
 
 
 
 
 
 
 

Discussion Paper No.601 
 

Cominimum Additive Operators 
 

by 
Atsushi Kajii 

Hiroyuki Kojima 
and 

Takashi Ui 
 

February 2005 

KYO

K

http://www.kier.kyoto-u.ac.jp/index.html 

KYOTO INSTITUTE 
OF 

ECONOMIC RESEARCH 

KIER DISCUSSION PAPER SERIES 
TO UNIVERSITY 

YOTO, JAPAN 

 



Cominimum Additive Operators�

Atsushi Kajiiy Hiroyuki Kojimaz Takashi Uix

February 2005

Abstract

This paper proposes a class of weak additivity concepts for an operator on the set of

real valued functions on a �nite state space 
, which include additivity and comonotonic

additivity as extreme cases. Let E � 2
 be a collection of subsets of 
. Two functions x

and y on 
 are E-cominimum if, for each E 2 E , the set of minimizers of x restricted on
E and that of y have a common element. An operator I on the set of functions on 
 is E-
cominimum additive if I(x+y) = I(x)+I(y) whenever x and y are E-cominimum. The main
result characterizes homogeneous E-cominimum additive operators in terms of the Choquet

integrals and the corresponding non-additive signed measures. As applications, this paper

gives an alternative proof for the characterization of the E-capacity expected utility model of

Eichberger and Kelsey (1999) and that of the multi-period decision model of Gilboa (1989).
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1 Introduction

Consider an operator I on the set of real valued functions on a �nite set 
. It is well known that

an operator I is homogeneous (i.e. I(�x) = �I(x) for a function x on 
 and � > 0) and additive

(i.e. I(x + y) = I(x) + I(y) for functions x and y on 
) if and only if it is represented as the

integral with respect to a signed measure v on 
; that is, I(x) =
R
xdv for a function x on 
.

In his seminal paper, Schmeidler (1986) considered a homogeneous operator that is additive

on comonotonic functions. Two functions x and y on 
 are said to be comonotonic if (x(!) �
x(!0))(y(!) � y(!0)) � 0 for all !, !0 2 
. He showed that an operator I is homogeneous and
additive on comonotonic functions (i.e. I(x+y) = I(x)+I(y) whenever x and y are comonotonic)

if and only if it is represented as the Choquet integral with respect to a non-additive signed

measure v on 
; that is, I(x) =
R
xdv for a function x on 
 with the understanding that the

integral is the Choquet integral. In the decision theory under uncertainty, the utility function

representable as a Choquet integral now constitutes one of the important benchmarks.

In this paper, we propose a class of weak additivity concepts for an operator on the set of real

valued functions, which include both additivity and comonotonic additivity as extreme cases. To

be precise, let E � 2
 be a collection of subsets of 
. Two functions x and y on 
 are said to be
E-cominimum if, for every E 2 E , the set of minimizers of x restricted on E and that of y have

a common element. An operator I is said to be E-cominimum additive if I(x+ y) = I(x) + I(y)

whenever x and y are E-cominimum.
For example, if E is empty or contains only singletons, then any two functions are trivially

E-cominimum. In this case, E-cominimum additivity coincides with additivity. If E consists of
all subsets of 
, then any two comonotonic functions are E-cominimum and conversely any two

E-cominimum functions are comonotonic. In this case, E-cominimum additivity coincides with

comonotonic additivity. Thus, in general, E-cominimum additivity is stronger than comonotonic

additivity but weaker than additivity.

The main result of the paper (Theorem 3) is a representation theorem for homogeneous oper-

ators satisfying E-cominimum additivity, which we shall sketch in the following. Notice that since
E-cominimum additivity implies comonotonic additivity, a homogeneous E-cominimum additive

operator is represented by the Choquet integral with respect to a non-additive signed measure v

by Schmeidler�s theorem, a fortiori. Since v can be uniquely written as v =
P

T�
 �TuT , where

uT is the so called unanimity game on T � 
, the characterization of the operator can be done in
terms of coe¢ cients f�T gT�
. We say that T � 
 is E-complete if, for any two points !; !0 2 T ,
there exists E 2 E satisfying f!; !0g � E � T ; that is, any two elements are �connected�within
T by an element of E . The main result shows that a homogeneous operator is E-cominimum ad-

ditive if and only if �T = 0 for every T which is not E-complete. It also shows that this condition
is equivalent to the condition that v is modular on a suitably de�ned collection of pairs of events:

v(T1 [ T2) + v(T1 \ T2) = v(T1) + v(T2) whenever the pair (T1; T2) belongs to the collection.
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We shall supply two applications to decision models under uncertainty. The �rst is the E-

capacity expected utility model of Eichberger and Kelsey (1999). The E-capacities include the so

called "-contamination as a special case. The second is the multi-period decision model of Gilboa

(1989). For both decision models, we provide alternative proofs for the axiomatic characterization

using our results directly.

The organization of this paper is as follows. Section 2 quotes some known results about

the Choquet integrals and Schmeidler�s theorem. Section 3 introduces E-cominimum functions

and studies properties of E-complete events. Section 4 provides the main results and Section 5
discusses applications.

2 The Choquet integrals and Schmeidler�s theorem

Let 
 = f1; : : : ; ng be a �nite set of states of the world. A subset E � 
 is called an event.

Denote by F the collection of all non-empty subsets of 
, and by Fk the collection of subsets
with k elements.

A set function v : 2
 ! R with v(;) = 0 is called a game or a non-additive signed measure.
Since each game is identi�ed with a point in RF , we denote by RF the set of all games. For a
game v 2 RF , we use the following de�nitions:

� v is monotone if E � F implies v(E) � v(F ) for all E;F 2 F .

� v is additive if v(E[F ) = v(E)+v(F ) for all E;F 2 F with E\F = ;, which is equivalent
to v(E) + v(F ) = v(E [ F ) + v(E \ F ) for all E;F 2 F .

� v is convex (or supermodular) if v(E) + v(F ) � v(E [ F ) + v(E \ F ) for all E;F 2 F :

� v is normalized if v(
) = 1.

� v is non-negative if v(E) � 0 for all E 2 F .

� v is a non-additive measure if it is non-negative and monotone. A normalized non-additive
measure is called a capacity.

� v is ameasure if it is non-negative and additive. A normalized measure is called a probability
measure.

� The conjugate of v, denoted by v0, is de�ned as v0(E) = v(
)�v(
nE) for all E 2 F . Note
that (v0)0 = v and (v + w)0 = v0 + w0 for v; w 2 RF .

For T 2 F , let uT 2 RF be the unanimity game on T de�ned by the rule: uT (S) = 1 if T � S
and uT (S) = 0 otherwise. Let u0T be the conjugate of uT . Then u

0
T (S) = 1 if T \ S 6= ; and

u0T (S) = 0 otherwise. The following result is well known as the Möbius inversion in discrete and

combinatorial mathematics (cf. Shapley, 1953).
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Lemma 1 The collection fuT gT2F is a linear base for RF . The unique collection of coe¢ cients
f�T gT2F satisfying v =

P
T2F �TuT , or equivalently v(E) =

P
T�E �T for all E 2 F , is given

by �T =
P

E�T (�1)jT j�jEjv(E).

The collection of coe¢ cients f�T gT2F is referred to as the Möbius transform of v. If v =P
T2F �TuT , then the conjugate v

0 is given by v0 =
P

T2F �Tu
0
T .

Denote by R
 = fx jx : 
 ! Rg the set of all real valued functions on 
. Let 1E 2 R


be the indicator function of an event E 2 F . We write minE x = min!2E x(!), argminE x =

argmin!2E x(!), maxE x = max!2E x(!), argmaxE x = argmin!2E x(!) for E 2 F and x 2 R
.

De�nition 1 For x 2 R
 and v 2 RF , the Choquet integral of x with respect to v is de�ned asZ
xdv =

Z �x

x

v(x � �)d�+ xv(
); (1)

where �x = max
 x(!), x = min
 x(!), and v(x � �) = v(f! 2 
 jx(!) � �g).

For example, the Choquet integral of an indicator function is
R
1Edv =

R 1
0
v(1E � �)d� =

v(E); the Choquet integral with respect to unanimity games and their conjugates areZ
xduT =

Z �x

x

uT (x � �)d�+ xuT (
) =
h
min
T
x�min



x
i
+min



x = min

T
x;Z

xdu0T =

Z �x

x

u0T (x � �)d�+ xu0T (
) =
h
max
T
x�min



x
i
+min



x = max

T
x

because uT (x � �) = 1 if minT x � � and uT (x � �) = 0 otherwise, and u0T (x � �) = 1 if

maxT x � � and u0T (x � �) = 0 otherwise.
It is straightforward to see that the Choquet integral is linear in games:Z

xd(sv + tw) = s

Z
xdv + t

Z
xdw for all x 2 R
, v; w 2 RF , and s; t 2 R.

An important implication of the linearity is the following additive representation of the Choquet

integral (cf. Gilboa and Schmeidler, 1994).

Lemma 2 For x 2 R
 and v =
P

T2F �TuT 2 RF ,Z
xdv =

X
T2F

�T

Z
xduT =

X
T2F

�T min
T
x; (2)Z

xdv0 =
X
T2F

�T

Z
xdu0T =

X
T2F

�T max
T
x: (3)

Lemma 2 says that the Choquet integral of x with respect to v can be represented as a

weighted sum of all minima of x with respect to some possibly negative weights.
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Two functions x; y 2 R
 are said to be comonotonic if (x(!) � x(!0))(y(!) � y(!0)) � 0 for
all !; !0 2 
. Observe that two functions x; y 2 R
 are comonotonic if and only if argminE x \
argminE y 6= ; for all E 2 F . Symmetrically, two functions x; y 2 R
 are comonotonic if and
only if argmaxE x \ argmaxE y 6= ; for all E 2 F .
If x and y are comonotonic then minT (x + y) = minT x + minT y for all T 2 F . Thus, the

Choquet integral is additive on comonotonic functions by Lemma 2:Z
(x+ y)dv =

X
T2F

�T min
T
(x+ y) =

X
T2F

�T min
T
x+

X
T2F

�T min
T
y =

Z
xdv +

Z
ydv:

We say that an operator I : R
 ! R satis�es comonotonic additivity provided it is additive on
comonotonic functions, i.e., I(x + y) = I(x) + I(y) whenever x and y are comonotonic. Thus,

the Choquet integral satis�es comonotonic additivity. We say that an operator I : R
 ! R is
homogeneous (more precisely, positively homogeneous of degree one) provided I(�x) = �I(x)

for all � > 0. It is easy to see that the Choquet integral is homogenous. Schmeidler (1986)

showed that a homogeneous operator which satis�es comonotonic additivity must be the Choquet

integral. The following is a slightly di¤erent version of Schmeidler�s theorem.1

Theorem 1 An operator I : R
 ! R is homogenous and satis�es comonotonic additivity if and
only if I(x) =

R
xdv for all x 2 R
 where v 2 RF is de�ned by the rule v(E) = I(1E).

Proof. This can be shown by just a minor modi�cation of Schmeidler�s proof.

3 Cominimum functions

We will study homogenous operators satisfying a property stronger than comonotonic additivity

and weaker than additivity. For this purpose, we generalize the notion of comonotonic functions.

Remember that two functions x; y 2 R
 are comonotonic if and only if argminE x\argminE y 6=
; for all E 2 F . By replacing F with a collection of events E � F , we have a weaker notion of
comonotonic functions.2

De�nition 2 Let E � F be a collection of events. Two functions x; y 2 R
 are said to be
E-cominimum, provided argminE x \ argminE y 6= ; for all E 2 E . Two functions x; y 2 R
 are
said to be E-comaximum, provided argmaxE x \ argmaxE y 6= ; for all E 2 E .

1Schmeidler (1986) assumed monotonicity instead of homogeneity. But this can be readily shown adopting his
proof. In fact, since homogeneity is a consequence of monotonicity in his proof, our statement is less elegant. But
with monotonicity, the resulting game is necessarily a capacity, which is inconvenient for us since we want to work
with general games.

2Kojima (2004) was the �rst to consider a weaker notion of comonotonic functions in this direction. He
introduced the notion of cominimum functions, which are f
g-cominimum functions in this paper.
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Note that x and y are E-cominimum if and only if �x and �y are E-comaximum. So in
fact any result about E-cominimum functions can be translated for E-comaximum functions in a

straightforward manner.

The following properties are immediate consequences of the de�nition:

� If two functions are E-cominimum (resp. comaximum) then they are E 0-cominimum (resp.

comaximum) for any E 0 � E .

� If two functions are both E-cominimum (resp. comaximum) and E 0-cominimum (resp. co-

maximum) then they are E [ E 0-cominimum (resp. comaximum).

� Any two functions are F1-cominimum (comaximum) where F1 = ff!g j! 2 
g.

� Two functions are E-cominimum (resp. comaximum) if and only if they are E [ F1-cominimum
(resp. comaximum).

� The following statements are equivalent.

�Two functions are comonotonic.

�Two functions are F2-cominimum (comaximum) where F2 = ff!; !0g j!; !0 2 
g.
�Two functions are F-cominimum (comaximum).

�Two functions are E-cominimum (comaximum) for all E � F .

The last item above implies that even if E 6= E 0, the collection of E-cominimum pairs of func-

tions may coincide with that of E 0-cominimum pairs. Among collections of events which induce

the same pairs of cominimum functions, there is a special collection, the complete collection,

which will play an important role in the main result of this paper.

De�nition 3 Let E � F be a collection of events. An event T 2 F is E-complete provided,
for any two distinct points !1 and !2 in T , there is E 2 E such that f!1; !2g � E � T . The

collection of all E-complete events is called the E-complete collection and denoted by �(E). A
collection E is said to be complete if E = �(E).

We adopt the term �complete�from an analogy to a complete graph.3 For T 2 F , consider
an undirected graph with a vertex set T where f!; !0g � T is an edge if there is E 2 E satisfying
f!1; !2g � E � T . This is a complete graph if and only if T is E-complete.
As an operator, � is monotone in the sense that �(E) � �(E 0) whenever E � E 0. Note

that any E 2 E is E-complete, i.e., E � �(E), and any singleton is E-complete trivially, i.e.,
F1 � �(E). The following results show that �(E) itself is complete and it serves as a canonical
collection among collections which induce the same pairs of cominimum functions.

3We can also regard (
; E) as a hypergraph. The theory of hypergraph has the concept of completeness, which
is di¤erent from that in this paper.
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Lemma 3 For any E � F , �(E) is complete, i.e., �(E) = �(�(E)).

Proof. Since �(E) � �(�(E)) by the monotonicity of �, it is enough to show that �(E) �
�(�(E)). Let T 2 F be �(E)-complete, i.e., T 2 �(�(E)). Then, for any !1; !2 2 T , there is
E 2 �(E) such that f!1; !2g � E � T . Since E 2 �(E) is E-complete, there is E0 2 E such that
f!1; !2g � E0 � E � T . This implies that T is E-complete and thus T 2 �(E), which completes
the proof.

Lemma 4 Two functions are E-cominimum if and only if they are �(E)-cominimum.

Proof. Since E � �(E), �(E)-cominimum functions are E-cominimum. Conversely, let two

functions x1 and x2 be E-cominimum. Seeking a contradiction, suppose that these are not �(E)-
cominimum: that is, there is an E-complete event T 2 F such that argminT x1\argminT x2 = ;.
Pick !1 2 argminT x1 and !2 2 argminT x2. Since T is E-complete, there is E 2 E with
f!1; !2g � E � T . Since x1 and x2 are E-cominimum, there is !� 2 argminE x1 \ argminE x2.
But then xi(!�) � xi(!i) for i = 1; 2, and thus !� 2 argminT x1 \ argminT x2, which is a
contradiction.

If two functions are indicator functions, the E-cominimum relation naturally induces a relation
on pairs of events. We shall pursue this idea in the following.

De�nition 4 Let E � F be a collection of events. A pair of events (T1; T2) � F � F with

T1 6� T2 and T2 6� T1 are said to be a decomposition pair for T 2 F in E , provided T1 [ T2 = T
and, for any E 2 E , E � T implies E � T1 or E � T2 (or both). Denote by W (E) the collection
of all the decomposition pairs for some events in E :

W (E) = f(T1; T2) 2 F � F jT1 6� T2 and T2 6� T1,
E � T1 [ T2 implies E � T1 or E � T2 for all E 2 Eg:

An event T 2 F is E-decomposable if there exists a decomposition pair for T in E , i.e., T = T1[T2
for some (T1; T2) 2W (E).

The idea of decomposition is exactly the E-cominimum relation restricted to indicator func-

tions, as is shown next.

Lemma 5 Let T1; T2 2 F be such that T1 6� T2 and T2 6� T1. Indicator functions 1T1 and 1T2
are E-cominimum if and only if (T1; T2) 2W (E).

Proof. Suppose that (T1; T2) 2W (E). Pick any E 2 E . If E � T1 [ T2, then E � T1 or E � T2
and thus argminE 1T1 = E or argminE 1T2 = E must hold. In both cases, argminE 1T1 \
argminE 1T2 6= ; holds. If E � T1 [ T2 does not hold, argminE 1T1 \ argminE 1T2 = EnT1 \
EnT2 = En(T1 [ T2) 6= ;. Therefore, 1T1 and 1T2 are E-cominimum.
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Conversely, assume that 1T1 and 1T2 are E-cominimum. Suppose there is E 2 E with E �
T1 [ T2 but E 6� T1 and E 6� T2. Then argminE 1T1 = EnT1 � (T1 [ T2)nT1 and argminE 1T2 =
EnT2 � (T1 [ T2)nT2, thus argminE 1T1 \ argminE 1T2 = ;, contrary to the assumption. Thus,
such an E cannot exist and so (T1; T2) 2W (E).

As is then easily expected, E-decomposability of an event is closely related to E-completeness.
Note that any singleton is not E-decomposable trivially, and that any E 2 E is not E-decomposable.
The latter implies that any E-complete event, which is necessarily an element of �(E) by def-
inition, is not �(E)-decomposable. In fact, E-decomposability and �(E)-decomposability are
equivalent as the following lemma show.

Lemma 6 W (E) =W (�(E)).

Proof. Since E � �(E), W (E) � W (�(E)). We show W (E) � W (�(E)). Suppose that

(T1; T2) 2W (E) and (T1; T2) 62W (�(E)). The former implies that T1 6� T2 and T2 6� T1, and the
latter implies that there exists E 2 �(E) such that E � T1 [ T2 but neither E � T1 nor E � T2.
Thus, there exist !1; !2 2 E such that !1 2 T1nT2 and !2 2 T2nT1. Since E is E-complete,
there exists E0 2 E such that !1; !2 2 E0, which contradicts to the assumption that (T1; T2) is a
decomposition pair for T in E .

The next result shows that the decomposability is in fact the �complement�of the complete-

ness.

Lemma 7 An event T 2 F is E-complete if and only if T is not E-decomposable. Consequently,

�(E) = fT 2 F jT 6= T1 [ T2 for any (T1; T2) 2W (E)g;
= FnfT1 [ T2 j (T1; T2) 2W (E)g:

Proof. The �if�part is clear from the de�nition. We shall establish the �only if�part. Assume

that T is not E-complete. Then there exists two distinct points !1; !2 2 T such that there exists
no E 2 E satisfying f!1; !2g � E � T . Set T1 = Tnf!1g and T2 = Tnf!2g. By construction,
T1 6� T2, T2 6� T1, and T1 [ T2 = T . Also, for any E 2 E , if E � T1 [ T2 then f!1; !2g * E

and so E � T1 or E � T2 must hold by construction. Therefore, (T1; T2) 2 W (E) and thus T is
E-decomposable.

To conclude this section, we shall give a su¢ cient condition for completeness.

Lemma 8 Suppose that E contains all the singleton events and satis�es the following property:
if E;E1; : : : ; En 2 E satisfy E �

Sn
i=1Ei then E [ Ei 2 E for at least one i 2 f1; : : : ; ng. Then,

E is complete.
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Proof. Let T =2 E . We want to show that T is not E-complete. By Lemma 7, it su¢ ces to
show that T is E-decomposable. Fix �! 2 T , and let T1 � T be a maximal set containing �! and
included in E . Since T 62 E , T1 must be a proper subset of T .
If T1 = f�!g, then there is no event E 2 E such that f�!g ( E � T . Then it is readily veri�ed

that T1 and TnT1 constitute an E-decomposition of T .
If T1 6= f�!g, then let E 0 = fE 2 E jE � T and E * T1g. It must be true that T1 *

S
E2E0 E.

To see this, suppose that T1 �
S
E2E0 E. Then, there exists E 2 E 0 such that T1 [ E 2 E by the

assumption on E . Since E � T and E * T1, we have T � T1 [ E ) T1, which contradicts to the
maximality of T1.

Let T2 = (TnT1)[ (
S
E2E0 E). We claim T1 and T2 is an E-decomposition of T . By construc-

tion, T1 [ T2 = T . As we noted above, T1 ( T . Since T1 *
S
E2E0 E, T2 ( T , and hence T1 6� T2

and T2 6� T1. Finally, pick any E 2 E with E � T and suppose E * T1. Then E 2 E 0, and so
E � T2. Thus (T1; T2) 2W (E), which completes the proof.

In practice, a stronger condition is also useful.

Lemma 9 Suppose that E contains all the singleton events and satis�es the following property:
for any E1; E2 2 E, if E1 \ E2 6= ; then E1 [ E2 2 E. Then, E is complete.

Proof. The condition above implies the property of Lemma 8; if E � [ni=1Ei, then for at least
one i, E \ Ei 6= ;, and so E [ Ei 2 E .

If E \ E0 = ; or E � E0 or E0 � E for all E;E0 2 E , then E [ F1 is complete. Especially, if
E is a partition of 
, then E [ F1 is complete.
Lemma 8, however, does not provide a necessary condition for completeness. For instance, let


 = f1; 2; 3; 4g, E = ff1g; f2g; f3g; f4g; f1; 2g; f1; 3g; f2; 4gg. Then E is complete. Indeed, f2; 3g,
f3; 4g and f1; 4g are not E-complete since no element of E contains them. Thus any set which
contains one of them is not E-complete, thus any three points set and 
 are not E-complete. But
then E does not satisfy the condition of Lemma 8.

4 Cominimum additive operators

The notion of E-cominimum (comaximum) functions induces the following additivity property of

an operator I : R
 ! R.

De�nition 5 An operator I : R
 ! R is E-cominimum (resp. comaximum) additive provided

I(x+ y) = I(x) + I(y) whenever x and y are E-cominimum (resp. comaximum).

Since E-cominimum (comaximum) additivity implies comonotonic additivity, we have the

following corollary of Theorem 1.
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Corollary 2 An operator I : R
 ! R is homogeneous and E-cominimum (comaximum) additive

for some E � F if and only if I(x) =
R
xdv for any x 2 R
 where v 2 RF is de�ned by the rule

v(E) = I(1E).

Therefore, a homogeneous, E-cominimum (comaximum) additive operator is associated with

a game v. As is easily expected, E-cominimum (comaximum) additivity of an operator requires

some further structure on the corresponding game v. To �nd the required structure, we shall

focus on a game v, and say that v is E-cominimum (comaximum) additive to mean that the

corresponding operator is E-cominimum (comaximum) additive.

De�nition 6 A game v is said to be E-cominimum additive (resp. E-comaximum additive)

provided
R
(x+y)dv =

R
xdv+

R
ydv whenever x and y are E-cominimum (resp. E-comaximum).

The following result gives a simple su¢ cient condition for E-cominimum additivity.

Lemma 10 Let v =
P

T2F �TuT 2 RF be a game. If �T = 0 for all T 62 E, then v is E-
cominimum additive.

Proof. Let two functions x and y be E-cominimum. Note that, for all E 2 E , argminE x \
argminE y 6= ; and thus minE(x+ y) = minE x+minE y. So using (2), we haveZ
(x+ y)dv =

X
T2F

�T min
T
(x+ y) =

X
T2E

�T min
T
(x+ y) =

X
T2E

�T (min
T
x+min

T
y)

=
X
T2E

�T min
T
x+

X
T2E

�T min
T
y =

X
T2F

�T min
T
x+

X
T2F

�T min
T
y =

Z
xdv +

Z
ydv;

which completes the proof.

A natural question then is whether the converse is true, i.e., E-cominimum additivity implies

�T = 0 for any T =2 E . But in general, this is not true. Remember that two functions are
comonotonic if and only if they are F2-cominimum where F2 is the set of all two-point events.
Since the Choquet integral is additive on comonotonic functions, F2-cominimum additivity does

not imply �T = 0 for any T =2 F2.
If v is E-cominimum additive then, by Lemma 5 and the de�nition of the Choquet integral,

v(T1 [ T2) + v(T1 \ T2) =
Z
(1T1 + 1T2)dv =

Z
1T1dv +

Z
1T2dv = v(T1) + v(T2) (4)

for all (T1; T2) 2W (E). We call this property the modularity for E-decomposition pairs.

De�nition 7 A game v is said to be modular for E-decomposition pairs provided

v(T1 [ T2) + v(T1 \ T2) = v(T1) + v(T2) for all (T1; T2) 2W (E).
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It turns out that E-cominimum additivity and the modularity for E-decomposition pairs are
equivalent, which leads us to the complete characterization of E-cominimum additivity.

Theorem 3 Let v =
P

T2F �TuT 2 RF be a game. The following three statements are equiva-

lent: (i) v is E-cominimum additive; (ii) v is modular for E-decomposition pairs; (iii) �T = 0 for
any T =2 �(E). Therefore, if E is complete, v is E-cominimum additive if and only if �T = 0 for

any T =2 E.

Proof. (iii) ) (i). By Lemma 10, v is �(E)-cominimum additive. By Lemma 4, two functions

are �(E)-cominimum if and only if they are E-cominimum. Thus, v must be E-cominimum
additive.

(i) ) (ii). This is true by Lemma 5 and the de�nition of the Choquet integral, as in (4).

(ii) ) (iii). If jT j = 1, then T must be E-complete, thus the statement is true vacuously. Let
k � 2, and suppose as an induction hypothesis that for any T with jT j � k � 1, if T is not E-
complete, �T = 0. Let jT j = k and assume that T is not E-complete. Then T is E-decomposable
by Lemma 7, and so there exists (T1; T2) 2W (E) such that T = T1 [ T2.
Since W (E) = W (�(E)) by Lemma 6, any S 2 �(E) with S ( T must be either S � T1 or

S � T2 (or both, i.e., S � T1 \ T2). Therefore, if S � T satis�es S 6� T1 and S 6� T2, then

S =2 �(E) and so �S = 0 by the induction hypothesis, unless S = T . Now from the modularity

for E-decomposition pairs, we have

0 = v(T1 [ T2) + v(T1 \ T2)� v(T1)� v(T2)

=
X
S�T

�S +
X

S�T1\T2

�S �
X
S�T1

�S �
X
S�T2

�S

=
X

S�T; S 6�T1; S 6�T2

�S = �T ;

which completes the proof.

The cominimum additivity is the conjugate of the comaximum additivity, and vice versa in

the following sense.

Lemma 11 A game v is E-cominimum additive if and only if v0 is E-comaximum additive.

Proof. Since min!2T �x(!) = �max!2T x(!), we have
R
�xdv = �

R
xdv0 by (2) and (3).

Thus,
R
(x + y)dv =

R
xdv +

R
ydv holds if and only if

R
((�x) + (�y))dv0 =

R
(�x)dv0 +R

(�y)dv0. So the result holds because x and y are E-cominimum if and only if �x and �y
are E-comaximum.

Using the conjugation, an analogous characterization can be done for E-comaximum additiv-

ity.
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Corollary 4 Let v =
P

T2F Tu
0
T 2 RF be a game. The following three statements are equiv-

alent: (i) v is E-comaximum additive; (ii) v(T1 [ T2) + v(T1 \ T2) = v(T1) + v(T2) for all

(T1; T2) 2 F � F with (
nT1;
nT2) 2 W (E). (iii) T = 0 for any T =2 �(E). Therefore, if E is
complete, v is E-comaximum additive if and only if T = 0 for any T =2 E.

Proof. Note that v0 =
P

T2F TuT . By Lemma 11, v is E-comaximum additive if and only if v0

is E-cominimum additive. So the result follows from Theorem 3.

A slight modi�cation of Theorem 3 shows that the completeness is tight for our characteri-

zation.

Corollary 5 The following statements are equivalent: (i) E is complete, i.e., �(E) = E; (ii) For
any game v =

P
T2F �TuT 2 RF , v is E-cominimum additive if and only if �T = 0 for any

T =2 E.

Proof. (i) ) (ii). This is a restatement of Theorem 3.

(ii) ) (i). Suppose that E is not complete. Then there is T � =2 E which is E-complete, i.e.,
T � 2 �(E). Consider a game v =

P
T2F �TuT = uT� . Since �T = 0 for every T =2 �(E), v is

E-cominimum additive by Theorem 3. On the other hand, if (ii) is true, v is not E-cominimum
additive because �T� 6= 0 and T � =2 E , which is a contradiction.

5 Applications

5.1 The E-capacity and "-contamination

Denote by �(
) the set of all probability measures and by �E the set of probability measures

assigning probability one to an event E 2 F , i.e., �E = fp 2 �(
) j p(E) = 1g.

De�nition 8 For � 2 �(
), 0 � " � 1, and E 2 F , the set of probability measures f(1� ")� +
"p j p 2 �Eg is referred to as the "-contamination of � on E.

The notion of "-contamination is old; it is discussed in the literature of robust estimation since

Huber (1964). In economic applications, the "-contamination is used with the maximin decision

rule (Gilboa and Schmeidler, 1989) which evaluates a function x by the minimum of expected

values with respect to the "-contamination. The following result characterizes this decision rule,4

which follows from a more general result we shall present later.

4Proposition 1 is a generalization of Kojima (2004) which shows that when E = f
g, E-cominimum additivity
is equivalent to "-contamination.
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Proposition 1 Let v 2 RF be a convex capacity and E 2 F be an event. Then the following three
statements are equivalent: (i)

R
(x+y)dv =

R
xdv+

R
ydv whenever argminE x\argminE y 6= ;;

(ii) there exist � 2 �(
) and " 2 [0; 1] such that v = (1 � ")� + "uE; (iii) there exist � 2 �(
)
and " 2 [0; 1] such that

R
xdv = minf

R
xdq j q = (1�")�+"p; p 2 �Eg, i.e., the Choquet integral

of x is the minimum of expected values with respect to the "-contamination of � on E.

The maximin decision rule with the "-contamination of � on E is represented by the Choquet

integral with respect to v = (1�")�+"uE .5 Thus, we also call this capacity the "-contamination
of � on E.

Eichberger and Kelsey (1999) investigated the class of capacities which explains the Ellsberg

paradox. They called these capacities the E-capacity, and the "-contamination is a special case.

De�nition 9 Let E1; : : : ; EK be non-empty, disjoint subsets of 
 with jEkj � 2 for each k.

A capacity v is said to be an E-capacity with respect to E = fE1; : : : ; EKg if there exists a
probability � and a number " 2 [0; 1], and probability assignment � on E (i.e. �(Ek) � 0 for each
k and

PK
k=1 �(Ek) = 1) such that v = (1� ")� + "

PK
k=1 �(Ek)uEk .

Eichberger and Kelsey (1999) gave an axiomatic characterization of E-capacity, and so that

of "-contamination, a fortiori. The next result, which generalizes Proposition 1, is essentially

Proposition 3.1 of Eichberger and Kelsey (1999), but we give an alternative proof based on our

main result.6

Proposition 2 Let v 2 RF be a convex capacity. Let E1; : : : ; EK be non-empty, disjoint subsets

of 
 with jEkj � 2 for each k. Let E = fE1; : : : ; EKg. Then the following three statements are
equivalent: (i) v is E-cominimum additive; (ii) v is an E-capacity with respect to E; (iii) there
exists a probability � and numbers "1; : : : ; "K 2 [0; 1] with

PK
k=1 "k � 1 such that for any x,R

xdv = minf
R
xdq j q = (1�

PK
k=1 "k)� +

PK
k=1 "kpk; pk 2 �Ekg.

Proof. (i) ) (ii): Let E�= E [ F1. From Lemma 9, E� is complete. So by Theorem 3, (i)

implies that �T = 0 for every T =2 E� where v =
P

T2F �TuT . Therefore, v must be of the

form v =
P

!2
 �f!guf!g +
P

k �EkuEk , and this expression is unique. Since v(
) = 1; we haveP
!2
 �f!g+

PK
k=1 �Ek = 1. Since v is non-negative, for all ! 2 
, �f!g = v(f!g) � 0. We claim

�Ek � 0 for each k. To see this, write Ek as the union of non-empty disjoint sets, F1 and F2, which
is possible because jEkj � 2. Then by the convexity of v, and from the assumption that Ek�s

are disjoint,
P

!2Ek �f!g + �Ek = v(Ek) � v(F1) + v(F2) =
P

!2F1 �f!g +
P

!2F2 �f!g. Hence

�Ek � 0. Set " =
PK

k=1 �Ek = 1�
P

!2
 �f!g. We show that v =
P

!2
 �f!guf!g +
P

k �EkuEk

5 In fact, the core of v = (1� ")� + "uE coincides with the "-contamination of � on E, which is a consequence
of additivity of the core (cf. Danilov and Koshevoy, 2000).

6Ozaki and Nishimura (2003) gave an alternative axiomatization of the "-contamination. Their axioms are not
directly comparable with Eichberger and Kelsey (1999) or Kojima (2004).
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is indeed the required expression. If 0 < " < 1, set �(Ek) = �Ek=" for each k, and set � =
1
1�"

P
!2
 �f!guf!g. If " = 0, set � =

P
!2
 �f!guf!g, and if " = 1, set �(Ek) = �Ek for each k.

(ii) ) (iii): Assume v = (1 � ")� + "
PK

k=1 �(Ek)uEk . Using (2), for any x,
R
xdv =R

xd((1 � ")� + "
PK

k=1 �(Ek)uEk) = (1 � ")
R
xd� + "

PK
k=1 �(Ek)minEk x = (1 � ")

R
xd� +

"
PK

k=1 �(Ek)minpk2�Ek
R
xdpk. Since Ek�s are disjoint, this is equal to minf

R
xdq j q = (1 �

")� + "
PK

k=1 �(Ek)pk; pk 2 �Ekg, so set "k = "�(Ek), and we have (iii) since
PK

k=1 "k =

"
PK

k=1 �(Ek) = ".

(iii) ) (i): Let two functions x and y be E-cominimum. Then min
Ek
(x + y) = min

Ek
x +

min
Ek
y for every k. Set " = 1�

PK
k=1 "k. We have

R
(x+y)dv = minf

R
(x+y)dq j q = (1� ")�+PK

k=1 "kpk, pk 2 �Ekg = (1� ")
R
(x+ y)d�+

PK
k=1 "kminEk (x+ y) = (1� ")(

R
xd�+

R
yd�) +PK

k=1 "k(minEk x+minEk y) = (1�")
R
xd�+

PK
k=1 "kminEk x+(1�")

R
yd�+

PK
k=1 "kminEk y =R

xdv +
R
ydv, establishing E-cominimum additivity of v.

Let us point out that although we started with a convex capacity for the sake of brevity,

the results above can be translated to a �preference based� axiomatization of the E-capacity

and the "-contamination in a straightforward manner. Indeed, replace Schmeidler (1989)�s

comonotonic independence axiom with the E-cominimum additivity with E = fE1; : : : ; EKg.
Since E-cominimum additivity implies comonotonic additivity, by Schmeidler�s theorem, we have
a utility function in the Choquet expected utility form with a convex capacity v. Then apply the

result above to show that v is the E-capacity with respect to E .

5.2 Multi-period decisions

We shall consider an axiomatic multi-period decision model developed by Gilboa (1991), which

axiomatizes the following special form of utility:
nX
i=1

pix (i) +
nX
i=2

�ijx(i)� x(i� 1)j; (5)

where p1; : : : ; pn and �2; : : : ; �n are constants.7 Interpret 
 = f1; : : : ; ng as a collection of time
periods, and x(1); : : : ; x(n) as a stream of income. The utility in (5) describes the value of the

stream of income as an weighted average
Pn

i=1 pix(i) plus an adjustment factor
Pn

i=2 �ijx(i) �
x(i� 1)j which measures the variations of the stream.
Let E = ffi; i+ 1g j 1 � i < ng. Thus, E is the collection of adjacent time periods. Note that

E [ F1 is complete since if E =2 E [ F1 then E must contain two points which are not adjacent.

Proposition 3 Let v =
P

T2F �TuT 2 RF be a game, and de�ne E as above. Then the following
two statements are equivalent: (i) v is E-cominimum additive; (ii) the Choquet integral with

respect to v has the form (5).
7We thank I. Gilboa for suggesting this application. This is a simpli�ed version of the model studied in Gilboa

(1991), which we adopted for ease of exposition.
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Proof. Note that ja� bj = a+ b� 2minfa; bg for any a; b 2 R. So, (5) can be written as
nX
i=1

pix(i) +
nX
i=2

�ijx(i)� x(i� 1)j =
nX
i=1

pix(i) +
nX
i=2

�i(x(i) + x(i� 1)� 2minfx(i); x(i� 1)g)

=
nX
i=1

�ix(i) +
nX
i=2

�fi�1;igminfx(i); x(i� 1)g; (6)

where �i = pi + �i for i 2 f1; ng, �i = pi + �i + �i+1 for i 2 f2; : : : ; n � 1g, and �fi�1;ig = �2�i
for i 2 f2; : : : ; ng.
Since E [ F1 is complete, by Theorem 3, (i) is equivalent to the condition that �T = 0 unless

T is a singleton or T 2 E . This is true if and only if the Choquet integral with respect to v is of
the form (6).
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