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Abstract

We consider a many-to-one matching problem, for example, a problem involving workers
and firms, in which firms’ choices are interdependent. We propose two conditions on an aggre-
gate choice function called independence of rejected additional applications and interdependent
substitutability, and then show that it is sufficient for the existence of stable matchings for any
workers’ preference profile. Interestingly, properties of stable matchings shown in the previous
literature sometimes follow and sometimes not.

1 Introduction

Since Gale and Shapley (1962), theory of stable matchings has expanded in multiple directions,
including matching with contracts, matching with constraints, and what covers a rich class of
matching markets. A standard matching model considers a situation that each worker has pref-
erences over the set of firms, each firm has preferences over the subsets of the set of workers, and
based on those preferences each worker matches with at most one firm and each firm matches with a
set of workers. Contrast to this, in particular, a matching model with contracts increases one more
dimension indicating how to match to a standard matching model, and a matching model with
constraints exogenously constrains a matching outcome space. Though these extensions are indeed
helpful, almost all models share the same assumption that choices (or preferences) are indepen-
dent. That is, no matter which workers the other firms choose, a firm’s choice never changes. This
assumption is not only theoretically limited but also, as we discuss later, practically restrictive.
This paper differs from the previous literature in that choices are interdependent. The main con-
tributions of the present paper are a new modeling of a matching problem through interdependent
choices, and the introduction of a sufficient condition for the existence of stable matchings.
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We consider a many-to-one matching problem such as the problem faced firms and workers in
which each worker matches at most one firm and each firm is able to match with multiple workers.
Although we assume that workers’ choices or preferences are independent, we allow firms’ choices
to be interdependent. In the previous literature, each firm has a choice function from a set of
workers to itself, thus the aggregate choice function is the Cartesian product of single firms’ choice
functions. Instead we model that firms’ choices directly by means of a single aggregate choice
function from the Cartesian product of sets of workers to itself. Hence our formulation of firms’
choices subsumes their choices in the former modelings. Moreover, we can describe complex firms’
choices. For example, complementarity in firms’ choices or externality between firms, or state-
dependent choices are well defined.

Our solution concept is stability. In theory of matchings, the notion of stability has played a
central role. A matching is “stable” if it prevents from profitable deviation by workers and (or)
firms. We say that a matching is set-wise stable if there is no additional applications by workers
such that a set of firms and the workers finds that all of them are at least as well off and at least
one of them better off. This reduces to the usual definition of stability in the standard matching
problem.

As is well known, even with firms’ choices independent, there is in general no stable matching
for some workers’ preference profile. The property of individual firm’s choice function called sub-
stitutability guarantees the existence of stable matchings for any workers’ preference profiles (Kelso
and Crawford (1982); Roth (1985)). In our more general domains, the two properties of the firms’
aggregate choice function are sufficient for the existence of stable matchings. The first property is
called independence of rejected additional applications. This says that if the aggregate choice from
some application set larger than another is included in the choice from a subset of the set, then the
two choices actually coincide. The second property is called interdependent substitutability which
resembles substitutability in independent choice models. This requires that given an application
set, for any application sets between the given application set and any matchings potentially gen-
erated from the given application set, rejected applications are monotonic. As a property on an
aggregate choice function, interdependent substitutability is weaker than substitutability of all
independent choice functions.

Under the two properties above, we show the existence of stable matchings for all workers’
preference profiles. The Gale and Shapley’s worker-proposing (firm-proposing) deferred accep-
tance algorithm (Gale and Shapley (1962)) is known to find a stable matching for a model with
independent choice functions. We generalize the firm-proposing deferred acceptance algorithm for
our model, which is also computationally solvable. Importantly, we show that it is possible to
generalize the worker proposing deferred acceptance algorithm for our model, but the aggregate
choice function being interdependent requires that combinations of applications be checked, which
raises computational difficulties.

There is another way, via a fixed point method, of finding stable matchings. It is based on
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Tarski’s fixed point theorem (Tarski (1955)). We could construct a complete lattice similar to
Adachi (2000) or Hatfield and Milgrom (2005), but a critical difficulty arises, namely, that do
not ensure monotonic function on the lattice. This is because our interdependent substitutability
partially requires monotonic relations on the lattice, by contrast to that substitutability on all
firms’ independent choice functions does fully.1

We identify which results or properties of the theory of stable matchings established in the
previous literature still follow. The consequences seem to be slightly negative. In welfare analyses
on stable matchings, Since the set of stable matchings coincide with the core in the standard
problem, they are efficient. Though our stability notion does not coincide with the core, we show
that any stable matching is efficient. We also explore the workers’ (firms’) side optimality of stable
matchings. A stable matching is worker (firm) optimal if there is no other stable matching that all
workers (firms) find at least as desirable. Since the set of stable matchings does not form complete
lattice, there are generally multiple worker or firm optimal stable matchings. However, without
the extremes of stable matchings, we see that there still be trade-offs between the workers’ side
and the firms’ side, so if all workers strictly prefer some stable matching than the other stable
matching, then all firms strictly prefer the latter than the former.

Although we directly use the aggregate choice function, we regard a model in which each firm
makes decision independently. There we introduce two types of firms’ choices which are both
more flexible than ones in the standard model. The first model considers that firms have state-
dependent choice functions. We say that the status of entire applications state, and there are
multiple states. Each firm’s choice function is defined over not only applications to that firm but
also states. Thus each firm’s choice is consistent in the same state, but not necessarily in the
other state. This can be interpreted as a case that states represent economic status like boom and
recession, and firms behave differently in different states. The second model considers that there
is a coordinator function for each firm. The coordinator function recommends each firm which
sets of workers be suitable for given applications. Then each firm chooses the best workers among
them. In both cases, it is possible to guarantee the existence of stable matchings for all workers’
preference profiles under suitable conditions for those choice functions, which are generally weaker
than substitutability for each firm. It should be emphasized that those choice functions does not
depend on the others’ choices.

Finally, we conclude the present paper by two remarks: a necessary condition for the existence
of stable matchings for all workers’ preference profiles and the relation to the previous literature.

1The lattice here is described by a product of two application spaces (all pre-matchings in the literature) and a
partial order created by a combination of a workers’ preference relations for the former pre-matching space and a
firms’ aggregate choice function in the reverse order for the latter space.
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1.1 Motivating examples

We propose simple examples of interdependent choices for which there still exists a stable match-
ing for all workers’ preference profiles. Those examples are clearly not covered in the previous
literature, but they are important in practice.

Example 1. Suppose that there are two branches, x and y, in a firm. Branches x and y correspond
to two different geographical areas. Now a firm is considering to launch an IT accounting section
at one of the two, and if possible, the firm would prefer to do so at branch x. An IT accounting
section needs exactly two skilled workers. Suppose also that there are two workers i and j, an IT
engineer and accountant, respectively. Each of them is able to apply to either x or y, or both,
or neither. An application set is said to be a summary of their applications. Then the branches’
choices C are interdependent and described by the following aggregate choice function. For each
application set (matrix) A ∈ {0, 1}2×2, the first (second) row corresponds to i (j), and the left
(right) column corresponds to branch x (y).
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Note that the aggregate choice function C cannot be written as the aggregate of two of independent
choice functions, one for x and one for y. The choices of x and y are interdependent. Furthermore,
C exhibits complementarity. It is the most important feature of our model which has been never
described in the previous literature. It is easy to verify that a stable matching exists for all workers’
preference profiles.

The example above introduces complementarity among workers in each branch, and the next
example introduces externalities between branches.

Example 2. Suppose that workers and branches are the same as above. Now branches need any
worker, and worker i is more suitable than j at branch x and vice versa. Suppose further that
both workers at suitable branches yields the highest profit, assigning the two workers at the same
branch yields more profit than assigning only one worker at the branch, and the profit made by
two workers at any branch is larger than each worker at unsuitable branch. Such a complex but
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possible situation can be described by means of the following interdependent choice function. The
existence of stable matching is still guaranteed for all workers’ preference profiles.
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We are also able to treat a situation that each firm is endowed with a choice function but
the aggregate choice function generated from them is interdependent. Suppose that each firm
potentially has several choice functions, which may be assumed to be substitutable if we needed.
It may be a case that firm’s choice is affected by a social state. That is, a firm demands more
selective workers when the firm is relatively popular (many applications for the firm and a few for
the other firms), and just cares the number of workers when it is relatively less popular (a few
applications for the firm and many for the other firms). Depending on social states (application
sets, in this case), the firm may use a different choice function. Then the aggregate choice function
will be interdependent. We discuss, for more detail, this kind of firms’ choices in Discussion section.

Finally note that an aggregate choice function selects not necessarily a matching. As in the
second example, when i applies both x and y, both accept i (and then i chooses the better branch).
Our formulation allows an aggregate choice function to choose a subset of an application set, as
does the aggregate choice function generated from independent choice functions.

2 Model

Let I and X denote the finite sets of workers and firms, respectively. Let A = (aix) be a generic
|I|-by-|X| zero-one matrix. If situations are obvious, we sometimes call A a set of applications
or offers. We write 1 for the matrix of all ones. Each worker is matched with at most one firm,
and has a linear (complete, transitive and antisymmetric) ordinal preferences over the set of firms
and being unmatched. We describe the preferences of worker i as an |X|-dimensional vector,
pi = (pix)x∈X , where pix > piy means that worker i prefers firm x to y. By assumption, either
pix > piy or piy > pix for any two distinct firms x, y ∈ X. We normalize the value of the outside
option (being unmatched) to 0. We say that firm x is acceptable for worker i if pix > 0. Let
P = (pi)i∈I denote the preference profile of workers. Given a preference profile P and a matrix A,

5



the induced choice function of workers, CI : {0, 1}I×X → {0, 1}I×X , chooses the most preferable
acceptable firm from A according to P , that is,

[CI(A)]ix =

{
1 if pix > 0 and x ∈ argmaxy∈X{piyaiy|aiy = 1}
0 otherwise

.

Firms’ preferences are allowed to be interdependent and can be described by an aggregate choice
function, CX : {0, 1}I×X → {0, 1}I×X , satisfying

CX(A) ≤ A.2

For convenience, we define two rejection functions RI and RX corresponding to CI and CX , re-
spectively; For any A,

RI(A) = A− CI(A) and RX(A) = A− CX(A).

A matching is a |I|-by-|X| zero-one matrix, M = (µix), such that each row contains at most
one 1 elements. µix = 1 means that worker i is assigned to firm x at matching M , and µix = 0

otherwise.
A matching M is said to be individually rational if it holds that CI(M) = CX(M) = M .

Let M be the function from the set of application sets to the power set of the set of matchings
defined by letting

M(A) =

{
M ≤ A

∣∣∣∣∣∑
x

µix = min

{
1,
∑
x

aix

}
,∀i ∈ I

}
.

In words, M(A) is the set of all maximal matchings that can be generated from matrix A. Note
that if A is itself a matching, M(A) is a singleton set. Let I(A) be the set of workers applying to
some firm under matrix A, formally,

I(A) = {i ∈ I |
∑
x

aix ≥ 1}.

A blocking deviation at a matching M is a non-zero matrix A ≤ 1 − M such that there is a
matching M ′ ∈ M(CX(M + A)) such that

1. For every i ∈ I(A),
[CI(M ∨M ′)]i = µ′

i.
3

2For simplicity, we sometimes omit X from CX when it is obvious, especially when writing down all of choices
in examples.

3The notation ∨ means “join,” that is, A ∨ A′ = (max{aix, a′ix}). Later, we also use the notation ∧ for “meet,”
that is, A ∧A′ = (min{aix, a′ix}).
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2. For at least one worker j ∈ I(A),
µj ̸= µ′

j.

A matching is (set-wise) stable if it is individually rational and there is no blocking deviation.
Note that our stability still allows a situation that some worker who deviates from a matching
applies to new firms and resigns the current matched firm. In the standard model, since each
firm’s choice function is defined only over applicants who coming to it, whether resigning the
current matched firm or not does not matter. Therefore, our set-wise stability reduces to a usual
notion of stability in the standard model. In our setting, it may matter, however, the notion
of stability which blocks such deviations lowers significantly the possibilities of the existence of
such stable matchings, which cannot let an aggregate choice function describe complementarities,
externalities nor state-dependent choices, subject to the existence of stable matchings. 4

A matching M is preferred to M ′ ̸= M by all workers if CI(M ∨ M ′) = M . A matching
M is strictly (revealed) preferred to M ′ ̸= M by all firms if M ∈ M(CX(M ∨ M ′)) and M ′ ̸∈
M(CX(M ∨ M ′)). Stable matching M is worker optimal stable if there is no other stable
matching that is preferred to M by all workers. Similarly, a stable matching M is firm optimal
stable if there is no other stable matching that is (revealed) preferred to M by all firms. Finally,
a matching M is efficient if there is no other matching M ′ such that CI(M ∨ M ′) = M ′ and
M ′ ∈ M(CX(M ∨M ′)).

2.1 Sufficient condition

As we noted, it is already known that even in models with independent choices, a stable matching
does not necessarily exist for some workers’ preference profile. Our starting point is the following
observation.

Observation 1. There does not necessarily exist a stable matching for some workers’ preference
profile.

Therefore, we impose the following two conditions on an aggregate choice function.

2.1.1 Independence of rejected additional applications

The first condition requires that, given two sets of applications one of which contains the other,
rejected applications for the large set be never accepted for the smaller set whenever the applica-
tions chosen from the larger set are all also chosen from the smaller set. It should be noted that

4In a special case of our setting, the notion of stability including workers’ resigns reduces to strong stability in
Kamada and Kojima (2017). They show that the existence of strong stable matchings for all workers’ preferences
requires that all choice functions be independent and be free from constraints. We observe that such independency
is not necessary for the existence of stable matchings in our setting, but still it radically lowers flexibility for
interdependent choices.
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there is a room that the chosen applications in the smaller set may be different from one in the
larger set when it includes an application which is not in the chosen application in the larger set.

Definition 1. An aggregate choice function CX exhibits independence of rejected additional
applications (IRAA) if for any A and A′ with A ≤ A′

CX(A) ≥ CX(A
′) ⇒ CX(A) = CX(A

′).

Consistency in decision theory (Aizerman and Malishevski (1981); Moulin (1985)) is a very
close notion to IRAA. Indeed, consistency implies IRAA, but the converse is not true.5.

2.1.2 Interdependent substitutability

The second condition requires that it follow locally that, given two application sets one of which
contains the other, the chosen applications in the larger set must be included in the smaller set
whenever they be available in the smaller set. It should be noted that we only require such relations
locally but not universally, by contrast to the previous literature.

Definition 2. An aggregate choice function CX exhibits interdependent substitutability (IS)
if for any A and M ∈ M(CX(A)),

M ≤ A′ ≤ A ⇒ RX(A
′) ≤ RX(A).

6

Firms’ choice functions are usually assumed to be independent, and substitutability plays a
critical role for the existence of stable matchings in the literature. To see how interdependent
substitutability is weaker than substitutability, we introduce a formal definition of substitutability.
Let Cx be the independent choice function of firm x such that Cx : {0, 1}I → {0, 1}I and for any
ax ∈ {0, 1}I , Cx(ax) ≤ ax, and Rx be the corresponding rejection function for Cx. Then Cx is
substitutable if for any a′x ≤ ax,

Rx(a
′
x) ≤ Rx(ax).

Hence if all firms’ independent choice functions satisfy substitutability, then the aggregate rejection
function satisfies that for any A′ ≤ A,

RX(A
′) ≤ RX(A).

5Formally, choice function C is consistent if C(A′) ≤ A ≤ A′ implies C(A) = C(A′). This is also called irrelevance
of rejected contracts in matching with contracts (Aygün and Sönmez (2013)). See also Blair (1988) or Alkan (2002).

6We can instead write the IS condition as follows: for any A and M ∈ M(CX(A)),

M ≤ A′ ≤ A ⇒ CX(A) ∧A′ ≤ CX(A′).

See Appendix for more detail.
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It is obvious that, in terms of an aggregate choice, interdependent substitutability is weaker than
substitutability.

3 Results

The main contribution of the present paper is to identify sufficient conditions for the existence of
stable matchings for all workers’ preference profiles. The two conditions IRAA and IS are essential.
In addition, we look into the set of stable matchings, and identify which properties are taken over
and which are not from a matching model with independent choice functions.

3.1 Existence

When firms’ choices are independent, there are mainly two ways to show the existence of stable
matchings. One is algorithmic, and the other is based on a fixed point argument. The algorithmic
method uses the Gale and Shapley’s deferred acceptance algorithm (Gale and Shapley (1962)).
The fixed point method often uses Tarski’s fixed point theorem (Tarski (1955), Adachi (2000),
Hatfield and Milgrom (2005)).7 Here we generalize Gale and Shapley’s firm-proposing deferred
acceptance algorithm as follows:

Generalized firm-proposing deferred acceptance algorithm

STEP 0: Set A0.

A0 is a |I|-by-|X| zero-one matrix where ix-element is 1 if pix > 0 and 0 otherwise.

STEP 1: A1 = A0 −RI(CX(A
0)).

...

STEP t: At = At−1 −RI(CX(A
t−1)).

...

Termination: AT = AT−1.

The algorithm terminates once no worker rejects a firm. ⋆

When the algorithm terminates, we obtain a matching M such that M = CI(CX(A
T−1)) =

CX(A
T−1). By construction, At < At−1 for all t ≤ T − 1. Thus the algorithm ends in finitely

many steps.
We now state our main result.

7As we discuss below, when firms’ choices are interdependent, the set of stable matchings often has a non-lattice
structure. Thus Tarski’s fixed point theorem is not immediately applicable in our setteing.
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Theorem 1. If an aggregate choice function CX exhibits IRAA and IS, then there exists a stable
matching for all workers’ preference profiles.

Our proof depends on interdependent substitutability. For a given matching to be stable, it
is sufficient to show that there is no profitable deviation from that matching. In the previous
literature, substitutability of all firms’ independent choice functions ensures it by monotonicity of
the aggregate rejection function. It however seems too much since for a given matching, poten-
tial deviations from the matching are limited. Hence the aggregate rejection function need not
be monotonic universally. Instead, partial monotonicity, which interdependent substitutability
guarantees, is enough.

It is usually the case that the firm-proposing deferred acceptance algorithm returns a firm
optimal stable matching. However, it is not the case for our generalized firm-proposing deferred
acceptance algorithm.

Observation 2. The matching obtained by the algorithm is not necessarily a firm optimal stable
matching.

As is noted, it is also possible to generalize the worker-proposing deferred acceptance algo-
rithm. However the generalized algorithm is too complex. Since even rejected workers from some
application set may be accepted from a different application set, this structure of the aggregate
choice function makes things difficult. Suppose that at the first step the workers’ application set
is such that only the most preferable firm of each worker is listed. If this application set itself
is chosen, then we are done. But if at least one worker is not chosen, then we need to consider
a large variety of alternative application set. In general, we need to consider all combinations of
application sets. Hence we face easily intractable computations. Contrary to the original deferred
acceptance algorithms, the computational complexity of the worker-proposing and firm-proposing
deferred acceptance algorithms are asymmetric.

3.2 Welfare

This subsection compares our model to one in the previous models in light of properties of stable
matchings. Stability is closely related to welfare. In a model with independent substitutable choice
functions, the set of stable matchings coincides with the core. Thus a stable matching is efficient.
By contrast, it is not easy to define the core in our setting and in fact our stability notion allows a
possible deviation that some worker resigns a match partner in the current matching and proposes
new applications. However, the following proposition tells that any stable matching is efficient.

Proposition 1. Any stable matching is efficient.

Secondly, we consider the extremes of the set of stable matchings, namely, optimal stable
matchings for the one side. When firms’ choice functions are independent and they satisfy sub-
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stitutability, there exists a unique worker or firm optimal stable matching. But in our setting, we
have the following.

Observation 3. There are generally multiple worker or firm optimal stable matchings.

Multiple worker optimal stable matchings have been observed when firms’ independent choice
functions allow indifferences (thus a choice function is a correspondence) but in our setting an
aggregate choice function is still single-valued.8 Furthermore, we observe that there may even be
multiple firm optimal stable matchings. Nevertheless, we still have trade-offs between the workers’
side and the firms’ side among a subset of stable matchings.

Proposition 2. Suppose that M and M ′ are stable matchings. If workers prefer M to M ′, then
firms (revealed) prefer M ′ to M .

4 Discussion

In this section, for clear understanding, we discuss, as a special case of our model, a model in which
each firm has own choice function. It is usually a case that each firm makes decision independently.
It is also a case that its choice depends not only on applicants who are coming to it but also entire
applications. For example, some firm is more selective if workers apply only to the firm, and
it needs to fill its seats even with unqualified workers if workers apply to multiple firms. For
another example, firms are aggressive to employ workers under booms and they hesitate to employ
workers under recessions. In any case, the aim of this section proposes possibilities of rich classes of
modelings even when firms are independent decision makers. It should be emphasized that choice
functions below do not depend on others’ choice.

4.1 State-dependent choices

We say that the status of entire applications state. Let there be a set of N number of signals in
the market, S = {s1, s2, · · · , sN}, which is a partition of the set of all |I|-by-|X| zero-one matrices.
Given a state A occurs, each firm observes a signal s(A) ∈ S, and then chooses a subset of its
applicants. Suppose that if A ∈ s then s(A) = s. Each firm x has a state-dependent choice
function, Cx : {0, 1}I × S → {0, 1}I , such that for any A,

Cx(ax|s(A)) ≤ ax.

It is obvious that when there is only one state, this model reduces to the standard matching model.

Example 3. There are two workers i and j, and two firms x and y. The set of states is S = {s1, s2},
where A ∈ s1 if and only if at least one worker does not apply to any firm under A. Suppose that

8See Erdil and Ergin (2008) and Abdulkadiroğlu et al. (2009) for many-to-one matching problems with indiffer-
ences, and Erdil and Kumano (2019) for explicit choice correspondences.
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each firm employs no worker when observes s1, and it employs any workers when observes s2.
Then each state-dependent choice function does not exhibit substitutability since an application
in s1 is rejected though all workers are accepted by all firms under 1. Nevertheless the aggregate
choice function exhibits IS (and IRAA), so there exists a stable matching for all workers’ preference
profiles.

4.2 Constraints

We next consider a matching model with constraints. The important point is that constraints here
are described not necessarily by a specific restriction such as upper or lower bounds of quotas as
in Kamada and Kojima (2015) but by an abstract function over application sets. On one hand, as
is the standard setting, each firm x has a linear order over the set of subsets of workers. On the
other hand, each firm x is endowed with a function fx which associates an entire application set
to a set of subsets of applicants to firm x. Given an application set A, a firm x faces the set of
subsets of its applicants, fx(A), and then chooses the best group of applicants among fx(A).

Example 4. Let there be two workers i and j, and two firms x and y. Each firm has a linear
order:

{i, j} ≻x {i} ≻x {j} ≻x ∅ and {i, j} ≻y {j} ≻y {i} ≻y ∅ .

Firms have the following functions fx and fy, respectively.
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0 0

)
,

(
1 1

0 1

)

{{j}} if A =

(
0 0

1 0

)
,

(
0 1

1 0

)
,

(
0 0

1 1

)

{∅} if A =

(
0 1

0 0

)
,

(
0 0

0 1

)
,

(
0 1

0 1

)
,

(
0 1

1 1

)
,

(
0 0

0 0

)

{{i}, {j}, ∅} if A =

(
1 0

1 1

)
,

(
1 1

1 1

)

2I if A =

(
1 0

1 0

)
,

(
1 1

1 0

)
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fy(A) =



{{i}} if A =

(
0 1

0 0

)
,

(
0 1

1 0

)
,

(
1 1

0 0

)

{{j}} if A =

(
0 0

0 1

)
,

(
1 0

0 1

)
,

(
0 0

1 1

)
,

(
1 0

1 1

)

{∅} if A =

(
1 0

0 0

)
,

(
0 0

1 0

)
,

(
1 0

1 0

)
,

(
1 1

1 0

)
,

(
0 0

0 0

)

{{i}, {j}, ∅} if A =

(
1 1

0 1

)
,

(
1 1

1 1

)

2I if A =

(
0 1

0 1

)
,

(
0 1

1 1

)
In the above setting, a profile of firms’ choices forms the aggregate choice function in the second
example.

Note that this formulation straightforwardly implies that already existing matching models
with constraints such as Kamada and Kojima (2015) are special cases.

5 Concluding remarks

We conclude the present paper by referring necessity for the existence of stable matchings and the
relation to the previous literature.

5.1 Necessity

Neither of the two conditions IRAA and IS is necessary for the existence of stable matchings. But
the aggregate choice functions which guarantees the existence of stable matchings for all workers’
preference profiles and violates either IRAA or IS seem to be less important. The case where IRAA
violates happens when we do not have enough freedom of choices. That is, since we directly treat
an aggregate choice function, if its range is very narrow like lots of zeros then violation of IRAA
does not matter, see the observation in Appendix B for an example. The case where IS violates
happens when workers can have cyclic chances to match. That is, when a worker by herself change
what firms offer by her applying behavior, even though such aggregate choice function violates IS
there sometimes exists a stable matching for all workers’ preference profiles, see the observation in
Appendix B for an example. Moreover, we imagine that such a condition looks tedious. Therefore,
we propose rather simple and interpretational conditions.

It is worth noting that IRAA and IS imply path independence in our setting.9 The converse
does not hold. Thus path independence is a candidate as a necessary and sufficient condition.

9A proof is in Appendix A, Lemma 2. Moulin (1985) show that consistency and substitutability are equivalent
to path independence in a model with independent choice functions.
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However, there does not exist a stable matching for some preference profile when an aggregate
choice function only satisfies path independence. We leave the full characterization of situations
guaranteeing the existence of stable matchings for future research.

5.2 Related literature

The literature has considered flexibilities of firms’ choices in two directions, firm’s flexible choice
from workers like complementarities, and flexible choices among firms like externalities. Though
our model is further possible to describe the mixture of those flexibilities by an aggregate choice
function, it is worth noting how a model with independent choice functions treats those flexibilities.

For each firm’s flexible choice from workers, the notion of contracts to a many-to-one matching
model is introduced. This direction is initiated by Kelso and Crawford (1982) and Hatfield and
Milgrom (2005). In the environment, there is a weaker sufficient condition for the existence of
stable matchings than substitutability in a sense that the notion of substitutability is extended to
a model with contracts (Hatfield and Kojima (2010); Hatfield et al. (2017))10.

For flexible choices among firms, Sasaki and Toda (1996) allow each firm to have its preferences
not on the set of workers as usual but on the set of matchings to represent a sort of externality.
Pycia and Yenmez (2019) analyzes a two-sided matching market with externalities. They allow
agents to have preferences over entire matchings. In their setting, each agent is endowed with a
choice function that depends not only on an application set to the agent, but also a reference set
that can be interpreted as the agent’s expectation for the resulting matching of the other agents.
Given such an expectation, each agent chooses the best partners from the applicants according
to the preferences. Since choices of our setting are not conditional on a reference set, it does
not include their class of choices even without transfers. On the other hand, their choices do not
take into account complementarity as we discussed in the first example, and thus our choices are
also not fully described by them. Focusing on specific externalities, Echenique and Yenmez (2007);
Pycia (2012) considers peer effects in school choice, Dutta and Massó (1997)); Kojima et al. (2013);
Ashlagi et al. (2014) consider a matching market with couples.

A matching model with constraints (Kamada and Kojima (2015); Kamada and Kojima (2017);
Kamada and Kojima (2018)) are also a kind of models for flexible choices among firms. They
exogenously restrict the outcome space, for example two firms are able to accept more than five
workers each but it is only feasible by an exogenous restriction such as policies when workers
accepted at two firms are seven in total. In such a case, even though each firm has an independent
choice function, the aggregate choice function works as if it is interdependent. Indeed our aggregate
choice function subsumes those models and, more importantly, ours is more flexible.

10Those weaker conditions reduces to substitutability when the model with contracts reduces to a usual many-
to-one matching model.
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A Proofs

Properties of interdependent substitutability

Claim 1. IS is equivalent to the condition that for any A and M ∈ M(CX(A)),

M ≤ A′ ≤ A ⇒ CX(A) ∧ A′ ≤ CX(A
′).
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Proof. Suppose that A and M ∈ M(CX(A)) are arbitrary. Let A′ satisfy M ≤ A′ ≤ A. Suppose
that CX exhibits IS. Then RX(A

′) ≤ RX(A). Since CX(A) ∧ A′ ≤ CX(A),

A′ − CX(A
′) ≤ A− CX(A) ≤ A− CX(A) ∧ A′.

Further, since CX(A) ∧ A′ ≤ A′, we have

A′ − CX(A
′) ≤ A′ − CX(A) ∧ A′.

Hence CX(A) ∧ A′ ≤ CX(A
′).

Suppose in contrast that CX(A) ∧ A′ ≤ CX(A
′). Since A′ ≤ A and CX(A) ≤ A,

A− CX(A) = A′ − CX(A) ∧ A′ + [(A− A′)− CX(A) ∧ (A− A′)]

≥ A′ − CX(A) ∧ A′.

Note that CX(A) ∧ A′ ≤ A′. By assumption,

A′ − CX(A) ∧ A′ ≥ A′ − CX(A
′).

Combining the above two inequalities, we have A− CX(A) ≥ A′ − CX(A
′).

Then we see that if for any A and M ∈ M(CX(A)), then CX(M) = M .

Proof of Theorem 1

We begin with a lemma.

Lemma 1. Each worker finds her assignment at each step is at least as desirable as his assignment
at the previous step.

Proof. By construction, at each step t,

CI(CX(A
t−1)) ≤ At = At−1 −RI(CX(A

t−1)) ≤ At−1.

Note that since At−1 ≤ A0 and A0 is an acceptable application matrix, CI(CX(A
t−1)) ∈ M(CX(A

t−1)).
(IS) implies that CI(CX(A

t−1)) ≤ CX(A
t).

Let M be the matching obtained by the algorithm above. Note that a worker is never made
an offer by a firm that she finds unacceptable. Then CX(A

T−1) = M implies that CX(M) = M .
Hence, M is individually rational. It remains to show that there is no blocking deviation at M .
Suppose by contradiction that A is a blocking deviation and each M ′ ∈ M(CX(M + A)) be a
matching such that

17



1. For every i ∈ I(A),
[CI(M ∨M ′)]i = µ′

i.

2. For at least one worker j ∈ I(A),
µj ̸= µ′

j.

We show first that M ′ ≤ AT−1. Note that AT−1 = A0 −
∑T

t=1RI(CX(A
t−1)). Let a worker

i ∈ I(A). Since the inequality is satisfied for any worker who is unmatched at M ′, we assume
that worker i is matched with some firm x at M ′. Since worker i is at least as well off at M ′ as
at M , firm x is acceptable to worker i. Thus µ′

i ≤ a0i . Suppose in the algorithm that worker i

rejects firm x at step s, that is, [RI(CX(A
s−1))]ix = 1. Then there must be another firm y such

that [CI(CX(A
s−1))]iy = 1. By Lemma 1, worker i is matched with a more preferable firm than x

at M , a contradiction. Hence µ′
i ≤ aT−1

i . Whereas a worker i′ ̸∈ I(A) applies at M + A only to
the matched partner at M . This implies µ′

i′ ≤ µi′ . Since M = CX(A
T−1) ≤ AT−1, we have that

µ′
i′ ≤ aT−1

i′ .
Now we look at the choice of firms from M ∨M ′. Since M ≤ AT−1 and M ′ ≤ AT−1, M ∨M ′ ≤

AT−1. By IS,
M ≤ CX(M ∨M ′).

Moreover, since M ∨M ′ ≤ M + A,

M ′ ≤ CX(M ∨M ′).

Therefore, CX(M ∨M ′) = M ∨M ′. But this implies that

CX(M ∨M ′) = M ∨M ′ > M = CX(A
T−1),

a violation of IRAA.

Proof of Proposition 1

Let M be a stable matching. Suppose by contradiction that there exists M ′ ̸= M such that
CI(M ∨M ′) = M ′ and M ′ ∈ M(CX(M ∨M ′)). Let A = (M ∨M ′)−M ≥ 0. Then CX(M +A) =

CX(M∨M ′). Note that for all i ∈ I(A), µi ̸= µ′
i. Therefore A is a deviation at M , a contradiction.

Proof of Proposition 2

We begin with a lemma.
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Lemma 2. If an aggregate choice function CX exhibits IRAA and IS, then it is path independent,
that is, CX(CX(A ∨ A′) ∨ A) = CX(A ∨ A′) for any A and A′.

Proof. Let A and A′ be any matrices. Since CX(A ∨ A′) ≤ A ∨ A′, we have

CX(A ∨ A′) ≤ CX(A ∨ A′) ∨ A ≤ A ∨ A′.

By IS, CX(A∨A′) ≤ CX(CX(A∨A′)∨A). Then by IRAA this inequality holds as an equality.

Let M and M ′ ̸= M be stable matchings, and CI(M ∨ M ′) = M . Suppose by contradiction
that M ′ is not preferred to M by all firms. Then either

M ∈ M(CX(M ∨M ′))

or
M /∈ M(CX(M ∨M ′)) and M ′ /∈ M(CX(M ∨M ′)).

The former implies that M ′ is not efficient, contradicts to Proposition 1. We assume the latter.
Let A′ = (CX(M ∨M ′) ∨M ′)−M ′ ≥ 0. By Lemma 2,

CX(M
′ + A′) = CX(M

′ + (CX(M ∨M ′) ∨M ′)−M ′)

= CX(CX(M ∨M ′) ∨M ′)

= CX(M ∨M ′).

Notice by construction that if an ix-element of A′ is 1, then [CX(M ∨M ′)]ix = 1. This means that
all workers in I(A′) could obtain the same matching at M by additional application A′ to M ′,
which contradicts to the supposition that M ′ is stable.

B Examples

Observation 2

We illustrate an example where the generalized firm-proposing deferred acceptance algorithm does
not necessarily find a firm optimal stable matching. Suppose that there are two workers and two
firms. The aggregate choice function CX is given by

C

(
1 0

0 0

)
=

(
1 0

0 0

)
, C

(
0 1

0 0

)
=

(
0 1

0 0

)
, C

(
0 0

1 0

)
=

(
0 0

1 0

)
, C

(
0 0

0 1

)
=

(
0 0

0 1

)
,

C

(
1 0

1 0

)
=

(
1 0

1 0

)
, C

(
0 1

0 1

)
=

(
0 1

0 1

)
, C

(
1 0

0 1

)
=

(
1 0

0 1

)
, C

(
0 1

1 0

)
=

(
0 1

1 0

)
,
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C

(
1 1

0 0

)
=

(
1 1

0 0

)
, C

(
0 0

1 1

)
=

(
0 0

1 1

)
, C

(
1 1

1 0

)
=

(
1 1

1 0

)
, C

(
1 1

0 1

)
=

(
1 1

0 1

)
,

C

(
1 0

1 1

)
=

(
1 0

1 1

)
, C

(
0 1

1 1

)
=

(
0 1

1 0

)
, C

(
0 0

0 0

)
=

(
0 0

0 0

)
, C

(
1 1

1 1

)
=

(
1 0

1 1

)
.

We show first that the aggregate choice function CX exhibits IRAA and IS. Let A =

(
0 1

1 1

)
.

Since firms accept any offers except for A, it suffices to check the choice around A. Since firms

choose no matrix larger than CX(A) =

(
0 1

1 0

)
from a matrix less than A, CX exhibits IRAA.

Next, matrix 1 is the unique matrix larger than A, but A is not larger than CX(1) =

(
1 0

1 1

)
.

Thus CX exhibits IS.
Let P be the preference profile such that

P =

(
1 2

1 2

)
.

Since each worker prefers to match any firm than being unmatched under CX , any stable match-

ing should have one 1 in each row. For

(
1 0

1 0

)
and

(
1 0

0 1

)
, there is a blocking deviation(

0 1

0 0

)
. Thus we have two stable matchings

M =

(
0 1

0 1

)
and M ′ =

(
0 1

1 0

)
.

The algorithm finds M . On the other hand,

CX(M ∨M ′) = CX(A) =

(
0 1

1 0

)
= M ′.

Hence M is not firm optimal stable.

Observation 3

We show that there can be multiple worker or firm optimal stable matchings. For workers’ opti-
mality, our first Motivating examples is one for which both firms are acceptable for both workers
and their most preferred firms are different. For firms’ optimality, we need at least three workers
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and two firms. For simplicity, we shorten the aggregate choice function CX as follows:

C

 1 ·
1 ·
1 ·

 =

 1 ·
1 0

1 ·

 , C

 · 1

1 ·
1 ·

 =

 · 1

1 0

1 0

 , C

 1 0

1 ·
· 1

 =

 1 0

1 0

· 1

 , C

 0 1

· 1

1 ·

 =

 0 1

· 1

1 0

 ,

where a dot means the element can be both 0 and 1. And if none of the following matchings are
available in an application, firms will not accept any worker from the application: 1 0

1 0

1 0

 ,

 0 1

1 0

1 0

 ,

 1 0

1 0

0 1

 ,

 0 1

0 1

1 0

 .

In this example, firms always accept the former two matchings whenever they are available in
an application. Each of the latter two matchings can be chosen from an application only when at
least one of the former two matchings is not available in the application. By construction, a larger
matrix than the one chosen from a larger application is never chosen from a smaller application.
Thus CX exhibits IRAA. Moreover, once a matching above has been chosen from an application,
it will not be rejected from a smaller application as long as it is available. This implies that CX

also exhibits IS.
Let P be a preference profile such that

P =

 1 2

1 2

1 2

 .

Then the former two matchings are blocked by

 0 1

0 0

0 0

 and

 0 0

0 1

0 0

, respectively. Thus we

have two stable matchings

M =

 1 0

1 0

0 1

 and M ′ =

 0 1

0 1

1 0

 .

Then

CX(M ∨M ′) = CX

 1 1

1 1

1 1

 =

 1 1

1 0

1 0

 .

Neither M nor M ′ is chosen from M ∨ M ′, and therefore both the matchings are firm optimal
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stable.

Path independence

We see in Lemma 2 that IRAA and IS imply path independence. On the other hand, path
independence implies IRAA but not IS. The following shows that only path independence is not a
sufficient condition.

Observation 4. Path independence is not sufficient for the existence of stable matching.

Let there be two workers and two firms. The aggregate choice function is

C

(
1 0

0 0

)
=

(
1 0

0 0

)
, C

(
0 1

0 0

)
=

(
0 0

0 0

)
, C

(
0 0

1 0

)
=

(
0 0

0 0

)
, C

(
0 0

0 1

)
=

(
0 0

0 0

)
,

C

(
1 0

1 0

)
=

(
1 0

0 0

)
, C

(
0 1

0 1

)
=

(
0 0

0 0

)
, C

(
1 0

0 1

)
=

(
1 0

0 0

)
, C

(
0 1

1 0

)
=

(
0 0

0 0

)
,

C

(
1 1

0 0

)
=

(
1 1

0 0

)
, C

(
0 0

1 1

)
=

(
0 0

0 0

)
, C

(
1 1

1 0

)
=

(
1 1

0 0

)
, C

(
1 1

0 1

)
=

(
1 1

0 0

)
,

C

(
1 0

1 1

)
=

(
1 0

0 0

)
, C

(
0 1

1 1

)
=

(
0 0

0 0

)
, C

(
1 1

1 1

)
=

(
1 1

0 0

)
, C

(
0 0

0 0

)
=

(
0 0

0 0

)
.

Note that the the aggregate choice function is path independent. However it does not exhibit
IS since worker i’s application to firm y is not accepted by itself. It is easy to see that there is no
stable matching when piy > pix > 0.

Observation 5.1

(1) Violating IRAA but there still exists a stable matching for all workers’ preference profiles.

C

(
0

0

)
=

(
0

0

)
, C

(
1

0

)
=

(
1

0

)
, C

(
0

1

)
=

(
0

0

)
, C

(
1

1

)
=

(
0

0

)
.

(2) Violating IS but there still exists a stable matching for all workers’ preference profiles.

C
(

1 0 0
)
=
(

1 0 0
)
, C

(
0 1 0

)
=
(

0 1 0
)
, C

(
0 0 1

)
=
(

0 0 1
)
,

C
(

1 1 0
)
=
(

1 0 0
)
, C

(
0 1 1

)
=
(

0 1 0
)
, C

(
1 0 1

)
=
(

0 0 1
)
,

C
(

0 0 0
)
=
(

0 0 0
)
, C

(
1 1 1

)
=
(

1 1 1
)
.
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