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Abstract

This paper proposes a new approach to identifying and estimating the time-varying average

treatment effect (ATE) using panel data to control for unobserved fixed effects. The proposed

approach allows for treatment effect heterogeneity induced by unobserved fixed effects. Under

such heterogeneity, while existing panel data approaches identify and estimate the ATEs only for

limited subpopulations, the proposed approach identifies and estimates the ATE for the entire

population. The proposed approach requires two conditions: (i) The proportion of additive

unobserved fixed effects terms in the treated and untreated potential outcome models is constant

across units and time, and (ii) We have exogenous variables that correlate with unobserved fixed

effects conditional on the assigned treatment. Under these conditions, the approach first identifies

observed covariates parameters and the proportion of fixed effects terms. The approach then

identifies the ATE by combining observed data with them to predict and adjust unobserved

potential outcome for each treated and untreated unit. Based on the identification result, this

paper proposes an estimator of the ATE, which takes the form of a generalized method of moments.

I apply the estimator to estimate the impact of a mother smoking during pregnancy on her child’s

birth weight.
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1 Introduction

This paper proposes a new approach to identifying and estimating the time-varying av-

erage treatment effect (ATE) using panel data to control for unobserved time-invariant

confounders (i.e., fixed effects). The proposed approach can identify and consistently es-

timate the ATE for the entire population, rather than for a limited subpopulation, even

when treatment effects are heterogeneous by unobserved unit characteristics.

Evaluating policy effects based on non-randomized studies often assumes that treat-

ment assignments are independent of potential outcomes conditional on observed covari-

ates.1 However, this frequently used assumption is often violated due to the presence of

unobserved confounding variables. For example, in job training program evaluations, such

unobserved confounding variables may include individual ability. In the presence of unob-

served confounding variables, econometric methods based on this assumption fail to provide

consistent estimations for the interested parameters.

Panel data, the multi-period observation of each unit, is often used to solve the issue of

unobserved confounding variables. In the panel data literature, the time-invariant unob-

served confounding variables are refereed to as unobserved fixed effects, and panel data en-

ables us to control for them. For example, in job training program evaluations, unobserved

fixed effects may include individual ability. Popularly used methods in panel data treat-

ment effect analysis are a fixed-effects (FE) estimation and a difference-in-differences (DID)

estimation (e.g., Abrevaya, 2006; Card, 1996; LaLonde, 1986), which can control for addi-

tive unobserved fixed effects. Even when we cannot observe some additive time-invariant

confounding variables, these estimation methods enable us to consistently estimate the

ATE by exploiting panel data in some situations.

Although the FE estimation and the DID estimation are frequently used to control for

unobserved fixed effects, they fail to consistently estimate the ATE in some situations. The

FE estimation cannot consistently estimate the ATE when treatment effects are hetero-

geneous by unobserved fixed effects (e.g., Angrist and Pischke, 2008, Chapter 5; Lechner,

2011). The FE estimation requires the homogeneity of treatment effects among unobserved

1Imbens (2004) and Imbens and Wooldridge (2009) summarized econometric methods based on this
conditional independence assumption.
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fixed effects, but this is a very restrictive assumption because there are many cases where

treatment effects are heterogeneous by unobserved fixed effects. For example, in job train-

ing evaluations, the training effects on wages may be heterogeneous by the individual’s

unobserved ability, which can be considered as unobserved fixed effects. Gibbons, Suárez

Serrato, and Urbancic (2014) presented a number of empirical examples where the FE

estimations are biased due to the presence of treatment effect heterogeneity induced by

unobserved fixed effects. In contrast, the standard DID method is applicable regardless

whether treatment effects are heterogeneous by unobserved fixed effects or not, however,

it requires the availability of the pretreatment data and identifies the ATE for the treated

(ATT), rather than for the entire population, when treatment effects are heterogeneous by

unobserved fixed effects.2 In several program evaluation studies, the ATT does not coincide

with the parameter of interest while the ATE does (e.g., Björklund and Moffitt, 1987).

The proposed approach in this paper can identify and consistently estimate the ATE

for the entire population, rather than for a limited subpopulation, even when treatment

effects are heterogeneous by unobserved fixed effects. Under the heterogeneity, while the

DID approach identifies and estimates only the ATT, the proposed approach identifies and

estimates the ATE. Björklund and Moffitt (1987) stressed that, in many cases, the treat-

ment effect for the treated does not coincide with the treatment effect for the population

of the program evaluation interest. Note also that, while the DID approach requires the

availability of pretreatment data, the proposed approach does not require such data re-

striction. Further, the proposed approach allows the ATE to vary across time periods and

can identify and estimate the ATE at each time period.

To identify the ATE in the presence of the heterogeneity, the proposed identification

approach relies on two conditions: (i) The proportion of additive unobserved fixed effects

terms in the treated and untreated potential outcomes is constant across both units and

time periods, and (ii) We have exogenous variables that correlate with unobserved fixed

effects conditional on the assigned treatment. Condition (i) holds when unobserved fixed

effects are represented as single unobserved confounding factor with a multiplicative co-

efficient. In the potential outcome models considered in this paper, constant terms are

2For proof of this statement, see, for example, Lechner (2011).
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separated from unobserved fixed effects terms, thereby they are not involved with the con-

stant proportion restriction of unobserved fixed effects terms. Condition (ii) holds even

when we do not have exogenous variables that originally correlate with the unobserved

fixed effects but have exogenous variables that correlate with them after conditioning on

the assigned treatment.

Under these conditions, the proposed approach identifies the ATE through predicting

and adjusting an unobserved potential outcome for each treated and untreated unit. To pre-

dict and adjust the unobserved potential outcome for each unit, the approach first identifies

observed covariate parameters in both the potential outcome models and the proportion

of unobserved fixed effects terms, which is supposed to be constant under condition (i), by

exploiting time variation of panel data. The observed covariate parameters are identified

through the within transformation of each the potential outcome, which controls for un-

observed fixed effects. The proportion of unobserved fixed effects terms is then identified

from the remaining terms of potential outcome models, which are subtractions of the ob-

served covariate terms form the potential outcomes. In this identification step, we focus

on the subpopulation of units called movers by Chamberlain (1982), who experience both

treatment and no-treatment across time periods, because the remaining terms for both the

treated and untreated outcomes are obtained only for them. The variables that satisfy con-

dition (ii) are also used in this identification step to identify the proportion of unobserved

fixed effects from the remaining terms, which comprise not only unobserved fixed effects

terms. The ATE is finally identified by combining observed data with the identified param-

eters and proportion of fixed effects to predict and adjust unobserved potential outcome for

each unit. Building on the moment conditions derived from the identification result, this

paper provides an estimator of the ATE, which takes the form of the generalized method

of moments (GMM).

As related works, when treatment effects are heterogeneous by unobserved fixed effects,

one way to identify and estimate the ATE is to identify and estimate the average partial

effect (APE) of the unit-specific slope in the correlated random coefficient (CRC) panel

data model using a generalized within-group approach (e.g., Chamberlain, 1992).3 How-

3Wooldridge (2010, p. 968) illustrates that the APE of the unit specific-slope in the binary treatment
CRC panel data model generally corresponds to the ATE.
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ever, although the CRC panel data model captures the heterogeneity of treatment effects,

the generalized within-group approach identifies and estimates the APE only for a sub-

population of movers. In many cases, the subpopulations of movers are small and do not

correspond to the populations of program evaluation interests. In contrast, the approach

proposed in this paper identifies and estimates the ATE for the entire population, rather

than for the subpopulation of movers.

Wooldridge (2005), Arellano and Bonhomme (2012), and Graham and Powell (2012)

also studied the CRC panel data model. Wooldridge (2005) provided conditions under

which the usual linear FE estimator is consistent for the APE despite the presence of cor-

related random coefficients. However, Chernozhukov et al. (2013, p. 546–547) illustrated

the difficulty to justify one of the conditions under the discrete treatment model, which

includes the model considered in this paper. Arellano and Bonhomme (2012) studied the

identification and estimation of higher-order moments and densities of the random coeffi-

cients. As they maintain Chamberlain’s (1992) conditions, the identification and estimation

are limited on the subpopulation of movers. Graham and Powell (2012) focused on contin-

uous regressors and provided identification and estimation of the APE in the CRC panel

data model under milder conditions than Chamberlain’s (1992) conditions.

Among other related works, Chernozhukov et al. (2013) and Sakaguchi (2016) also

studied the identification and estimation of the ATE in panel data model. Chernozhukov

et al. (2013) considered point and partial identification and estimation for nonseparable

panel data models built on the time homogeneity condition of the period specific distur-

bance term. Under the same kind of time homogeneity condition, Jun, Lee, and Shin (2016)

derived the sharp identifiable bounds of potential outcome distribution. While these iden-

tification and estimation results are based on the time homogeneity condition on the period

specific disturbance term, the proposed approach in this paper does not require such time

homogeneity condition. Sakaguchi (2016) proposed an approach to identify and estimate

the ATE for the entire population as an extension of the DID approach. The approach

requires uniquely structured panel data wherein the treatment exposure expands from no

units to all units across time. The proposed approach in this paper does not require such

restriction on the data structure.
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The remaining of this paper is structured as follows. Section 2 describes the setting

and considered potential outcome models. Section 3 outlines the identification approach.

In this section, I describe the identification approach dividing three steps. Built on the

identification result, Section 4 then provides the estimator as well as its large sample

properties. Section 5 presents Monte Carlo simulation results to show the finite sample

behavior of the proposed estimator. Section 6 provides an empirical example where I apply

the proposed estimator to estimate the impact of mother smoking during pregnancy on

her child’s birth weight using data from Abrevaya (2006). I conclude this paper with some

remarks in Section 7.

2 Setup and Model

We suppose that {Yit, Dit, Xit, Zit} is observed for N units (i = 1, 2, . . . , N) across T time

periods (t = 1, . . . , T ), where T ≥ 2. We assume N is large while T is small. Yit denotes an

observed outcome and Xit denotes a K × 1 vector of observed time-varying covariates that

may include time dummies, observed time-varying confounding variables, and interactions

of them. Zit is an L × 1 vector of exogenous variables which can include some or all

variables in Xit. Its use and required assumptions are discussed later. Each unit is grouped

by Dit ∈ {0, 1} such that Dit = 1 and Dit = 0 indicate treatment and no treatment for

unit i at period t, respectively. We suppose that the treatment assignment is time-varying.

Following the potential outcome framework, we suppose that Yit is expressed as

Yit = DitYit(1) + (1−Dit)Yit(0) (1)

where Yit(1) and Yit(0) denote two potential outcomes under treatment and no treatment

for unit i at period t, respectively. We hence observe only one of the potential outcomes

for each unit at each time period depending on the treatment assignment Dit.

Throughout this paper, we focus on the ATE for the entire population, rather than for

a limited subpopulation, at each period t for t = 1, · · · , T :

τatet = E[Yit(1)− Yit(0)].
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We shall allow the ATE to be time-variant and let our focus be on such time-variant effect.

Given the time-varying covariates Xit and the unobserved fixed effects Ci, we suppose

that potential outcomes Yit(1) and Yit(0) are expressed as follow:

Yit(1) = α1 +X ′
itβ

1 + γ1Ci + u1
it for t = 1, · · · , T (2)

Yit(0) = α0 +X ′
itβ

0 + γ0Ci + u0
it for t = 1, · · · , T (3)

where u1
it and u0

it are defined as u1
it = Yit(1) − E[Yit(1) | Xit, Ci] and u0

it = Yit(0) −

E[Yit(0) | Xit, Ci], respectively. In the models, we suppose that Ci is represented as scalar

unobserved fixed effects with multiplicative coefficients (γ1 and γ0).4 By this expression,

the effects of Ci on the two potential outcomes are assumed to be proportionally constant,

i.e., (γ1Ci)/(γ
0Ci) = γ1/γ0 is constant (does not depend on i and t). γ1 and γ0 may have

different values, which implies that unobserved fixed effects may have different influences on

the two potential outcomes. Further, in the models, constant terms α1 and α0 are separated

form unobserved fixed effects terms (γ1Ci and γ0Ci). Thereby, the constant terms are not

involved with the constant proportion restriction of unobserved fixed effects terms. The

difference between β1 and β0 also allows for the possibility of different influences of the

observed time-varying covariates on the two potential outcomes. We can also suppose

nonlinear forms of Xit, instead of X ′
itβ

1 and X ′
itβ

0, in these models.

Under the potential outcome models (2) and (3), τatet is expressed as

τatet = (α1 − α0) + E[Xit]
′(β1 − β0) + (γ1 − γ0)E[Ci]. (4)

As seen in Equation (4), the difference between γ1 and γ0 causes heterogeneity in treat-

ment effects by unobserved fixed effects. The difference between β1 and β0 also causes

heterogeneity in treatment effects by observed time-varying covariates. In addition, the

time variation of Xit causes the ATE time variation.

To formalize the idea of confounding due to the presence of the time-varying observed

covariates and unobserved fixed effects, we impose the following assumption.

4Throughout this paper, we suppose that γ1 ̸= 0 and γ0 ̸= 0.
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Assumption 2.1.

E[Yit(j) | Dit, Xi1, . . . , XiT , Ci] = E[Yit(j) | Xit, Ci] for all j = 0, 1 and t = 1, · · · , T .

This assumption corresponds to the fundamental assumption for the FE estimation and has

two meanings. One is that the treatment assignment and the potential outcomes are mean

independent at each time period conditional on the observed covariates and unobserved

fixed effects. This modifies the standard conditional mean independence assumption for

the panel data setting by conditioning on the unobserved fixed effects. The standard con-

ditional mean independence assumption is often controversial, as it assumes that beyond

the observed covariates there are no unobserved unit characteristics associated with both

the potential outcomes and the treatment assignment.5 Thus, the conditional mean inde-

pendence assumption with unobserved fixed effect is attractive to allow for the presence

of such unobserved unit characteristics. The other meaning of Assumption 2.1 is that the

potential outcomes at each period t do not depend on past and future observed covariates,

which means strict exogeneity known in the panel data literature.

We also suppose the following assumption on the support of the distribution of the

time-varying treatment assignment.

Assumption 2.2.

For any j = 0, 1 and t = 1, . . . , T ,

(i) 0 < Pr(Dit = 0) < 1,

(ii) P (Dit = j, 0 <
∑T

t=1Dit < T ) > 0.

Assumption 2.2 (i) is the usual overlap condition, which is necessary for identification of

the ATE at each time period. Assumption 2.2 (ii) implies that at each time period both

treatment and no treatment groups include some units who experience both treatment and

no treatment at least once across time periods (i.e., units with {0 <
∑T

t=1Dit < T}). We

call such units “movers”, borrowing a terminology introduced by Chamberlain (1982). In

other words, Assumption 2.2 (ii) guarantees the existence of movers in both the treatment

and no treatment groups at each period t. Note that this assumption does not require all

5See, for example, Imbens and Wooldridge (2009, Section 5).
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units to be movers but requires some units to be movers.

For the proposed identification, we suppose to have an L×1 vector of exogenous variables

Zit that correlate with the unobserved fixed effects conditional on the assigned treatment

in the subpopulation of movers. Note again that Zit can include some or all variables in

Xit. Zit satisfies the following assumption.

Assumption 2.3.

For any j = 0, 1, s = 1, · · · , T , and t = 1, · · · , T ;

(i) E[Zitu
j
is | Dit = j, 0 <

∑T
t=1Dit < T ] = 0,

(ii) rank(
∑T

t=0E[(1, Z ′
it)

′(1, Ci) | Dit = j, 0 <
∑T

t=1Dit < T ]) = 2.

There are four remarks about this assumption as follows. First, notice that Assumption

2.3 (i) requires Zit to satisfy the mean strictly exogenous condition. Second, variables in Xit

are likely to satisfy all the conditions in Assumption 2.3 even when they do not originally

correlate with Ci, and, therefore, some or all elements in Xit might be included in Zit.

Since both variables in Xit and variables in Ci affect the treatment assignment, they are

likely to correlate with each other conditional on the assigned treatment: which is the

reason why variables in Xit are likely to satisfy condition (ii) in Assumption 2.3.6 Xit

also satisfies the strictly exogenous condition (i) in Assumption 2.3 under Assumption 2.1.

Third, exogenous variables that originally correlate with Ci, of course, may be included

in Zit. In many empirical studies, there should be some variables that correlate with Ci,

regardless of being conditional on Dit. For instance, if Ci represents individual unobserved

ability, then education should correlate with Ci and, hence, may be included in Zit. Fourth,

although Zit has the subscript t, time-invariant exogenous variables also can be included

in Zit for any t = 1, . . . , T .

Throughout this paper, we suppose that all the defined random variables are indepen-

dent and identically distributed (i.i.d.) across units as in the following assumption.

6To illustrate with an example, suppose now that Dit denotes job training participation, Ci is individual
ability, and individual age is included in Xit. In this example, if individuals with low age and low ability
tend to participate in the training, then, conditional on the training participation, the age correlates with
the ability even if they have no correlation without conditioning on the training participation. In this
example, the age may be included in Zit.
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Assumption 2.4.

{{Yit(0), Yit(1), Dit, Xit, Zit}Tt=1, Ci} are i.i.d. across i.

This assumption imposes no restrictions for the distribution of the data across time periods

unlike Chernozhukov et al. (2013) and Jun, Lee, and Shin (2016).

Remark (Relation to the CRC Panel Data Model)

The observation rule (1) transforms the potential outcome models (2) and (3) into the

following observed outcome model:

Yit = DitYit(1) + (1−Dit)Yit(0)

= X ′
itβ

0 + τ(Ci)Dit +DitX
′
it(β

1 − β0) + γ0Ci + uit

where τ(Ci) = (γ1 − γ0)Ci and uit = Ditu
1
it + (1 −Dit)u

0
it. This model is regarded as the

CRC panel data model where τ(Ci) is the correlated random coefficient. Given that the

ATE is expressed as τatet = E[τ(Ci)] + E[Xit]
′(β1 − β0), identification of the APE of Dit

(i.e., E[τ(Ci)]) is required for identification of τatet as described by Wooldridge (2010, p.

968). However, the generalized within-group approach (e.g., Chamberlain, 1992) identifies

the APE only for the subpopulation of movers. As a result, the approach identifies the

ATE for the limited subpopulation, not for the entire population. In the following sections,

I propose a new approach that identifies and consistently estimates the ATE for the entire

population rather than for a limited subpopulation.

3 Identification Outline

This section illustrates the idea of identification of τatet based on the supposed poten-

tial outcome models and assumptions described in the previous section. I describe the

identification dividing three sequential steps. Through the sequential steps, we consider

identification of each parameter αj and βj (j = 0, 1) and the proportion of unobserved fixed

effects terms in the potential outcome models (2) and (3) (γ1/γ0). Then, τatet is identified

by combing observed data with them to predict and adjust the unobserved potential out-
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come for each treated and untreated unit. The following outlines the sequential procedure

of the identification step-by-step. I formalize the identification result in Proposition 4.1 in

the next section. In the remaining of this paper, without loss of generality, we suppose

γ0 = 1. Thereby, the proportion of unobserved fixed effects terms is represented as γ1.

First step

In the first step, we consider identification of β1 and β0 based on the idea of the within

transformation method used in the FE approach. Let denote Āj
i = (1/

∑T
t=0 1{Dit =

j})
∑T

t=1 1{Dit = j}Ait and Äj
it = Ait − Āj

t for any variable Ait and j = 0, 1, where 1{·}

is the indicator function. Ā1
t is the mean of Ait for unit i across time periods when he

or she is treated. Similarly, Ā0
i is the mean of Ait for unit i across time periods when he

or she is untreated. Äj
it is difference between Ait and Āj

i . For each j = 0, 1 and unit i

with
∑T

t=1 1{Dit = j} = 0 (i.e., the unit who is never treated or always treated during the

observed period), define Äj
it = 0.7 This transformation is considered to be a kind of the

within transformation for each the treatment and no treatment group.

For the group of units with Dit = j (j = 0, 1), we consider the following transformed

model

Ÿ j
it = Ẍj′

itβ
0 + üj

it for t = 1, . . . , T.

In this model, unobserved fixed effects do not appear since they are differenced out by the

within transformation. Then, under some regularity conditions (described in Section 4),

βj (j = 0, 1) is identified through this transformed model as follows:

βj = E[
T∑
t=1

1{Dit = j} · Ẍj
itẌ

j′
it ]

−1E[
T∑
t=1

1{Dit = j} · Ẍj
itŸ

j
it ]. (5)

Second step

In the second step, we consider identification of the proportion of unobserved fixed effects

terms γ1 and transformed constant terms defined bellow. In this step, the identification is

7Note that for each j = 0, 1 and unit i with
∑T

t=1 1{Dit = j} = 1 (i.e., the unit who is untreated or

treated only once during the observed period), Äj
it = 0 also holds.
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based on the subpopulation of movers (i.e., units with {0 <
∑T

t=1Dit < T}). Given β1 and

β0 identified in the previous step, on the subpopulation of movers, both of the remaining

terms of potential outcome models, which are subtractions of observed covariate terms form

potential outcomes, are obtained as follows;

α1 + γ1Ci + ū1
i = Ȳ 1

i − X̄1′
i β

1 and α0 + Ci + ū0
i = Ȳ 0

i − X̄0′
i β

0.

The left hand sides of these equations are the sums of the unobserved fixed effects term

and the constant term αj with disturbance term ūj
i added (j = 0, 1). Note that, for

units who are not movers, we obtain only one of the remaining terms (α1 + γ1Ci + ū1
i and

α0 + Ci + ū0
i ) since such units experience only one of treatment and no treatment over

the observed period. In other words, we obtain both of them only for movers. This is the

reason why we focus on the subpopulation of movers in this step.

Then, at each period t, we divide the subpopulation of movers into the treatment and

no treatment groups: {Dit = 1,
∑T

t=1Dit ̸= T} and {Dit = 0,
∑T

t=1 Dit ̸= 0}. For movers in

the group of {Dit = 1,
∑T

t=1 Dit ̸= T}, the model for Yit(1) can be re-expressed by replacing

Ci with α0 + Ci + ū0
i in the model (2) as follows:

Yit(1) = α̃1 +X ′
itβ

1 + γ1(α0 + Ci + ū0
i ) + ũ1

it (6)

where α̃1 = α1 − γ1α0 and ũ1
it = u1

it − γ1ū0
i . Similarly, for movers in the group of {Dit =

0,
∑T

t=1Dit ̸= 0}, we obtain the following model for Yit(0) by replacing Ci with α1+γ1Ci+ū1
i

in the model (3):

Yit(0) = α̃0 +X ′
itβ

0 +
1

γ1
(α1 + γ1Ci + ū1

i ) + ũ0
it (7)

where α̃0 = α0 − 1
γ1α

1 and ũ0
it = u0

it − 1
γ1 ū

1
i .

For identification of E[Yit(1)] and E[Yit(0)], we then consider to identify α̃1, α̃0, and γ1

in models (6) and (7). However, due to the presence of disturbance terms (ūi1 and ūi0)

added to α1 + γ1Ci and α0 + Ci like measurement errors, identification of the parame-

ters α̃1, α̃0, and γ1 is suffered from the endogeneity of α1 + γ1Ci + ū1
i and α0 + Ci + ū0

i

without external variables. Recall that we have exogenous variables Zit that satisfy the
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conditions in Assumptions 2.3, and we use them to solve the identification problem. Since

under Assumption 2.3 exogenous variables Zit correlate with Ci conditional on the assigned

treatment in the subpopulation of movers, using Zit enables us to identify α̃1, α̃0, and γ1

built on the idea of the instrumental variables method to deal with measurement error.

Then, given that β1 and β0 are identified, the parameters α̃1, α̃0, and γ1 are identified

through the following moment conditions:

T∑
t=1

E

[
(1, Z ′

it)
′(Yit(1)− α̃1 −X ′

itβ
1 − γ1(α0 + Ci + ū0

it)) | Dit = 1,
T∑
t=1

Dit ̸= T

]
= 0, (8)

T∑
t=1

E

[
(1, Z ′

it)
′(Yit(0)− α̃0 −X ′

itβ
0 − 1

γ1
(α1 + γ1Ci + ū1

it)) | Dit = 0,
T∑
t=1

Dit ̸= 0

]
= 0.

(9)

In these moment conditions, Zit works as instrumental variables for α0 + Ci + ū0
it and

α1 + γ1Ci + ū1
it. Note that identification of α̃1 comes from the moment condition (8) for

the subpopulation of {Dit = 1,
∑T

t=1 Dit ̸= T}, identification of α̃0 comes from the moment

condition (9) for the subpopulation of {Dit = 0,
∑T

t=1 Dit ̸= 0}, and identification of γ1

comes from both of the moment conditions for the subpopulation of movers.

Third step

Given all the parameters identified above, E[Yit(1)] and E[Yit(0)] are finally identified as

follows:

E [Yit(1)] = E
[
DitYit + (1−Dit)

{
α̃1 +X ′

itβ
1 + γ1

(
α0 + Ci + ū0

it

)}]
, (10)

E [Yit(0)] = E

[
(1−Dit)Yit +Dit

{
α̃0 +X ′

itβ
0 +

1

γ1

(
α1 + γ1Ci + ū1

it

)}]
. (11)

In Equation (10), since we cannot observe Yit(1) for untreated units (i.e., units with Dit =

0), we adjust their unobserved potential outcomes Yit(1) by combining Xit and α0+Ci+ ū0
it

with the identified parameters. This is built on the idea of the regression adjustment (see,

for example, Wooldridge 2010, Section 21.3.2). In Equation (11), the same method is

applied for treated units (i.e., units with Dit = 1) to adjust their unobserved potential
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outcomes Yit(0).

Finally, τatet is identified through the regression adjustment as follows

τatet =E[Yit(1)]− E[Yit(0)]

=E[Dit

(
Yit −

{
α̃0 +X ′

itβ
0 +

1

γ1

(
α1 + γ1Ci + ū1

it

)})
(12)

− (1−Dit)
({

α̃1 +X ′
itβ

1 + γ1
(
α0 + Ci + ū0

it

)}
− Yit

)
].

Example (when T = 2)

I illustrate the sequential identification approach described above in the case of T = 2. In

this case, the whole population is divided into the four types of subpopulations: {D1 =

D2 = 1}, {D1 = 1, D2 = 0}, {D1 = 0, D2 = 1}, and {D2 = D2 = 0}. Table 1 illustrates

the four divided subpopulations. The first and the fourth are subpopulations of units who

are treated and not treated at any period, respectively. The second is the subpopulation

of movers who are treated at period 1 but not treated at period 2. Similarly, the third

is the subpopulation of movers who are not treated at period 1 but treated at period 2.

The presence of units in the second and third subpopulations is guaranteed in Assumption

2.2, wheres that of the first and fourth subpopulations is guaranteed in Assumption 4.2

imposed in the next section.

Table 1: Four types of subpopulations in the case of T = 2
D2 = 1 D2 = 0

D1 = 1 {D1 = D2 = 1} {D1 = 1, D2 = 0}
D1 = 0 {D1 = 0, D2 = 1} {D2 = D2 = 0}

Since units in the subpopulation {D1 = D2 = 1} are treated at two periods, β1 is identi-

fied from this subpopulation as Equation (5) as described in the first step of the sequential

identification. By the same way, β0 is identified as Equation (5) from the subpopulation

{D1 = D2 = 0}.

Next, since units in the subpopulations {D1 = 1, D2 = 0} and {D1 = 0, D2 = 1} expe-

rience both treatment and no treatment across time periods, α̃1, α̃0, and γ1 are identified

from these subpopulations with Equations (8) and (9) as described in the second step of
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the sequential identification. Finally, τatet is identified through the regression adjustment

(Equation (12)) as described in the third step of the sequential identification.

4 Estimation

This section proposes an estimator of the ATE at each period t building on the sequen-

tial identification procedure outlined in the previous section. The proposed estimator is

the GMM estimator (Hansen, 1982) constructed from the stack of the moment condi-

tions derived from the sequential identification.8 Let Wi = ({Yit, Dit, X
′
it, Z

′
it}Tt=0)

′, θ =

(α̃1, α̃0, β1′, β0′, γ1, τate1 , · · · , τateT )′ denotes the vector of the parameters, and Θ ∈ R2K+3+T

denotes its parameter space. In this section, we denote the vector of the true parameters

as θo = (α̃1
o, α̃

0
o, β

1′
o , β

0′
o , γ

1
o , τ

ate
1,o , · · · , τateT,o)

′.

To build the GMM estimator, we make the following vectors of moment functions:

g1 (Wi, θ) =
T∑
t=1

Dit · Ẍ1
it

(
Ÿ 1
it − Ẍ1′

it β
1
)

g2(Wi, θ) =
T∑
t=1

(1−Dit) · Ẍ0
it

(
Ÿ 0
it − Ẍ0′

it β
0
)

g3(Wi, θ) =
T∑
t=1

1

{
Dit = 1,

T∑
t=1

Dit ̸= T

}
× (1, Z ′

it)
′ [
Yit − α̃1 −X ′

itβ
1 − γ1

{
Ȳ 0
i − X̄0′

i β
0
}]

g4 (Wi, θ) =
T∑
t=1

1

{
Dit = 0,

T∑
t=1

Dit ̸= 0

}

× (1, Z ′
it)

′
[
Yit − α̃0 −X ′

itβ
0 − 1

γ1

{
Ȳ 1
i − X̄1′

i β
1
}]

g5 (Wi, θ) =Di1

(
Yi1 −

{
α̃0 +X ′

i1β
0 +

1

γ1

(
α1 + γ1Ci + ū1

i1

)})
− (1−Di1)

({
α̃1 +X ′

i1β
1 + γ1

(
α0 + Ci + ū0

i1

)}
− Yi1

)
− τate1

...

8The class of GMM estimators includes sequential estimators, where moment functions from the se-
quential steps can be stacked into one vector of moment conditions (Newey, 1984).
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g4+T (Wi, θ) =DiT

(
YiT −

{
α̃0 +X ′

iTβ
0 +

1

γ1

(
α1 + γ1Ci + ū1

iT

)})
− (1−DiT )

({
α̃1 +X ′

iTβ
1 + γ1

(
α0 + Ci + ū0

iT

)}
− YiT

)
− τateT .

g1(Wi, θ) and g2(Wi, θ) are the moment functions to identify β1 and β0, respectively, that

are derived from the first step of the sequential identification procedure described in the

previous section. g3(Wi, θ) and g4(Wi, θ) are the moment functions to identify α̃1, α̃0, and

γ1 that are derived from the second step of the sequential identification procedure. For

each t = 1, . . . , T , g4+t(Wi, θ) is the moment function to identify τatet by the regression

adjustment method that is derived from the third step of the sequential identification

procedure. Define g(Wi, θ) to be the vector obtained by stacking all the above vector

moment functions into one long vector.

To formalize the discussion of identification in the previous section and provide precise

results for the GMM estimator, we require the following additional assumptions.

Assumption 4.1.

Θ is compact.

Assumption 4.2.

For any j = 0, 1, rank(E[
∑T

t=0 1{Dit = j} · Ẍj
itẌ

j′
it ]) = K.

Assumption 4.3.

Each element of g(Wi, θo) has a finite second moment.

These assumptions are regularity conditions for identification of θo and consistency and

asymptotic normality of its GMM estimator. Assumption 4.2 requires E[
∑T

t=0 1{Dit =

j} · Ẍj
itẌ

j′
it ] to be full rank for any j = 0, 1. This assumption implicitly requires the

presence of units who are treated for at least two periods and units who are not treated

for at least two periods.9 Notice further that, if Xit includes time period dummies, then

treatment and no treatment groups at each corresponding period must have units who are

9The reason is the following. Since Ẍ1
it = 0 and Ẍ0

it = 0 hold for units who experience treatment
less than twice and units who experience no-treatment less than twice, respectively, the rank condition in
Assumption 4.2 is violated if no units experience treatment or no-treatment at least twice.
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not treated at the other period and units who are treated at the other period, respectively,

to satisfy the condition in Assumption 4.2.

Given the vector of moment functions, the following proposition formalizes the sequen-

tial identification outlined in the previous section.

Proposition 4.1.

Suppose that Assumptions 2.1–4 and 4.2–3 hold for the models of Equations (2) and (3).

Then, the only value of θ ∈ Θ that satisfies E[g(Wi, θ)] = 0 is θ = θo.

The proof of this proposition is in the Appendix, which formalizes the discussion in Section

3.

Given Proposition 4.1, the GMM estimation of the true parameter vector θo is straight-

forward. The GMM estimator is

θ̂ = argminθ∈Θ

N∑
i=1

g(Wi, θ)
′Σ−1

N

N∑
i=1

g(Wi, θ) (13)

for some sequence of positive definite matrix ΣN . The following proposition formulates

consistency and asymptotic normality results for θ̂.

Proposition 4.2.

Suppose that Assumptions 2.1–4 and 4.1–3 hold for the models of Equations (2) and

(3), ΣN
p→ Σ, and Σ is positive semi-definite. Then, θ̂

p→ θo and
√
N(θ̂ − θo)

d→

N(0, Vo) where Vo = (GoΣG
′
o)

−1GoΣΩoΣG
′
o (GoΣG

′
o)

−1 with Go = E
(

∂g(Wi,θo)
∂θ′

)
and Ωo =

E[g(Wi, θo)g(Wi, θo)
′].

The proof is omitted since it is just application of the asymptotic theory for GMM estimator

(see, for example, Theorems 2.6 and 3.4 in Newey and McFadden, 1994). Vo can be con-

sistently estimated with its sample analogue. The asymptotic variance of
√
N(τ̂atet − τatet,o )

is obtained as the (2K +3+ t)-th diagonal of Vo for any t = 1, . . . , T . If ΣN is a consistent

estimator of Ωo, the resulting estimator is efficient GMM estimator with Vo = (GoΩoG
′
o)

−1.

Alternative moment-based estimator with possibly better small-sample properties, such as
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generalized empirical likelihood, could be used instead of GMM estimator (see, for example,

Newey and Smith, 2004).

5 Monte Carlo Simulation

In this section, we perform a simulation experiment to study the behavior of the proposed

estimator (13). The data are derived from two kinds of data generating processes (DGPs),

DGP1 and DGP2. Both these DGPs are based on binary treatment outcome models and

treatment assignment model with T = 2. DGP1 and DGP2 are based on different outcome

models as follows.

DGP1 for Yit (outcome with same coefficients for unobserved fixed effects):

Yit =

 2 +Xit + Ci + U0
it if Dit = 0

1 + 2Xit + Ci + U1
it if Dit = 1

DGP2 for Yit (outcome with different coefficients for unobserved fixed effects ):

Yit =

 2 +Xit + Ci + U0
it if Dit = 0

1 + 2Xit + 3Ci + U1
it if Dit = 1

DGP1 and DGP2 are based on a same treatment assignment model as follows.

Di1 =

 0

1

if −1 +Xi1 − Ci + UD
i1 ⩽ 0

otherwise

Di2 =

 0

1

if −2 +Xi2 − Ci + UD
i2 ⩽ 0

otherwise

For both DGP1 and DGP2, observed covariates (Xi1, Xi2)
′ are drawn from a multivariate

normal distribution with mean (1, 2)′, standard deviation 1, and pairwise covariance 0.3;

unobserved fixed effects Ci is drawn from a normal distribution with mean 1 and standard

18



deviation 1; the disturbance terms are drawn from multivariate normal distributions as

follows:

(
U0
1 , U

1
1 , U

0
2 , U

1
2

)′ ∼ N




0

0

0

0

 ,


1 0.5 0.3 0.2

1 0.2 0.3

1 0.5

1



 ,

 UD
1

UD
2

 ∼ N

 0

0

 ,

 1 0.3

1

 .

Besides the outcome model and the treatment assignment model, an exogenous variable

Zit is set as Zit = Ci + UZ
it , where (UZ

i1, U
Z
i2)

′ is drawn from a zero mean multivariate

normal distribution with standard deviation 1, and pairwise covariance 0.3. Note that this

exogenous variable satisfies the conditions in Assumption 2.3.

Several remarks should be noted about the DGPs. First, the difference between DGP1

and DGP2 is in the values of the coefficients for Ci in the outcome models. Between the

treated and untreated potential outcomes, DGP1 has same values of the coefficients for Ci

while DGP2 has different values of them. Thereby, the treatment effects are homogeneous

among Ci under DGP1 while heterogeneous among Ci under DGP2. Second, the two

variables Zit andXit can be used as instrumental variables for α1+γ1Ci+ū1
i and α0+Ci+ū0

i

that satisfy the conditions in Assumption 2.3. Zit originally correlates with Ci, whereas

Xit does not originally correlate with Ci, but obtains the correlation by conditioning on

the assigned treatment. Third, the threshold values in the DGP of treatment assignment

are set to make the numbers of units assigned to the no treatment group larger than those

assigned to the treatment group. That meets data characteristics of most empirical studies

for program evaluations.

In this simulation, we compare the proposed estimator (13) with the OLS estimator

and the FE estimator under DGP1 and DGP2. The focused parameters are ATEs at

periods 1 and 2. The true values of the ATEs under DGP1 at periods 1 and 2 are 0 and

1, respectively; the true values of the ATEs under DGP2 at periods 1 and 2 are 2 and 3,

respectively. For the proposed estimator, the simulation provides the results under three
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different sets of the instrumental variables: {Zit}, {Xit}, and {Zit, Xit}. In this simulation

study, the proposed estimator uses the identity matrix as its weighting matrix ΣN .

Table 2 reports the results of 10,000 simulations with sample sizes N = 200, 500, and

1000. Panels I and II in Table 2 report the simulation results for DGP1 and DGP2,

respectively. Several findings are worth noting. First, the OLS estimator is severely biased

under both DGP1 and DGP2 due to the presence of unobserved fixed effects. Second, the

FE estimator is not biased under DGP1; however, it is biased under DGP2 due to the

different values of coefficients for unobserved fixed effects. Third, the proposed estimator

has little bias when Zit is included in the set of the instrumental variables, whereas it

has some bias when Xit is solely used as the instrumental variable under both DGP1

and DGP2. This bias is not so small in the case of small sample size. Fourth, with

large sample sizes, even in the case that the FE estimator provides consistent estimation

(DGP1), the performance of the proposed estimator is not very poor compared to that of

the FE estimator. With large sample sizes, RMSEs are not very different between both the

estimators when Zit is included in the set of the instrumental variables. Fifth, comparing

among the three different sets of the instrumental variables, the proposed estimator has

the smallest standard deviations when both Zit and Xit are used under DGP2 regardless

sample sizes, whereas that is not true under DGP1 with sample sizes 500 and 1000. When

Xit is solely used as the instrumental variable, the standard deviation of the proposed

estimator is relatively large especially under small sample. From this finding, I suggest

that, when the sample size is small, empirical researchers do not solely use the covariates

already included in the outcome model in the set of the instrumental variables, but include

the exogenous variables outside the outcome model in the set of the instrumental variables.
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Table 2: Monte Carlo Simulation Results

N=200 N=500 N=1000
True Value Bias SD RMSE Bias SD RMSE Bias SD RMSE

Panel I: Simulation results for DGP1
ATE for 1st period

OLS 0 -1.241 0.247 1.265 -1.245 0.157 1.255 -1.245 0.110 1.250
FE 0 -0.001 0.250 0.250 0.000 0.158 0.158 -0.001 0.112 0.112

Proposed Estimator
(1) 0 0.054 0.442 0.450 0.014 0.204 0.205 0.005 0.141 0.141
(2) 0 0.294 2.359 2.377 0.141 0.535 0.553 0.065 0.279 0.286
(3) 0 0.040 0.362 0.365 0.015 0.214 0.215 0.005 0.149 0.149

ATE for 2nd period
OLS 1 -1.242 0.248 1.267 -1.244 0.155 1.254 -1.245 0.110 1.250
FE 1 -0.002 0.252 0.252 -0.002 0.160 0.160 -0.001 0.112 0.112

Proposed Estimator
(1) 1 0.054 0.390 0.393 0.014 0.156 0.156 0.005 0.107 0.107
(2) 1 0.308 2.378 2.398 0.147 0.517 0.538 0.068 0.252 0.261
(3) 1 0.040 0.286 0.289 0.014 0.158 0.159 0.005 0.110 0.110

Panel II: Simulation results for DGP2
ATE for 1st period

OLS 2 -3.079 0.447 3.112 -3.084 0.286 3.097 -3.083 0.199 3.090
FE 2 -0.976 0.356 1.038 -0.976 0.227 1.002 -0.976 0.158 0.989

Proposed Estimator
(1) 2 0.172 1.127 1.140 0.050 0.374 0.377 0.020 0.246 0.247
(2) 2 0.242 1.768 1.784 0.184 0.946 0.964 0.113 0.560 0.572
(3) 2 0.083 0.693 0.698 0.039 0.367 0.369 0.016 0.246 0.246

ATE for 2nd period
OLS 3 -3.079 0.451 3.112 -3.082 0.284 3.095 -3.085 0.199 3.091
FE 3 -0.977 0.357 1.040 -0.978 0.226 1.003 -0.976 0.157 0.989

Proposed Estimator
(1) 3 0.172 1.130 1.143 0.048 0.347 0.350 0.020 0.229 0.229
(2) 3 0.255 1.745 1.764 0.194 0.964 0.983 0.122 0.569 0.581
(3) 3 0.084 0.675 0.680 0.036 0.338 0.340 0.016 0.227 0.227

Note: True Value is the true value of the ATE. Bias, SD, and RMSE are the mean bias, standard
deviation, and the root mean squared error of the estimates across the simulations, respectively. For
the Proposed Estimator, the rows (1), (2), and (3) report the results of the proposed estimations using
{Zit}, {Xit}, and {Zit, Xit} as the set of instrumental variables, respectively.

6 Empirical Application

As an empirical application, I analyze the effect of mother smoking during pregnancy on

her child’s birth weight (e.g., Permutt and Hebel, 1989; Evans and Ringel, 1999; Abrevaya,

2006; Abrevaya and Dahl, 2008). Let Dit denote the mother smoking indicator where

Dit = 1 indicates that the i-th mother was smoking during pregnancy for her t-th birth

and Dit = 0 indicates no smoking during the pregnancy. The potential outcomes Yit(1)

and Yit(0) indicate the child birth weight for the i-th mother’s t-th birth if she was smoking
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and not smoking during the pregnancy, respectively.

The analysis uses the matched panel data set constructed by Abrevaya (2006) from

the U.S. Natality Data Sets for 1990–1998. As the original data does not have unique

identifiers for mothers, he carefully matches mothers to children, particularly focusing on

pairs of the child’s state of birth and the mother’s state of birth that have a small number

of observations, and constructs the matched panel data. I select the “matched panel #3”

as it is most conservatively constructed. The same data set is also used by Arellano and

Bonhomme (2012) in the CRC panel data model and by Jun, Lee, and Shin (2016) in

the nonseparable panel data model. Since the numbers of births in the original data are

different among mothers, I focus on mothers who had three children during the observed

period. The final sample contains 12,360 mothers of whom 1,349 mothers smoked during

their first pregnancy, 1,371 mothers smoked during their second pregnancy, and 1,437

mothers smoked during their third pregnancy.

Using this sample, I estimate the average effect of mother smoking during pregnancy

on her child’s birth weight at each birth time through the potential outcome models (2)

and (3). In the models, Xit includes dummy variables indicating birth time, the gender

of the child, the age of the mother at the time of birth, dummy variables indicating the

existence of prenatal visits, and the “Kessner” index value for the quality of prenatal care

(for details, see Abrevaya, 2006). Unobserved fixed effects Ci are supposed to represent

mother’s lifestyle factor (Jun, Lee, and Shin, 2016, p. 307). I impose a restriction that

the time-varying covariates Xit, except for dummy variables indicating the number of birth

time, have same values of their coefficients as Abrevaya (2006) and Arellano and Bonhomme

(2012) do. Under this restriction, we do not consider the interactions between smoking and

observed time-varying observed covariates Xit except for dummy variables indicating the

number of birth time. As a set of instrumental variables Zit that satisfies the conditions in

Assumption 2.3, I use the set of the years of education of mother and the age of mother

at the time of birth.10 The years of education should originally correlate with unobserved

fixed effects, whereas it is not clear whether the age originally correlates with them or not.

Table 3 presents estimates of common parameters in the transformed potential outcome

10Note that the age is included in Xit while the years of education is not included because its time
variation is little.
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models (6) and (7). In this estimation, I use the efficient two-step GMM estimator of (13)

as the proposed estimator. All the coefficient estimates have the same signs as those in the

results of Abrevaya (2006, Table IV) and Arellano and Bonhomme (2012, Table I). Except

for the variable indicating no prenatal visit, all the remaining variables have significant

coefficients estimates.

Table 3: Estimates of common parameters in models (6)
and (7)

Variable Estimate SE
Male 139.48 4.43
Age 226.05 1.26
Age2 -3.73 0.04

Kessner index = 2 -59.05 9.26
Kessner index = 3 -170.12 20.48
No prenatal visit -36.68 36.88

First prenatal visit in 2nd trimester 73.55 10.85
First prenatal visit in 3rd trimester 179.66 25.78

Second child for smoker -37.71 14.14
Second child for nonsmoker 46.71 5.25

Third child for smoker -122.46 14.83
Third child for nonsmoker 62.24 7.82

γ1/γ0 0.61 0.06
α̃1 -55.35 14.98
α̃0 77.64 15.34

Note: Robust standard errors are presented in the column of
SE.

Table 4 presents estimation results for the average effect of mother smoking using the

proposed estimator, which is the efficient two-step GMM estimator of (13), and the FE

estimator. The estimates with the proposed estimator show that the average effect of

mother smoking increases with birth time while the estimates with the FE estimator do

not. The proposed estimator provides higher estimates at the first birth and lower estimates

at the second and third births than the FE estimator does. We might suspect that the FE

estimator has downward bias for the average effect at the first birth and upward bias for the

average effects at the second and third births due to ignoring the presence of heterogeneity

in the effect of mother smoking by unobserved mother’s characteristics.
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Table 4: Estimates of average effect of mother smoking during preg-
nancy on her child’s birth weight

FE Estimator Proposed Estimator
Average effect (first birth) -123.28 -90.67

(15.49) (12.94)
Average effect (second birth) -80.20 -174.75

(17.07) (14.85)
Average effect (third birth) -134.32 -274.89

(15.81) (14.88)

Note: Robust standard errors are presented in the parentheses.

7 Conclusion

This paper proposed a new panel data method to identify and estimate time-varying ATE.

The method can identify and estimate the ATE even when treatment effects are hetero-

geneous by unobserved fixed effects. Note again that, in this situation, the usual FE

estimator fails to consistently estimate the ATE and the generalized within-group method

for the CRC panel model identifies and estimates the ATE only for a limited subpopula-

tion. In contrast, the proposed method can identify and consistently estimate the ATE for

the entire population. Therefore, I recommend empirical researchers using panel data to

apply the proposed estimator when treatment effects are considered to be heterogeneous by

unobserved unit characteristics and their interests are in the ATE for the entire population.

It is also interesting to extend the proposed method to the dynamic treatment model

proposed by, for examples, Robins (1986) and Lechner and Miquel (2010). The dynamic

treatment model captures dynamic interactions between sequential treatment assignments

and potential outcomes. Even though empirical studies for the dynamic treatment models

use panel data, there are few studies for controlling for unobserved fixed effects by exploiting

panel data. I leave this issue for future research.
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Appendix

This section provides a proof of Proposition 4.1.

Proof of Proposition 4.1.

This proof formalizes the discussion in Section 3.

Under Assumptions 2.1, 2.2, 2.4, 4.2, and 4.3, for any j = 0, 1, E[gj(Wi, θ)] = 0 uniquely

holds with βj
o = E[

∑T
t=1 I{Dit = j} · Ẍj

itẌ
j′
it ]

−1E[
∑T

t=1 I{Dit = j} · Ẍj
itŸ

j
it ].

For g3(Wi, θ) and g4(Wi, θ) with β1 = β1
o and β0 = β0

o , under Assumptions 2.1, 2.2, 2.4,

and 4.2–3, their expectations become

E[g3(Wi, θ) | β0 = β0
o , β

1 = β1
o ]

=E[
T∑
t=1

1

{
Dit = 1,

T∑
t=1

Dit ̸= T

}
· (1, Z ′

it)
′ (
Yit − α̃1 −X ′

itβ
1
o − γ1

{
Ȳ 0
i − X̄0′

i β
1
o

})
]

=E

[
T∑
t=1

(1, Z ′
it)

′ (
Yit − α̃1 −X ′

itβ
1
o − γ1

{
α0 + Ci + ū0

i

})
| Dit = 1,

T∑
t=1

Dit ̸= T

]

and

E[g4(Wi, θ) | β0 = β0
o , β

1 = β1
o ]

=E[
T∑
t=1

1

{
Dit = 0,

T∑
t=1

Dit ̸= 0

}
· (1, Z ′

it)
′
(
Yit − α̃0 −X ′

itβ
0
o −

1

γ1

{
Ȳ 1
i − X̄1′

i β
1
o

})
]

=E

[
T∑
t=1

(1, Z ′
it)

′
(
Yit − α̃0 −X ′

itβ
0
o −

1

γ1

{
α1 + γ1Ci + ū1

i

})
| Dit = 0,

T∑
t=1

Dit ̸= 0

]
.

Adding with conditions in Assumption 2.3 for Zit, E[g3(Wi, θ)] = 0 uniquely holds with

(α̃1
o, β

1
o , γ

1
o). Similarly, under the same conditions, E[g4(Wi, θ)] = 0 uniquely holds with

(α̃0
o, β

0
o , γ

1
o).

Then, the following equations hold for each period t = 1, . . . , T ;

E[Yit(1)] =E
[
DitYit + (1−Dit)

{
α̃o

1 +X ′
itβ

1
o + γ1

o

(
Ȳ 0
i − X̄0′

i β
0
o

)}]
,

E[Yit(0)] =E

[
Dit

{
α̃o

0 +X ′
itβ

0
o +

1

γ1
o

(
Ȳ 1
i − X̄1′

i β
1
o

)}
+ (1−Dit)Yit

]
.
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Thus, under Assumptions 2.1, 2.2, and 2.4, E[g4+t(Wi, θ)] = 0 uniquely holds with θ = θo

at each period t.

From all the above, under Assumptions 2.1–4 and 4.2–3, E[g(Wi, θ)] = 0 is uniquely

satisfied with θ = θo.

□
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