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Abstract

We study the optimal portfolio choice problem for an ambiguity-averse investor

having a utility function of the form of Klibanoff, Marinacci, and Mukerji (2005)

and Maccheroni, Marinacci, and Rufino (2013) in an ambiguity-inclusive CARA-

normal setup. We extend the mutual fund theorem to accommodate ambiguity,

identify a necessary and sufficient condition for a given portfolio to be optimal

for some ambiguity-averse investor, characterize all the ambiguity structure under

which the given portfolio is optimal, and find the minimal ones in two senses to

be made precise. We also calculate the minimal ambiguity structures based on the

U.S. equity market data and find the smallest coefficient of ambiguity aversion with

which the market portfolio is optimal is equal to 9.31.
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1 Introduction

1.1 Motivation

There are many empirical findings in financial economics that cannot be explained by

standard theoretical models. A prominent one is that, contrary to the prediction by the

Capital Asset Pricing Model, the market portfolio is not mean-variance-efficient. This

anomaly is often true even in a stronger sense that a typical mean-variance-efficient

portfolio, based on the empirical distribution of asset returns, involves very large long

positions and very large (in absolute value) short positions.

Tables 1 and 2 present such an instance, based on the data of the so called FF6

portfolios in the U.S. equity markets, obtained from Ken French’s website. The FF6

portfolios are formed by sorting out traded stocks in terms of the market equity (ME),

which is either Small or Big, and ratio of the book equity to the market equity (B/M),

which is either Low, Neutral, or High, and named the SL, SN, SH, BL, BN, and BH port-

folios. They make up a partially aggregated description of the stock market performance

that allows us to derive the the mean-variance-efficient portfolio and the market portfolio

without suffering from the curse of dimensionality.

Table 1: Sample Means and the Covariance Matrix of the FF6 Portfolios: July 1926-December 2014.

Mean (%) SL SN SH BL BN BH
R 0.28
SL 0.98 57.36 50.77 55.76 34.61 35.62 43.74
SN 1.28 50.77 49.64 55.73 31.89 35.74 45.07
SH 1.48 55.76 55.73 67.64 34.64 41.20 53.89
BL 0.91 34.61 31.89 34.64 28.62 27.43 31.63
BN 0.97 35.62 35.74 41.20 27.43 32.89 38.32
BH 1.19 43.74 45.07 53.89 31.63 38.32 50.95

Table 1 reports the sample mean of the risk-free rate (R) and the sample means and covariances of the
returns of the FF6 portfolios. The FF6 portfolios are formed in the following manner. First, sort out
the stocks traded on NYSE, AMEX, and NASDAQ in terms of the market equity (also known as the
market value and the market capitalization), abbreviated as ME, and the ratio of the book equity (also
known as the book value) to the market equity, abbreviated as B/M. Second, partition the stocks, with
positive book equity, into six groups, according to whether the ME belongs to the top 50% or the bottom
50% (referred to as being Big or Small), and whether the B/M belongs to the top 30%, the bottom 30%,
or neither (referred to as being High, Low, or Neutral). Third, form the ME-weighted portfolio of the
stocks in each of the six portfolios. The six portfolios thus formed are named SL, SN, SH, BL, BN, and
BH in the obvious manner.

The sample means, variances, and covariances of the FF6 portfolios for the period of

August 1926 to December 2014 are reported in Table 1. Within each group of a common

B/M, the returns of the Small ME portfolios (SH, SN, and SL) have larger sample means

and variances than the Big ME portfolios (BH, BN, and BL). Within each group of a
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Table 2: The mean-variance efficient portfolio and the market portfolio

Mean-variance-efficient Market
portfolio portfolio

SL ´3.36 0.02
SN 3.45 0.03
SH 1.12 0.02
BL 1.84 0.51
BN ´1.08 0.31
BH ´0.97 0.11

Table 2 reports the mean-variance efficient portfolio and the market portfolio. Both portfolio vectors are
normalized so that the sum of the all elements is one. The market portfolio is the time-series average of
market capitalization weight of the FF6 portfolios.

common ME, a higher B/M leads to larger sample means and variances, except that

the SL portfolio has a larger variance than the SN portfolio. Table 2 reports the mean-

variance-efficient portfolio, based on the data of Table 1, and the market portfolio, defined

as the time-series average of ME weights. Both are normalized so that the coordinates

add up to one. The mean-variance-efficient portfolio has extremely large long positions

of the SN, SH, and BL portfolios and extremely large short positions of the SL, BN, and

BH portfolios. In contrast, the market portfolio, by its definition, holds long all FF6

portfolios, and invests less than 3% in any Small ME portfolio.

To reconcile theory with the fact that the market portfolio is far from mean-variance-

efficient, there are many possibilities, such as introducing more general utility functions,

incomplete markets and market frictions, and heterogeneity in investors’ utility functions.

Among these possibilities, we opt for the first one by incorporating ambiguity aversion,

while sticking to the traditional representative-agent paradigm, because there has been a

significant development in the analysis of ambiguity-averse preferences, first in decision

theory and subsequently in macroeconomics and asset pricing. Also, since our purpose

is to reconcile theory with data, we should aim at the minimal deviation from expected

utility functions. In some class of ambiguity-averse utility functions, we can give a precise

meaning of minimality.

Among many classes of ambiguity-averse utility functions, we use the one initiated

by Klibanoff, Marinacci, and Mukerji (2005) (abbreviated hereafter as KMM) and fur-

ther explored by Maccheroni, Marinacci, and Ruffino (2013) (hereafter MMR). There is a

probability distribution in investor’s mind, which KMM called the second-order belief, on

a set of distributions of asset returns or other payoff-relevant parameters. The coefficient

of ambiguity aversion introduced by KMM is an indispensable building block in our sub-

sequent analysis. Moreover, as explored by MMR, there is a natural ambiguity-inclusive

extension of the CARA-normal setup. In the extension, the asset returns are normally
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distributed conditional on their mean returns, but the mean returns are ambiguous and

normally distributed according to the second order belief. The return covariance matrix

is, on the other hand, unambiguous. The assumption of ambiguous means and unam-

biguous variances is motivated by the fact that means are notoriously difficult to estimate

but variances are less so.

To grasp the idea on how the extension is done, suppose that there are N risky

asset, of which the returns are jointly normally distributed with mean vector µX and the

covariance matrix ΣX . Suppose also that the risk-free asset is traded, of which the return

is denoted by R. Then a portfolio a of risky assets is optimal for an ambiguity-neutral

(expected-utility-maximizing) investor with CARA coefficient θ if and only if

a “
1

θ
Σ´1

X pµX ´ R1q , (1)

where 1 is the vector of RN of which every coordinate is equal to one. Then a is mean-

variance-efficient, and, conversely, every mean-variance-efficient portfolio can be written

in this form, for some θ. Denote the n-the coordinate of µX (the expected return of asset

n) by µn and the n-coordinate of ΣXa (the covariance between the return of portfolio a

and the return of asset n) by cn. Then, by multiplying ΣX to (1), we can rewrite the

condition as
1

θ
pµn ´ Rq ´ cn “ 0 (2)

for every n. In words, a portfolio a is mean-variance efficient if and only if its covariances

with the risky assets are proportional to their expected excess returns.

When we observe that the investor chooses a portfolio that is not mean-variance-

efficient, so that (2) fails to hold for the chosen portfolio a, we attribute it to some kind

of ambiguity in his mind regarding the expected returns of the risky assets. We assume

that there is a univariate normally distributed random variable M̂ and that, for each asset

n, the conditional expected return is equal to snM̂ ` kn, where sn and kn are constants

and the sn are proportional to the θ´1pµn ´ Rq ´ cn. This assumption implies that the

conditional expected returns of all assets are positively or negatively perfectly correlated,

the absolute value |sn| of the coefficient determines the sizes of ambiguity that lies in the

returns of asset n, and the sign of sn determines the positivity or negativity of (perfect)

correlation among all assets. Once the values of the sn and the kn are properly specificed,

the portfolio a turns out to be optimal for an ambiguity-averse investor.
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1.2 Overview of our results

The argument towards the end of the previous subsection on how to construct ambiguity

to make a given portfolio a is optimal is somewhat informal. To give a formal proof, we

need to establish three results.

First, we generalize the mutual fund theorem (Theorem 1 in Section 3). In the CARA-

normal setup with ambiguity-neutral investors, it is well known that the mutual fund

theorem holds, that is, there is a single portfolio of risky assets such that every CARA

investor’s optimal portfolio of risky assets is a positive multiple of this portfolio. We

show that the mutual fund theorem no longer holds for ambiguity-averse investors, but

provide a generalized mutual fund theorem that identifies a collection of mutual funds

of which each ambiguity-averse investor’s optimal portfolio is a linear combination. We

also show how the demands for these mutual fund vary as the investor becomes more

ambiguity-averse. This theorem is different from our argument in the previous subsection

on how to construct ambiguity to make a given portfolio optimal, in that the ambiguity

in investor’s mind is given rather than constructed. Yet, the theorem is full of other

implications, because it clarifies the way in which the ambiguity affects optimal portfolios

and is general enough to accommodate multivariate representation of ambiguity.

Second, we provide a necessary and sufficient condition for a given portfolio to be

optimal for some ambiguity-averse investors (Theorem 2 in Section 4). The existence of

such investors should, of course, not be taken for granted. Indeed, the necessary and

sufficient condition shows that there is an ambiguity-averse investor for whom a given

portfolio is optimal if and only if the expected excess return of the portfolio is positive. It

also identifies the range of the risk aversion coefficients such an ambiguity-averse investor

may have, and the class of all the pairs of second-order beliefs (the distribution of the

expected returns of the risky assets) and ambiguity aversion coefficients with which a

optimal.

The third result, then, identifies the pair that minimizes the ambiguity and the pair

that minimizes the ambiguity aversion coefficient (Theorem 3 in Section 4). It, thus,

shows the minimal deviation from expected utility functions that is necessary to ratio-

nalize the choice of an mean-variance inefficient portfolio by ambiguity aversion.

Once these and other theoretical results have all been established, we apply them

to the U.S. equity market data to infer the ambiguity and ambiguity aversion that are

embedded in the representative investor, who chooses, by definition, the market port-

folio (Section 5). We show that the SH portfolio, the portfolio having a small market

equity and a high ratio of the book equity to the market equity, has the most ambigu-

ous return among the FF6 portfolios. The ambiguity aversion coefficient can be defined
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analogously to the (constant) coefficient of relative risk aversion, in that both measure

the elasticity of marginal utility. We find that the smallest ambiguity aversion coefficient

the representative investor may have is equal to 9.31.

1.3 Related literature

As we have mentioned, we use the ambiguity-averse utility functions of the form ax-

iomatized by KMM. They also introduced the notion of coefficients of ambiguity aver-

sion, which is similar to coefficients of absolute risk aversion of Arrow and Pratt. The

more famous (and earlier) form for ambiguity-averse utility functions was axiomatized by

Gilboa and Schmeidler (1989). KMM claimed that their functional form is more tractable

and allows them to disentangle ambiguity from ambiguity aversion. Epstein (2010) pre-

sented Ellsberg-like thought experiments to argue, among other things, that it is in fact

impossible to disentangle ambiguity from ambiguity aversion. Subsequently, Klibanoff,

Marinacci, and Mukerji (2012) gave a counterargument. In this paper, we define the

minimality in terms of both ambiguity and ambiguity aversion and, in our numerical

analysis, we find the ambiguity and the ambiguity aversion coefficient that are minimal

according to each of the two definitions.

MMR extended the notion of certainty equivalents from the expected utility func-

tions to the ambiguity-averse utility functions of the KMM type. They also introduced

an extended notion of mean-variance utility functions exhibiting ambiguity aversion of

the KMM type. In our CARA-normal framework with ambiguity aversion, the utility

functions are defined by two negative exponential functions with differing coefficients.

The distribution of the expected returns (the second-order belief) and the conditional

distribution of returns given the expected returns are both normal. Then, the KMM

utility functions coincide with the mean-variance utility functions of MMR. But none of

our three main results was obtained by MMR.

Epstein and Miao (2003) considered a continuous-time general equilibrium model of

two investors (countries) and two assets with ambiguous returns to address the home bias

puzzle. Based on the axiomatization by Hayashi and Miao (2011), Ju and Miao (2012)

introduced a generalized recursive smooth ambiguity model, by which they extended the

KMM utility functions to the discrete-time setup while allowing for separation between

relative risk aversion and elasticity of intertemporal substitution in the manner of Epstein

and Zin (1989). While they assumed that there is only one asset of which returns are

ambiguous, we focus on the optimal portfolio choice problem by allowing for an arbitrary

number of such assets. As such, the setups are quite different, but we share the view that

ambiguity aversion is the key to solve asset pricing puzzles and the KMM utility func-
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tions are tractable. In addition, we both believe that the traditional Bayesian portfolio

choice, in which the investor is assumed to be equally averse to risks in asset returns and

uncertainty (ambiguity) in parameters, is insufficient to solve those puzzles.

Collard, Mukerji, Sheppard, and Tallon (2015) found the KMM coefficients of ambi-

guity aversion, and the countercyclical nature thereof, using the U.S. equity market data.

Our framework is static while theirs is dynamic, but we deal with multiple risky assets

while they deal only with one risky asset. In particular, we introduce ambiguity aversion

in order to rationalize the representative investor’s choice of the market portfolio, which,

given the sample means, variances, and covariances of asset returns, cannot be optimal

for an ambiguity-neutral investor whatever large or small his risk aversion coefficient is.

On the other hand, they are more interested in to what extent the equity premium can

be attributed to ambiguity aversion.

Ahn, Choi, Gale, and Kariv (2014) and Attanasi, Gollier, Montesano, and Pace (2014)

inferred ambiguity aversion from laboratory experiments on portfolio selection. Bossaerts,

Ghirardato, Guarnaschelli, and Zame (2010) did the same by letting nearly thirty sub-

jects to trade state-contingent consumptions (or Arrow assets) without having told them

the probabilities for some (but not all) states to occur. Ahn, Choi, Gale, and Kariv (2014)

and Bossaerts, Ghirardato, Guarnaschelli, and Zame (2010) concluded that many sub-

jects are ambiguity-averse, and that they appear to have utility functions of Gilboa and

Schmeidler (1989) but not of KMM, because they tend to choose unambiguous (purely

risky) consumption plans, a tendency that is consistent with utility functions of Gilboa

and Schmeidler (1989) but not with those of KMM. Note, however, that the KMM utility

functions represent approximately the same preference relations as the utility functions of

Gilboa and Schmeidler (1989) as the ambiguity aversion coefficient becomes large without

bounds, according to Proposition 3 of KMM. Hence, these experimental results could be

interpreted as saying that the subjects have KMM utility functions with extremely high

ambiguity aversion coefficients. Indeed, in this paper, we deduce from the generalized

mutual fund theorem (Theorem 1) that the demand for portfolios with ambiguous returns

diminishes to zero, while the demand for a portfolio with unambiguous returns remains

constant, as the ambiguity aversion coefficient diverges to infinity. Moreover, using the

U.S. equity market data we identify a portfolio with unambiguous returns, as well as the

portfolio with the most ambiguous returns.

1.4 Organization of the paper

The rest of this paper is organized as follows. Section 2 sets up the model. Section 3

presents the generalized mutual fund theorem and some of its implications. Section 4
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shows how to find an ambiguity-averse investor for whom a given portfolio is optimal.

Section 5 calculates the ambiguity covariance matrices and ambiguity aversion coefficients

that are implied by the U.S. equity market data. Section 6 concludes and suggests

directions of future research. All proofs and most lemmas are given in the appendix.

2 Setup

2.1 Formulation

The setup of this paper is essentially a special case of those of KMM and MMR and

especially close to that of Section 6 of MMR, but we lay it out in a manner that is

more suitable to accommodate the additional parametric assumptions we will impose on

ambiguity in the expected asset returns. Let pΩ,F , P q be a probability space. Let M be

a random vector defined on Ω. We will later see that M describes the ambiguity in the

mind of investors.

For each θ ą 0, define uθ : R Ñ R by letting uθpxq “ ´ expp´θxq for every x P R.

This felicity function exhibits constant absolute risk aversion (CARA) and its coefficient

is equal to θ. For each γ ą 0 and each θ ą 0, define a utility function Uγ,θ over a set of

random variables Z on Ω by

Uγ,θpZq “ E
“

uγ

`

u´1
θ pE ruθpZq |M sq

˘‰

. (3)

If we write φγ,θ “ uγ ˝ u´1
θ and η “ γ{θ ´ 1, then

φγ,θpzq “ ´p´zqγ{θ´1 “ ´p´zq1`η (4)

for every z ă 0, and

Uγ,θpZq “ E rφγ,θ pE ruθpZq |M sqs .

Since

´
φ2
γ,θpzqp´zq

φ1
γ,θpzq

“ η (5)

for every z ă 0, η is equal to the elasticity of the marginal utility from conditional

expectations given M . We call η the coefficient of ambiguity aversion, because, according

to Theorem 2 of KMM, the more concave the function φγ,θ is, the more ambiguity-averse

the investor is, and the larger the value of η, the function φγ,θ is more concave. Our

usage of the ambiguity aversion coefficient differs from that of KMM in that they defined

the ambiguity aversion coefficient as ´φ2
γ,θpzq{φ1

γ,θpzq. We opt for the left-hand side of
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(5) because it is constant (independent of z) and still represents the same ranking of

concavity as KMM’s definition.

If γ “ θ, then η “ 0 and φγ,θ is the identity map. Thus, by the law of iterated

expectation, Uγ,θpZq “ E ruθpZqs. In this case, therefore, Uγ,θ is an expected utility

function with CARA coefficient θ. We then say that the investor is ambiguity-neutral.

We say that an investor who has the utility function Uγ,θ with γ ą θ, or η ą 0, is

ambiguity-averse. If γ ă θ, or η ă 0, then the investor is ambiguity-loving, though we

will not pay much attention to this case.

Assume that two types of assets are traded. The first one is composed of N assets

whose gross returns are represented by an N -variate random vector X defined on Ω. The

second one is the bond whose gross return is deterministic and equal to R P R. We

assume also that M (as well as X) is an N -variate random vector, and M and X are

jointly normally distributed. We further assume that ErM s “ ErXs and CovrM,Xs “

CovrM,M s. We can thus write

˜

M

X

¸

„ N

˜˜

µM

µM

¸

,

˜

ΣM ΣM

ΣM ΣX

¸¸

. (6)

This assumption involves no loss of generality. It can indeed be shown that even if M did

not satisfy this assumption (possibly with a dimension greater or smaller than N), some

linear transformation of M added by some vector of RN would satisfy this assumption.1

Then the conditional return of X given M is normally distributed:

X|M „ N
`

M,ΣX|M

˘

,

where ΣX|M “ ΣX ´ ΣM . Our utility function, thus, embodies the idea that the investor

believes that the expected returns of the risky assets are ambiguous; when the expected

excess return vector is equal to m P RN , the asset returns are distributed according

to N pm,ΣX|Mq; and these models of return distributions are distributed according to

N pµM ,ΣMq.

1This point can be articulated as follows. Suppose that F is a K-dimensional random vector and

ˆ

F
X

˙

„ N

ˆˆ

µF

µX

˙

,

ˆ

ΣF ΣFX

ΣXF ΣX

˙˙

Then there is a D P RKˆN such that ΣXF “ DJΣF . Define M “ DJF ` pµX ´ DJµF q. Then pM,Xq

has the same distribution as assumed in (6).
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2.2 Some decision-theoretic facts on our utility functions

Though not explicitly used in the subsequent analysis, it will be hepful to give some facts

on our specification (3) of utility functions from a decision-theoretic perspective. First,

while the KMM utility functions, in general, may not be concave, Uγ,θ is concave for

every γ ą 0 and every θ ą 0. The reason is that since the CARA function uθ satisfies

the condition in Section 3.16 of Hardy, Littlewood, and Polya (1952),2 the mapping

Z ÞÑ u´1
θ pE ruθpZq|M sq is a concave function at every realization of M . In particular,

Uγ,θ is concave even when the investor is ambiguity-loving. This should be contrasted

with a fact on the α-MEU utility functions of Marinacci (2002), that if the decision

maker is ambiguity-loving, then his α-MEU utility function is never concave. Second, we

could have defined Uγ,θ by Uγ,θpZq “ E ruγ pE ruθpZq |M sqs, that is, we could have used

the negative exponential function ´ expp´γzq in place of the negative power function

´p´zqγ{θ´1. We do not take the negative exponential function for two reasons. The first

reason is that, while it represents constant ambiguity aversion and is tractable in general,3

it does not do so much as the negative power function when combined with the CARA

utility function uθ. The second reason is that, since we aim to extend the CARA-normal

model to a model of ambiguity-averse utility functions and since CARA is defined in terms

of consumption levels, we believe that if constant ambiguity aversion is to be imposed,

then it should be done so on conditional certainty equivalents u´1
θ pE ruθpZq |M sq rather

than conditional expected utility levels E ruθpZq |M s. Then the resultant function uγ˝u´1
θ

must necessarily be a negative power function.

While the setup of this paper may appear to be quite different from those of KMM

and MMR, our utility function Uγ,θ in (3) can indeed be obtained in the setup of MMR

and, to a lesser extent, that of KMM as well. We now show how this can be done, taking

µM , ΣX , and ΣM with the properties assumed in our setup as given. The difference

between KMM and MMR setups lies in whether we take the space of objectively defined

probability distributions inside or outside the state space. A consequence of this difference

is that in the KMM setup, there are so-called roulette lotteries, that is, acts that give rise

to single probability distributions of consequences regardless of the choice of second-order

beliefs, but there is no such acts in the MMR setup.

First, we show that our utility function can be obtained in the setup of MMR. As in our

model, let Ω be a measurable space, representing physical uncertainty. Denote by ∆ the

2Strictly speaking, we need to reverse the sign condition on the second derivative in paragraph 106
in that section and check that this leads us to the (reversed) necessary and sufficient condition in our
casecase, because they dealt with convex, not concave, functions.

3For example, Ahn, Choi, Gale, and Kariv (2015) and Collard, Mukerji, Sheppard, and Tallon (2015)
assumed constant ambiguity aversion.
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set of all probability distributions on Ω, representing the set of probability distributions

that the investor perceive as possible models of the physical uncertainty. Let µ be a

probability distribution on ∆, which KMM call the second order belief, representing the

subjective likelihood of these models. Let X : Ω Ñ RN be an N -dimensional random

vector, representing the returns of N assets. Now, suppose that Ω “ RN . For each

measurable subset Ψ of Ω, write ∆Ψ “ tN pω,ΣX ´ ΣMq P ∆ | ω P Ψu. Suppose that for

every measurable subset Ψ of Ω, µp∆Ψq is equal to the measure that N pµM ,ΣMq gives

to Ψ. Suppose that X is the identity map on Ω. Write, for each ω P Ω, an integral of

a random variable with respect to N pω,ΣX ´ ΣMq using its Radon-Nikodym derivative

with respect to, say, N p0,ΣXq (of which the support coincides withRN). Then the utility

function derived from µ, uθ, and φγ,θ in the manner of equality (9) of MMR coincides

with our utility function Uγ,θ in (3). The second order belief in this setup coincides with

the (marginal) distribution of M in our setup, and, for each ω P RN , the distribution of

X with respect to the probability distribution N pω,ΣX ´ ΣMq in this setup coincides

with the conditional distribution of X given M “ ω in our setup. Hence, the ambiguity-

averse mean-variance utility function derived from this specification coincides with the

ambiguity-averse mean-variance utility function Vγ,θ, which will be defined in (8).

Next, we show that our utility function can be obtained in the setup that is identical,

in spirit, to the setup of KMM. Let Ω be a measurable space, representing physical

uncertainty to which the investor is unsure of the probability distribution to attach. Let

Υ be another measurable space, representing physical uncertainty to which the investor

is sure of the probability distribution to attach. Denote the probability distribution on

Υ by λ. We deviate from the setup of KMM in that Υ and λ are different from the unit

interval r0, 1s and the Lebesgue measure on it, though λ is still interpreted as an objective

probability distribution. Write S “ Ω ˆ Υ. Denote by ∆ the set of all product (joint

and yet independent) distributions of a probability distribution on Ω and λ. Then ∆ is a

subset of the set of all probability distributions on S, representing the set of probability

distributions that the investor perceive as possible models of the physical uncertainty. Let

µ be a probability distribution on ∆, which KMM call the second order belief, representing

the subjective likelihood of these models. Let X : S Ñ RN be an N -dimensional random

vector, representing the returns of N assets. Now, suppose that Ω “ RN , Υ “ RN ,

and λ “ N p0,ΣX ´ ΣMq. For each ω P Ω, denote by δω the (degenerate) probability

distribution on Ω such that δωptωuq “ 1. Then δω b λ P ∆. For each measurable subset

Ψ of Ω, write ∆Ψ “ tδω b λ P ∆ | ω P Ψu. Recalling that Ω “ RN , suppose that for

every measurable subset Ψ of Ω, µp∆Ψq is equal to the measure that N pµM ,ΣMq gives

to Ψ. Denote by M the projection of S onto Ω and by L the projection of S onto Υ.

Recalling that Ω “ Υ “ RN , suppose that X “ M `L. Then the utility function derived
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from µ, uθ, and φγ,θ in the manner of equality (2) of KMM coincides with our utility

function Uγ,θ in (3). The second order belief in this setup coincides, via the isomorphism

ω ÞÑ δω b λ, with the (marginal) distribution of M in our setup, and, for each ω P R,

the distribution of X with respect to the probability distribution δω b λ in this setup

coincides with the conditional distribution of X given M “ ω in our setup. Hence, the

ambiguity-averse mean-variance utility function derived from this specification coincides

with the ambiguity-averse mean-variance utility function Vγ,θ, which will be defined in

(8).

Even on the interpretative side, our setup is not different from that of KMM. Indeed,

when justifying the use of second order acts (acts that are defined on ∆) in their axioms,

they claimed that in a portfolio choice problem, second order acts could be bets about

parameter values that characterizes the asset returns and be determined, among others,

by events that take place inside the firm and in the wider market. In our notation,

the randomness of such events is captured by the distribution N pµM ,ΣMq, while the

remaining randomness is captured by the conditional distribution N pm,ΣX ´ΣMq given

M “ m, which is understood to be unambiguous, because it is presumably quantifiable

by a sufficiently large set of historical return data with stationarity.

2.3 Preliminary analysis

Denoted by S N the set of all N ˆ N symmetric matrices. Denote by S N
`` the set of

all symmetric and positive definite N ˆ N matrix, and by S N
` the set of all symmetric

positive semidefinite N ˆ N matrix. Then S N
`` Ă S N

` Ă S N . We assume that the

total covariance matrix ΣX P S N
`` but allow for the ambiguity covariance matrix ΣM P

S N
` zS N

`` and ΣX|M P S N
` zS N

``. Note that for every Σ P S N , RowΣ “ ColΣ and

KerΣ “ pRowΣq
K

“ pColΣq
K and that, for every Σ P S N

` and every v P RN , v P KerΣ

if and only if vJΣv “ 0.

While our assumption excludes perfect correlation between any pair of linear combi-

nations of the returns of the N assets with respect to the total covariance matrix ΣX ,

it allows for perfect correlation with respect to the ambiguity covariance matrix ΣM and

the pure-risk covariance matrix ΣX ´ ΣM . In particular, each coordinate (a random

variable) of the N -dimensional random vector M is a linear combination of some collec-

tion of rankΣM coordinates (random variables) of M . From the investor’s viewpoint,

therefore, rankΣM is the essential number of the sources of ambiguity in the N -asset

markets. We will see in Section 4 that many seemingly suboptimal portfolios are in fact

optimal for some ambiguity-averse investor even when there is essentially only one source

of ambiguity, no matter how large the number N of assets may be.

11



Denote by pa, bq P RN ˆR a portfolio of these N `1 assets, representing the monetary

amounts invested in each of these assets. Once the state is realized, the portfolio pays

out aJX ` bR. Denote the initial wealth by W P R. Let 1 be the vector in RN of which

the N coordinates are all equal to one. Then the budget constraint on the portfolio

pa, bq P RN ˆ R is 1Ja ` b ď W . The decision maker’s utility maximization problem is

given by

max
pa,bqPRNˆR

Uγ,θpa
JX ` bRq

subject to 1Ja ` b ď W.
(7)

Define Vγ,θ : R
N ˆ R Ñ R by letting

Vγ,θpa, bq “ µJ
Ma ` Rb ´

1

2
aJ

`

γΣM ` θΣX|M

˘

a (8)

for every pa, bq P RN ˆ R. Since ΣX|M “ ΣX ´ ΣM , this can be rewritten as

Vγ,θpa, bq “ µJ
Ma ` Rb ´

θ

2
aJΣXa ´

γ ´ θ

2
aJΣMa.

Thus, it is what MMR calls a robust mean-variance utility function. The following lemma

shows that Vγ,θ represents the same preference ordering over the portfolios as Uγ,θ.

Lemma 1 For every pa, bq P RN ˆ R, Uγ,θpa
JX ` bRq “ uγ pVγ,θpa, bqq.

If pa, bq is a solution to the utility maximization problem (7), then 1Ja ` b “ W .

Hence, by Lemma 1, for every pa, bq P RN ˆR, pa, bq is a solution to (7) if a is a solution

to

max
aPRN

Vγ,θpa,W ´ 1Jaq (9)

and b “ W ´1Ja. Since γΣM `θΣX|M P S N
``, the first-order condition gives the solution

to the problem (7):

a “ pγΣM ` θΣX|Mq´1pµM ´ R1q (10)

“ pθΣX ` pγ ´ θqΣMq
´1

pµM ´ R1q

“
1

θ
pΣX ` ηΣMq

´1
pµM ´ R1q. (11)

The equality (24) of MMR is an equivalent characterization of the optimal portfolio. (11)

shows that for any two pairs pΣM , ηq and pΣ1
M , η1q of an ambiguity covariance matrix and

an ambiguity aversion coefficient, they share the same optimal portfolio if ηΣM “ η1Σ1
M .

12



If the investor is ambiguity-neutral, that is, γ “ θ, then

a “
1

θ
Σ´1

X pµM ´ R1q,

and a is mean-variance efficient, that is, it attains the maximum of the expected excess

return pµM´R1qJa of a portfolio a subject to the variance constraint of the form aJΣXa ď

σ for any σ ą 0. However, if the investor is ambiguity-averse, that is, γ ą θ, then a

need not be mean-variance efficient. In Section 4, we examine to what extent ambiguity

aversion can justify the investor’s choice of a portfolio that is not mean-variance efficient.

We write Q ” Σ´1
X ΣM and define ζ : p´1,8q Ñ RN by letting

ζpηq “ pI ` ηQq
´1Σ´1

X pµM ´ R1q (12)

for every η P p´1,8q. Then the solution (10) to the problem (7) satisfies a “ θ´1ζpηq.

In other words, the function ζ tells us how the investor’s portfolio depends on η. In

particular, ζp0q “ Σ´1
X pµM ´ R1q, and θ´1ζp0q coincides with the optimal portfolio for

the ambiguity-neutral investor.

The following characterization of eigenvectors of Q will be illustrative. Take any

portfolio v P RN . Then
`

vJΣMv
˘

{
`

vJΣXv
˘

is the fraction of the variance of the return

vJX of the portfolio v that can be accounted for by the ambiguity M . This fraction lies

between zero and one. Consider, then, the problem of finding a portfolio that minimizes

this fraction:

min
vPRN zt0u

vJΣMv

vJΣXv
. (13)

Denote a solution by v1. Next, let n ě 2 and v1, v2, . . . vn´1 be portfolios, and consider

the problem of finding a portfolio that minimizes the fraction, subject to the constraint

that the returns of the portfolios must be uncorrelated with every preceding portfolio vm

with m ď n ´ 1:

min
vPRN zt0u

vJΣMv

vJΣXv

s. t. vJ
mΣXv “ 0 for every m ď n ´ 1.

(14)

We say that a sequence pv1, v2, . . . , vNq of portfolios is a sequence of solutions to the

sequence of problems (14) if v1, v2, . . . , vN are obtained iteratively by solving (13) and

(14). There is indeed a sequence pv1, v2, . . . , vNq of solutions to the sequence of problems

(14), because the objective functions are continuous and the domains can further be

restricted to tv P RN | vJΣXv “ 1u. Moreover, for every such sequence pv1, v2, . . . , vNq,
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the returns of the portfolios in the sequence are uncorrelated with each other and satisfy

vJ
1 ΣMv1
vJ
1 ΣXv1

ď
vJ
2 ΣMv2
vJ
2 ΣXv2

ď ¨ ¨ ¨ ď
vJ
NΣMvN
vJ
NΣXvN

.

The following proposition characterizes the eigenvalues and eigenvectors of Q as the

sequences of solutions to the sequence of problems (14).

Proposition 1 1. For every sequence pv1, v2, . . . , vNq of solutions to the sequence of

problems (14) and for every n, vn is an eigenvector of Q and its corresponding

eigenvalue is equal to
`

vJ
nΣMvn

˘

{
`

vJ
nΣXvn

˘

.

2. For every sequence pv1, v2, . . . , vNq of eigenvectors of Q, if their returns are uncor-

related with each other and the sequence of the corresponding eigenvalues is non-

decreasing, then it is a sequence of solutions to the sequence of problems (14).

3. The returns of the eigenvectors of Q that correspond to distinct eigenvalues are

uncorrelated with each other.

4. All eigenvalues of Q belong to the closed unit interval r0, 1s.

This proposition states that the eigenvectors of Q can be obtained with the non-

decreasing order of the corresponding eigenvalues by iteratively minimizing the fraction

of variance of portfolio returns that can be accounted for by the ambiguity. It also implies

that Q is, though not necessarily symmetric, diagonalizable.

3 Generalized mutual fund theorem

3.1 Theorem

The following theorem is a generalized version of the mutual fund theorem, which is

applicable to the utility functions Uγ,θ with γ ‰ θ and clarifies how the original version

of the mutual fund theorem fails for investors who are not ambiguity-neutral. Mathe-

matically, it expresses how the value ζpηq of the function ζ defined by (12) depend on η.

Since the optimal portfolio for the investor with the risk aversion coefficient θ and the

ambiguity aversion coefficient η (whence γ “ p1 ` θqη) coincides with θ´1ζpηq, it shows

how the optimal portfolio changes as the ambiguity aversion coefficient changes, while

the risk aversion coefficient is fixed. The total covariance matrix ΣX and the ambiguity

covariance matrix ΣM are also fixed as they are embedded in the definition of ζ. In

the language of KMM on page 1869, therefore, the theorem measures the pure effect of
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introducing greater ambiguity aversion into a given economic situation. We eliminate the

case where µM ´ R1 “ 0, because the portfolio demand is, then, equal to zero for all

values of γ and θ.

Theorem 1 (Generalized Mutual Fund Theorem) Suppose that µM´R1 ‰ 0. Then

there are a positive integer K and K eigenvectors v1, v2, . . . , vK of Q with distinct eigen-

values λ1, λ2, . . . , λK such that for every η ą ´1,

ζpηq “

K
ÿ

k“1

1

1 ` λkη
vk. (15)

Since the eigenvalues λ1, λ2, . . . , λK are distinct, it follows from part 3 of Proposition

1 that the returns of the portfolios v1, v2, . . . , vK are uncorrelated with each other, that is,

vJ
k ΣXvℓ “ 0 whenever k ‰ ℓ. Thus, the numberK of mutual funds cannot be greater than

the number of distinct eigenvalues of Q, which cannot be greater than N . The theorem,

thus, represents the optimal portfolios for all ambiguity-averse investors in terms of K

mutual funds of which the returns are uncorrelated with each other.

This theorem is rich in interpretation. First, it is a generalized mutual fund theorem:

there are K mutual funds, or portfolios of the N risky assets, v1, v2, . . . , vK , that cater

for all investors who exhibit any degrees of ambiguity aversion. Second, if K “ 1, that is,

ζp0q is an eigenvector of Q, then the original mutual fund theorem holds: a single mutual

fund v1 is sufficient to satisfy all investors’ portfolio demands, regardless of whether they

are ambiguity-neutral or not. Third, if λk ą 0, then the demand for the k-th mutual fund

vk decreases and converges to zero as the coefficient η of ambiguity aversion diverges to

the infinity; but if λk “ 0, then the demand for the k-th mutual fund does not depend

on η. This should come as no surprise because, then, vk P KerΣM and the return of vk

involves no ambiguity. Finally, since

p1 ` λkηq´1

p1 ` λℓηq´1
“

1 ` λℓη

1 ` λkη
“

λℓ

λk

`

ˆ

1 ´
λℓ

λk

˙ˆ

1

1 ` λkη

˙

,

if λk ą λℓ, then p1`λkηq´1{p1`λℓηq´1 is a strictly decreasing function of η and converges

to λℓ{λk. Therefore, as η Ñ 8, ζpηq converges to vk if λk “ 0, and ζpηq converges to 0

but tends to be proportional to pλ´1
1 , λ´1

2 , . . . , λ´1
K q if λk ą 0 for every k.

The theorem also allows us to decompose the expected excess return µN ´ R1 into

two parts, one due to pure risks and the other due to ambiguity. Indeed, it follows from

the definition of ζpηq and θa “ ζpηq that

µM ´ R1 “ pΣX ´ ΣMqζpηq ` p1 ` ηqΣMζpηq. (16)
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The first term in the right-hand side of (16) is the expected excess return that would

induce the (ambiguity-neutral or not) investor to hold ζpηq if the ambiguity were com-

pletely removed,4 and the second term in the right-hand side of (16) is the expected excess

return that would induce the ambiguity-averse investor to hold ζpηq if the pure risks were

completely removed.5 Our contention here is that of the expected excess returns, the first

term should be attributed to pure risks and the second to ambiguity, and each should

be quantified based on empirical data, as we shall do in Section 5. By substituting the

decomposition (15) into (16), we can rewrite the decomposition (16) as

µM ´ R1 “

˜

K
ÿ

k“1

1

1 ` λkη
pΣX ´ ΣMqvk

¸

`

˜

K
ÿ

k“1

1 ` η

1 ` λkη
ΣMvk

¸

,

which we can further rewrite as

µM ´ R1 “

˜

K
ÿ

k“1

1 ´ λk

1 ` λkη
ΣXvk

¸

`

˜

K
ÿ

k“1

λk ` λkη

1 ` λkη
ΣXvk

¸

,

because ΣMvk “ λkΣXvk. This decomposition implies that if λk ą 0 for every k, then as

η Ñ 8, the right-hand side converges to

0 `

˜

K
ÿ

k“1

ΣXvk

¸

“ 0 ` pµM ´ R1q.

That is, when the investor is extremely ambiguity-averse, the expected excess returns are

entirely attributed to ambiguity. If λk “ 0 for some k, then let, say, λ1 “ 0. Then, as

η Ñ 8, the right-hand side converges to

ΣXv1 ` ΣX

˜

K
ÿ

k“2

vk

¸

“ pΣX ´ ΣMqv1 ` ΣM

˜

K
ÿ

k“2

1

λk

vk

¸

.

That is, if there is a portfolio that involves no ambiguity, then there is a nonzero part of

the expected excess returns that can be attributed to pure risk, even when the investor

is extremely ambiguity-averse.

4In this hypothetical situation, the ambiguous mean vector is deterministic and the covariance matrix
of asset returns, as well as its conditional covariance matrix given the ambiguous mean vector, coincides
with ΣX ´ ΣM .

5In this hypothetical situation, the covariance matrix of the ambiguous mean vector coincides with
ΣM and the asset returns, once conditioned on the ambiguous mean vector, are deterministic.
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3.2 Special cases of one or two mutual funds

As we noted right after Theorem 1, the number K of mutual funds is bounded from

above by the number of distinct eigenvalues of Q. In this subsection, we give sufficient

conditions, in terms of ΣX and ΣM , for there to exist at most two distinct eigenvalues.

Proposition 2 1. Let K be a positive integer and suppose that there are K distinct

nonnegative numbers λ1, λ2, . . . , λK such that rank pλkΣX ´ ΣMq ă N for every k

and
K
ÿ

k“1

rank pλkΣX ´ ΣMq “ pK ´ 1qN.

Then, for every k, there exists a vk P Ker pλkΣX ´ΣMq such that, for every η ą ´1,

ζpηq “

K
ÿ

k“1

1

1 ` λkη
vk.

2. If there is a λ ě 0 such that λΣX “ ΣM , then there is a v P RN such that, for

every η ą ´1,

ζpηq “
1

1 ` λη
v.

3. If 0 ă rankΣM ă N and there is a λ ą 0 such that rankΣM`rank pλΣX´ΣMq “ N ,

then there are a vR P KerΣM and a vA P Ker pΣX´ΣMq such that, for every η ą ´1,

ζpηq “ vR `
1

1 ` λη
vA.

4. If 1 “ rankΣM ă N , then there are a λ ą 0, a vR P KerΣM , and a vA P Ker pΣX ´

ΣMq such that, for every η ą ´1,

ζpηq “ vR `
1

1 ` λη
vA.

Part 1 of Proposition 2 is similar to, but different from, Theorem 1 in that it is stated

in terms of ΣX and ΣM and that Q is assumed to be diagonalizable, while proved to be so

in Theorem 1 via Proposition 1. It serves as a general fact from which the mutual funds

in the special cases of parts 2 and 3 are derived. Part 2 shows that if ΣM is a scaled down

version of ΣX , then a single mutual fund is sufficient. Part 3 gives a sufficient condition

under which two mutual funds are sufficient. The subscripts R and A of vR and vA stand

for risk and ambiguity. They do indeed make sense, because the demand for vR does not

depend on the coefficient η of ambiguity aversion, while the demand for vA vanishes as η
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becomes large without bounds. Part 4 is a special case of part 3, which shows that the

condition of part 3 is met whenever there is essentially only one source of ambiguity.

It is worthwhile to dwell on the special case of parts 3 and 4 of Proposition 2 in which

λ “ 1. The result can then be simplified to

ζpηq “ vR `
1

1 ` η
vA.

Moreover, the decomposition (16) can be rewritten as

µM ´ R1 “ ΣXvR ` ΣXvA “ pΣX ´ ΣMqvR ` ΣMvA,

which has the virtue of being independent of η. This special case with λ “ 1 can be used

in factor models, in which the factors are traded assets and purely ambiguous (that is,

ambiguous but not risky) and the idiosyncratic shocks are purely risky (that is, risky but

not ambiguous).6 The single-factor model of this type is a special case of part 4 with

λ “ 1.

The following corollary of Proposition 2 shows how an increase in the coefficient η

of ambiguity aversion affect optimal portfolios. Denote by ζnpηq the n-the coordinate of

ζpηq.

Corollary 1 1. If there is a λ ě 0 such that λΣX “ ΣM , then, for every n, the sign

of ζnpηq does not depend on η ą ´1. If, in addition, λ ‰ 0, then |ζnpηq| converges

strictly decreasingly to 0 as η Ñ 8.

2. Let L be a positive integer smaller than N . Write X “ p qX, pXq with qX being

L-dimensional and pX being pN ´ Lq-dimensional. Write

ΣX “

˜

Σ
qX Σ

qX pX

Σ
pX qX Σ

pX

¸

,

and similarly for M . Suppose that Σ
|M “ 0 and there is a λ ě 0 such that Σ

xM “

λ
´

Σ
pX

´ Σ
pX qX

Σ´1
qX
Σ

qX pX

¯

. Then, for every n ą L, the sign of ζnpηq does not depend

6To see this point more formally, let X „ N pµX ,ΣXq with ΣX P S N
``, and A P RNˆL with rankA “

L. We take the returns AJX of L portfolios as factor returns. Define B “
`

AJΣXA
˘´1

AJΣX P RLˆN .

Then B represents the factor loadings of the N assets. Define M “ pABqJX ` pIN ´ pABqq
J
µX .

Then M represents the parts of the asset returns that can be accounted for by the factor returns. Let

µM “ µX and ΣM “ ΣXA
`

AJΣXA
˘´1

AJΣX . Then (6) is met. Moreover, the factor returns are purely
ambiguous and the idiosyncratic shocks, which are the parts of asset returns that cannot be attributed to
the factor returns, are purely risky. Furthermore, since ΣMA “ ΣXA, rankΣM ` rank pΣX ´ ΣM q “ N
and part 3 is applicable.
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on η ą ´1. If, in addition, λ ‰ 0, then |ζnpηq| converges strictly decreasingly to 0

as η Ñ 8.

Part 1 of Corollary 1 states that when a single mutual fund is sufficient, the sign of the

holding in any asset does not depend on the ambiguity aversion coefficients and, unless

it is equal to zero, its absolute value converges to zero as the coefficient becomes large

without bounds. Part 2 of Corollary 1 obtains the same result in a more complicated case,

in which two mutual funds are sufficient, as can be seen in the proof. To see what the

case is like, note that the assumption that Σ
|M “ 0 means that the returns of the first L

assets are unambiguous and that Σ
pX

´Σ
pX qX

Σ´1
qX
Σ

qX pX
is the conditional (total) covariance

matrix of the returns of the last N ´ L assets given the returns of the first L assets.

Thus, Σ
pX

´ Σ
pX qX

Σ´1
qX
Σ

qX pX
is the conditional (total) covariance matrix of the returns of

the ambiguous assets given the returns of the unambiguous assets. The existence of a

λ ą 0 such that Σ
xM “ λ

´

Σ
pX

´ Σ
pX qX

Σ´1
qX
Σ

qX pX

¯

means that the parts of the returns of

the ambiguous assets that cannot be accounted for by the returns of the unambiguous

assets is, up to scalar multiplication, due solely to the ambiguity of the expected returns

of the ambiguous assets. This part is applicable whenever L “ N ´ 1, because, then, Σ
xM

and λ
´

Σ
pX

´ Σ
pX qX

Σ´1
qX
Σ

qX pX

¯

are scalars. This part, therefore, generalizes Proposition 8

of MMR, which concentrates on the case where N “ 2 and L “ 1, in two respects. First,

the number of assets (and those of purely risky assets and ambiguous assets) is arbitrary.

Second, the assumption is given only in terms of the sings of optimal holdings for the

ambiguous assets.

4 Implied ambiguity covariance matrix and ambigu-

ity aversion

4.1 Paradox on the market portfolio

As we noted in the introduction, many empirical studies have found that, unlike the mar-

ket portfolio, the mean-variance efficient portfolios typically involve large short positions.

On a more analytical note, Brennan and Lo (2010) proved that if the covariance matrix is

randomly chosen from some parameterized family of positive definite matrices according

to some probability distribution, then the probability that every portfolio on the mean-

variance efficiency frontier involves at least one short position converges to one as the

number of assets increases without bounds.7 Since an ambiguity-neutral investor would

7Note that the random choice of covariance matrices is devoid of equilibrium consideration. This was
a point of the subsequent discussions by Levy and Roll (2014), Ingersoll (2014), and Brennan and Lo
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optimally choose a mean-variance efficient portfolio, these findings are not consistent with

the hypothesis that the representative investor, being the holder of the market portfolio,

is ambiguity-neutral. On the other hand, Theorem 1 shows that the optimal portfolio

for an ambiguity-averse investor may not be mean-variance-efficient. We are thus led to

ask whether and to what extent ambiguity aversion solves the apparent paradox that the

market portfolio is not mean-variance-efficient.

We give two answers in this section. The first one is a simple equivalent condition for

a given portfolio, of which the market portfolio is our prime example, to be optimal for

some pair of an ambiguity covariance matrix and an ambiguity aversion coefficient. As it

turns out, whenever there is one such pair, there are more than one. The second answer

is, in senses to be made precise later, the minimal ambiguity covariance matrix and the

minimal ambiguity aversion coefficient with which the given portfolio is optimal. Finding

these minimal ones is important as they measure the minimal deviation from ambiguity

neutrality that is necessary to justify the optimality of the market portfolio.

In the subsequent analysis, we first take the total covariance matrix ΣX , the mean

vector µM , the risk-free rate R, and a particular portfolio a as given. Then we infer

a coefficient θ of absolute risk aversion, a coefficient η of ambiguity aversion, and an

ambiguity covariance matrix ΣM that together make a given portfolio a optimal for the

ambiguity-averse investor, so that

a “
1

θ
pΣX ` ηΣMq´1pµM ´ R1q. (17)

From a mathematical viewpoint, we solve equation (17) for θ, ΣM , and η, with a given

portfolio a and given parameter values R, µM , and ΣX . From a decision-theoretic view-

point, we show how much of the total covariance matrix ΣX the investor attributes to

ambiguity. We further show what extent the investor is averse to risk and ambiguity if

portfolio a is optimal for him.

As we already noted after (11), we cannot disentangle ambiguity from ambiguity

aversion, as Epstein (2010) claimed. In fact, if a pair pΣM , ηq is a solution to (17),

then another pair pΣ1
M , η1q is also a solution to (17) whenever ηΣM “ η1Σ1

M . However,

we cannot treat ΣM and η completely symmetrically, in the following sense: if a is

optimal with the ambiguity covariance matrix ΣM and the ambiguity aversion coefficient

η, then, for every τ P p0, 1q, a is also optimal with the ambiguity covariance matrix

τΣM and the ambiguity aversion coefficient τ´1η, but a need not be optimal with the

ambiguity covariance matrix τ´1ΣM and the ambiguity aversion coefficient τη, because

ΣX ´ τ´1ΣM need not be positive semidefinite. For this reason, the smallest ambiguity

(2014).
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aversion coefficient η with which a is optimal is well defined, but the smallest (or minimal)

ambiguity covariance matrix ΣM with which a is optimal is not well defined.

We could instead take, say, the covariance matrix ΣX|M “ ΣX ´ ΣM of unambiguous

(purely risky) asset returns as given. But we opt for taking ΣX as given, because if we

fixed ΣX|M and chose ΣM , then the total covariance matrix ΣX “ ΣX|M ` ΣM would

be changed according to our choice of ΣM . This would undermine our argument that

ambiguity aversion solves the paradox of the inefficient market portfolio, because our

choice of ΣM changes the set of mean-variance efficient portfolios through changes in

ΣX . A consequence of fixing ΣX but varying ΣM is that the covariance matrix ΣX|M

of unambiguous asset returns is also changed. In the setup of KMM, to which our

setup is shown in Subsection 2.1 to be equivalent, this would mean that a change in the

subjective probability distribution on the domain of second-order acts leads to a change

in the conditional distributions over consequences given the realizations in the domain of

second-order acts. In search for an implied covariance matrix ΣM , therefore, we need to

take this secondary effect into consideration and to see the quantitative implications on

implied ambiguity and ambiguity aversion.8

4.2 When can a given portfolio be optimal?

The following theorem establishes a necessary and sufficient condition for a given portfolio

vector a P RN to be optimal for some ambiguity-averse investor.

Theorem 2 Let ΣX P S N
``, µM P RN , R P R, and a P RN . For each θ ą 0, define

vθ “
1

θ
Σ´1

X pµM ´ R1q ´ a P RN (19)

8To see the difference in quantitative implications, imagine that we wish to estimate ΣM based on
sample means and covariances of asset returns. In our approach, we take ΣX as the sample covariance
matrix and use (17) to infer ΣM . In the alternative approach, we would take ΣX|M as the sample
covariance matrix to infer ΣM . Note that (17) is equivalent to

a “
1

θ

`

ΣX|M ` pη ` 1qΣM

˘´1
pµM ´ R1q. (18)

Comparing the two expressions (17) and (18) of the optimal portfolio, we can see that if we multiply
1 ` η´1 to any ambiguity covariance matrix inferred in the alternative approach, then we can obtain an
ambiguity covariance matrix that may be inferred in our approach. Conversely, if we divide by 1 ` η´1

any ambiguity covariance matrix inferred in our approach, then we can obtain an ambiguity covariance
matrix that may be inferred in the alternative approach. The factor 1 ` η´1, therefore, quantifies the
secondary effect of taking ΣX as fixed.
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and suppose that there is no θ ą 0 for which vθ “ 0. Write

θ̄ “
a ¨ pµM ´ R1q

aJΣXa
P R. (20)

If θ̄ ą 0, define, for each θ P
`

0, θ̄
˘

,

Σθ
M “

1

pvθqJ ΣXvθ

`

ΣXv
θ
˘ `

ΣXv
θ
˘J

P S N
` and ηθ “

`

vθ
˘J

ΣXv
θ

aJΣXvθ
P R``. (21)

1. Assume that a ¨ pµM ´ R1q ą 0. For every pΣM , η, θq P S N
` ˆ R`` ˆ R``, if

θ ă θ̄, vJpηΣMqv ě vJpηθΣθ
Mqv for every v P RN , and aJpηΣMqa “ aJpηθΣθ

Mqa,

then pΣM , η, θq satisfies (17).

2. Assume that µM ´R1 ‰ 0. For every pΣM , η, θq P S N
` ˆR`` ˆR``, if pΣM , η, θq

satisfies (17) and vJΣXv ě vJΣMv for every v P RN , then a¨pµM ´R1q ą 0, θ ă θ̄,

η ě ηθ, vJ pηΣMq v ě vJ
`

ηθΣθ
M

˘

v for every v P RN , and aJpηΣMqa “ aJpηθΣθ
Mqa.

Part 1 of Theorem 2 shows that a is the optimal portfolio of some ambiguity-averse

investor whenever a ¨ pµM ´ R1q ą 0, that is, the expected excess return of the portfolio a

is positive. It implies, in particular, that a is optimal for an investor with the ambiguity

covariance matrix Σθ
M , ambiguity aversion coefficient ηθ, and risk aversion coefficient θ.

Part 2 shows that the sufficient conditions identified in Part 1 for the optimality of a

for some ambiguity-averse investor are also necessary. Together, they provide the range
`

0, θ̄
˘

of risk aversion coefficients with which such an ambiguity-averse investor exists.

Theorem 2 characterizes the ambiguity-covariance matrix ΣM and ambiguity aversion

coefficient η with which the given portfolio a is optimal, for each fixed risk aversion

coefficient θ P p0, θ̄q. Among these candidates, we shall focus, in the subsequent analysis,

on the ambiguity-covariance matrix Σθ
M and ambiguity aversion coefficient ηθ that are

defined in (21). The main reason is that the aversion-adjusted ambiguity matrix ηθΣθ
M is

the smallest one in the sense that ηΣM ´ηθΣθ
M is positive semidefinite, and the ambiguity

aversion coefficient ηθ is the smallest one, for every pair of ΣM and η that satisfies the

condition of the theorem,9 and we are interested in minimal deviations from the expected

utility functions that makes the portfolio a optimal.

We now justify our informal arugment, towards the end of Subsection 1.1, on how to

construct ambiguity, by relating the elements of the ambiguity covariance matrix Σθ
M ,

defined by (21), to the means, variances, and covariances of asset returns. Moreover, we

characterize the decomposition of the optimal portfolio and the expected excess returns
9Thus, every Schatten norm (of which the spectral norm and the Frobenius norm are special cases)

of ηθΣθ
M is smaller than or equal to that of ηΣM .
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in the forms we represented after the mutual fund theorem (Theorem 1). Furthermore,

when the portfolio a is the market portfolio, we restate these results in terms of the alphas

and betas of the N assets.

In order to identify the elements of the ambiguity matrix Σθ
M , it is sufficient to know

how large each diagonal element is and whether each off-diagonal elements is positive or

negative, because Σθ
M is of rank one. Indeed, denote the pn,mq-element of Σθ

M by σθ
nm.

Then σθ
nm “

`

σθ
nnσ

θ
mm

˘1{2
if it is positive, and σθ

nm “ ´
`

σθ
nnσ

θ
mm

˘1{2
if it is negative. Note

also that the sign of σθ
nm is equal to that of σθ

nkσ
θ
km for every k. To identify the signs of

the off-diagonal elements, therefore, it is sufficient to partition the set t1, 2, . . . , Nu of all

assets into two subsets, within each of which the assets are perfectly positively correlated

with each other.

Denote the n-th coordinates of µM , a, and ΣXa by µn, an, and cn. These are the

expected return of asset n, the position of asset n in the portfolio a, and the covariance

between the return of portfolio a and the return of asset n. Define two sets of assets, Sθ
`

and Sθ
´, by

Sθ
` “

"

n

ˇ

ˇ

ˇ

ˇ

1

θ
pµn ´ Rq ą cn

*

and Sθ
´ “

"

n

ˇ

ˇ

ˇ

ˇ

1

θ
pµn ´ Rq ă cn

*

.

Since

Σθ
Mvθ “

1

θ
pµM ´ R1q ´ ΣXa,

the following proposition can be easily derived from the definition (21) of Σθ
M .

Proposition 3 Define θ̄ by (20) and, for each θ P p0, θ̄q, define vθ, Σθ
M and ηθ by (19)

and (21).

1. For every θ P p0, θ̄q, there is a κθ ą 0 such that σθ
nn “ κθpθ´1pµn ´ Rq ´ cnq2 for

every n.

2. If n P Sθ
` and m P Sθ

`, then σθ
nm ą 0. If n P Sθ

´ and m P Sθ
´, then σθ

nm ą 0. If

n P Sθ
` and m P Sθ

´, then σθ
nm ă 0.

Part 1 of Proposition 3 shows that the ambiguity of asset n is related to the deviation

of the covariance of the return of the given portfolio a with the return of asset n from the

expected excess return of asset n, divided by the risk aversion coefficient θ. Part 2 shows

that for any pair of assets, if they both belong to either Sθ
` or Sθ

´, then their returns,

as measured by the ambiguity covariance matrix, are perfectly positively correlated, but

if one belongs to Sθ
` and the other to Sθ

´, then their returns are perfectly negatively

correlated.
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The results of Proposition 3 can be better interpreted when a is the normalized market

portfolio, so that 1Ja “ 1, that is, each coordinate an represents the proportion of the

value (market capitalization) of asset n in the market portfolio. Then the beta βn of

asset n is defined by cn divided by the variance of the market portfolio, and the so called

alpha αn of the asset n is defined as the part of the expected excess return that cannot

be explained by its beta:

βn “
cn

aJΣXa
and αn “ pµn ´ Rq ´ pa ¨ pµM ´ R1qqβn. (22)

There are an asset n such that αn ą 0 and another asset m such that αm ă 0 unless a is

mean-variance-efficient. Define two sets of assets, T θ
` and T θ

´, by

T θ
` “

␣

n | αn ` paJΣXaqpθ̄ ´ θqβn ą 0
(

,

T θ
´ “

␣

n | αn ` paJΣXaqpθ̄ ´ θqβn ă 0
(

.

The following corollary follows from Proposition 3 and the equality

pµn ´ Rq ´ θcn “ αn ` paJΣXaqpθ̄ ´ θqβn.

Corollary 2 Define θ̄ by (20) and, for each θ P p0, θ̄q, define vθ, Σθ
M and ηθ by (19) and

(21).

1. For every θ P p0, θ̄q, there is a κθ ą 0 such that σθ
nn “ κθpαn ` paJΣXaqpθ̄ ´ θqβnq2

for every n.

2. If n P T θ
` and m P T θ

`, then σθ
nm ą 0. If n P T θ

´ and m P T θ
´, then σθ

nm ą 0. If

n P T θ
` and m P T θ

´, then σθ
nm ă 0.

Part 1 of Corollary 2 presents the diagonal elements of the ambiguity matrix Σθ
M in

terms of the alphas and betas. It shows that the size of ambiguity of asset n depends

not only on its alpha αn but also its beta βn. Part 2 identifies the two groups of assets

such that the ambiguity of two assets is perfectly positively correlated if they belong to

the same group, but it is perfectly negatively correlated if they belong to the different

groups. As can be seen from the definitions of T θ
` and T θ

´, it is the ratio αn{βn, if well

defined, that determines to which group the asset belongs.

Having characterized the ambiguity covariance matrix Σθ
M , we now characterize the

optimal portfolio a in the form (15) of the generalized mutual fund theorem (Theorem

1). Define Qθ “ Σ´1
X Σθ

M and define ζθ : p´1,8q Ñ RN by letting

ζθpηq “
`

IN ` ηQθ
˘´1

Σ´1
X pµM ´ R1q
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for each η ą ´1. As we already see in parts 3 and 4 of Proposition 2, the portfolio a is

decomposed into two mutual funds, which are defined by

vθA “
vθ ¨ pµM ´ R1q

pvθqJ ΣXv
θ

vθ and vθR “ Σ´1
X pµM ´ R1q ´ vθA, (23)

where subscripts R and A stand for risk and ambiguity. Denote the n-th coordinates of

vθA, v
θ
R, and Σ´1

X pµM ´ R1q by vθAn, v
θ
Rn, and dn.

Proposition 4 Define θ̄ by (20) and, for each θ P p0, θ̄q, define vθ, Σθ
M and ηθ by (19)

and (21).

1. For every η ą ´1,

ζθpηq “ vθR `
1

1 ` η
vθA. (24)

2. For every θ P p0, θ̄q, there is a κθ ą 0 such that vθAn “ κθpθ´1dn ´ anq for every n.

Part 1 of Proposition 4 gives the decomposition of the optimal portfolio into two

mutual funds in the form (15) of the generalized mutual fund theorem (Theorem 1). Part

2 shows that the position of asset n in the ambiguity-driven portfolio vθA is determined by

how much the position n is different from the position dn in the mean-variance-efficient

portfolio. Since vθ ¨ pµM ´ R1q ą 0, vθA is a positive multiple of vθ. This part, therefore,

follows from the definition (19) of vθ.

The final result of this subsection is concerned with the decomposition of the expected

excess returns µM ´ R1, stated after Theorem 1:

µM ´ R1 “
`

ΣX ´ Σθ
M

˘

vθR ` Σθ
MvθA (25)

The first term on the right-hand side of (25) is the expected excess return that would

induce the (ambiguity-neutral or ambiguity-averse) investor to hold the portfolio a if

the ambiguity were completely removed. The second term is the expected excess return

that would induce the ambiguity-averse investor to hold the portfolio a if the risk were

completely removed. The following proposition gives some important properties of these

terms. We denote the n-th coordinates of Σθ
MvθA by

`

Σθ
MvθA

˘

n
.

Proposition 5 Define θ̄ by (20) and, for each θ P p0, θ̄q, define vθ, Σθ
M and ηθ by (19)

and (21). Then, for every θ P p0, θ̄q, there is a κθ ą 0 such that

`

Σθ
MvθA

˘

n
“ κθppµn ´ Rq ´ θcnq “ κθpαn ` paJΣXaqpθ̄ ´ θqβnq

for every n.
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Proposition 5 shows the ambiguity-related expected return of asset n is proportional

to the deviation of the covariance of the portfolio a with the return of asset n from the

expected return of asset n. We omit the proof of this proposition.

4.3 Minimal ambiguity and minimal ambiguity aversion that

are independent of risk aversion coefficients

According to Part 2 of Theorem 2, the ambiguity aversion coefficient ηθ and the aversion-

adjusted ambiguity covariance matrix ηθΣθ
M are the smallest ones that make a optimal.

Note, however, they are smallest within the class of the pairs of ΣM and η given a

risk aversion coefficient θ. In this subsection, we consider the problems of minimizing the

ambiguity aversion coefficient ηθ and the largest eigenvalue of the aversion-adjusted ambi-

guity covariance matrix ηθΣθ
M by varying θ, thereby finding the smallest of the ambiguity

aversion coefficients and the smallest of the largest eigenvalues of the aversion-adjusted

ambiguity covariance matrices that are independent of the choice of θ P p0, θ̄q. We solve

not just one but the two minimization problems because there are two conflicting inter-

pretations of ambiguity covariance matrices and ambiguity aversion coefficients. KMM

and Klibanoff, Marinacci, and Mukerji (2012) argued that these two are separable, while

Epstein (2010) cast some doubts on the argument of KMM. The minimization of the am-

biguity aversion coefficient is motivated by KMM’s argument, while the minimization of

the largest eigenvalue of the aversion-adjusted ambiguity covariance matrix is motivated

by Epstein’s argument.

We should add a caveat to this exercise. As we mentioned in Subsection 2.1, Theorem

2 of KMM showed that an investor is more ambiguity-averse than another if and only

if the function φγ,θ is more concave for the first one than for the second. As KMM

repeatedly emphasized, however, the theorem is valid only when the two investors are

assumed to have the same risk attitude. Thus, although their Theorem 2 is valid to

Theorem 2 of this paper, it is not applicable to our Theorem 3 below. In particular, even

when ηθ ą ηθ
1

for two risk aversion coefficients θ and θ1, we cannot say that the investor

with the utility function Up1`ηθqθ,θ is more ambiguity-averse than the investor with the

utility function Up1`ηθ1
qθ1,θ1 . Nonetheless, we shall consider the problem of minimizing

ηθ (and the largest eigenvalue of ηθΣθ
M) by varying θ for two reasons. First, as our

generalized mutual fund theorem (Theorem 1) shows that the composition of investment

among the N assets with random returns, which is of our prime concern, is determined

by the ambiguity aversion coefficient η and independent of the risk aversion coefficient

θ. Second, since the ambiguity aversion coefficient η can be interpreted as the elasticity

of marginal utilities, we can, as we will do in Subsection 5.1, assess whether a particular
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value of η is reasonable based on this interpretation.

Theorem 3 Let ΣX , µM , a, vθ, θ̄, Σθ
M , and ηθ be as in Theorem 2. Assume that

a ¨ pµM ´ R1q ą 0.

1. As a function of θ P p0, θ̄q, the largest eigenvalue of ηθΣθ
M is minimized at

θ˚ “

˜

θ̄´1 `

›

›θ̄´1pµM ´ R1q ´ ΣXa
›

›

}µM ´ R1}

¸´1

,

and, at θ “ θ˚, it is equal to

2

a ¨ pµM ´ R1q

`›

›θ̄´1pµM ´ R1q ´ ΣXa
›

› }µM ´ R1} ´
`

θ̄´1pµM ´ R1q ´ ΣXa
˘

¨ pµM ´ R1q
˘

.

(26)

2. As a function of θ P p0, θ̄q, ηθ is minimized at

θ˚˚ “

¨

˝θ̄´1 `

˜

`

θ̄´1pµM ´ R1q ´ ΣXa
˘J

Σ´1
X

`

θ̄´1pµM ´ R1q ´ ΣXa
˘

pµM ´ R1qJΣ´1
X pµM ´ R1q

¸1{2
˛

‚

´1

,

and ηθ
˚˚

is equal to

2

a ¨ pµM ´ R1q

ˆ

„

´

`

θ̄´1pµM ´ R1q ´ ΣXa
˘J

Σ´1
X

`

θ̄´1pµM ´ R1q ´ ΣXa
˘

¯1{2
`

pµM ´ R1qJΣ´1
X pµM ´ R1q

˘1{2

´
`

θ̄´1pµM ´ R1q ´ ΣXa
˘J

Σ´1
X pµM ´ R1q

ı

. (27)

Theorem 3 gives the minimum of the largest eigenvalue of the averion-adjusted ambi-

guity matrix ηΣM and the minimum of the ambiguity aversion η. Since ηθΣθ
M is of rank

one, the largest eigenvalue is the only strictly positive eigenvalue (and zero is the other

eigenvalue, with multiplicity N ´ 1), the spectral norm of ηθ
˚

Σθ˚

M is smaller than or equal

to that of ηΣM , even when (17) holds for pΣM , η, θq with θ ‰ θ˚. However, for such a

pΣM , η, θq, ηΣM ´ ηθ
˚

Σθ˚

M need not be positive semidefinite.

It is easy to check that θ̄ in Theorem 2 is homogeneous of degree ´1 in a, that is, if a

is multiplied by factor τ ą 0, then it is multiplied by factor τ´1. Thus, by the definition

(19), vθ̄ is homogeneous of degree 1 in a. By Theorem 3, both θ˚ and θ˚˚ are homogeneous

of degree ´1 in a. On the other hand, none of the ambiguity matrices Σθ˚

M and Σθ˚˚

M and

the ambiguity aversion coefficients ηθ
˚

and ηθ
˚˚

is affected by any scalar multiplication to
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a. In particular, any normalization of portfolio a, such as 1Ja “ 1, would not affect any

of these ambiguity parameters, although it does change risk aversion parameters θ˚ and

θ˚˚. Our numerical results in Section 5, in particular, do not depend on the normalization

of the market portfolio a.

5 Examples based on the U.S. equity market data

5.1 Data

Tables 1 shows the sample means, variances, and covariances of the FF6 portfolios in

the U.S. equity markets, obtained from Ken French’s website. Table 2 reports the mean-

variance-efficient portfolio, based on the data of Table 1, and the market portfolio, defined

as the time-series average of ME weights. Throughout this section, we take the risk-free

rate R, the expected return vector µM , and the total covariance matrix ΣX to be the the

sample means and covariances in Table 1. We then find the ambiguity covariance matrix

Σθ
M and the ambiguity aversion coefficient ηθ, defined in (21), with which the market

portfolio weight in Table 2 is optimal.10

Theorem 2 shows the necessary and sufficient condition for a portfolio to be optimal

for some ambiguity-averse investor. With our data, µM ´ R1 P RN
``. Moreover, if a

is the market portfolio in Table 2, then a P RN
``, a ¨ pµM ´ R1q ą 0, and ΣXa P RN

``

because all elements of ΣX are strictly positive. Then the market portfolio a satisfies the

necessary and sufficient condition a ¨ pµM ´ R1q ą 0.

Table 3 reports the CAPM alphas and betas. The distinguish property is that the SN

and SH portfolios have significantly positive alphas and the SL portfolio has a significantly

negative alpha. Nonzero alphas have been reported in many empirical studies, such as

Black, Jensen, and Scholes (1972) and Fama and French (1992).

5.2 Implied coefficients of risk and ambiguity aversion

Theorem 2 finds the upper the upper bound θ̄, defined in (20), on the coefficients of

constant absolute risk aversion with which the market portfolio a is optimal. With our

data, the upper bond θ̄ is equal to 0.0226.

Theorem 3 finds the coefficients θ˚ and θ˚˚ of constant absolute risk aversion that

minimize the largest eigenvalue of the aversion-adjusted ambiguity covariance matrix

ηθΣθ
M and the coefficient ηθ of ambiguity aversion. With our sample data, θ˚ “ 0.0192

10We concentrate on these
`

Σθ
M , ηθ

˘

’s, rather than arbitrary pΣM , ηq’s, because the former represents
minimal deviations from the ambiguity-neutral investors, as explained in Section 4.
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Table 3: Characteristics of the FF6 portfolios

n θn θ̂n αn βn αn{βn an
SL 0.019 ´3.45 ´0.15 1.20 ´0.12 0.025
SN 0.028 2.95 0.18 1.16 0.16 0.030
SH 0.030 1.36 0.29 1.30 0.22 0.021
BL 0.022 0.09 ´0.03 0.93 ´0.03 0.507
BN 0.022 ´0.09 ´0.01 1.00 ´0.01 0.312
BH 0.025 ´0.23 0.08 1.19 0.07 0.106

Table 3 reports the θn and the θ̂n defined in (28), as well as the CAPM alphas and betas, defined by
(22), their ratios, and the weights in the market portfolio, based on the µM , ΣX , and R.

and θ˚˚ “ 0.0124. Theorem 3 also shows the corresponding values of ambiguity aversion

coefficients ηθ
˚

and ηθ
˚˚

. With our data, ηθ
˚

“ 16.69 and ηθ
˚˚

“ 9.31.

The latter ambiguity aversion coefficient, ηθ
˚˚

, is the smallest coefficient of ambiguity

aversion with which the market portfolio is optimal. Since it is the elasticity of marginal

utilities from conditional expected utilities given M , whether the value is plausible may

be judged based on the literature on the equity premium puzzle of Mehra and Prescott

(1985). As put forward by Kocherlakota (1996), the consensus seems that a theoretical

model is considered as being consistent with empirical data only if the prediction of the

model coincides with the data when involving the coefficient of relative risk aversion,

which is nothing but the elasticity of marginal utilities from consumption, is no higher

than ten. We can therefore conclude that our model of an ambiguity-averse represen-

tative investor is consistent with the U.S. equity market data to the extent that the

elasticity of marginal utilities from conditional expected utilities is comparable to that

from consumption.

In the next two subsections, we quantitatively determine the ambiguity variances

and covariances, as well as the decomposition of the optimal portfolio and the expected

excess returns. Before doing so, we relate the obtained risk aversion coefficients to some

parameters that characterize FF6 portfolios.

As we did in Section 4, denote the n-th coordinates of µM , a, ΣXa, and Σ´1
X pµM ´R1q

by µn, an, cn, and dn. Then µn´R ą 0, an ą 0, and cn ą 0 for every n. We can thus define

θn as the ratio of the expected excess return of asset n to its covariance with the market

portfolio, and θ̂n as the ratio of the position of asset n in the mean-variance-efficient

portfolio to the position of asset n in the optimal portfolio a:

θn “
µn ´ R

cn
P R`` and θ̂n “

dn
an

P R. (28)

The θn are not all equal, because a is not mean-variance-efficient. Moreover, there are
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an asset n for which θn ă θ̄ and, at the same time, another asset n for which θn ą θ̄,

because and the weighted averages of the θn with weights pancnq
`

aJΣXa
˘´1

is equal to

θ̄. The same can be said of for the θ̂n. Table 3 reports the values of θn, θ̂n, and an, from

which we can rank the values:

0 ă θ˚˚ ă θSL ă θ˚ ă θBL ă θBN ă θ̄ ă θBH ă θSN ă θSH (29)

θ̂SL ă θ̂BH ă θ̂BN ă 0 ă θ˚˚ ă θ˚ ă θ̄ ă θ̂BL ă θ̂SH ă θ̂SN. (30)

5.3 Implied ambiguity covariance matrices

Part 1 of Proposition 3 characterizes the ambiguity of each asset, given a particular risk

aversion coefficient θ P p0, θ̄q. For θ “ θ˚ and θ “ θ˚˚, Table 4 shows the values of

the diagonal elements σθ
nn of Σθ

M , which represents the ambiguity of the returns of the

FF6 portfolios. According to part 1 of Proposition 3, the diagonal elements σθ
nn are

proportional to the c2npθn ´ θq2. However, the orders of diagonal elements σθ
nn are the

same as the order of the values of θn in (29) for both θ “ θ˚ and θ “ θ˚˚. The result

shows, therefore, that the covariances cn of the return of the market portfolio a with

the return of each FF6 portfolio just happen to be irrelevant to determine the order of

ambiguity.

Table 4: Diagonal elements of the ambiguity covariance matrix

n σθ˚

nn σθ˚˚

nn

SL 0.01 1.49
SN 2.73 8.23
SH 5.29 13.34
BL 0.15 1.96
BN 0.28 2.61
BH 1.24 5.70

Table 4 reports the the values of the diagonal elements of the aversion-adjusted ambiguity covariance
matrix ηθΣθ

M when θ is set equal to θ˚ and θ˚˚ to minimize the largest eigenvalue of ηθΣθ
M and ηθ.

Part 2 of Proposition 3 characterizes the correlations of ambiguity. According to the

order in (29), if θ “ θ˚˚, then the ambiguity of all FF6 portfolios are perfectly positively

correlated with each other. That is, σθ
nm ą 0 for all n,m P tSL, SN, SH,BL,BN,BHu.

If θ “ θ˚, then the ambiguity of the SL portfolio is perfectly negatively correlated with

the ambiguity of any other portfolio, and the ambiguity of the SN, SH, BL, BN, and BH

portfolios is perfectly positively correlated with each other. That is, σθ
SL,n ă 0 for all

n P tSN, SH,BL,BN,BHu.

Although the values of the diagonal elements of Σθ
M are reported in Table 4 only for
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θ “ θ˚ and θ “ θ˚˚, it is illustrative to see how they change as θ varies on p0, θ̄q. We

claim that

σθ
BL,BL ă σθ

BN,BN ă σθ
SL,SL ă σθ

BH,BH ă σθ
SN,SN ă σθ

SH,SH

for every θ sufficiently close to 0, and

σθ
BN,BN ă σθ

BL,BL ă σθ
BH,BH ă σθ

SL,SL ă σθ
SN,SN ă σθ

SH,SH

for every θ sufficiently close to θ̄. This is because

µBL ă µBN ă µSL ă µBH ă µSN ă µSH,

|αBN| ă |αBL| ă |αBH| ă |αSL| ă |αSN| ă |αSH|,

and

pµn ´ Rq ´ θan “ αn ` paJΣXaqpθ̄ ´ θqβn “

#

µn ´ R if θ “ 0,

αn if θ “ θ̄.
(31)

Moreover, since the SH and SN portfolios attain the highest expected returns and alphas,

σθ
nn ă σθ

SN,SN ă σθ
SH,SH for every θ P p0, θ̄q and every n P tBL,BN,BH, SLu. That is,

the SH portfolio has the largest ambiguity and the SN portfolio has the second largest

ambiguity regardless of the values of θ. Although this is mainly due to the fact that

these two portfolios have the highest expected returns and alphas, the role of the beta

in affecting the order of the ambiguity variance as θ varies should not be missed. In

addition, the ambiguity tend to be larger for the portfolios with high B/M’s.

This last result should be contrasted with the assumption that Bossaerts, Ghirardato,

Guarnaschelli, and Zame (2010) used when they explained the so called value effect, the

observation that value stocks (stocks with high B/M’s) tend to have higher returns than

growth stocks (stocks with low B/M’s). They argued that since firms of growth stocks

have more growth potential, it seems natural to assume that their returns are more

ambiguous than those of value stocks. They observed, in the experimental markets with

heterogenous investors, that more risk-averse investors tend to be more ambiguity-averse

as well. They deduced, from this observation, that growth stocks are held and priced

primarily by investors who are less averse to both risk and ambiguity, while value stocks

are held and priced more evenly by all investors in the market. They, then, concluded

that value stocks have higher returns than growth stocks at equilibrium of heterogeneous

investors. In contrast, we found, in the analysis of an ambiguity-averse representative

agent based on the U.S. equity market data, that the value stocks tend to be more, rather

than less, ambiguous.11

11It may appear that the difference in the findings is due to the difference in the models, in that
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5.4 Optimal portfolios and expected excess returns

Proposition 4 decomposes the optimal portfolio into two mutual funds in the form the

generalized mutual fund theorem (Theorem 1). In particular, the portfolio is decomposed

into the ambiguity-driven portfolio and the risk-driven portfolio. The decomposition of

the optimal portfolio is numerically reported in Table 5.

Table 5: Decomposition of the market portfolio

n p1{θ˚qvθ
˚

R p1{θ˚qvθ
˚

A p1{θ˚˚qvθ
˚˚

R p1{θ˚˚qvθ
˚˚

A

SL 0.29 ´4.70 0.76 ´7.60
SN ´0.24 4.77 ´0.72 7.74
SH ´0.07 1.54 ´0.22 2.50
BL 0.39 2.02 0.16 3.58
BN 0.42 ´1.83 0.58 ´2.78
BH 0.19 ´1.46 0.33 ´2.30

Table 5 lists the pure-risk portfolios vθR and the ambiguity portfolios vθA for θ˚ “ 0.0192 and θ˚˚ “

0.0124.

With our sample data, by (28), the ambiguity-driven portfolio vθAn is positive for every

θ P p0, θ̄q and n P tSN, SH,BLu, and is negative for every θ P p0, θ̄q and n P tSL,BN,BHu.

In other words, the sign pattern of the ambiguity-driven portfolio vθAn is independent of

θ.

Proposition 5 shows the ambiguity-related expected return of asset n. The decom-

position is numerically reported in Table 6. Because of the ranking (29), the ambiguity-

induced expected excess returns of the SL, BL, and BN portfolios are strictly negative,

and those of the BH, SN, and SH portfolios are strictly positive.

As regards to how these positions change as θ varies over p0, θ̄q, we make three claims.

First, for every θ sufficiently close to 0,

`

Σθ
MvθA

˘

BL
ă
`

Σθ
MvθA

˘

BN
ă
`

Σθ
MvθA

˘

SL
ă 0 ă

`

Σθ
MvθA

˘

BH
ă
`

Σθ
MvθA

˘

SN
ă
`

Σθ
MvθA

˘

SH
.

Second, for every θ sufficiently close to θ̄,

`

Σθ
MvθA

˘

SL
ă
`

Σθ
MvθA

˘

BL
ă
`

Σθ
MvθA

˘

BN
ă 0 ă

`

Σθ
MvθA

˘

BH
ă
`

Σθ
MvθA

˘

SN
ă
`

Σθ
MvθA

˘

SH
.

they used a model of heterogeneous investors while we use a representative-investor model. However,
the difference in the models should not really account for the the difference in findings, because the
representative investor’s ambiguity-averse utility function would reflect (the heterogeneity of) individual
investors’ ambiguity aversion as long as markets were complete. The problem of characterizing the rep-
resentative investor’s ambiguity aversion by maximizing a weighted sum of individual investors’ utilities
seems, though, largely unexplored in the literature.
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Table 6: Decomposition of the expected excess returns

n
´

ΣX ´ Σθ˚

M

¯

vθ
˚

R Σθ˚

M vθ
˚

A

´

ΣX ´ Σθ˚˚

M

¯

vθ
˚˚

R Σθ˚˚

M vθ
˚˚

A

SL 0.72 ´0.02 0.44 0.26
SN 0.67 0.32 0.39 0.61
SH 0.75 0.45 0.43 0.77
BL 0.55 0.07 0.33 0.30
BN 0.59 0.10 0.35 0.34
BH 0.70 0.22 0.41 0.51

Table 6 lists the pure-risk-induced expected excess returns
`

ΣX ´ Σθ
M

˘

vθR and the ambiguity-induced
expected excess returns Σθ

MvθA for for θ˚ “ 0.0192 and θ˚˚ “ 0.0124.

Third, for every θ P p0, θ̄q and every n P tBL,BN, SLu,

pΣθ
MvθAqn ă 0 ă pΣθ

MvθAqBH ă pΣθ
MvθAqSN ă pΣθ

MvθAqSH.

That is, the SH portfolio has the largest ambiguity-induced expected excess return, the

SN portfolio has the second largest one, and the BH has the third largest one, regardless

of the values of θ. All these results follow from (31) and

µBL ă µBN ă µSL ă µBH ă µSN ă µSH,

αSL ă αBL ă αBN ă αBH ă αSN ă αSH.

This follows from the fact that the top-three rankings in terms of the alphas and expected

returns are the same. The bottom-three rankings depends on the value of θ because the

betas of the BL, BN, and SL portfolios are different.

5.5 Summary of our numerical results

In this section, we used the data on the FF6 portfolios of the U.S. equity markets to

calculate the ambiguity aversion coefficients and the ambiguity covariance matrix with

which the market portfolio is optimal. There are two main results obtained from our

numerical analysis, one with regards to the minimum ambiguity aversion coefficient and

the other with regards to the distributions of ambiguity in expected returns across the

FF6 portfolios. First, the minimum ambiguity aversion coefficient (with which the market

portfolio is optimal for some specification of the ambiguity covariance matrix) is within

the range of values deemed plausible in view of the contributions of the equity premium

puzzle. Second, the returns of the portfolios with small market equities, especially those

having high and neutral ratios of the book equity to the market equity, tend to be

more ambiguous and positively correlated with each other, while they may be negatively
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correlated with the returns of those with big market equities and neutral or low ratios of

book to market equities.

6 Conclusion

Using the ambiguity-inclusive CARA-normal setup of an investor who has an ambiguity-

averse utility function of the form of KMM and MMR, we have generalized the mutual

fund theorem to accommodate ambiguity; identified necessary and sufficient conditions

for a given, not mean-variance efficient, portfolio to be optimal for some ambiguity-

averse investor; characterized all the pairs of ambiguity covariance matrices and ambiguity

aversion coefficients with which the give portfolio is optimal; and found the minimal

ones. We have numerically derived the minimal ambiguity aversion coefficient and the

ambiguity covariance matrix based on the U.S. equity market data.

There are a couple of directions of future research. The first one is to rationalize the

so-called 1{N portfolio, the portfolio in which the investment is split equally among all

the assets by ambiguity aversion. This is important because the 1{N portfolio is often

regarded as a rule of thumb, rather than derived from the optimization behavior, but its

empirical performance is no worse than the sample-based mean-variance-efficient portfo-

lio, as shown, for example, by DeMiguel, Garlappi, and Uppal (2009). The second one

is to develop a factor model that explicitly takes ambiguity of factors and idiosyncratic

shocks into account. Incorporating ambiguity into a factor model allows us to analyze the

optimal portfolio for an investor who believe the validity of the factor model probabilis-

tically, rather than deterministically. We should aim at generalizing such factor models

as those of Pástor (2000), Pástor and Stambaugh (2000), and Wang (2005).

A Lemmas and Proofs for Section 2

Proof of Lemma 1 By the properties of the moment generating function,

E
“

uθ

`

aJX ` bR
˘

|M
‰

“ ´ expp´θbRqE
“

exp
`

p´θaqJX
˘

|M
‰

“ ´ expp´θbRq exp

ˆ

p´θaqJM `
1

2
pθaqJΣX|Mpθaq

˙

“ ´ exp

ˆ

´θ

ˆ

aJM ` Rb ´
θ

2
aJΣX|Ma

˙˙

.
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Then it follows from (4) that

φγ,θ

`

E
“

uθ

`

aJX ` bR
˘

|M
‰˘

“ ´ exp

ˆ

´γ

ˆ

aJM ` Rb ´
θ

2
aJΣX|Ma

˙˙

.

Thus, again by the properties of the moment generating function,

Uγ,θpa
JX ` bRq

“E

„

´ exp

ˆ

´γ

ˆ

aJM ` Rb ´
θ

2
aJΣX|Ma

˙˙ȷ

“ ´ exp

ˆ

´γ

ˆ

Rb ´
θ

2
aJΣX|Ma

˙˙

E
“

exp
`

p´γaqJM
˘‰

“ ´ exp

ˆ

´γ

ˆ

Rb ´
θ

2
aJΣX|Ma

˙˙

exp

ˆ

µJ
Mp´γaq `

1

2
p´γaqJΣMp´γaq

˙

“uγ pVγ,θpa, bqq .

///

To prove Proposition 1, we need a lemma. To state it, let P P S N and consider the

problem of minimizing the quadratic form defined by P :

min
wPRN zt0u

wJPw

}w}2
. (32)

Denote a solution by w1. Next, let n ě 2 and w1, w2, . . . wn´1 belong to RN , and consider

the problem of minimizing the quadratic form subject to the constraint that the solution

must be orthogonal to w1, w2, . . . , wn´1:

min
wPRN zt0u

wJPw

}w}2

s. t. wm ¨ w “ 0 for every m ď n ´ 1.

(33)

We say that a sequence pw1, w2, . . . , wNq of vectors in RN is a sequence of solutions (33)

if w1, w2, . . . , wN are obtained iteratively by solving (32) and (33). There is a sequence

of solutions to the problems (33), because the objective functions are continuous and

the domains can be restricted to tw P RN | }w} “ 1u. Moreover, for every sequence

pw1, w2, . . . , wNq of solutions, pw1, w2, . . . , wNq is orthogonal and

wJ
1 Pw1

}w1}
2

ď
wJ

2 Pw2

}w2}2
ď ¨ ¨ ¨ ď

wJ
NPwN

}wN}2

for every n. Since the following lemma, which characterizes the eigenvectors and eigen-
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values of P , is well known,12 we omit the proof.

Lemma 2 1. For every sequence pw1, w2, . . . , wNq of solutions to the sequence of prob-

lems (33) and for every n, wn is an eigenvector of P and its corresponding eigenvalue

is equal to wJ
nPwn{}wn}2.

2. For every sequence pw1, w2, . . . , wNq of eigenvectors of P that is orthogonal and of

which the sequence of the corresponding eigenvalues is non-decreasing is a sequence

of solutions to the sequence of problems (33).

3. If w1, w2, . . . , wK are eigenvectors of P that correspond to distinct eigenvectors, then

pw1, w2, . . . , wKq is orthogonal.

Proposition 1 can be proved using this lemma as follows.

Proof of Proposition 1 Define P “ Σ
´1{2
X ΣMΣ

´1{2
X . Then, P P S N . Moreover, assume

that w P RN , v P RN , λ P R and v “ Σ
´1{2
X w. Then

vJΣMv

vJΣXv
“

wJPw

}w}2
,

and pΣ´1
X ΣMqv “ λv if and only if Pw “ λw. Thus, parts 1 and 2 of this proposition follow

from parts 1 and 2 of Lemma 2. If, in addition, w1 P RN , v1 P RN , and v1 “ Σ
´1{2
X w1,

then vJΣXv “ w ¨ w1. Thus, part 3 of this proposition follows from part 3 of Lemma

2. It remains to prove part 4. Let λ be an eigenvalue of Q and v be a corresponding

eigenvector. Then ΣMv “ λΣXv. Thus v
JΣMv “ λvJΣXv, that is,

λ “
vJΣMv

vJΣMv ` vJΣX|Mv
.

Since vJΣX|Mv ě 0, 0 ď λ ď 1. ///

B Proofs for Section 3

Proof of Theorem 1 Let Λ be the set of all eigenvalues of Q. It follows from Proposition

1 that Λ Ă r0, 1s. For each λ P Λ, denote by Vλ the eigenspace that correspond to λ.

It also follows that Vλ is a linear subspace of RN , pVλqλPΛ is linearly independent (that

12It is used, for example, in Campbell, Lo, and MacKinlay (1997, Section 6.4), in which the minimum
is replaced by the maximum.
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is, if vλ P Vλ for every λ P Λ and
ř

λPΛ vλ “ 0, then vλ “ 0 for every λ P Λ), and
ř

λPΛ Vλ “ RN .

Then, for each λ P Λ, there is a vλ P Vλ such that ζp0q “
ř

λPΛ vλ. Since ζp0q ‰ 0,

there is a λ P Λ such that vλ ‰ 0. Let tλ1, λ2, . . . , λKu be the set of all such λ’s. For each

k, write vk “ vλk
, then ζp0q “

řK
k“1 vk.

Since pI ` ηQqvk “ p1 ` ηλkqvk, pI ` ηQq´1vk “ p1 ` ηλkq´1vk. Thus,

ζpηq “ pI ` ηQq´1ζp0q “

K
ÿ

k“1

pI ` ηQq´1vk “

K
ÿ

k“1

1

1 ` λkη
vk.

///

Proof of Proposition 2 1. By the definition of Q, Ker pλkΣX ´ΣMq “ Ker pλkIN ´Qq

and

dimKer pλkIN ´ Qq “ N ´ rank pλkΣX ´ ΣMq ą 0.

Thus Ker pλkΣX´ΣMq is the eigenspace ofQ that corresponds to eigenvalue λk. Moreover,

K
ÿ

k“1

dimKer pλkΣX ´ ΣMq

“

K
ÿ

k“1

pN ´ rank pλkΣX ´ ΣMqq

“KN ´

K
ÿ

k“1

rank pλkΣX ´ ΣMq

“KN ´ pK ´ 1qN “ N.

Thus RN coincides with the direct sum of the K eigenspaces Ker pλkΣX ´ ΣMq. Thus

λ1, λ2, . . . , λK are the eigenvalues of Q. Part 1 therefore follows from Theorem 1.

2. This is a special case of part 2 with K “ 1.

3. Since rankΣM ă N and rank pΣX ´ ΣMq ă N , this is a special case of part 1 with

K “ 2 and tλ1, λ2u “ t0, λu.

4. Since rankQ “ rankΣM “ 1, by Proposition 1, there are a λ ą 0 and v P RNzt0u

such that Qv “ λv, that is, pλΣX ´ ΣMqv “ 0. Thus rank pλΣX ´ ΣMq ď N . Hence

rank pλΣX ´ ΣMq ` rankΣM ď N . On the other hand, rank pλΣX ´ ΣMq ` rankΣM ě

rankλΣX “ N . Thus rank pλΣX ´ ΣMq ` rankΣM “ N . The conclusion follows then

from part 3. ///

Proof of Corollary 1 1. This follows from part 2 of Proposition 2.
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2. By assumption, rankΣM “ N ´ L. As for rank pλΣX ´ ΣMq, recall from linear

algebra that the row space of any matrix will not be changed by subtracting from row

vectors any linear combinations of the other vectors. Thus

Row pλΣX ´ ΣMq

“Row

˜

Σ
qX Σ

qX pX

Σ
pX qX Σ

pX ´ λ´1Σ
xM

¸

“Row

˜

Σ
qX Σ

qX pX

Σ
pX qX

´ Σ
pX qX

Σ´1
qX
Σ

qX
Σ

pX
´ λ´1Σ

xM
´ Σ

pX qX
Σ´1

qX
Σ

qX pX

¸

“Row

˜

Σ
qX Σ

qX pX

0 0

¸

.

Thus rank pλΣX ´ ΣMq “ L. By part 2 of Proposition 2, there are a vR P KerΣM and a

vA P Ker pΣX ´ ΣMq such that for every η ą ´1,

ζpηq “ vR `
1

1 ` λη
vA.

Since KerΣM “ RL ˆ t0u, the n-th coordinate of vR is equal to zero for every n ą L.

This part then follows from the above equality. ///

C Lemmas and Proofs for Section 4

Theorems 2 is proved via the following Lemma 3 and 4.

Lemma 3 Let a P RN and c P RN .

1. Assume that a ¨ c ą 0. Define

Ξ˚ “ pa ¨ cq´1ccJ P S N
` , (34)

then }c}2pa ¨cq´1 is an eigenvalue of Ξ˚ of multiplicity 1 with a corresponding eigen-

vector c, and 0 is an eigenvalue of Ξ˚ of multiplicity N ´ 1.

2. Assume that a ¨ c ą 0. For every Ξ P S N
` , if vJΞv ě vJΞ˚v for every v P RN and

aJΞa “ aJΞ˚a, then Ξa “ c, where Ξ˚ is defined by (34).

3. Assume that c ‰ 0. For every Ξ P S N
` , if Ξa “ c, then a ¨ c ą 0, vJΞv ě vJΞ˚v

for every v P RN , and aJΞa “ aJΞ˚a, where Ξ˚ is defined by (34).
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The first part of Lemma 3 defines a positive semidefinite matrix Ξ˚ based on two

vectors. Using it, the last two parts jointly gives a necessary and sufficient condition for

a positive semidefinite matrix to map one of the two vectors to the other.

Proof of Lemma 3 1. This is straightforward, possibly except for the statement on

multiplicity, but it follows directly from the fact that the column space of Ξ˚ coincides

with the line spanned by c.

2. Since Ξ ´ Ξ˚ P S N
` , pΞ ´ Ξ˚q

1{2 is well defined. Moreover, 0 “ aJ pΞ ´ Ξ˚q a “
›

›

›
pΞ ´ Ξ˚q

1{2 a
›

›

›

2

. Thus pΞ ´ Ξ˚q
1{2 a “ 0. Hence Ξa “ Ξ˚a “ c.

3. Since Ξa “ c ‰ 0, a ¨ c “ aJΞa “ }Ξ1{2a}2 ě 0 and Ξ1{2a ‰ 0. Thus }Ξ1{2a} ą 0

and, hence, a ¨ c ą 0. Since Ξ˚a “ c, aJΞ˚a “ a ¨ c “ aJΞa. It remains to prove that

vJΞv ě vJΞ˚v for every v P RN . Note that vJΞv ě vJΞ˚v if and only if pvJΞvqpa ¨ cq ě

pc ¨ vq2. Since Ξa “ c, this is equivalent to pvJΞvqpaJΞaq ě paJΞvq2, which can further

be rewritten as
›

›Ξ1{2v
›

›

2 ›
›Ξ1{2a

›

›

2
ě
``

Ξ1{2v
˘

¨
`

Ξ1{2a
˘˘2

. This last inequality follows from

the Cauchy-Schwarz inequality. ///

Lemma 4 Let a P RN , c P RN , and Σ P S N
``. For each θ ą 0, define

vθ “
1

θ
Σ´1c ´ a

and assume that there is no θ ą 0 for which vθ “ 0.

1. Assume that a ¨ c ą 0. Write θ̄ “ paJΣaq´1pa ¨ cq. For each θ P
`

0, θ̄
˘

, define

Γθ “
1

pvθqJ Σvθ

`

Σvθ
˘ `

Σvθ
˘J

P S N
` ,

ηθ “

`

vθ
˘J

Σ
`

vθ
˘

aJΣvθ
P R``,

then }Σvθ}2
`

aJΣvθ
˘´1

is an eigenvalue of ηθΓθ of multiplicity 1 with a correspond-

ing eigenvector Σvθ, and 0 is an eigenvalue of ηθΓθ of multiplicity N ´1. Moreover,

vJΣv ě vJΓθv for every v P RN .

2. Assume that a ¨ c ą 0. For every pΓ, η, θq P S N
` ˆR`` ˆR``, if θ ă θ̄, vJpηΓqv ě

vJpηθΓθqv for every v P RN , and aJpηΓqa “ aJpηθΓθqa, then θpΣ ` ηθΓθqa “ c,

where θ̄, Γθ, and ηθ are defined as in part 1.

3. Assume that c ‰ 0. For every pΓ, η, θq P S N
` ˆ R`` ˆ R``, if θpΣ ` ηΓqa “ c and

vJΣv ě vJΓv for every v P RN , then a¨c ą 0, θ ă θ̄, η ě ηθ, vJpηΓqv ě vJ
`

ηθΓθ
˘

v
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for every v P RN , and aJpηΓqa “ aJ
`

ηθΓθ
˘

a, where θ̄, Γθ, and ηθ are defined as

in part 1.

Proof of Lemma 4 1. For every θ P
`

0, θ̄
˘

, a ¨ pΣvθq “ θ´1a ¨ c ´ aJΣa ą 0. Moreover,

ηθΓθ “
1

aJΣvθ
`

Σvθ
˘ `

Σvθ
˘J

P S N
` .

This part, therefore, follows from part 1 of Lemma 3, except that vJΣv ě vJΓθv for

every v P RN . To show this, note first that it is equivalent to the condition that if v˚ is

a solution to the problem

max
vPRN

vJΓθv

subject to vJΣv ď 1,

then pv˚qJΓθv˚ ď 1. Indeed, by the definition of Γθ, the objective function can be replaced

by
ˇ

ˇ

`

Σvθ
˘

¨ v
ˇ

ˇ. Thus, by the first-order condition, either v˚ or ´v˚ coincides with

´

`

vθ
˘J

Σvθ
¯´1{2

Σ´1
`

Σvθ
˘

“

´

`

vθ
˘J

Σvθ
¯´1{2

vθ.

It is then easy to show that

pv˚qJΓθv˚ “

´

`

vθ
˘J

Σvθ
¯2

´

pvθqJ Σvθ
¯2 “ 1.

2. This part follows from part 2 of Lemma 3.

3. This part follows from part 3 of Lemma 3, except that a ¨ c ą 0, θ ă θ̄, and η ě ηθ.

First, since a ¨ pΣvθq ą 0, a ¨ c ą θaJΣa. Thus a ¨ c ą 0 and θ ă θ̄. As for η ě ηθ, since

vJΣv ě vJΓv for every v P RN and pvθqJΣvθ “ pvθqJΓθvθ,

η ´ ηθ “
`

pvθqJΣvθ
˘´1 `

ηpvθqJΣvθ ´ ηθpvθqJΓθvθ
˘

ě
`

pvθqJΣvθ
˘´1 `

pvθqJ
`

ηΓ ´ ηθΓθ
˘

vθ
˘

ě 0.

///

Proof of Theorem 2 This theorem can be derived from parts 2 and 3 of Lemma 4 for

the case where c “ µM ´ R1, Σ “ ΣX and Γ “ ηΣM . ///

As in Lemma 4, let a P RN , c P RN , and Σ P S N
`` and assume that there is no

θ ą 0 such that θΣa “ c. Then, for each θ ą 0, there is a pΓ, ηq P S N
` ˆ R`` such

that θpΣ ` ηΓqa “ c and Σ ´ Γ P S N
` if and only if θ ă θ̄ (where θ̄ “ paJΣaq´1pa ¨ cq),
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the largest eigenvalue of ηΓ is larger than or equal to }θ´1c ´ Σa}2pθ´1pa ¨ cq ´ aJΣaq´1,

and η is larger than or equal to
´

pθ´1c ´ Σaq
J
Σ´1 pθ´1c ´ Σaq

¯

pa ¨ pθ´1c ´ Σaqq
´1
. We

are interested in minimizing these two values by varying θ over the interval p0, θ̄q. The

following lemma is general enough to deal with both of the two minimization problems.

Lemma 5 Let a P RN , c P RN , Σ P S N
``, and S P S N

``. For each θ ą 0, define

vθ “
1

θ
Σ´1c ´ a

and assume that there is no θ ą 0 for which vθ “ 0. Assume also that a ¨ c ą 0 and write

θ̄ “
`

aJΣa
˘´1

pa ¨ cq. Then there is a unique θ ą 0 that minimizes the function

`

0, θ̄
˘

Ñ R``

θ ÞÑ

`

vθ
˘J

Svθ

aJΣvθ
,

(35)

which is given by

θ´1 “ θ̄´1 `

¨

˚

˝

´

vθ̄
¯J

Svθ̄

cJΣ´1SΣ´1c

˛

‹

‚

1{2

(36)

and the minimized value of the function is equal to

2

a ¨ c

˜

`

cJΣ´1SΣ´1c
˘1{2

ˆ

´

vθ̄
¯J

Svθ̄
˙1{2

`

´

vθ̄
¯J

SΣ´1c

¸

. (37)

To find the minimum, over θ P p0, θ̄q, of the largest eigenvalue of ηθΓθ in Lemma 4,

we take S “ Σ2. Then (36) can be rewritten as

θ´1 “ θ̄´1 `

›

›θ̄´1c ´ Σa
›

›

}c}
, (38)

and (37) can be rewritten as

2

a ¨ c

`

}c}}θ̄´1c ´ Σa} `
`

θ̄´1c ´ Σa
˘

¨ c
˘

. (39)

To find the minimum of ηθ over θ P p0, θ̄q, we take S “ Σ. Then (36) can be rewritten as

θ´1 “ θ̄´1 `

˜

`

θ̄´1c ´ Σa
˘J

Σ´1
`

θ̄´1c ´ Σa
˘

cJΣ´1c

¸1{2

, (40)

41



and (37) can be rewritten as

2

a ¨ c

ˆ

´

`

cJΣ´1c
˘ `

θ̄´1c ´ Σa
˘J

Σ´1
`

θ̄´1c ´ Σa
˘

¯1{2

`
`

θ̄´1c ´ Σa
˘J

Σ´1c

˙

. (41)

Proof of Lemma 5 The function (35) is continuous. Its value diverges to infinity as

θ Ò θ̄ (because, then, aJΣvθ Ñ 0) and as θ Ó 0. Thus there is a θ that minimizes the

function. To show that (36) gives the unique solution, write β “ θ´1 and differentiate

ln
pβΣ´1c ´ aq

J
S pβΣ´1c ´ aq

aJΣ pβΣ´1c ´ aq

with respect to β to obtain the first-order necessary condition

2pβΣ´1c ´ aqJSΣ´1c

pβΣ´1c ´ aq
J S pβΣ´1c ´ aq

´
a ¨ c

βa ¨ c ´ aJΣa
“ 0,

which is equivalent to

pa¨cq
`

cJΣ´1SΣ´1c
˘

β2´2
`

aJΣa
˘ `

cJΣ´1SΣ´1c
˘

β`2
`

aJΣa
˘ `

aJSΣ´1c
˘

´
`

aJSa
˘

pa¨cq “ 0,

which is, in turn, equivalent to

`

β ´ θ̄´1
˘2

´

´

vθ̄
¯J

Svθ̄

cJΣ´1SΣ´1c
“ 0. (42)

Since vθ̄ ‰ 0, the second term of the left-hand side is strictly positive. Hence (42) has

two distinct solutions, one larger and the other smaller than θ̄´1. The former satisfies

the first-order condition but the latter does not, because it is necessary that β ą θ̄´1.

Therefore, there is only one solution to the problem of minimizing the function (35),

which is given by (36).

As for the minimized value of the function, note that

vθ “ vθ̄ `

¨

˚

˝

´

vθ̄
¯J

Svθ̄

cJΣ´1SΣ´1c

˛

‹

‚

1{2

Σ´1c.
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Thus

aJΣvθ “ pa ¨ cq

¨

˚

˝

´

vθ̄
¯J

Svθ̄

cJΣ´1SΣ´1c

˛

‹

‚

1{2

,

`

vθ
˘J

Svθ “

´

vθ̄
¯J

Svθ̄ ` 2

¨

˚

˝

´

vθ̄
¯J

Svθ̄

cJΣ´1SΣ´1c

˛

‹

‚

1{2

´

vθ̄
¯J

SΣ´1c `

´

vθ̄
¯J

Svθ̄

cJΣ´1SΣ´1c
cJΣ´1SΣ´1c

“ 2
`

vθ
˘J

Svθ ` 2

˜

`

vθ
˘J

Svθ

cJΣ´1SΣ´1c

¸1{2

vθ̄SΣ´1c.

Thus (37) is obtained. ///

We can now prove Theorem 3.

Proof of Theorem 3 This theorem can be derived Lemma 5 for the case where c “

µM ´ R1, Σ “ ΣX , Γ “ ηΣM , and S “ Σ2 or S “ Σ, as explained right after the lemma.

///
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