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Abstract

This paper proposes nonparametric tests for the null hypothesis that a treatment has a

zero effect on conditional variance for all subpopulations defined by covariates. Rather than

the mean of outcome, which measures to what extent treatment changes the level of outcome,

researchers are also interested in how the treatment affects the dispersion of outcome. We use

variance to measure the dispersion and estimate the conditional variances by series method. We

give a test rule comparing a Wald-type test statistic with the critical value from chi-squared

distribution. We also construct a normalized test statistic that is asymptotically standard

normal under the null hypothesis. We illustrate the usefulness of the proposed test by Monte

Carlo simulations and an empirical example that investigates the effect of unionism on wage

dispersion.
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1 Introduction

Recently, treatment effect analysis has been an important tool in various fields of empirical re-

search to evaluate the impacts of policies. In this paper, we consider the effect of treatment on

variance. Most of the literature focuses on various treatment effects on the mean of the interested

outcome, such as average treatment effect and local average treatment effect. These parameters

measure to what extent the treatment changes the level of outcome. However, researchers are

also interested in the treatment effect on the dispersion of outcome. For example, it is of sub-

stantive interest to investigate how unionism affects wage dispersion. A number of researches

show that wages are flatter in union sectors compared to nonunion (Freeman, 1980; Gosling and

Machin, 1995; DiNardo et al., 1996; Card, 2001). Freeman (1980), comparing the variances of

the wages for union workers and nonunions, presented that the unionism reduces wage differential

in the organized sector and this difference-reducing-effect within sectors is larger than the gap-

increasing-effect across industries. Investigating the treatment effect on variance is important in

understanding how unionism works.

In this paper, we provide nonparametric tests for the effect of the treatment on variance.

In particular, we consider a test for the null hypothesis that the treatment has nonzero effect

on the dispersion of the outcome for all subpopulations defined by covariates. It is useful, for

example, when one wants to make it clear whether there is any evidence of heterogeneity in

effect of unionism on dispersion of outcome. Card (2001) examined the gap of variance of wages

for union and nonunion male workers defined by various skill groups and found that the role of

unions in compressing wage dispersion for high-skilled workers is slightly stronger than low-skilled.

Conducting the test proposed in this paper, we can study whether there is any subpopulations

for which unions change their wage dispersion.

Although a large part of the recent literature on treatment effect focuses on the estimation,

studies on hypothesis testing for treatment effect are limited. Abadie (2002) concerning the

distributions of the outcome for the treatment group and control, tests for the null hypothesis of

the equality and first-order stochastic dominance using bootstrap method. Crump et al. (2008)

consider the test of the treatment effect heterogeneity and develop tests based on series estimation.

They test for the null hypothesis that the average treatment effects conditional on the covariates

are zero for all subpopulations defined by covariates. Also, they propose the test for the null

hypothesis that the average effect conditional on the covariates is constant for all subpopulations.
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Lee (2009) studies a nonparametric test of the null hypothesis of no distributional treatment effect

for randomly censored outcomes. Hsu (2011) studies a Kolmogorov-Smirnov (KS) test of similar

null hypothesis employing Andrews and Shi’s (2013) instrumental variable approach. Chang et al.

(2015) construct a test for the null hypothesis of conditional stochastic dominance treatment effect

and positiveness of conditional average treatment for all covariates with test statistics based on

kernel estimators.

None of the hypotheses considered in these papers provide tests for treatment effect on con-

ditional variance. In this paper, we test for treatment effect on conditional variance. The null

hypothesis considered in this paper is that the difference of conditional variance of outcome be-

tween the treatment group and control is zero for all subpopulations defined by covariates. To

construct the test statistic, we need to estimate the conditional variance function. However, rea-

sonable specifications for the conditional variance are limited, which makes it difficult to apply

parametric method to test. For this reason, it is necessary to use a nonparametric method.

We provide tests based on a two-step series approach to estimating conditional variances. In

the first step, we estimate the conditional mean function using series and then compute residuals.

Then we estimate conditional variance in the second step by regressing squared residuals on a

power series. We conduct the test using a Wald-type statistic. We compare the test statistic to

the critical value of chi-squared distribution with a degree equal to the number of series terms.

In addition, we give a normalized test statistic that is of F-statistic form and compare it to the

critical value from a standard Gaussian distribution.

Doing regression using squared residuals, we take into account two kinds of biases: bias of the

squared residuals in the first step and bias from conditional variance function estimation which

arises in the usual nonparametric regression analysis. Given particular series terms, the test can

be viewed as a test of whether coefficients for the treatment group and control estimated in the

second step are identical. Thus, we can conduct the test as if it were set by a parametric model,

which is easy to implement. We give some conditions under which the normalized test statistic

converges to a standard Gaussian distribution when the null hypothesis holds. A key result

leading to this asymptotic property is the theorem (Bentkus, 2005) that ensures the convergence

to multivariate normality is fast enough even with the dimension of the vector increasing. Our

tests extend the method in Crump et al. (2008) which considers a one-step test for the conditional

mean.

Our tests are close to Hong and White’s (1995) nonparametric tests in that they also esti-
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mate the nonparametric model by series regression and provide test statistics that converge in

distribution to a unit normal under correct specification. Their test can be viewed as a test of

the joint hypothesis that the true parameters of a series regression model are zero. They provide

the conditions for the number of series terms to ensure the validity of their tests. In our tests,

the increasing rates of the series terms are also important to make the test statistic converge to a

standard normal. This paper is also related to the literature on the estimation of conditional vari-

ance. This problem was first studied when the explanatory variable is univariate. For example,

Fan and Yao (1998) apply the local linear regression model to the squared residuals to estimate

conditional variance; Song and Yang (2009) apply the polynomial spline regression model; and

Yu and Jones (2004) apply the kernel-weighted local polynomial regression model. For a mul-

tivariate model, Zhu et al. (2013) consider a single-index structure to estimate the conditional

variance function and provide an estimation that remains consistent even when the structure of

the variance function is misspecified. In this paper, we test the hypothesis using a power series

estimator of the coefficients of conditional variance functions, which is easy to compute.

The rest of this paper is organized as follows. In Section 2, we give the framework for the

program evaluation analysis and give the null hypothesis and the alternative we consider in this

paper. Section 3 illustrates the test in a parametric model. Then, in Section 4, we extend it to the

nonparametric model with series estimation and provide the test statistics. In Section 5, we give

the asymptotic theorem for our test statistic under some assumptions. In Section 6, we conduct

a simulation and demonstrate the result of the test property in a finite sample. In Section 7,

we consider an empirical application regarding the effects of unionism on the dispersion of wages

using National Longitudinal Survey data. Section 8 concludes the paper.

2 Framework

Our basic framework is standard in the treatment effect literature. We have a random sample

of size N . For each unit i = 1, . . . , N in the sample, let Wi indicate whether the treatment of

interest is received, with Wi = 1 if unit i receives the treatment, and Wi = 0 if unit i receives

the control treatment. Let Yi(1) and Yi(0) denote potential outcomes for each unit i under

treatment and control, respectively. For each unit i, we observe Wi and Yi, where Yi ≡ Yi(Wi) =

Wi ·Yi(1)+(1−Wi) ·Yi(0). In addition, we observe a vector of pretreatment variables, denoted by

Xi, the support of which is X ⊂ Rd. The treatment effect on conditional variance is V ar[Y (1)|X =
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x]− V ar[Y (0)|X = x].

Our test is concerned with the null hypothesis

H0 : ∀x ∈ X , V ar[Y (1)|X = x]− V ar[Y (0)|X = x] = 0, (2.1)

against the alternative

H1 : ∃x ∈ X , V ar[Y (1)|X = x]− V ar[Y (0)|X = x] 6= 0. (2.2)

Under the null hypothesis, for all values of the covariates, the treatment has no effect on the

conditional variance; whereas under the alternative, there are some values of covariates where

there is some effect on the conditional variance.

For w = 0, 1, let µw(x) = E[Y (w)|X = x] and εw,i = Yi(w)−µw(Xi) and assume E[εw,i|X] = 0,

then σ2w(x) ≡ V ar[Y (w)|X = x] = E[ε2w,i|X = x]. So the hypotheses can be stated as

H0 : ∀x ∈ X , σ21(x)− σ20(x) = 0, (2.3)

H1 : ∃x ∈ X , σ21(x)− σ20(x) 6= 0. (2.4)

Note that regardless of whether the mean functions are identical, we are only interested in the

equality of variances.

Now, we make assumptions standard in the program evaluation literature.

First, we assume the sample is an i.i.d random sample.

Assumption 2.1. (Independent and Identically Distributed Random Sample):

Random variables (Yi,Wi, Xi), i = 1, . . . , N are independent and identically distributed.

The central problem of treatment effect literature is that for unit i, we observe either Yi(1) or

Yi(0), but never both. To achieve identification, we assume the unconfoundedness (Rosenbaum

and Rubin, 1983), which can be described as

Assumption 2.2. (Unconfoundedness):

W ⊥ (Y (0), Y (1))|X,

where ⊥ denotes the independence.

In addition, we assume that in the population for all values of covariates, there are both

treatment and control units.
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Assumption 2.3. (Overlap):

0 < Pr(W = 1|X = x) < 1

Under these assumptions, the σ21(x) and σ20(x) can be identified as computing the conditional

variances for the treatment group and control, respectively. Then we can implement our test with

difference between the two conditional variances.

Without loss of generality, we arrange the data such that the first N1 observations have Wi = 1,

and the last N0 observations have Wi = 0. Define the covariates for this rearranged data as an

N×d matrix X = (X ′1, . . . , X
′
N1
, X ′N1+1, . . . , X

′
N ). Also let N1×d matrix X1 = (X ′1, X

′
2, . . . , X

′
N1

),

N0 × d matrix X0 = (X ′N1+1, X
′
N1+2, . . . , X

′
N ), and let N1 vector Y1 = (Y1, . . . , YN1)′, N0 vector

Y0 = (YN1+1, . . . , YN )′.

3 Test Statistic in Parametric Models

We first give a test in a standard parametric model, which helps to explain the procedure in

nonparametric settings. To construct the test statistic, it is necessary to estimate σ21(x)− σ20(x).

We specify σ2w(x) as linear function

σ2w(x) = β′wx. (3.1)

In this parametric setting, the null and alternative hypotheses are

H0 : β1 = β0, (3.2)

H1 : β1 6= β0, (3.3)

where β1 is in the K-dimension. This can be tested using Wald-type test statistic

Tpara = (β̂1 − β̂0)′(Ω̂1/N1 + Ω̂0/N0)
−1(β̂1 − β̂0),

where β̂w is an estimator of β, Ωw is the estimator for asymptotic variance matrix of β̂w, and N1

and N0 are the sample sizes for the treated and control groups, respectively.

Now we consider the least square estimator. Note that we conduct regressions in the treatment

and control group, respectively to compute β̂1 and β̂0. Here we also assume mean functions as

standard linear models, µw(x) = ξ′wx, and estimate the coefficients by their least square estimators

γ̂w. Then the residuals are ε̂w = Yw − µ̂w(Xw) = Yw −Xwξ̂w. Let ε̂1,i be the i-th element of ε̂1
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and ε̂0,i be the (i−N1)-th element of ε̂0. This leads to the residual-based estimator as σ̂2w(x) = β̂′wx

by solving the following problem,

β̂w = arg min
β

n∑
i|Wi=w

(ε̂2w,i − β′wXi)
2.

Then under (3.2), Tpara converges to a chi-squared distribution with K degrees of freedom.

However, specification of the variance function as model (3.1) is not standard, and there is no

widely acceptable model for variance. To get rid of misspecification, we estimate the conditional

variance function using the nonparametric method. In the next section, we extend the parametric

test described above to the nonparametric procedure and provide a valid test without parametric

specification.

4 Nonparametric Estimation of Conditional Variances

We estimate two conditional variances by running a “second step” model for the squared regression

residuals obtained in the first step. Instead of specifying the function by standard linear model,

here we use series estimators in both steps. In the first step, we estimate µw(x) by µ̂w,K1(x)

developed by Imbens et al. (2005), and then compute the residuals ε̂w,i. Then in the second step,

we estimate σ2w(x) by σ̂2w,K2
(x) using ε̂2w,i where K1 and K2 denote the number of series terms in

two steps, respectively. Let λ(d) = (λ1, . . . , λd) be a d-dimensional vector of non-negative integers,

with |λ(d)| =
∑d

m=1 λm, and let xλ(d) = xλ11 x
λ2
2 . . . xλdd . Consider a series {λ(l)}∞l=1 containing all

distinct vectors such that |λ(l)| is nondecreasing. Let pl(x) = xλ(l), Pl(x) = (p1(x), . . . , pl(x))′.

Let PK1(Xi) denote K1 series terms for the mean function and PK2(Xi) denote K2 series terms

for the variance function. Define the N1 × K1 matrix P1,K1 = (P ′K1
(X1), . . . , P

′
K1

(XN1)) and

N0 ×K1 matrix P0,K1 = (P ′K1
(XN1+1), . . . , P

′
K1

(XN )). Also, define the N1 ×K2 matrix P1,K2 =

(P ′K2
(X1), . . . , P

′
K2

(XN1)) and N0 ×K2 matrix P0,K2 = (P ′K2
(XN1+1), . . . , P

′
K2

(XN )).

Then the nonparametric series estimator of the regression function µw(x), given series terms

Pw,K1 , is given by

µ̂w,K1(x) = PK1(x)′(P ′w,K1
Pw,K1)−P ′w,K1

Yw, (4.1)

where A− denotes a generalized inverse of A. Then we compute the residuals by ε̂w = Yw −

µ̂w(Xw). The estimator of σ2w(x) regressed by Pw,K2 is given by

σ̂2w,K2
(x) = PK2(x)′(P ′w,K2

Pw,K2)−P ′w,K2
ε̂2w, (4.2)
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where ε̂2w denotes the vector whose elements are square of elements of ε̂w. In addition, for fixed

K2, we estimate the approximated limiting variance of
√
Nwη̂w,K2 by Ω̂−1P,w,K2

Ψ̂P,w,K2Ω̂−1P,w,K2
,

where

Ω̂P,w,Kr =
P ′w,Kr

Pw,Kr

Nw
, Ψ̂P,w,K2 =

P ′w,K2
M̂w,K2Pw,K2

Nw
,

where M̂w,K2 = diag{(ε̂2w,i − σ̂2w,K2
(Xi))

2, for i with Wi = w}.

We give a test statistic as

Q = (η̂1,K2 − η̂0,K2)′V̂P,K2(η̂1,K2 − η̂0,K2),

where

V̂P,K2 =
Ω̂−1P,0,K2

Ψ̂P,0,K2Ω̂−1

N0
+

Ω̂−1P,1,K2
Ψ̂P,1,K2Ω̂−1P,1,K2

N1

is the estimate for VP,K2 , the variance of η̂1,K2 − η̂0,K2 . Test with Q is a Wald-type test to detect

whether the coefficients are identical,which makes the test similar to the parametric test discussed

in Section 3 when the parametric model is

σ2w(x) = PK2(x)′ηw,K2 (4.3)

In addition, we give a normalized test statistic as

T =
(η̂1,K2 − η̂0,K2)′V̂ −1P,K2

(η̂1,K2 − η̂0,K2)−K2√
2K2

, (4.4)

(4.5)

for the test of the null hypothesis. We will see that in large samples, T has a standard normal

distribution under the null.

5 Asymptotic Theory

This section provides asymptotic theory for our test statistic T . We first state the conditions in

addition to assumptions 2.1-2.3, we make the following assumptions to develop asymptotic theory.

Assumption 5.1. (Distribution of Covariates):

X ∈ X ⊂ Rd, where X is the Cartesian product of intervals [xjL, xjU ], j = 1, . . . , d, with

xjL < xjU . The density of X is bounded away from zero on X .

Assumption 5.2. (Conditional Variance Distributions):
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1. The mean regression functions µw(x) are s1 times continuously differentiable, and variance

regression functions σ2w(x) are s2 times continuously differentiable, with s1/d > 2 and s2/d >

7.

2. For εi(w) = Yi(w)− µw(Xi), ui(w) = (εi(w))2 − σ2w(Xi),

(a) ∀x ∈ X , 0 < θ2 ≤ θ2w(x) ≤ θ̄2 <∞, 0 < σ2 ≤ σ2w(x) ≤ σ̄2 <∞.

(b) E[(ui(w))4] <∞.

Assumption 5.3. (Rates for Series Estimators):

The numbers of terms in the series, Kr, r = 1, 2 increase with the sample size N as Kr =

CNvr , for an arbitrary positive constant C and some vr such that 2d/(d + 2s1) < v1 < 1/3 and

2d/(4s2 − d) < v2 < min(2/13, (s1 − d)v1/(2d)).

Because Pr(W = 1|X = x) is assumed to be bounded from 0, assumption 5.1 implies that the

density of X conditioned on W = w is also bounded away from 0 on its support. Assumption 5.2

imposes some smoothness and moment conditions on the data to ensure the asymptotic conver-

gence of estimators. Assumption 5.2.2-(a) ensures the nonsingularity of V̂P,K2 with probability

approaching 1. Assumption 5.3 defines the increasing rates of the number of series terms. It

guarantees that the test statistic converges to the standard normal under the null hypothesis.

v1 < 1/3 ensures that the eigenvalues of Ω̂w,K1 are bounded and bounded away from 0, which

we should take into consideration in the second step. We find that the increasing rates of series

terms used in the second step are also affected by the increasing speed v1 used in the first step

because we regressed the squared errors obtained from mean function estimation in the first step.

In practice, we can use “top-down” or“bottom-up” method to select the covariates as in Section

7.

The following theorem shows that our normalized test statistic has a standard normal distri-

bution asymptotically.

Theorem 1. Suppose assumptions 2.1-2.3 and 5.1-5.3 hold. Then under H0, we have,

T
d→ N(0, 1).

.

Proof. See Appendix.
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The key is the fact that the chi-squared distribution converges to the normal distribution

as the degree of freedom increases. In empirical application, we can use the test rule with Q

for small-sample that does not affect large-sample properties of T . We can test the hypothesis

comparing quadratic form Q with the critical values of a chi-squared distribution with K2 degrees

of freedom. Note that if Q has a chi-squared distribution with degrees of freedom equal to K2, it

leads to approximate asymptotic normality of T in large samples. Hence, in large samples, tests

with Q and T are approximately the same decision rules. The nonparametric test using T does

not rely on the correct specification but relies on the order of power series.

Now we provide an informal description to understand the proof of the test. We define the

pseudo-true values, η∗w,K2
for w = 0, 1, K2 = 1, 2, . . . , as

η∗w,K2
= arg min

η
E[(σ2w(X)− PK2(X)′η)2|W = w]

= (E[RK2(x)PK2(X)′|W = w])−1E[PK2(X)ε2w|W = w]

so that for fixed K2, as N →∞, η̂w,K2 → η∗w,K2
.

V
−1/2
P,K2

· (η̂1,K2 − η̂0,K2)

=V
−1/2
P,K2

· (η∗1,K2
− η∗0,K2

) + V
−1/2
P,K2

· (η̂1,K2 − η∗1,K2
) + V

−1/2
P,K2

· (η̂0,K2 − η∗0,K2
).

Under assumptions 2.1-2.3 and 5.1-5.3, the last two terms are normally distributed with mean

0 for given K2 in large samples. We can have the asymptotic distribution of T based on this

approximate normality. The first term can be ignored for large K2 because σ2w(x) is close to

PK2(x)′η∗w,K2
for all x. And, under the null hypothesis, the difference between PK2(x)′V

−1/2
P,K2

η∗1,K2

and PK2(x)′V
−1/2
P,K2

η∗0,K2
is close to 0. We can maintain these properties by controlling the increasing

speed of K2. We increase K2 fast enough to make deviation of the first term from 0 small, while

at the same time slowly enough to make the normal distribution of the last two terms hold.

Note that by Bentkus (2005, Theorem 1.1), we can appropriate the distribution of a vector with

a multivariate standard Gaussian distribution fast enough while the dimension of the vector

increases. This contributes to the normalized quadratic form of the test statistic converging to a

normal standard.

Our test considers the conditional variances while Crump et al. (2008) consider a similar

issue in the context with two conditional means. Their test can be considered as the test with

the first step estimators in this paper. In the second step, conducting regression of the residuals
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obtained from the first step estimation, we should take into consideration the error from the mean

estimation. This can be intuitively explained as follows. Observe that

ε̂2w,i − ε2w,i = (εw,i + µw(Xi)− µ̂w,K(Xi))
2 − ε2w,i (5.1)

= 2εw,i(µw(Xi)− µ̂w,K(Xi)) + (µw(Xi)− µ̂w,K(Xi))
2. (5.2)

We find that the bias of squared residuals is of the same order as the bias of µ̂w itself.

We also consider the properties of the test statistic under the local alternative.

Theorem 2. Consistency of Test under Local Alternative: Suppose assumptions 2.1-2.3 and

5.1-5.3 hold. Then, under the local alternative hypothesis,

σ21(x)− σ20(x) = ρN ·∆(x)

with ∆(x) s2 times continuously differentiable, |∆(x0)| = C0 > 0 for some x0, and ρ−1N =

O(N1/2−3v/21−3v2/2−ε) for some ε > 0. Then, as N →∞, for all M ,

Pr(T ≥M)→ 1.

Proof. See Appendix.

This theorem shows that we can test the alternatives when the two conditional variance

functions are arbitrarily close to N−1/2 under sufficient smoothness conditions. We can see when

the true model is as (4.3) for a fixed K2, the nonparametric test will decrease the power of

the test. The nonparametric test checks for additional parameters larger than the necessary k,

whereas under parametric model, this would be zero. Therefore, this additional procedure reduces

the power.

6 Monte Carlo Experiment

In this section, we conduct finite-sample Monte Carlo simulations to illustrate the finite sample

performance of our test.

Our data-generating process is as follows.

Xi ∼ U [0, 1]

µ0(Xi) = Xi,
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µ1(Xi) = 5X2
i + 2Xi,

ε0,i = τ0

√
σ20(Xi),

ε1,i = τ1

√
σ21(Xi)/2,

Y0,i = µ0(Xi) + ε0,i = x+ τ0
√
eXi

Y1,i = µ1(Xi) + ε1,i = 5X2
i + 2Xi + τ1

√
eXi/2,

where τ0 and τ1 are parameters in constructing the variance function, with τ0 ∼ N(0, 1), τ1 ∼ t

distribution with freedom 4. σ21(x) and σ20(x) denote the conditional variances for treatment

group and control, respectively, which are of interest. In the following, we consider different

specifications for σ21(x) and σ20(x) in the cases where the null hypothesis is correct and where the

alternative is correct.

First, we simulate the asymptotic property of the test statistic under the null hypothesis. We

specify the two identical variance functions as follows:

σ20(Xi) = σ21(Xi) = eXi

In the experiment, we consider three different sample sizes, N0 = 45, N1 = 55;N0 = 200, N1 =

300; andN0 = 450, N1 = 550 and 10000 repetitions. We use power series with order K = 2, 3, 4.

We use 1, x for K = 2; 1, x, x2 for K = 3; and 1, x, x2, x3 for K = 4. In addition, we conduct the

test using the series terms selected by “bottom-up” method mentioned in Section 7.

Table 1 summarizes the results of the experiments. It shows the empirical rejection probabil-

ities when testing the null hypothesis that the two conditional variance functions are identical.

The left panel of Table 1 shows the rejection rates of the nonparametric test with statistic T under

significance level 10%, 5%, and 1%, respectively, and the right panel shows the probabilities of

the nonparametric test with statistic Q under the same significance level. The number in the

bracket shows the average number of selected series terms. From the table, we see that empirical

coverage probabilities are sensitive to the choice of the order of power series terms. However, we

find in these sample settings, tests with two series terms perform well, which is consistent with

the result using “bottom-up” method selection. With the number of series terms increasing, the

tests expose distortions, which might be attributed to testing for additional coefficients for two

functions. In addition, the table shows that the chi-squared test with Q performs better than the

test with T .
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Table 1: Probabilities of rejecting H0

H0 is true

Test with T Test with Q

Sample Size
Order of

Power Series Nominal Size Nominal Size

0.1 0.05 0.01 0.1 0.05 0.01

100 2 0.1102 0.0769 0.0373 0.1084 0.0541 0.0116

3 0.1728 0.1242 0.0664 0.1667 0.092 0.0248

4 0.2072 0.1506 0.0832 0.1984 0.1159 0.0361

bottom-up (2.0121) 0.1242 0.0891 0.0462 0.1216 0.0655 0.0152

500 2 0.0884 0.0587 0.0285 0.0859 0.0398 0.0068

3 0.1454 0.1046 0.0531 0.1405 0.0764 0.0187

4 0.1541 0.1095 0.0544 0.1468 0.0809 0.02

bottom-up (2.0123) 0.1021 0.0679 0.0353 0.0998 0.0485 0.0098

1000 2 0.0902 0.0626 0.0315 0.0884 0.0428 0.0071

3 0.1683 0.1236 0.0739 0.1634 0.0969 0.032

4 0.1843 0.1349 0.0758 0.1756 0.1038 0.0318

bottom-up (2.0132) 0.1055 0.0776 0.0398 0.1037 0.0536 0.0114
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Table 2: Probabilities of rejecting H0

H1 is true

Test with T Test with Q

Sample Size
Order of

Power Series Nominal Size Nominal Size

0.1 0.05 0.01 0.1 0.05 0.01

100 2 0.983 0.9759 0.951 0.9826 0.9655 0.8652

3 0.9977 0.9952 0.9882 0.9975 0.9928 0.9577

4 0.9968 0.9947 0.9866 0.9967 0.9921 0.95

500 2 0.9995 0.9994 0.9994 0.9994 0.9994 0.9992

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1000 2 0.9999 0.9998 0.9998 0.9999 0.9998 0.9997

3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

We also conduct the experiment under the alternative hypothesis. In this experiment, we

generate the data with

σ20(x) = ex, σ21(x) = x2

and other variables similar to the preceding processes. Table 2 presents the results of this exper-

iment, which demonstrates the power of our tests of the null hypothesis σ21(x) − σ20(x) = 0 for

all x ∈ X. In this case, it is also reported that our test is sensitive to the choice of the order of

power series terms, especially in small sample sizes. On the other hand, our test is quite powerful,

especially in large sample sizes.
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7 Empirical Application

We apply the test approach proposed in this paper to the wage data with union workers and

nonunion workers to study the effect of unionism on wage dispersion. We first discuss the literature

of the relationship between unionism and wage and then describe the data in this application.

Then we present the results of tests concerning the effect of unions on the dispersion of wages.

Social scientists have long been struggling to give an answer to how unions affect the distri-

bution of wages. In the past, most researchers accepted the view that unions tended to increase

wage inequality, for example, a survey written by Johnson (1975). Freeman’s important study led

a renewed viewpoint to investigate the relationship between unionism and inequality. Analyzing

cross-sectional micro data on workers in union and nonunion sectors, Freeman (1980) found that

unionism reduces white-collar/blue-collar wage differentials in the organized sector, which over-

whelms the increase in dispersion of wages across industries. Then studies were conducted using

variants of a framework to illustrate the effect of unions more completely by considering the union

coverage rates (DiNardo et al., 1996), union effect across different types of workers (Card, 2001),

and unobserved skill differences (Lemieux, 1993). Card (2001) divides the workers into 10 equally

sized skill groups in the nonunion sector to estimate the overall effect of unions on the variance

of wage relative to the situation that would be observed if all workers were paid according to the

existing wage structure in the nonunion. He argued that the role of unions in flattening the wage

dispersion for high-skilled workers is just slightly stronger than that for low-skilled workers.

Researchers may be interested in whether the wage dispersion gap between union and nonunion

workers exists in some subpopulations with covariates beyond particular skill characteristics. In

the following, we consider an empirical application regarding the effects of unionism on dispersion

of wages using US data. We attempt to analyze whether there is significant evidence that unionism

in the United States differs the dispersion of wages between union workers and nonunion workers

with some characteristics.

We analyze data from the National Longitudinal Survey (Youth Sample) containing full-time

working males who have completed their schooling by 1980, were then followed over the period

1981 to 1987, and provided sufficient information. The data set is an excerpt from Vella et al.

(1998) and the data are obtained from supplemental content for Wooldridge (2010). The sample

consists of 411 union workers and 134 nonunion workers. We test for zero change of conditional

wage variances, where we condition on measures of workers’ background characteristics, including
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years of schooling, years of working after school and its square, annual hours worked, married sta-

tus, ethnicity (Hispanic, black), health and living region (rural area, Northeast, Northern Central,

South), as well as industry dummies (agricultural, mining, construction, trading, transportation,

finance, business and repair Service, manufacturing, professional and related service, public ad-

ministration) and occupational dummies (professional, technical and kindred; managers, officials

and proprietors; sales workers; clerical and kindred; craftsmen, foremen and kindred; operatives

and kindred; service workers).

Like Crump et al. (2008), we conduct two specifications of the test with covariates selected by

“top-down” and “bottom-up” methods. For “top down” method, we start with the full covariates

and drop the covariates one by one with the smallest t-statistic until the t-statistic of all remaining

covariates are not smaller than 2 (in absolute value). For the “bottom up” method, we regress

with one intercept and one covariate and then select the covariate with the highest t-statistics.

With one intercept, this selected covariate and one of all remaining covariates, we select again the

one that has the highest t-statistics. Repeat this procedure until all remaining covariates have

t-statistics smaller than 2 in absolute value. In both of the two specifications, we specify both

mean and variance functions by selecting the covariates using the nonunion group and applying

the same specification to the union group. In the first step, we specify the mean function by

either the “top-down” or “bottom-up” method. The number of selected covariates in the first

step corresponds to K1. With these K1 covariates, we calculate residuals for both union and

nonunion groups and then in the second step, we select the covariates again, by employing the

same “top-down” or “bottom-up” method for the variance function regression. It results in K2

covariates in this step. .

The results for these four versions of the tests are reported in Table 3.1 We also provide the

zero conditional average effect of unionism on wages which is proposed by Crump et al. (2008)

as well as our test for zero effect of union on conditional variance. Both Q statistics for the

chi-squared test and T statistic for the normal distribution test and their p-values are recorded

in the table. Comparing the results in the top and bottom panels of this table, we see that the

results are robust to the variables selection procedure. The null hypothesis of the zero conditional

average treatment effect is rejected at 1% level for each year, while for conditional variance, there

1In the test of zero average treatment effect for 1983 data using “bottom-up” procedure, we have an occupational

indicator for managers, officials, and proprietors remaining in the final regression because in other years, these

variables are always significant to the regression.
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Table 3: Tests for zero conditional average treatment effects and zero conditional variance effects

Test for conditional mean Test for conditional variance

year Qmean (K1) Qmepval Tmean Tmepval Qvar (K2) Qvarpval Tvar Tvarpval

top-down

1980 28.04 (5) 0.00 7.29 0.00 15.43 (4) 0.00 4.04 0.00

1981 23.87 (10) 0.01 3.10 0.00 4.01 (4) 0.40 0.00 0.50

1982 99.61 (15) 0.00 15.45 0.00 8.86 (2) 0.01 3.43 0.00

1983 42.86 (13) 0.00 5.86 0.00 8.15 (3) 0.04 2.10 0.02

1984 27.76 (10) 0.00 3.97 0.00 2.59 (3) 0.46 -0.17 0.57

1985 35.33 (12) 0.00 4.76 0.00 13.08 (3) 0.00 4.11 0.00

1986 74.91 (13) 0.00 12.14 0.00 6.51 (2) 0.04 2.26 0.01

1987 65.62 (20) 0.00 7.21 0.00 71.91 (8) 0.00 15.98 0.00

bottom-up

1980 36.37 (7) 0.00 7.85 0.00 3.07 (2) 0.20 0.54 0.30

1981 20.33 (7) 0.00 3.56 0.00 3.86 (4) 0.43 -0.05 0.52

1982 61.83 (10) 0.00 11.59 0.00 5.29 (2) 0.07 1.64 0.05

1983 42.66 (10) 0.00 7.30 0.00 8.20 (3) 0.04 2.12 0.02

1984 27.76 (10) 0.00 3.97 0.00 2.13 (2) 0.34 0.07 0.47

1985 42.81 (12) 0.00 6.29 0.00 10.70 (3) 0.01 3.14 0.00

1986 29.36 (9) 0.00 4.80 0.00 3.90 (2) 0.14 0.95 0.17

1987 43.26 (13) 0.00 5.93 0.00 45.42 (5) 0.00 12.78 0.00

is not always significant evidence against the null hypothesis. That is, in some years, conditioned

on some subpopulation, unionism might affect the inequality of workers’ wages, but in the other

years (1981 and 1984), there is no statistical evidence that unionism has changed the inequality

of their wage for any subpopulation. The results for year s 198-1983 and 1985-1987 are consistent

with the conclusion argued by Card et al. (2004) that unions reduce the variance of wages for

men.

8 Conclusion

In this paper, we developed nonparametric tests for the null hypothesis that the conditional vari-

ances of the outcome for the treatment group and control group are identical for all subpopulations
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defined by covariates. We gave test statistic T , which has a standard normal distribution in large

samples under the null. In practice, we tested with Q, which performs better. Applying the

working males wage data during the period from 1980 to 1987, we find unionism has no treat-

ment effect heterogeneity on wages between union and nonunion groups. However, in some years,

unionism tends to lead to differences of inequality in some groups of workers.

Appendix

We work with a normalized version of the parameters for convenience. Given assumption 5.1,

ΩP,1,K = E[PK(X)PK(X)′|W = 1] is nonsingular for all K (Newey, 1994). We can construct a

sequence of basis functions RK1(x) = Ω
−1/2
P,1,K1

PK1(x) with E[RK1(X)RK1(X)′|W = 1] = IK1 and

RK2(x) = Ω
−1/2
P,1,K2

PK2(x) with E[RK2(X)RK2(X)′|W = 1] = IK2 . Below we prove the theorem

by the sequence of basis functions, RKr(x), instead of PKr(x), where r = 1, 2. This replacement

will not affect the estimators.

Now, we give some notations described in Section 4 when the basis functions RKr(x) are used.

DefineNw×Kr matrixR1,Kr = (RKr(X1)
′, . . . , RKr(XN1)′) andR0,Kr = (RKr(XN1+1)

′, . . . , RKr(XN )′).

Then, nonparametric series estimator of µw(x), given K1 terms in the series, is given by

µ̂w,K1(x) = RK1(x)′(R′w,K1
Rw,K1)−(R′w,K1

Yw)

= RK1(x)′γ̂w,K1 ,

where γ̂w,K1 = (R′w,K1
Rw,K1)−(R′w,K1

Yw). Then nonparametric series estimator of σ2w(x), given

K2 terms in the series, is given by

σ̂2w,K2
(x) = RK2(x)′(R′w,K2

Rw,K2)−(R′w,K2
ε̂2w)

= RK2(x)′α̂w,K2 ,

where α̂w,K2 = (R′w,K2
Rw,K2)−(R′w,K2

ε̂2w).

In addition,

Ωw,Kr ≡ E[RKr(X)RKr(X)′|W = w],

Ψw,K1 ≡ E[σ2w(X)RK1(X)RK1(X)′|W = w] and

Ψw,K2 ≡ E[θ2w(X)RK2(X)RK2(X)′|W = w],
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and we estimate them by

Ω̂w,Kr =
R′w,Kr

Rw,Kr

Nw
, Ψ̂w,K1 =

R′w,K1
D̂w,K1Rw,K1

Nw
, Ψ̂w,K2 =

R′w,K2
M̂w,K2Rw,K2

Nw
.

Finally, we have

N · V =
1

π0
Ω−10,K2

Ψ0,K2Ω−10,K2
+

1

π1
Ω−11,K2

Ψ1,K2Ω−11,K2

and estimator

V̂ =
Ω̂−10,K2

Ψ̂0,K2Ω̂−10,K2

N0
+

Ω−11,K2
Ψ̂1,K2Ω̂−11,K2

N1

where πw = Pr(W = w). Note that Ω1,K2 = IK2 . Moreover, we define ζ(K) = supx ‖RK(x)‖,

where here and in the following, ‖ · ‖ denotes the Euclidean matrix norm, that is, for a matrix

A, ‖A‖ = tr(A′A). In this paper, we use orthonormal polynomials, and then ζ(K) = O(K) by

Newey (1997). In addition, define C as a generic positive constant.

Let ε21 = ((Y1−µ1(X1))
2, (Y2−µ1(X2))

2, . . . , (YN1−µ1(XN1))2)′ and ε22 = ((YN1+1−µ2(XN1+1))
2, (YN1+2−

µ2(XN1+2))
2, . . . , (YN − µ2(XN ))2)′. Let εw = Yw − µw(Xw) and uw = ε2w − σ2w(Xw).

First, we establish asymptotic normality for pseudo statistics. We define,

α∗w,K2
≡ (E[RK2(X)RK2(X)′|W = w])−1E[RK2(X)ε2w,i|W = w]

= Ω−1w,K2
E[RK2(X)ε2w,i|W = w]

Now we consider asymptotic normality of
√
Nw · 1

Nw
Ω−1w,K2

R′w,K2
uw.

√
Nw ·

1

Nw
Ω−1w,K2

R′w,K2
uw =

1√
Nw

N∑
i=1

Ω−1w,K2
1(Wi = w)RK2(Xi)uw,i.

with

E[Ω−1w,K2
R′w,K2

uw] = Ω−1w,K2
E[1(Wi = w)RK2(Xi)E[uw,i|Xi,Wi = w]]

= Ω−1w,K2
E[1(Wi = w)RK2(Xi)E[uw,i|Xi]] = 0,

and

V ar[Ω−1w,K2
R′w,Kuw] = Ω−1w,K2

E[1(Wi = w)u2w,iRK2(Xi)RK2(Xi)
′]Ω−1w,K2

= Ω−1w,K2
E[1(Wi = w)2RK2(Xi)RK2(Xi)

′E[u2w,i|Xi,Wi = w]]Ω−1w,K2

= Ω−1w,K2
E[1(Wi = w)θ2w(Xi)RK(Xi)RK(Xi)

′]Ω−1w,K2

= Ω−1w,K2
E[θ2w(Xi)RK(Xi)RK(Xi)

′|Wi = w]Ω−1w,K2
· Pr(Wi = w)
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= Ω−1w,K2
E[θ2w(Xi)RK(Xi)RK(Xi)

′]Ω−1w,K2
· πw

= Ω−1w,K2
Ψw,K2Ω−1w,K2

· πw.

Therefore,

V ar[
√
Nw ·

1

Nw
Ω−1w,K2

R′w,K2
uw] =

1

Nw
N · Ω−1w,K2

Ψw,K2Ω−1w,K2
· πw → Ω−1w,K2

Ψw,K2Ω−1w,K2
.

Se define

Sw,K2 =
1√
Nw

N∑
i=1

Ω−1w,K1(Wi = w)RK(Xi)uw,i

=
1√
Nw

N∑
i=1

[Ω−1w,K2
Ψw,K2Ω−1w,K2

· πw]−1/2Ω−1w,K2
1(Wi = w)RK2(Xi)uw,i

≡ 1√
Nw

N∑
i=1

Zi.

Then Sw,K2 is a normalized summation of Nw independent random vectors distributed with

expectation 0 and variance-covariance matrix IK2 . By theorem 1.1 in Bentkus (2005), we can

appropriate the distribution of Sw,K2 , denoted by QNw , with a multivariate standard Gaussian

distribution.

Lemma 1. : Suppose assumptions 2.1-2.3 and 5.1-5.3 hold. In particular, let K2(N) = Nv2

where v2 < 2/13. Then,

sup
A∈AK

|QNw(A)− Φ(A)| = o(1),

where AK2 is the class of all measurable convex sets in K2-dimensional Euclidean space and Φ is

a multivariate standard Gaussian distribution.

Proof. Theorem 1.1 in Bentkus (2005) shows

sup
A∈AK2

|QNw(A)− Φ(A)| ≤ Cβ3K1/4
2 .

Consider,

β3 ≡ N−3/2w

N∑
i=1

E‖Zi‖3

= N−3/2w

N∑
i=1

E‖[Ω−1w,KΨw,KΩ−1w,K2
· π]−1/21(Wi = w)RK(Xi)uw,i‖3

≤ θ2 ·N−3/2w

N∑
i=1

E‖[Ω−1w,KK2
· π]−1/2 · 1(Wi = w)RK2(Xi)uw,i‖3
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≤ CN−3/2
N∑
i=1

E‖Ω−1/2w,K2
RK(Xi)uw,i‖3

≤ CN−3/2
N∑
i=1

E[λmax(Ω
−1/2
w,K2

)‖RK2(Xi)uw,i‖]3

≤ CN−3/2
N∑
i=1

λmax(Ω
−1/2
w,K2

)3ζ(K2)
3E|uw,i|3

≤ Cζ(K2)
3N−1/2.

Thus,

Cβ3K
1/4
2 = O(N−1/2ζ(K2)

3K
1/4
2 ) = O(N−1/2K

13/4
2 ).

Under assumption 5.3, v2 < 2/13 holds, which leads to O(N−1/2K
13/4
2 ). So, supA∈AK2

|QNw(A)−

Φ(A)| = o(1).

Now, we have a multivariate asymptotic normality, under which we may further proceed a

univariate standard Gaussian distribution. We consider the quadratic form S′w,K2
Sw,K2 ,

S′w,K2
Sw,K2 =

K2∑
j=1

(
1√
Nw

N∑
i

Zij)
2,

where Zij is the jth element of the vector Zi. Thus, S′w,K2
Sw,K2 is a sum of K2 uncorrelated,

squared random variables with each random variable converging to a standard Gaussian distri-

bution. Next lemma shows that this sum converges to a chi-squared random variable with K2

degrees of freedom.

Lemma 2. :Suppose assumptions 2.1-2.3 and 5.1-5.3 hold. Then,

sup
c
|Pr(S′w,K2

Sw,K2 ≤ c)− χ2
K2

(c)| → 0.

Proof. Define the set A(c) ≡ {S ∈ RK2 |S′S ≤ c}, and it is a measurable, convex set in RK2 . For

Z ∼ N(0, IK2),

sup
c
|Pr(S′w,K2

Sw,K2 ≤ c)− χ2
K2

(c)|

= sup
c
|Pr(S′w,K2

Sw,K2 ≤ c)− Pr(Z ′Z ≤ c)|

= sup
c
|Pr(Sw,K2 ∈ A(c))− Pr(Z ′Z ≤ c)|

≤ sup
A∈AK2

|QNw(A)− Φ(A)|
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=o(1).

The normalized version of S′w,K2
Sw,K2 converges to a standard Gaussian distribution by the

following lemma.

Lemma 3. Suppose assumptions 2.1-2.3 and 5.1-5.3 hold. Then,

sup
c
|Pr(

S′w,K2
Sw,K2 −K2√

2K2
≤ c)− Φ(c)| → 0.

Proof.

sup
c
|Pr(

S′w,K2
Sw,K2 −K2√

2K2
≤ c)− Φ(c)|

= sup
c
|Pr(S′w,K2

Sw,K2 ≤ K + c
√

2K2)− Φ(c)|

≤ sup
c
|Pr(S′w,K2

Sw,K ≤ K2 + c
√

2K2)− χ2
K2

(K2 + c
√

2K)|

+ sup
c
|χ2(K2 + c

√
2K2)− Φ(c)|

= sup
c
|Pr(S′w,K2

Sw,K2 ≤ K2 + c
√

2K2)− χ2
K2

(K2 + c
√

2K2)

+ sup
c
|Pr(

Z ′Z −K2√
2K2

≤ c)− Φ(c)|,

where Z ∼ N(0, IK2). The first term goes to zero by lemma 2. The second term is of order

O(K
−1/2
2 ) by the Berry-Esseen Theorem, and for v2 < 0, it also converges to zero. So the result

holds.

Before we go ahead with test statistic T , we show a couple of preliminary lemmas.

Lemma 4. Suppose assumptions 2.1-2.3 and 5.1-5.3 hold. Then, for r = 1, 2,

(i) ‖Ω̂w,Kr − Ωw,Kr‖ = Op(ζ(Kr)K
1/2
r N−1/2),

(ii) the eigenvalues of Ωw,Kr are bounded and bounded away from zero,

(iii) the eigenvalues of Ω̂w,Kr are bounded and bounded away from zero in probability.

Proof. When r = 1, the proofs can be found in Crump et al. (2008) Lemma A.1. Similarly, we

can prove the statements for r = 2. Note that under assumption 5.3, Op(ζ(K2)K
1/2
2 N−1/2) =

op(1).
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Lemma 5. Suppose assumptions 2.1-2.3 and 5.1-5.3 hold. Then,

(i) there is a sequence of vector γ0w,K1
, such that

supx |µw(x)−RK1(x)′γ0w,K1
| ≡ supx |µw(x)− µ0w,K1

(x)| = O(K
−s1/d
1 ),

(ii) ‖γ∗w,K1
− γ0w,K1

‖ = O(K
1/2
1 K

−s1/d
1 ),

(iii) supx |RK1(x)′γ∗w,K1
−RK1(x)′γ0w,K1

| = O(ζ(K1)K
1/2
1 K

−s1/d
1 ),

(iv) ‖γ̂w,K1 − γ0w,K1
‖ = O(K

−s1/d
1 ) +Op(K

1/2
1 N−1/2),

(v) supx |µw(x)−RK1(x)′γ̂w,K1 | ≡ supx |µw(x)−µ̂w,K1(x)| = O(ζ(K1)K
−s1/d
1 )+Op(ζ(K1)K

1/2
1 N−1).

Proof. The proofs can be found in Crump et al. (2008) Lemma A.6. BecauseOp(ζ(Kr)K
1/2
r N−1/2) =

op(1) under assumptions 5.1-5.3, we can have (iv) and (v) from Crump et al. (2007).

Lemma 6. Suppose assumptions 2.1-2.3 and 5.1-5.3 hold. Then,

(i) supx |σ2w(x)−RK2(x)′α0
w,K2
| ≡ supx |σ2w(x)− σ20w,K2

(x)| = O(K
−s2/d
2 ),

(ii) ‖α∗w,K2
− α0

w,K2
‖ = O(K

1/2
2 K

−s2/d
2 ),

(iii) supx |RK2(x)′α∗w,K2
−RK2(x)′α0

w,K2
| = O(ζ(K2)K

1/2
2 K

−s2/d
2 ),

(iv) ‖α̂w,K2 − α0
w,K2
‖ = Op(ζ(K1)K

−s1/d
1 + ζ(K1)K

1/2
1 N−1) +Op(K

1/2
2 N−1/2) +O(K

−s2/d
2 ),

(v) supx |σ2w(x)−RK2(x)′α̂w,K2 | ≡ supx |σ2w(x)− σ̂2w,K2
(x)|

= Op(ζ(K1)ζ(K2)K
−s1/d
1 + ζ(K1)ζ(K2)K

1/2
1 N−1 + ζ(K2)K

1/2
2 N−1/2 + ζ(K2)K

−s2/d
2 ),

Proof. We can prove (i), (ii) and (iii) as Lemma A.2 in Crump et al. (2008). For (iv), for

M ∈ (0,∞)

Pr(|ε̂2w,i − ε2w,i| > M)

≤
E|ε̂2w,i − ε2w,i|

M

=
E|(εw,i + µw(Xi)− µ̂w,K1(Xi))

2 − ε2w,i|
M

≤
E|2εw,i(µw(Xi)− µ̂w,K1(Xi))|

M
+
E|µw(Xi)− µ̂w,K1(Xi)|2

M

≤2 · sup
i
|µw(Xi)− µ̂w,K1(Xi)| ·

1

M
E|εw,i|+ (sup

i
|µw(Xi)− µ̂w,K1(Xi)|)2

≤C · sup
i
|µw(Xi)− µ̂w,K1(Xi)|+ (O(ζ(K1)K

−s1/d
1 ) +Op(ζ(K1)K

1/2
1 N−1))2,
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=O(ζ(K1)K
−s1/d
1 ) +Op(ζ(K1)K

1/2
1 N−1).

The last line holds because E|εw,i| is bounded and bounded away from 0 from assumption 5.2. So

|ε̂2w,i−ε2w,i| = O(ζ(K1)K
−s1/d
1 )+Op(ζ(K1)K

1/2
1 N−1). In addition, we can know supi |ε̂2w,i−ε2w,i| =

O(ζ(K1)K
−s1/d
1 ) +Op(ζ(K1)K

1/2
1 N−1).

‖α̂w,K2 − α0
w,K2
‖ = ‖ 1

Nw
Ω̂−1w,K2

R′w,K2
ε̂2w −

1

Nw
Ω̂−1w,K2

R′w,K2
Rw,K2α

0
w,K2

)‖

= ‖ 1

Nw
Ω̂−1w,K2

R′w,K2
(ε̂2w −Rw,K2α

0
w,K2

)‖

≤ λmax(Ω̂
−1/2
w,K2

) · ‖ 1

Nw
Ω̂
−1/2
w,K2

R′w,K2
(ε̂2w −Rw,K2α

0
w,K2

)‖

Note that λmax(Ω̂
−1/2
w,K2

) = λmax(Ω
−1/2
w,K2

) +Op(ζ(K2)K
1/2
2 N−1/2) = O(1) + op(1) 2.

‖ 1

Nw
Ω̂
−1/2
w,K2

R′w,K2
(ε̂2w −Rw,K2α

0
w,K2

)‖

=‖ 1

Nw
Ω̂
−1/2
w,K2

R′w,K2
(ε̂2w − ε2w + ε2w − σ2w(Xw) + σ2w(Xw)−Rw,K2α

0
w,K2

)‖

≤‖ 1

Nw
Ω̂
−1/2
w,K2

R′w,K2
(ε̂2w − ε2w)‖ (A.1)

+‖ 1

Nw
Ω̂
−1/2
w,K2

R′w,K2
uw‖ (A.2)

+‖ 1

Nw
Ω̂
−1/2
w,K2

R′w,K2
(σ2w(Xw)−Rw,K2α

0
w,K2

)‖, (A.3)

For (A.1 ), we have,

E‖ 1

Nw
Ω̂
−1/2
w,K2

R′w,K2
(ε̂2w − ε2w)‖2

=
1

Nw
E[(ε̂2w − ε2w)′Rw,K2(R′w,K2

Rw,K2)−1R′w,K2
(ε̂2w − ε2w)]

≤ 1

Nw
E[(ε̂2w − ε2w)′(ε̂2w − ε2w)]

≤E|ε̂2w,i − ε2w,i|2

=O(ζ(K1)
2K
−2s1/d
1 ) +Op(ζ(K1)

2K1N
−2).

The third line follows by the fact that I −Rw,K2(R′w,K2
Rw,K2)−1R′w,K2

is a positive semi-definite.

So, ‖ 1
Nw

Ω̂
−1/2
w,K2

R′w,K2
(ε̂2w − ε2w)‖ = Op(ζ(K1)K

−s1/d
1 + ζ(K1)K

1/2
1 N−1).

For (A.2 ), we have,

E‖ 1

Nw
Ω̂
−1/2
w,K2

R′w,K2
uw‖2

2λmax(Ω̂−1
w,K) = λmax(Ω−1

w,K) +Op(ζ(K)K1/2N−1/2)
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=E[tr(
1

Nw
u′wRw,K2Ω̂−1w,K2

Rw,K2uw)]

=
1

Nw
E[tr(Rw,K2(R′w,K2

Rw,K2)−1R′w,K2
uwu

′
w)]

=
1

Nw
tr(E[Rw,K2(R′w,K2

Rw,K2)−1R′w,K2
E[uwu

′
w|X]])

≤θ̄2 · 1

Nw
E[tr(Rw,K2(R′w,K2

Rw,K2)−1R′w,K2
)]

=θ̄2 · 1

Nw
K2

≤CK2N
−1,

and so ‖ 1
Nw

Ω̂
−1/2
w,K2

R′w,K2
uw‖ = Op(K

1/2
2 N−1/2).

For (A.3 ), we have,

‖ 1

Nw
Ω̂
−1/2
w,K2

R′w,K2
(σ2w(Xw)−Rw,K2α

0
w,K2

)‖2

=
1

Nw
(σ2w(Xw)−Rw,K2α

0
w,K2

)′Rw,K2(R′w,K2
Rw,K2)−1R′w,K2

(σ2w(Xw)−Rw,K2α
0
w,K2

)

≤ 1

Nw
(σ2w(Xw)−Rw,K2α

0
w,K2

)′(σ2w(Xw)−Rw,K2α
0
w,K2

)

≤(sup
x
|σ2w(x)−Rw,K2α

0
w,K2
|)2

≤CK−2s2/d2

by (i), and so ‖ 1
Nw

Ω̂
−1/2
w,K2

R′w,K2
(σ2w(Xw)−Rw,K2α

0
w,K2

)‖ = O(K
−s2/d
2 ). Combining these, we have,

‖α̂w,K − αw,K‖

=[O(1) + op(0)] · [Op(ζ(K1)K
−s1/d
1 + ζ(K1)K

1/2
1 N−1) +Op(K

1/2
2 N−1/2) +O(K

−s2/d
2 )]

=Op(ζ(K1)K
−s1/d
1 + ζ(K1)K

1/2
1 N−1) +Op(K

1/2
2 N−1/2) +O(K

−s2/d
2 ).

Finally, for (v), we have,

sup
x
|σ2w(x)− σ̂2w,K2

(x)| ≤ sup
x
|σ2w,K2

(x)− σ20w (x)|+ sup
x
|σ20w,K2

(x)− σ̂2w,K2
(x)|.

The first term is O(K
−s2/d
2 ) by (i). For the second term, we have

sup
x
|σ20w (x)− σ̂2w(x)|

= sup
x
|RK2(x)′(α0

w,K2
− α̂w,K2)|

≤ sup
x
‖RK2(x)‖ · ‖α0

w,K2
− α̂w,K2‖
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=ζ(K2)[Op(ζ(K1)K
−s1/d
1 + ζ(K1)K

1/2
1 N−1) +Op(K

1/2
2 N−1/2) +O(K

−s2/d
2 )],

where we use the result from (iv). Thus,

sup
x
|σ2w(x)− σ̂2w,K2

(x)|

=ζ(K2)[Op(ζ(K1)K
−s1/d
1 + ζ(K1)K

1/2
1 N−1) +Op(K

1/2
2 N−1/2) +O(K

−s2/d
2 )] +O(K

−s2/d
2 )

=Op(ζ(K1)ζ(K2)K
−s1/d
1 + ζ(K1)ζ(K2)K

1/2
1 N−1 + ζ(K2)K

1/2
2 N−1/2 + ζ(K2)K

−s2/d
2 ).

Lemma 7. Suppose assumptions 2.1-2.3 and 5.1-5.3 hold. Then,

(i) ‖Ψ̂w,K2 −Ψw,K2‖ = Op(ζ(K1)
2ζ(K2)

2K
−2s1/d
1 K2 + ζ(K2)

2K2K
−s2/d
2

+ ζ(K1)
2ζ(K2)

2K
1/2
1 K

−s1/d
1 K2N

−1 + ζ(K1)ζ(K2)
2K
−s1/d
1 K

3/2
2 N−1/2

+ ζ(K1)ζ(K2)
2K

1/2
1 K

3/2
2 N−3/2 + ζ(K2)

2K
1/2
2 N−1/2),

(ii) the eigenvalues of Ψw,K2 are bounded and bounded away from zero,

(iii) the eigenvalues of Ψ̂w,K2 are bounded and bounded away from zero in probability,

(iv) the eigenvalues of N · V are bounded and bounded away from zero,

(v) the eigenvalues of N · V̂ are abounded and bounded away from zero in probability.

Proof. Let us first define,

Ψ̃w,K2 =
R′w,K2

M̃w,K2Rw,K2

Nw
, where M̃w,K = diag{u2w,i, for i with Wi = w}.

Then,

E‖Ψ̂w,K2 −Ψw,K2‖2

=E‖Ψ̂w,K2 − Ψ̃w,K2 + Ψ̃w,K2 −Ψw,K2‖2

≤2E‖Ψ̂w,K2 − Ψ̃w,K2‖2 + 2E‖Ψ̃w,K2 −Ψw,K2‖2

=2E‖
R′w,K2

(M̂w,K2 − M̃w,K2)Rw,K2

Nw
‖2 (A.4)

+ 2E‖Ψ̃w,K2 −Ψw,K2‖2. (A.5)

Consider (A.4 ),

E‖
R′w,K2

(M̂w,K2 − M̃w,K2)Rw,K2

Nw
‖2
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=
1

N2
w

K2∑
k=1

K2∑
l=1

N∑
i=1

N∑
j=1

E[1(Wi = w)1(Wj = w)(û2w,i − u2w,i)RkK2(Xi)RlK2(Xi)RkK2(Xj)RlK2(Xj)].

Since

sup
i
|ûw,i − uw,i| =|ε̂2w,i(Xi)− σ̂2w(Xi)− (ε2w(Xi)− σ2w(Xi))|

= sup
i
|ε̂2w,i − ε2w,i|+ sup

i
|σ̂2w,K2

(Xi)− σ2w(Xi)|,

E|û2w,i − u2w,i| =E|(ûw,i − uw,i)2 + 2uw,i(ûw,i − uw,i)|

≤E|uw,i| · sup
i
|ûw,i − uw,i|+ op(ûw,i − uw,i)

=C(sup
i
|ε̂2w,i − ε2w,i|+ sup

i
|σ̂2w,K2

(Xi)− σ2w(Xi)|)

=Op(ζ(K1)ζ(K2)K
−s1/d
1 + ζ(K1)ζ(K2)K

1/2
1 N−1 + ζ(K2)K

1/2
2 N−1/2 + ζ(K2)K

−s2/d
2 ).

We have

E‖
R′w,K2

(M̂w,K2 − M̃w,K2)Rw,K2

Nw
‖2

=[Op(ζ(K1)ζ(K2)K
−s1/d
1 + ζ(K1)ζ(K2)K

1/2
1 N−1 + ζ(K2)K

1/2
2 N−1/2 + ζ(K2)K

−s2/d
2 )]2

· 1

N2
w

K2∑
k=1

K2∑
l=1

N∑
i=1

N∑
j=1

E[RkK2(Xi)RlK2(Xi)RkK2(Xj)RlK2(Xj)].

From Crump et al. (2007), we can know the last term is

1

N2
w

K2∑
k=1

K2∑
l=1

N∑
i=1

N∑
j=1

E[RkK2(Xi)RlK2(Xi)RkK2(Xj)RlK2(Xj)] = tr(E[Ω̂2
w,K2

]) = O(K2)

So for (A.4), we have

E‖
R′w,K2

(M̂w,K2 − M̃w,K2)Rw,K2

Nw
‖2

=[Op(ζ(K1)ζ(K2)K
−s1/d
1 + ζ(K1)ζ(K2)K

1/2
1 N−1 + ζ(K2)K

1/2
2 N−1/2 + ζ(K2)K

−s2/d
2 )]2O(K2).

(A.6)

Following the steps in the proof of Lemma A.1(iv) in Crump et al. (2007), we can show (A.5 ) is,

E‖Ψ̃w,K2 −Ψw,K2‖2 = Op(ζ(K2)
2K2N

−1). (A.7)

Combining (A.6 ) and (A.16 ) yields

‖Ψ̂w,K2 −Ψw,K2‖
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=[Op(ζ(K1)ζ(K2)K
−s1/d
1 + ζ(K1)ζ(K2)K

1/2
1 N−1 + ζ(K2)K

1/2
2 N−1/2 + ζ(K2)K

−s2/d
2 )]2O(K2)

+Op(ζ(K2)
2K

1/2
2 N−1/2)

=Op(ζ(K1)
2ζ(K2)

2K
−2s1/d
1 K2 + ζ(K2)

2K2K
−s2/d
2 + ζ(K1)

2ζ(K2)
2K

1/2
1 K

−s1/d
1 K2N

−1

+ ζ(K1)ζ(K2)
2K
−s1/d
1 K

3/2
2 N−1/2 + ζ(K1)ζ(K2)

2K
1/2
1 K

3/2
2 N−3/2 + ζ(K2)

2K
1/2
2 N−1/2).

We can prove (ii) as Crump et al. (2008) Lemma A.1 (v).

For (iii),

λmin(Ψ̂w,K2) = min
d′d=1

d′Ψ̂w,K2d

= min
d′d=1

[d′Ψw,K2d+ d′(Ψw,K2 − Ψ̂w,K2)d]

≥ min
d′1d1=1

d′1Ψw,K2d1 + min
d′2d2=1

d′2(Ψw,K2 − Ψ̂w,K2)d2

=λmin(Ψw,K2) + λmin(Ψw,K2 − Ψ̂w,K2)

≥λmin(Ψw,K2)− ‖Ψ̂w,K2 −Ψw,K2‖

=C −Op(ζ(K1)
2ζ(K2)

2K
−2s1/d
1 K2 + ζ(K2)

2K2K
−s2/d
2 + ζ(K1)

2ζ(K2)
2K

1/2
1 K

−s1/d
1 K2N

−1

+ ζ(K1)ζ(K2)
2K
−s1/d
1 K

3/2
2 N−1/2 + ζ(K1)ζ(K2)

2K
1/2
1 K

3/2
2 N−3/2 + ζ(K2)

2K
1/2
2 N−1/2)

=C + op(1).

Similarly,

λmax(Ψ̂w,K2)

=O(1) +Op(ζ(K1)
2ζ(K2)

2K
−2s1/d
1 K2 + ζ(K2)

2K2K
−s2/d
2 + ζ(K1)

2ζ(K2)
2K

1/2
1 K

−s1/d
1 K2N

−1

+ ζ(K1)ζ(K2)
2K
−s1/d
1 K

3/2
2 N−1/2 + ζ(K1)ζ(K2)

2K
1/2
1 K

3/2
2 N−3/2 + ζ(K2)

2K
1/2
2 N−1/2)

=O(1) + op(1).

We can prove (iv) as Lemma A.2 in Crump et al. (2008). For (v),

λmin(Ω̂−1w,K2
Ψ̂w,K2Ω̂−1w,K2

)

≥λmin(Ψw,K2) · λmin(Ω−1w,K2
)2

≥[λmin(Ψw,K2) + op(1)]λmin(Ω−1w,K2
)2

≥[C + op(1)][C + op(1)]2

=C + op(1).
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Thus,

λmin(N · V̂ ) = min
d′d=1

d′(
N

N0
Ω̂−10,K2

Ψ̂0,K2Ω̂−10,K2
+
N

N1
Ω̂−11,K2

Ψ̂1,K2Ω̂−11,K2
)d

≥ N
N0

min
d′d=1

d′(Ω̂−10,K2
Ψ̂0,K2Ω̂−10,K2

)d+
N

N1
min
d′d=1

d′(Ω̂−11,K2
Ψ̂1,K2Ω̂−11,K2

)d

=λmin(Ω̂−10,K2
Ψ̂0,K2Ω̂−10,K2

) + λmin(Ω̂−11,K2
Ψ̂1,K2Ω̂−11,K2

)

is bounded away from zero in probability. Similarly, we can prove λmax(N · V̂ ) is bounded in

probability.

Lemma 8. Suppose assumptions 2.1-2.3 and 5.1-5.3 hold. Then,

Nw(α̂w,K2 − α∗w,K2
)′[Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1(α̂w,K2 − α∗w,K2

)−K2√
2K2

d→ N(0, 1).

Proof. Because Lemma 3 holds, we need only show that

‖[Ω̂−10,K2
Ψ̂w,K2Ω̂−1w,K2

]−1/2
√
Nw(α̂w,K2 − α∗w,K2

)− Sw,K2‖ = op(1). (A.8)

Let u∗w,K2
≡ ε̂2w −Rw,K2α

∗
w,K2

, then

α̂w,K2 − α∗w,K2
= (R′w,K2

Rw,K2)−1(R′w,K2
(Rw,K2α

∗
w,K2

+ u∗w))− α∗w,K2

=
1

Nw
· Ω̂−1w,K2

R′w,K2
u∗w

The left side of (A.8 ) can be written as

‖[Ω̂−10,K2
Ψ̂w,K2Ω̂−1w,K2

]−1/2
√
Nw(α̂w,K2 − α∗w,K2

)− Sw,K2‖

=
1√
Nw
‖[Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1/2Ω̂−1w,KR

′
w,K2

u∗w − [Ω−1w,KΨw,K2Ω−1w,K2
]−1/2Ω−1w,K2

R′w,K2
uw‖

≤ 1√
Nw
‖[Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw − [Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw‖ (A.9)

+
1√
Nw
‖[Ω̂−1w,K2

Ψ̂w,KΩ̂−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw − [Ω̂−1w,K2

Ψw,K2Ω−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw‖

(A.10)

+
1√
Nw
‖[Ω̂−1w,K2

Ψw,K2Ω−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw − [Ω−1w,K2

Ψw,K2Ω−1w,K2
]−1/2Ω−1w,K2

R′w,K2
uw‖.

(A.11)

For (A.9 ),

1√
Nw
‖[Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
u∗w − [Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw‖

29



≤‖[Ψ̂w,K2Ω̂−1w,K2
]−1/2‖ · ‖

Ω̂
−1/2
w,K2

R′w,K2
(u∗w − uw)

√
Nw

‖.

The first factor is

‖[Ψ̂w,K2Ω̂−1w,K2
]−1/2‖

=‖[Ψ̂1/2
w,K2

Ω̂
−1/2
w,K2
‖

≤λmax(Ψ̂
−1/2
w,K2

)λmax(Ω̂
−1/2
w,K2

)K
1/2
2

≤([C + op(1)])2K
1/2
2

=Op(K
1/2
2 ).

For the second factor we have,

E

∥∥∥∥∥∥ Ω̂
−1/2
w,K2

R′w,K2
(u∗w − uw)

√
Nw

∥∥∥∥∥∥
2

=E[
1

Nw
tr((u∗w − uw)′Rw,KΩ̂−1w,K2

R′w,K2
(u∗w − uw))]

=E[(u∗w − uw)′Rw,K2(R′w,K2
Rw,K2)−1Rw,K2(u∗w − uw)′]

=E[(u∗w − uw)′(u∗w − uw)]

=E[(σ2w(Xw)−Rw,K2α
∗
w,K2

)′(σ2(Xw)−Rw,K2α
∗
w,K2

)]

≤Nw sup
x
|σ2w(x)−RK2(x)′α∗w,K2

|2

≤Nw(sup
x
|σ2w(x)−RK2(x)′α0

w,K2
|+ sup

x
|RK2(x)′α0

w,K2
−RK2(x)′α∗w,K2

|)2

=Nw(O(K
−s2/d
2 )O(ζ(K2)K

1/2
2 K

−s2/d
2 ))2

=O(N)(O(ζ(K2)K
1/2
2 K

−s2/d
2 ))2.

Then, equation (A.9 ) is

1√
Nw
‖[Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
u∗w − [Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw‖

=O(K
1/2
2 )Op(ζ(K2)K

1/2
2 K

−s2/d
2 N1/2)

=Op(ζ(K2)K2K
−s2/d
2 N1/2),

which is op(1) under assumption 5.2 and 5.3. For (A.10 ),

1√
Nw
‖[Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw − [Ω̂−1w,K2

Ψw,K2Ω−1w,K ]−1/2Ω̂−1w,K2
R′w,Kuw‖
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≤‖[Ψ̂w,K2Ω−1w,K2
]−1/2 − [Ψ̂w,K2Ω−1w,K2

]−1/2‖‖N−1/2w Ω̂
−1/2
w,K2

R′w,K2
uw‖. (A.12)

For the first factor in (A.12 ), we consider

‖Ψ̂w,K2Ω̂−1w,K2
−Ψw,K2Ω−1w,K2

‖

=‖Ψ̂w,K2Ω̂−1w,K2
−Ψw,K2Ω̂−1w,K2

+ Ψw,K2Ω̂−1w,K2
−Ψw,K2Ω−1w,K2

‖

≤‖Ψ̂w,K2 −Ψw,K2‖‖Ω̂−1w,K2
‖+ ‖Ψw,K2‖‖Ω̂−1w,K2

− Ω−1w,K2
‖

≤Op(ζ(K1)
2ζ(K2)

2K
−2s1/d
1 K2 + ζ(K2)

2K2K
−s2/d
2 + ζ(K1)

2ζ(K2)
2K

1/2
1 K

−s1/d
1 K2N

−1

+ ζ(K1)ζ(K2)
2K
−s1/d
1 K

3/2
2 N−1/2)[K

1/2
2 λmax(Ω−1w,K2

)] +K
1/2
2 λmax(Ψw,K2) ·Op(ζ(K2)K

1/2
2 N−1/2)

=Op(ζ(K1)
2ζ(K2)

2K
−2s1/d
1 K

3/2
2 + ζ(K2)

2K
3/2
2 K

−s2/d
2 + ζ(K1)

2ζ(K2)
2K

1/2
1 K

−s1/d
1 K

3/2
2 N−1

+ ζ(K1)ζ(K2)
2K
−s1/d
1 K2

2N
−1/).

Thus,

‖[Ψ̂w,K2Ω−1w,K2
]−1/2 − [Ψ̂w,K2Ω−1w,K2

]−1/2‖

=Op(ζ(K1)
2ζ(K2)

2K
−2s1/d
1 K

3/2
2 + ζ(K2)

2K
3/2
2 K

−s2/d
2 + ζ(K1)

2ζ(K2)
2K

1/2
1 K

−s1/d
1 K

3/2
2 N−1

+ ζ(K1)ζ(K2)
2K
−s1/d
1 K2

2N
−1/2). (A.13)

For the second factor in (A.12 ), we consider

E‖N−1/2w Ω̂
−1/2
w,K2

R′w,K2
uw‖2 =E[tr(u′wRw,K2(R′w,K2

Rw,K2)−1R′w,K2
uw)]

≤θ̄2w · tr(E[Rw,K2(R′w,K2
Rw,K2)−1R′w,K2

])

=θ̄2w · tr(IK2) = O(K2)

Thus

‖N−1/2w Ω̂
−1/2
w,K2

R′w,K2
uw‖ = Op(K

1/2
2 ). (A.14)

Combining (A.13 ) and (A.14 ) together yields,

1√
Nw
‖[Ω̂−1w,K2

Ψ̂w,K2Ω̂−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw − [Ω̂−1w,K2

Ψw,K2Ω−1w,K ]−1/2Ω̂−1w,K2
R′w,Kuw‖

=[Op(ζ(K1)
2ζ(K2)

2K
−2s1/d
1 K

3/2
2 + ζ(K2)

2K
3/2
2 K

−s2/d
2 + ζ(K1)

2ζ(K2)
2K

1/2
1 K

−s1/d
1 K

3/2
2 N−1

+ ζ(K1)ζ(K2)
2K
−s1/d
1 K2

2N
−1/2)] ·Op(K1/2

2 )

=op(1)
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under assumption 5.2 and 5.3. Finally, (A.11 ) is

1√
Nw
‖[Ω̂−1w,K2

Ψw,K2Ω−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw − [Ω−1w,K2

Ψw,K2Ω−1w,K2
]−1/2Ω−1w,K2

R′w,K2
uw‖

≤‖[Ψw,K2Ω−1w,K2
]−1/2‖‖Ω̂−1/2w,K2

− Ω
−1/2
w,K2
‖‖ 1√

Nw
R′w,K2

uw‖. (A.15)

The first factor in (A.15 ) is ‖[Ψw,K2Ω−1w,K2
]−1/2‖ = C‖IK2‖ = O(K

1/2
2 ). The second factor in

(A.15 ) is Op(ζ(K2)K
1/2
2 N−1/2). For the third factor in (A.15 ), consider

E‖ 1√
Nw

R′w,K2
uw‖2

=E[
1√
Nw

tr(u′wRw,K2R
′
w,K2

uw)]

=E[
1√
Nw

tr(R′w,K2
uwu

′
wRw,K2 ]

=tr(
1√
Nw

E[R′w,K2
E[uwu

′
w|Xw]Rw,K2 ])

=θ̄2wtr(Ωw,K2)

=θ̄2wK2λmax(Ωw,K2)

=CK̇2.

Thus | 1√
Nw
R′w,K2

uw‖ = Op(K
1/2
2 ). Putting these together, we have

1√
Nw
‖[Ω̂−1w,K2

Ψw,K2Ω−1w,K2
]−1/2Ω̂−1w,K2

R′w,K2
uw − [Ω−1w,K2

Ψw,K2Ω−1w,K2
]−1/2Ω−1w,K2

R′w,K2
uw‖

=Op(ζ(K2)K
3/2
2 N−1/2) = op(1).

Hence,

‖[Ω̂−10,K2
Ψ̂w,K2Ω̂−1w,K2

]−1/2
√
Nw(α̂w,K2 − α∗w,K2

)− Sw,K2‖ = op(1).

Thus, the infeasible test statistic converges to standard normal distribution.

Now, we prove Theorem 1.

Proof. Define

δ̂K2 = α̂1,K2 − α̂0,K2 , δ
∗
K2

= α∗1,K2
− α∗0,K2

.

Following the logic of Lemma 8 above, we can conclude that

T ∗ =
(δ̂K2 − δ∗K2

)′V̂ −1(δ̂K2 − δ∗K2
)−K2√

2K2

d→ N(0, 1).
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To complete the proof, we need to show that |T ∗−T | = op(1). Note that under the null hypothesis,

µ1(x) = µ0(x), so we may choose the same approximation sequence α0
1,K2

= α0
0,K2

for σ01,K2
(x) =

σ00,K2
(x). Then,

‖α∗1,K2
− α∗0,K2

‖ = ‖α∗1,K2
− α0

1,K2
+ α0

0,K2
− α∗0,K2

‖

≤ ‖α∗1,K2
− α0

1,K2
‖+ ‖α0

0,K2
− α∗0,K2

‖

= O(K
1/2
2 K

−s2/d
2 ).

by Lemma 6 (ii) and

‖α̂1,K2 − α̂0,K2‖ = ‖α̂1,K2 − α0
1,K2

+ α0
0,K − α̂0,K2‖

≤ ‖α̂1,K2 − α0
1,K2
‖+ ‖α0

0,K2
− α̂0,K2‖

= Op(ζ(K1)K
−s1/d
1 + ζ(K1)K

1/2
1 N−1) +Op(K

1/2
2 N−1/2) +O(K

−s2/d
2 )

+K
1/2
2 N−1/2 +K

−s2/d
2 )

by Lemma 6 (iii). Thus,

|T ∗ − T | = |(
δ̂K2 − δ∗K2

)′V̂ −1(δ̂K2 − δ∗K2
)−K2√

2K2
−
δ̂′K2

V̂ −1δ̂K2 −K2√
2K2

|

≤ 2√
2K2
|(α̂1,K2 − α̂0,K2)′V̂ −1(α∗1,K2

− α∗0,K2
)| (A.16)

+
1√
2K2
|(α∗1,K2

− α∗0,K2
)′V̂ −1(α∗1,K2

− α∗0,K2
)|. (A.17)

For (A.16 ),

2√
2K2
|(α̂1,K2 − α̂0,K2)′V̂ −1(α̂1,K2 − α̂0,K2)|

=
N√
2K2

N · |tr((α̂1,K2 − α̂0,K2)′[NV̂ ]−1(α∗1,K2
− α∗0,K2

))|

≤ 2√
2K2

N · λmax([NV̂ ]−1)‖α̂1,K2 − α̂0,K2‖‖α∗1,K2
− α∗0,K2

‖

=
2√
2K2

N · [C + op(1)] · [Op(ζ(K1)K
−s1/d
1 + ζ(K1)K

1/2
1 N−1) +Op(K

1/2
2 N−1/2) +O(K

−s2/d
2 )

+K
1/2
2 N−1/2 +K

−s2/d
2 )][O(K

1/2
2 K

−s2/d
2 )]

=Op(ζ(K1)K
−s1/d
1 K

−s2/d
2 N + ζ(K1)K

1/2
1 K

−s2/d
2 +K

1/2
2 K

−s2/d
2 N1/2 +K

−2s2/d
2 N).

For (A.17 ),

1√
2K2
|(α∗1,K2

− α∗0,K2
)′V̂ −1(α∗1,K2

− α∗0,K2
)|
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=
1√
2K2

·N · |tr((α∗1,K2
− α∗0,K2

)′[NV̂ ]−1(α∗1,K2
− α∗0,K2

))|

≤ 1√
2K2

·N · λmax([NV̂ ]−1)‖α∗1,K2
− α∗0,K2

‖2

=N · [C + op(1)][O(K
1/2
2 K

−s2/d
2 )]2

=O(K
1/2
2 K

−2s2/d
2 N).

Thus,

|T ∗ − T |

=Op(ζ(K1)K
−s1/d
1 K

−s2/d
2 N + ζ(K1)K

1/2
1 K

−s2/d
2 +K

1/2
2 K

−s2/d
2 N1/2 +O(K

1/2
2 K

−2s2/d
2 N)

=op(1),

by 5.2 and 5.3. Hence the result follows.

Now, we prove Theorem 2.

Proof.

ρN · sup
x∈X
|∆(x)| = sup

x∈X
|σ21(x)− σ20(x)|

≤ sup
x∈X
|RK2(x)′α0

1,K2
− σ21(x)|+ sup

x∈X
|RK2(x)′α0

0,K2
− σ20(x)|+ sup

x∈X
|RK2(x)′α̂1,K2 −RK2(x)′α0

1,K2
|

+ sup
x∈X
|RK2(x)′α̂0,K2 −RK2(x)′α0

0,K2
|+ sup

x∈X
|RK2(x)′α̂1,K2 −RK2(x)′α̂0,K2 |

≤ sup
x∈X
|RK2(x)′α0

1,K2
− σ21(x)|+ sup

x∈X
|RK2(x)′α0

0,K2
− σ20(x)|+ sup

x∈X
‖RK2(x)‖ · ‖α̂1,K2 − α01,K2‖

+ sup
x∈X
‖RK2(x)‖ · ‖α̂0,K2 − α0

0,K2
‖+ sup

x∈X
‖RK2(x)‖ · ‖α̂1,K2 − α̂0,K2‖

= sup
x∈X
|RK2(x)′α0

1,K2
− σ21(x)|+ sup

x∈X
|RK2(x)′α0

0,K2
− σ20(x)|

+ ζ(K2)‖α̂1,K2 − α0
1,K2
‖+ ζ(K2)‖α̂0,K2 − α0

0,K2
‖+ ζ(K2)‖α̂1,K2 − α̂0,K2‖

Thus,

‖α̂1,K2 − α̂0,K2‖

≥ζ(K2)
−1 · ρN · sup

x∈X
|∆(x)| − ζ(K2)

−1 · ρN · sup
x∈X
|RK2(x)′α0

1,K2
− σ21(x)|

− ζ(K2)
−1 · ρN · sup

x∈X
|RK2(x)′α0

0,K2
− σ20(x)| − ‖α̂1,K2 − α0

1,K2
‖ − ‖α̂0,K2 − α0

0,K2
‖

≥ζ(K2)
−1 · ρN · C0

(
1−

supx∈X |RK2(x)′α0
1,K2
− σ21(x)|

ρN · C0
−

supx∈X |RK2(x)′α0
0,K2
− σ20(x)|

ρN · C0
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− ζ(K2)
‖α̂1,K2 − α0

1,K2
‖

ρN · C0
− ζ(K2)

‖α̂0,K2 − α0
0,K2
‖

ρN · C0

)
.

Under assumption 5.1 and 5.3, we have

supx∈X |RK2(x)′α0
1,K2
− σ21(x)|

ρN · C0
= O(K

−s2/d
2 ) ·O(N1/2−3v/21−3v2/2−ε) = o(1),

supx∈X |RK2(x)′α0
0,K2
− σ20(x)|

ρN · C0
= O(K

−s2/d
2 ) ·O(N1/2−3v/21−3v2/2−ε) = o(1),

ζ(K2)
‖α̂1,K2 − α0

1,K2
‖

ρN · C0
= O(K2) · [Op(ζ(K1)K

−s1/d
1 + ζ(K1)K

1/2
1 N−1)

+Op(K
1/2
2 N−1/2) +O(K

−s2/d
2 )] ·O(N1/2−3v/21−3v2/2−ε) = o(1),

ζ(K2)
‖α̂0,K2 − α0

0,K2
‖

ρN · C0
= O(K2) · [Op(ζ(K1)K

−s1/d
1 + ζ(K1)K

1/2
1 N−1)

+Op(K
1/2
2 N−1/2) +O(K

−s2/d
2 )] ·O(N1/2−3v/21−3v2/2−ε) = o(1).

Hence, ‖α̂1,K2 − α̂0,K2‖ ≥ ζ(K2)
−1 · ρN · C0 with probability going to 1 as N →∞.

N1/2ζ(K1)
−3/2K

−1/2
2 ‖α̂1,K2 − α̂0,K2‖ ≥ N1/2ζ(K1)

−3/2K
−1/2
2 ζ(K2)

−1 · ρN · C0

with probability going to 1 as N →∞. Since

N1/2ζ(K1)
−3/2K

−1/2
2 ζ(K2)

−1 · ρN · C0 ≥ CN1/2ζ(K1)
−3/2K

−1/2
2 ζ(K2)

−1 ·N−1/2+3v/21+3v2/2+ε ≥ CN ε,

for any M ′,

Pr(N1/2ζ(K1)
−3/2K

−1/2
2 ‖α̂1,K2 − α̂0,K2‖ > M ′)→ 1. (A.18)

Next, we show

Pr

(
C̃ · (α̂1,K2 − α̂0,K2)′V −1(α̂1,K2 − α̂0,K2)−K2√

2K2
> M

)
→ 1

for an arbitrary positive constant C̃. Let λ and λ̄ be the minimum and maximum eigenvalues of

[NV ]−1, respectively. λ is bounded away from 0 and λ̄ is bounded.

Pr

(
C̃ · (α̂1,K2 − α̂0,K2)′V −1(α̂1,K2 − α̂0,K2)−K2√

2K2
> M

)

=Pr

(
C̃N · (α̂1,K2 − α̂0,K2)′[NV ]−1(α̂1,K2 − α̂0,K2)−K2√

2K2
> M

)
=Pr

(
C̃N · (α̂1,K2 − α̂0,K2)′[NV ]−1(α̂1,K2 − α̂0,K2) >

√
2K2M +K2

)
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≥Pr
(
λC̃N · (α̂1,K2 − α̂0,K2)′(α̂1,K2 − α̂0,K2) >

√
2K2M +K2

)
=Pr

(
Nζ(K1)

−3K−12 (α̂1,K2 − α̂0,K2)′(α̂1,K2 − α̂0,K2) > (λC̃)−1ζ(K2)
−3(
√

2MK
−1/2
2 + 1)

)
=Pr

(
N1/2ζ(K1)

−3/2K
−1/2
2 ‖α̂1,K2 − α̂0,K2‖ > (λC̃)−1/2ζ(K2)

−3/2(
√

2MK
−1/2
2 + 1)1/2

)
Since for any M , for large enough N , we have

(λC̃)−1/2ζ(K2)
−3/2(

√
2MK

−1/2
2 + 1)1/2 < 2(λC̃)−1/2,

it follows that for large N ,

Pr

(
C̃ · (α̂1,K2 − α̂0,K2)′V −1(α̂1,K2 − α̂0,K2)−K2√

2K2
> M

)
≤Pr

(
N1/2ζ(K1)

−3/2K
−1/2
2 ‖α̂1,K2 − α̂0,K2‖ > 2(λC̃)−1/2

)
→1. (A.19)

by (A.18 ). Then, we show that

Pr(T > M) = Pr

(
(α̂1,K2 − α̂0,K2)′V̂ −1(α̂1,K2 − α̂0,K2)−K2√

2K2
> M

)
.

Let λ̂ be the minimum eigenvalue of [NV̂ −1]. Let B1 denote the event that λ̂ > λ/2. Pr(B1)→ 1

as N →∞ by lemma 7. In addition, let B2 be the event

(λ/2)N(α̂1,K2 − α̂0,K2)′(α̂1,K2 − α̂0,K2)−K2√
2K2

> M

.

Pr

(
C̃ · (α̂1,K2 − α̂0,K2)′V −1(α̂1,K2 − α̂0,K2)−K2√

2K2
> M

)

=Pr

(
C̃N · (α̂1,K2 − α̂0,K2)′[NV ]−1(α̂1,K2 − α̂0,K2)−K2√

2K2
> M

)

≤Pr

(
λ̄C̃N · (α̂1,K2 − α̂0,K2)′(α̂1,K2 − α̂0,K2)−K2√

2K2
> M

)
→1

as N →∞ by (A.19 ). Let C̃ be λ/2λ̄−1, then Pr(B2)→ 1 as N →∞. Thus, Pr(B1 ∩B2)→ 1

as N →∞. Note that the event B1 ∩B2 implies that

T =
(α̂1,K2 − α̂0,K2)′V̂ −1(α̂1,K2 − α̂0,K2)−K2√

2K2
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≥
λ̂N(α̂1,K2 − α̂0,K2)′(α̂1,K2 − α̂0,K2)−K2√

2K2

>
(λ/2)N(α̂1,K2 − α̂0,K2)′(α̂1,K2 − α̂0,K2)−K2√

2K2

>M.

Hence, Pr(T > M)→ 1.
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