed into utility indices, which in e¤ect
assumes the so called reduction principle. This does not come for free, since in general even a state dependent
expected utility model can be probabilistically sophisticated if the reduction assumption is dropped. See
Grant and Karni (2004).
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each number û in the �nite common range of f̂ and f̂ 0, �x an outcome xû 2 u�1 (û), and set

f (s) = xû for all s 2 f̂�1 (û) and f 0 (s) = xû for all s 2 f̂ 0�1 (û). By construction, f and f 0

induce the same distribution over X with respect to P: Thus by probabilistic sophistication,

V (f) = V (f 0) and hence V �
�
f̂
�
= V �

�
f̂ 0
�
by construction.

Following the proof of Lemma 4 of Safra & Segal (1998, pp 35-37),13 there exists a set

of concave transformation functions � such that V �
�
f̂
�
= min�2�

R
zd
h
� � F P

f̂
(z)
i
. Thus

we have by construction V (f) = min�2�
R
zd
�
� � F Pu�f (z)

�
as desired. �

(2) ) (1) For any pair of acts f; g 2 F , if P (f�1 (x)) = P (g�1 (x)) for all x 2 X, then

F Pu�f (z) = F Pu�g (z) for all z 2 R. Thus we have

V (f) = min
�2�

Z
zd
�
� � F Pu�f (z)

�
= min

�2�

Z
zd
�
� � F Pu�g (z)

�
= V (g) ,

and hence f � g, as required.

A few remarks are due. First, as we asserted in Introduction, Marrinacci�s Result applied

to the MEU model is a corollary to this result. To see this, notice that given expression (4)

and Proposition 1, we see that condition (2) above implies that every Q 2 C is a member

of the core of capacity �� (�) := 1 � � (1� P (�)), and thus �� (E) = minQ2C Q (E) for any

E 2 �.14 Choose any � 2 �. Now assume in addition that there exists an event E 2 �, such

that 0 < minQ2C Q (E) = maxQ2C Q (E) < 1. Since each Q 2 C is a probability measure

so that Q (E) +Q (SnE) = 1, this additional condition implies that �� (E) + �� (SnE) = 1.

Thus by the de�nition of ��, � (1� P (E)) + � (P (E)) = 1. This is possible only if � is

linear, since � is concave and � (0) = 0 and � (1) = 1 In conclusion, any � 2 � must be the

linear function � (z) = z, and hence (7) induces SEU (1).

Secondly, note that the formula (7) is not necessarily SRDEU; (7) is a minimum of several

13 Dana (2005, Corollary 3.3) proves a similar result. The proof of Lemma 4 of Safra & Segal �rst
establishes that V � in our model is well de�ned and satis�es distribution invariance, then show that V �

has representation (7). Strictly speaking, the proof needs to be modi�ed since they consider the set of all
non-negative random variables whereas the random variables in our model are �nite ranged and have a
restricted range U . But a careful reading will show that this can be readily acheived as long as U has a
non-empty interior. A detailed proof can be found in Appendix.

14 See Schmeidler (1972).
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Choquet integrals, which is not necessarily comonotonic additive and hence not representable

by a Choquet integral.15 Thus we conclude that the class of probabilistically sophisticated

MEU is even strictly larger than that of SRDEU.16

Finally, in view of Lemma 3, any probabilistically sophisticated MEU preferences can

be built up from the "-contaminated  truncated-prior functionals. This suggests that this

simple class of preferences is fundamental to study the implications of probabilistically so-

phisticated MEU, and hence the widely used "-contamination model focuses on only the half

of the whole picture.
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Appendix

A Proof of Theorem: (1) ) (2)

The proof draws on Segal and Safra�s (1998) analysis of preferences over lotteries that exhibit

constant risk aversion. In particular it adapts the arguments used in the proof of Lemma 4

pp35-37.

Let P be the probability with respect to which % is probabilistically sophisticated. Let
Cmin (f) := argminQ2C

R
zdFQu�f (z), which is the set of minimizing probabilities.

Lemma 5 Every Q 2 C is absolutely continuous with respect to P .

Proof. Suppose not. That is, suppose E 2 �, P (E) = 0 and maxQ2C Q (E) = q > 0.

Let [ŷEx̂] denote the act for which [ŷEx̂] (s) = ŷ if s 2 E and [ŷEx̂] (s) = x̂ if s =2 S.

By probabilistic sophistication [ŷEx̂] � x̂, since P
�
[ŷEx̂]

�1 (x̂)
�
= P (x̂�1 (x̂)) = 1 and

P
�
[ŷEx̂]

�1 (x)
�
= P (x̂�1 (x)) = 0 for all x 6= x̂. But from the MEU representation we have

min
Q2C

Z
zdFQu�x̂ (z) = min

Q2C

Z
zd�1 (z) = 1 > q � 0 + (1� q)� 1 = min

Q2C

Z
zdFQu�[ŷE x̂] (z)

I.e. x̂ � [ŷEx̂], a contradiction.

First note that Lemma 5 implies that, for all f 2 F , Q 2 C, and z; z0 2 R,

F Pu�f (z) = F Pu�f (z
0)) FQu�f (z) = FQu�f (z

0) .

Fix an act f 2 F and probability measure Q 2 C, and de�ne a function �Qf : [0; 1] ! [0; 1]

by the rule

�Qf (p) =

8>>>>>><>>>>>>:
FQu�f

��
F Pu�f

��1
(p)
�
, p 2 Image

�
F Pu�f

�
0, p = 0

` (p) , otherwise,

where ` is the piece-wise linear function, de�ned on the complement of the image of F Pu�f ,

that makes �Qf continuous on [0; 1]. That is, if we write u � f (S) = fz1; :::; zng where
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z1 < z2 < � � � < zn, and Ei = (u � f)�1 (zi) for each i = 1; :::; n; the graph of �Qf is obtained

by connecting the following n+ 1 points:

(0; 0) ; (P (E1) ; Q (E1)) ; : : : ;
�Xi

j=1
P (Ej) ;

Xi

j=1
Q (Ej)

�
; : : : ; (1; 1) .

So, in addition to being continuous, by construction �Qf is non-decreasing and onto and

FQu�f (z) = �Qf �F Pu�f (z) for every non-null point in u�f (S). Thus
R
zdFQu�f (z) =

R
zd
h
�Qf � F Pu�f (z)

i
holds. Fix f 2 F and Qf 2 Cmin (f) arbitrarily. Since the property above holds for any

Q 2 C, we have in particular that:

V (f) = min
Q2C

�Z
zdFQu�f (z)

�
=

Z
zdF

Qf
u�f (z) =

Z
zd
h
�
Qf
f � F Pu�f (z)

i
.

Note that these equalities do not depend on the choice of Qf , and so we shall write Qf for

an arbitrarily chosen element of Cmin (f) from now on.

De�ne W : F ! R by

W (f) = min
h2F , Q2Cmin(h)

�Z
zd
h
�Qh � F Pu�f (z)

i�
.

We shall show that W (f) = V (f) for any f 2 F . By de�nition W (f) � V (f) for any

f 2 F . So suppose the strict inequality holds; that is, there exists f such that W (f) = �v <

v = V (f). Then by the construction of W , there exists �f 2 F and Q �f 2 Cmin
�
�f
�
such that

W (f) =

Z
zd
h
�
Q �f

�f
� F Pu�f (z)

i
< V (f) .

We �rst show that if the range of u (�) has a non-empty interior, then probabilistic

sophistication implies that C exhibits the following symmetry property with respect to P .

De�nition 6 (Symmetry) A convex compact set C � PP is symmetric with respect to P ,

if the following condition holds: for any n > 1, and any pair of n-event partitions of S,

fE1; : : : ; Eng and fÊ1; : : : ; Êng such that P (Ei) = P
�
Êi

�
= 1=n for every i = 1; : : : ; n, for

each Q 2 C and each permutation � : f1; : : : ; ng ! f1; : : : ; ng, there exists Q̂ 2 C such that

Q̂
�
Êi

�
= Q

�
E�(i)

�
, i = 1; : : : ; n.
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Lemma 6 Suppose that the richness condition is satis�ed. If the relation % generated by

V (f) = minQ2C
R
zdFQu�f (z) is probabilistically sophisticated with respect to P 2 P, then C

is symmetric with respect to P .

Proof. Suppose that the symmetry condition is a violated: that is, there is a pair of

n-event partitions of S, fE1; : : : ; Eng and fÊ1; : : : ; Êng such that P (Ei) = P
�
Êi

�
= 1=n

for every i = 1; : : : ; n, and there is a �Q 2 C and a permutation �� : f1; : : : ; ng ! f1; : : : ; ng,

such that there exists no Q̂ 2 C which satis�es:

Q̂
�
Êi

�
= �Q

�
E�(i)

�
, i = 1; : : : ; n.

We shall construct two acts �f and f̂ such that F P
u� �f = F P

u�f̂ but V
�
f̂
�
> V

�
�f
�
.

Denote by�C := f(Q (E1) ; : : : ; Q (En)) : Q 2 Cg and by �̂C :=
n�
Q
�
Ê1

�
; : : : ; Q

�
Ên

��
: Q 2 C

o
.

By the convexity and compactness of C, �C and �̂C are convex and compact subsets of

�n�1 := f(q1; :::; qn) : qi � 0,
Pn

i=1 qi = 1g: Notice that for an act f which is measur-

able with respect to fE1; : : : ; Eng, we have V (f) = minq2�C
Pn

i=1 qi (u � f (Ei)). Simi-

larly, for any act f̂ which is measurable with respect to fÊ1; : : : ; Êng, we have V
�
f̂
�
=

minq̂2�̂C
Pn

i=1 q̂i

�
u � f̂

�
Êi

��
.

For each vector z 2 Rn, write z�� for the element which is obtained from z by permutation

��, i.e., z��i = z��(i) for i = 1; :::; n. Let �q = (�q1; :::; �qn) :=
�
�Q (E1) ; : : : ; �Q (En)

�
2 �C . Then

our hypothesis above implies that �q�� 62 �̂C .

Since �C and �̂C are compact and convex subsets of the hyperplane fz 2 Rn :
Pn

i=1 zi =

1g, applying the separation theorem we can �nd �z 2 Rn such that �q�� � �z�� < minq̂2�̂C q̂ � �z
��.

On the other hand, �q�� � �z�� = �q � �z by construction, and since �q 2 �C , we conclude that

minq2�C q � �z < minq̂2�̂C q̂ � �z
��.

Since the interior of fu (x) : x 2 Xg is non-empty by assumption, pick � in the interior

of this set, and choose � > 0 small enough so that � + ��zi 2 fu (x) : x 2 Xg for i = 1; ::; n:

Pick for each i = 1; :::; n, �xi 2 X such that u (�xi) = � + ��zi. Then de�ne acts �f and f̂

which are measurable with respect to fE1; : : : ; Eng and fÊ1; : : : ; Êng, respectively, by the
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rule �f (Ei) = �xi and f̂
�
Êi

�
= �x��i for i = 1; :::; n By construction, u � �f (Ei) = � + ��zi and

u � f̂
�
Êi

�
= �+ ��z��i for i = 1; :::; n, and F

P
u� �f = F P

u�f̂ .

Finally, V
�
�f
�
= minQ2C

R
zdFQ

u� �f (z) = minq2�C
Pn

i=1 qi
�
u � �f (Ei)

�
=

minq2�C
Pn

i=1 qi (�+ ��zi) < minq̂2�̂C
Pn

i=1 q̂i (�+ ��z��i ) = minQ2C
R
zdFQ

u�f̂ (z) = V
�
f̂
�
.

Let
�!F n be the set of all acts g 2 F such that u � g has at most n di¤erent �utility levels�

z1 � � � � � zn and satisfy P
�
(u � g)�1 (zi)

�
= 1=n. An immediate implication of Lemma 6 is

that if f and f̂ are both in
�!F n then for each Q 2 C, there exists Q̂ 2 C, such that �Qf = �Q̂

f̂
.

Now consider the situation where there exists n and f̂ such that f , f̂ 2 �!F n, and F P
u�f̂ =

F P
u� �f . By symmetry of C, �

�Q
�f
= �Q̂

f̂
which implies W (f) = V (f), a contradiction.

If there is no such n then, by continuity, there exists n large enough for which there exist

fn, f̂n 2 �!F n that satisfy

W (fn) =

Z
zd
h
�
Qfn

f̂n
� F Pu�fn (z)

i
< �v + 1=2 (v � �v)

and V (fn) > �v + 1=2 (v � �v), a contradiction.

Hence, for �̂ =
n
�
Q(h)
u�h : h 2 F

o
V (f) = min

�2�̂

Z
zd
�
� � F Pu�f (z)

�
.

It remains for us to show that each �Qff is concave.

Lemma 7 The function �Qff is concave for every f 2 F .

Proof. Suppose for some f 2 F , �Qff is not concave. Write u � f (S) = fz1; :::; zng where

z1 < z2 < � � � < zn, andEi = (u � f)�1 (zi) for each i = 1; :::; n: Then
Pi

j=1 P (Ej) = F Pu�f (zi)

and so
�
F Pu�f

��1 �Pi
j=1 P (Ej)

�
= zi.Since �

Qf
f does not depend on P -null events, we can

assume without loss of generality that P (Ei) > 0 for each i = 1; :::; n: By construction,

�Qu�f

��Pi
j=1 P (Ej)

��
= FQu�f

��
F Pu�f

��1 �Pi
j=1 P (Ej)

��
= FQu�f (zi) =

Pi
j=1Q (Ej) for

each i = 1; :::; n.

From the structure of the graph of �Q(f)u�f , it is clear that �
Q(f)
u�f is non-concave if and only

if there exists i 2 f1; : : : ; n� 1g, such that
Q (Ei)

P (Ei)
<
Q (Ei+1)

P (Ei+1)
.
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Lemma 8 Let Q be absolutely continuous with respect to the P 2 P, and let events A and

B in � be disjoint and satisfy

0 <
Q (A)

P (A)
<
Q (B)

P (B)
<1:

Then there exists events Â � A and B̂ � B with P
�
Â
�
= P

�
B̂
�
and Q

�
Â
�
< Q

�
B̂
�
.

Proof. By the convex rangedness assumption, we can �nd events A0 � A and B0 �

B such that both P (A0) and P (B0) are rational numbers, and 0 < Q (A0) =P (A0) <

Q (B0) =P (B0) < 1. So it su¢ ces to establish the statement for the case P (A) and P (B)

are rationals. Find an � > 0 such that P (A) = m� and P (B) = n� for some integers m

and n. By convex valudedness assumption, we can �nd a partitions fAi : i = 1; :::;mg of A

and fBj : j = 1; :::; ng of B such that P (Ai) = P (Bj) = � for any i and j.

Since Q (A) =
Pn

i=1Q (Ai), there must be at least one i
� such that Q (Ai�) =P (Ai�) =

Q (Ai�) =� � Q (A) =P (A). Similarly, there must be at least one j� with Q (Bj�) =� �

Q (B) =P (B)g. So set Â = Ai� and B̂ = Bj�. By construction, Â � A and B̂ � B

with P
�
Â
�
= P

�
B̂
�
(= �). Moreover, Q

�
Â
�
� � (Q (A) =P (A)) < � (Q (B) =P (B)) �

Q
�
B̂
�
, as desired.

From Lemma 8 it follows there exist events Â � Ei and B̂ � Ei+1 with P
�
Â
�
= P

�
B̂
�

and Q
�
Â
�
< Q

�
B̂
�
. So consider the act g de�ned to be

u � g (s) =

8>>>>>><>>>>>>:
zi if s 2 B̂

zi+1 if s 2 Â

u � f (s) otherwise

By construction, we have by direct calculation:

V (g) = min
Q2C

�Z
zdFQu�g (z)

�
�
Z
zdFQ(f)u�g (z) <

Z
zdF

Q(f)
u�f (z) = V (f) .

But on the other hand, since P
�
Â
�
= P

�
B̂
�
and so by construction u� g induces the same

distribution of utility indices over fz1; :::; zng. So by probabilistic sophistication it follows

V (f) = V (g), a contradiction. �
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From Lemma 7 we have that �̂ � TCON . Let Cl
�
�̂
�
denote the closure of �̂ By continuity

we have

min
�2�̂

Z
zd
�
� � F Pu�f (z)

�
= min

�2Cl(�̂)

Z
zd
�
� � F Pu�f (z)

�
De�ne >CON to be the partial ordering of �more concave�de�ned over TCON . That is,

for any pair �; �0 2 TCON , � >CON �0 if � =  � �0 for some  2 TCON and � 6= �0. Notice

that if � >CON �0 thenZ
zd
�
� � F Pu�f (z)

�
�

Z
zd
�
�0 � F Pu�f (z)

�
, for all f 2 F

and
Z
zd
�
� � F Pu�g (z)

�
<

Z
zd
�
�0 � F Pu�g (z)

�
, for some g 2 F .

We thus construct our set of probability transformation functions by selecting the set of

�maximally�concave functions from Cl
�
�̂
�
. That is,

� =
n
� 2 Cl

�
�̂
�
: @ 2 Cl

�
�̂
�
,  >CON �

o
.

This yields,

V (f) = min
�2�

�Z
zd
�
� � F Pu�f (z)

��
,

as required. �
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