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Abstract 

In our network analysis of 40 developed, emerging and frontier stock markets during the 
2006–2014 period, we describe and model volatility spillovers during both the global 
financial crisis and tranquil periods. The resulting market interconnectedness is depicted by 
fitting a spatial model incorporating several exogenous characteristics. We confirm the 
presence of significant temporal proximity effects between markets and somewhat weaker 
temporal effects with regard to the US equity market – volatility spillovers decrease when 
markets are characterized by greater temporal proximity. Volatility spillovers also present a 
high degree of interconnectedness, which is measured by high spatial autocorrelation. This 
finding is confirmed by spatial regression models showing that indirect effects are much 
stronger than direct effects, i.e., market-related changes in “neighboring” markets (within a 
network) affect volatility spillovers more than changes in the given market alone. Our results 
also link spillovers of escalating magnitude with increasing market size, market liquidity and 
economic openness. 
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1 Introduction 

How does volatility propagate across stock markets over space and time? This question is 

central to portfolio diversification strategies and their management, as stock volatility has 

become a standard measure of risk in finance (Garcia and Tsafack, 2011; Aboura and 

Chevallier, 2014). Volatility is propagated across markets via spillovers that exert greater 

impact when markets are more connected (Diebold and Yilmaz, 2015). In the comprehensive 

approach presented in this paper, we answer the central question posed above by analyzing 

volatility spillovers across 40 stock markets over the 2006–2014 period. In so doing, we 

employ a network approach that has recently become a major technique for studying issues 

related to market connectedness. 

 Our analysis is further motivated by the need to better capture the underlying 

phenomena behind the elusive dynamics of volatility spillovers, namely crashes, distress and 

contagion. Crashes in financial markets are unexpected, by definition, and they represent a 

major concern for policy makers, investors, and the general public, as market downturns or 

crashes are connected with crucial periods of high volatility (Wu, 2001). The recent financial 

crisis (2008), the sovereign-debt crises (2010–2011), and the most recent Chinese stock 

market turmoil (2015) have shown us that even local market-specific problems might 

dramatically influence stock markets around the world (e.g., Arghyrou and Kontonikas, 2012; 

Beirne and Fratzscher, 2013). It seems that the growing interdependence between economies, 

markets, and asset classes has resulted in increased transmission of negative shocks across 

markets. 

We are also motivated in this research by the fact that most economic agents are 

naturally interested in market linkages during times of market distress, which are frequently 

accompanied by increased market volatility. This is the domain of the transmission of 

negative shocks and of so-called “contagion”. Country-specific fundamentals generally fail to 

explain both the timing and the severity of financial contagion in individual countries 

(Fratzscher, 2002). Moreover, identifying contagion necessitates establishing a causal link – 

as opposed to the mere co-occurrence of crises that might simply result from common shocks 

(Allen and Gale, 2000; Kaminsky and Reinhart, 2000). 

We contribute to the literature in several ways. We follow key motivational 

underpinnings and establish causal links in market interdependence. Using the network 

approach to analyze volatility spillovers, we show that spillovers in stock markets 
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significantly escalate during the financial crisis (2008) and the European sovereign debt crisis 

(2011). Volatility spillovers are highly persistent in general, but their size markedly 

diminishes as the time-distance (temporal proximity) among markets increases. Our results 

also link the escalating magnitude of spillovers with increasing market size, market liquidity 

and economic openness. There are numerous identified market-specific differences, and we 

argue that their correlations with the size and persistence of spillovers can be exploited more 

subtly in terms of international portfolio diversification. 

The remainder of this paper is organized as follows. We provide a brief literature 

overview in Section 2. In Sections 3 and 4, we describe our data and methodology. In Section 

5, we present and discuss our results. Section 6 briefly concludes with some implications. 

 

2 Brief literature review 

Recently, several studies have investigated volatility transmission across various markets. 

Mensi et al. (2013) examine return and volatility links among the S&P500 and commodity 

price indices for energy, food, gold, and beverages from 2000 to 2011 and find that the gold 

and oil markets appear to be strongly influenced by US stock market volatility. Nazlioglu et 

al. (2013) study volatility transmission between oil and selected agricultural commodity 

prices (wheat, corn, soybeans, and sugar) from 1986 to 2011. Their results from variance 

causality tests differ depending on the periods examined but reveal significant volatility 

spillovers from the oil market to the commodity markets (except for sugar) during the post-

crisis period. Baruník et al. (2015) analyze volatility spillovers on the oil commodity market 

over the 1987–2014 period and show that spillovers increase after 2008. However, they also 

show that relatively balanced and low asymmetries in volatility spillovers correlate well with 

the ongoing financialization of oil commodities and the advent of heightened oil exploration 

and production in the US. In addition, Baruník et al. (2016a) analyze most liquid US stocks in 

seven sectors and offer ample evidence of the asymmetric connectedness of stocks at the 

disaggregate level. The asymmetries in spillovers propagate in such a way that although 

negative spillovers are often of substantial magnitude, they do not strictly dominate positive 

spillovers. As was the case in the commodities’ markets, the overall intra-market 

connectedness of US stocks is shown to increase substantially over the recent financial crisis. 

Hwang et al. (2013) investigate the recent financial crisis (which originated in the US) 

and aim to find the mechanism by which the crisis was transmitted into emerging markets; 
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moreover, these authors attempt to identify the determinants of co-movements between the 

US and ten emerging stock markets. The transmission mechanism is understood as the same 

is defined by Chiang et al. (2007), i.e., who reveal three different phases of crisis 

transmission: (i) the contagion period, i.e., a sudden significant increase in dynamic 

correlations; (ii) the herding phase, i.e., when correlations remain at high levels; and (iii) the 

post-crisis period, when correlations should adjust to pre-crisis levels. The transmission 

mechanism defined in this manner varies across the examined emerging markets; thus, not all 

phases have been identified in all countries. Moreover, the daily sovereign CDS spread, TED 

spread, VIX index for the US stock market, information on foreign institutional investments, 

and one month’s volatility index for the exchange rate are used as exogenous variables to 

determine dynamic correlations. The first two variables are associated with a decrease in the 

dynamic correlations, whereas the remaining three accompany increased correlations. 

Luchtenberg and Vu (2015) also investigate the determinants of worldwide contagion 

during the recent financial crisis. However, their sample includes developed stock markets, 

and the results confirm that mature markets transmit and receive contagion. Both economic 

fundamentals (such as trade structure, interest and inflation rates, industrial production, and 

regional effects) and investors’ risk aversion are significantly related to the level of contagion. 

These findings are in line with those of Baur (2012), Kenourgios and Padhi (2012), and 

Bekaert et al. (2014) and suggest that investors should definitely consider diversifying by 

asset classes or sectors, as the benefits stemming from international diversification have been 

significantly reduced in recent years. Nonetheless, even diversification by asset classes might 

not yield desired outcomes, as Baruník et al. (2016b) show. 

In terms of methodology, a dominant vehicle in research on volatility spillovers is a 

version of the GARCH model, which thus resembles research on volatility itself (for example, 

Beirne et al. 2013; Lin, 2013; Li and Giles, 2015, among others). Diebold and Yilmaz (2009, 

2012) make a new contribution to the spillover literature by developing a volatility spillover 

index based on forecast error variance decompositions from vector autoregressions (VARs) to 

measure the extent of volatility transfer among markets. Our approach in assessing market 

connectedness via a network-model-based measure represents another step in the further 

employment of network models to measure volatility spillovers. 

The rest of the paper is organized as follows. In Sections 3 and 4, we describe our data 

and methodology. In Section 5, we present and discuss our results. Section 6 briefly 

concludes and presents some implications. 
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3 Data description and return alignment procedure 

Our sample covers the daily stock market index data from 40 markets across five continents 

from January 2, 2006, until December 31, 2014. According to the Dow Jones Classification 

System, 21 markets may be regarded as developed, 14 as emerging, and 5 as frontier: the list 

of countries and stock market indices is available in Appendix A. Data on annual market 

capitalization and market capitalization to GDP are from the World Development Indicators 

database of the World Bank1. Data on equity prices and exchange rates are from the Thomson 

Reuters Datastream. We chose our sample of markets based on the availability of the 

following data: (i) closing values, (ii) closing hours, and (iii) changes in closing hours. Our 

analysis of equity volatility spillovers is based on local currency, as we did not want to 

obscure the extent of market co-movements with forex market fluctuations (Mink, 2015). 

Because we cover markets in different time zones, we carefully address the issue of 

non-synchronous trading to avoid distorted results. Especially with respect to performing the 

Granger causality test, caution must be exercised because information sets must be precisely 

aligned with respect to time. For example, daily data downloaded from well-known financial 

databases provide closing prices for the US and Japanese stock market indices at the same 

time t. Assume that we want to test a bi-directional link (in the Granger sense) between these 

two markets. In one direction2 (US ≠> Japan), it is perfectly reasonable to explain 

returns/volatilities in the Japanese market at (calendar) date t with those from the US from 

date t–1. Any software application will perform the Granger causality test in this manner. 

However, in the second direction (Japan ≠> US), trading in the Japanese market is already 

over, and including the value from Japan at date t–1 thus actually takes into account the 

second available value. The problem of different trading hours is even more severe when 

considering the closing prices from the same day collected from non-overlapping markets. 

For example, when computing the correlations between the US and Japanese market, the 

values from the same date from the US are actually subject to forward-looking bias. Different 

trading hours may, however, be useful in Granger causality testing and can be used to our 

advantage, but only after aligning the data properly. 

Our return alignment procedure follows Výrost et al. (2015), which we briefly 

summarize below: 

                                                            
1 Appendixes B and C present a description of the data used in spatial models and their basic characteristics. 
2  Symbol “≠>” denotes Granger non-causality, i.e., it should be read as “does not Granger-cause”. 
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(1)  Closing prices for two stock markets are pairwise synchronized; i.e., when 

there is a missing observation (non-trading day) on one market, observations 

corresponding to this day on the other market are deleted. 

(2)  Consecutive returns are computed, which means that returns over non-trading 

days during the week are excluded. 

(3) Returns are aligned to address the different closing hours on the respective 

national stock exchanges. By this step, we also take into account historical 

changes in trading hours (collected directly from the national stock 

exchanges), daylight saving time, and the type of closing auctions.3 

 

4 Applied methodology 

4.1 Granger causality networks 

First, we outline our approach to assess links between volatilities of market pairs. Following 

Hong (2001) in testing for volatility spillovers, we formally set the “causality in variance 

hypothesis” in the following form: 

H0: E{(Y1t – E[Y1t |It–1])
2 |I1t–1} = E{(Y1t – E[Y1t |It–1])

2 |It–1} 

H1: E{(Y1t – E[Y1t |It–1])
2 |I1t–1} ≠ E{(Y1t – E[Y1t |It–1])

2 |It–1}. 

The It = (I1t, I2t) is the information set, which consists of information subsets Iit, i = 1, 2 of a 

given time series Yit, and t is the usual time index. The definition of the hypothesis above 

filters out causality in-mean (if it is present) using information set It–1 in E[Y1t |It–1]. Hence, the 

hypothesis compares the differences in conditional variance with respect to a common mean 

that is conditioned on full information. We say that time series Y2t causes Y1t in variance with 

respect to information set It–1 if H0 is rejected in favor of H1. Evidence of causality in variance 

from series Y2t to Y1t is understood as evidence of volatility spillovers for a given time period. 

We use Granger causality tests to create a network, which is graph Gt = (V, Et) at time t, 

where elements of the vertex set V ⊂	Գ	correspond to individual markets. The elements of the 

set of edges Et ⊂ V × V contains all edges (i, j) between markets i, j ∈ V, for which volatility 

spillovers were found using the appropriate Granger causality test and significance level, i.e., 

a directed edge from market i to market j is constructed if series Yit Granger causes the 

variance in series Yjt. 

                                                            
3 Further details are available in Výrost et al. (2015). 
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In the following, we will describe a procedure to test for causality in variance based on 

Cheung and Ng (1996), Hong (2001) and Lu et al. (2014). Some of the procedures are 

performed on the entire sample period, such as the filtration procedure. The tests are 

performed on rolling subsamples of 12 months: we begin with a subsample from January 

2006–December 2006 and end with a subsample from January 2014–December 2014. 

 

4.2 Filtration procedure 

The causality in variance test aims to assess the significance of the cross-lagged correlation 

coefficient of squared standardized conditional returns from a suitable ARFIMAX-GARCH 

model (Hong, 2001). In this manner, we remove the effects of spurious causality in variance 

that might be caused by the conditional heteroskedasticity of the underlying return series. In 

this section, we describe the filtration procedure used to derive the squared standardized 

conditional returns. 

When modeling volatility spillovers between equity markets, our main quantity of 

interest is continuous returns, rt: 

1
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 (1) 

where Pt is the value of a corresponding equity market index at time t. First, each series of 

continuous returns rt is filtered via an ARFIMAX-GARCH model. The mean equation is 

defined as: 
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where ηt follows the Johnson-SU distribution (Johnson, 1949a, b) with the probability density 

function: 

    22/1
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2
z

Jexf
  , (3) 

where z = ς-1(sinh–1(x) – λ) and J = ς-1(x2 + 1) –1/2. Here, λ and ς are parameters that determine 

the skewness and kurtosis of the distribution. The motivation for this particular choice of the 

distribution of ηt was based on Choi and Nam (2008), who presented evidence that such 

distributions can account for asymmetries and extreme tail events, which are often found in 
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financial markets. To account for the short-term shocks that might be responsible for volatility 

spillovers, we include the following variables in the mean equations: i) FXt, the continuous 

return on the foreign exchange rate of the local currency to USD; ii) STXt, the daily 

continuous returns of the STOXX Global 1800 index; iii) OILt, continuous daily returns from 

the Europe Brent Spot Price; iv) continuous daily returns of the Gold spot price (at PM fix); 

and v) continuous daily returns of VIXt to account for the overall appetite for risk of 

international investors. The returns of STXt, OILt, and GOLDt are denominated in US dollars. 

The variance equation was chosen from the following GARCH-type specifications. 

Apart from the standard GARCH model of Bollerslev (1986): 







 
s

l
ltl

r

k
ktit

1

2

1

22  , (4) 

we also consider the following specifications: AVGARCH (Taylor, 1986), NGARCH 

(Higgins and Bera, 1992), EGARCH (Nelson, 1991), GJR-GARCH (Glosten et al., 1993), 

APARCH (Ding et al., 1993), NAGARCH (Engle and Ng, 1993), TGARCH (Zakoian, 1994), 

FGARCH (Hentschel, 1995), and CSGARCH (Lee and Engle, 1999). The preferred model is 

chosen based on the following steps4: 

1) For each specification, we consider all combinations of lag orders p, q, r, s = 1, 2 with 

the differencing parameter set to d = 0. 

2) A specification is removed if the resulting standardized residuals show signs of 

autocorrelation and conditional heteroskedasticity based on the Peña and 

Rodríguez (2006) test with Monte Carlo critical values (see Lin and McLeod, 2006)5. If 

no suitable model is found, we proceed to step 4. 

3) Appealing to the parsimonious principle, we retain only specifications with the lowest 

number of parameters p + q + r + s. 

4) The selection of the preferred specification is then made as follows: 

a. If the remaining set of specifications includes more than one model, the final 

specification is selected based on the Bayesian information criterion (BIC; Schwarz, 

1978). 

b. If no suitable specification is found using d = 0, steps 1 – 4 are repeated with d ≠ 0. 

c. If no suitable specification is found after 4b), the final specification is selected 

directly from all models based on the BIC. 

                                                            
4 The entire analysis is conducted in R software using the rugarch (Ghalanos, 2012b) packages. 
5 Autocorrelation of standardized residuals and their squares was tested for up to 20 lags. 



8 
 

4.3 The Granger causality test 

After the filtration procedure described above, we proceed to test the Granger (non-)causality 

among markets in our sample. Formally, we test the null hypothesis of Granger non-causality 

from market j to market i (denoted by j ≠> i) using standardized conditional demeaned 

variances      Ts
T

k ikikititit  


1

222 //   from the preferred ARFIMAX-GARCH 

specifications estimated in the previous section. We calculate the cross-lagged correlations: 

   
   0ˆ0ˆ

ˆ
ˆ

jjii

ij

CC

kC
k  , (5) 

where 

  0,
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 kss
T
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T

kt
kjtitij . (6) 

It should be noted that prior to the calculation of cross-lagged correlations, standardized 

conditional mean returns were aligned as specified in Section 2.6 

Next, the null hypothesis of Granger non-causality (j ≠> i) is tested using the test 

statistic proposed by Hong (2001): 
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where we use the Bartlett weighting scheme: 














 

1,0

1,1

z
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j
zw . (8) 

Using a non-uniform kernel weighting scheme, the choice of the M in the kernel-weighting 

scheme should not affect the size of the test in a meaningful manner (Hong, 2001), whereas 

power is affected only slightly. The asymptotic distribution of Q(M) under the null hypothesis 

follows the standardized normal distribution. 

In our empirical application, the choice of M is 5, as it corresponds to one trading week, 

which also has implications for the properties of the dependent variable used in the spatial 

regression models described in Section 3.5. Thus, this variable becomes:  

                                                            
6  Note also that k may sometimes (in addition to cases described by Eq. 9) be equal to 0 and remain valid for 

testing the hypothesis j ≠> i. The minimum k depends on the alignment of the standardized conditional mean 
returns (see Section 2). 
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A simple extension of Lu et al. (2014) allows for instantaneous volatility spillovers 

from market j to market i, by allowing k = 0 in calculating cross-lagged correlations, i.e.: 
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                                              (10) 

This extension is used for markets with the same closing hours. Among the 40 markets, 

there are 1560 possibilities for Granger causality in variances, which may lead to an excessive 

overall type I error in the tests. We decided to err on the safe side and therefore employ a 

rather conservative Bonferroni adjustment using the significance level 0.01/(N(N–1)), where 

N is the number of stock markets. 

 

4.4 Measures of connectedness 

A Granger causality network defined above is a representation of a structure of relationships 

between volatilities of the world stock market indices. Within such a complex system of 

relationships investors and policy makers must possess measures helping them i) to identify 

the most important markets and ii) to know when the markets are most interconnected. With 

daily data, a highly interconnected market suggests that from a short-term perspective, an 

investor faces a higher chance of (negative) volatility spillovers, which translates into higher 

risk. There are two general approaches for measuring the interconnectedness of vertices 

within a network: local and global measures of connectedness. 

 

4.4.1 Vertex-wise connectedness measures 

Local measures of vertices’ connectedness consider only possible links with other vertices in 

the network through one edge, i.e., for each vertex, we consider only its neighbors. A vertex’s 

degree is the simplest measure; within a directed network, we must discriminate between the 

in-degree, degin(i) defined as:  

degin(i) = |{(j, i) ∈ Et; j ∈ V}| (11) 

and out-degree degout(i), defined as:  

degout(i) = |{(i, j) ∈ Et; j ∈ V}| (12) 



10 
 

Here, the |.| corresponds to the cardinality of the given set. Markets with a higher in-degree 

are more likely to be influenced in terms of volatility by other markets in the system, whereas 

markets with a higher out-degree are likely to create or propagate volatility spillovers within 

the system. 

Global measures of connectedness attempt to measure the relative importance of a 

market within a network with respect to other vertices in the network. The most frequently 

used measures are closeness and betweenness centrality, and both use the concept of the 

shortest path. Let us define d(i,j) to be the shortest path from vertex i to vertex j. The 

closeness of vertex i is based on measuring the total sum of shortest paths to all other vertices 

in the network. The betweenness of a vertex i is based on measuring the total sum of shortest 

paths between any pair of vertices (except i), which pass through vertex i. However, neither of 

the two measures considers graphs that are not strongly connected, i.e., at least one vertex is 

not reachable from at least one other vertex in the network, which is also the most likely case 

of Granger causality volatility spillover networks constructed in this study. For example, in a 

simple system of three markets, the only two relationships might be A => B and A => C, 

which means that market A is not reachable from market B nor from market C. 

If there is no path between two vertices, we can set the shortest path to d(i,j) = ∞ and 

define conveniently that 1/d(i,j) = 0. Boldi and Vigna (2014) use this approach and then 

proceed to define the harmonic centrality of market i as:  

    





jijid jid

iH
,, ,

1
 (13) 

More connected markets within the network should have higher harmonic centrality 

than less connected markets, i.e., such markets are more important. 

 

4.4.2 Network-wise connectedness measures 

Conceptually, the centrality of an entire network (i.e., centralization) can be understood 

in two different ways: i) as a network’s compactness and ii) as a concentration of vertices 

within a network (Freeman, 1979). We use two network-wise measures that follow the 

intuition of the former approach to a network’s centrality. 

The standardized average out-degree is defined as:  

   1
deg

1
out

i V

i
V V    (14) 
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The standardized average in-degree is defined in the same manner. The average 

harmonic centrality is defined as: 

 1

i V

H i
V 
  (15) 

Two related measures from the latter group of centralization approaches are also used 

in this study, the out-degree and in-degree centralization: 

    
   

max deg deg

2 1
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 (17) 

Both are based on the notion that the network is considered more centralized if the dispersion 

(Euclidean distance) of out-degrees (in-degrees) of all vertices to the most centralized vertex 

in a given network – the one with the highest out-degree (in-degree) – is also larger. It is 

essentially a measure of network concentration, similar to measures used to assess industry 

concentration. 

We expect that during turbulent periods, we will observe networks that are more 

interconnected, i.e., more compact (Eq. 13–14). Similarly, if volatilities in the equity markets 

are dominated by a single event in one market, we might observe an increase in concentration 

measures (Eq. 15–16). 

 

4.4.3 Stability of networks 

Granger causality networks are constructed for 97 overlapping subsamples of 12 months in 

length. Because the subsamples are overlapping, it might naturally be expected that the 

consecutive networks will look similar. However, it might be interesting to know how these 

relationships change over time – particularly after 12 steps when two subsamples are no 

longer overlapping. For this assessment, we use survival ratios as in Onnela et al. (2003b). Let 

us define Et as a set of edges of the Granger causality volatility spillover network at time t. 

One-step survival ratio at time t is defined as: 

 
st

stt

E

EE
tsSR




 ,1  (18) 

Multi-step survival ratio at time t is then: 
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where s is the number of steps. Observing one- and multi-step survival ratios lets us assess the 

stability of volatility spillovers around the world. A more stable system of relationships 

suggests better predictability of the entire system of volatility spillovers. 

 

4.5 Spatial regression 

4.5.1 Models and estimation 

To model the (non)existence of a volatility spillover and its size, we must address several 

methodological concerns. First, the dependent variable is defined as: 

 
  0ˆ,0

,ˆ
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  (20) 

Such a definition might suggest a tobit-type censored specification. However, the dependent 

variable (the estimated size of the volatility spillover) is actually observable, and there is no 

fixed truncation point, i.e., sometimes an estimate of the average correlation at 0.06 might be 

retained if the corresponding Granger causality test of a volatility spillover turns out to be 

statistically significant, whereas for another pair (or direction) of markets, it might be set to 0. 

Second, volatility spillovers between markets may be clearly related. For example, a 

volatility spillover from the US to the Japanese market and spillover from the US to the South 

Korean market might be related because they both originate from the same market (vertex). 

The size (and the existence) of a volatility spillover from the US to Japan might therefore be 

related to the volatility spillover from the US to South Korea. Such dependencies raise 

endogeneity issues. Spatial regression models allow us to link related volatility spillovers 

through the spatial weighting matrix. Consider the spatial autoregressive lag model of the 

form: 

 )1(
2,~,  NNI0NεεXβWyy   (21) 

In our setting, the variable of interest (y) corresponds to Eq. 19. We set sijt ∈ St. The 

matrix St is our volatility spillover matrix. To obtain our dependent variable, we first vectorize 

the matrix S (by calculating vec(S)), and then exclude the elements corresponding to the 

diagonal of S, as we are not interested in modeling loops, as they have no economic meaning 

in our Granger analysis. We thus obtain a vector y of length N(N – 1). Exogenous variables 
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are in X. The model parameters include vector β and a scalar ρ, which is related to spatial 

autocorrelation. 

Next, we define the matrix of spatial weights to indicate neighboring observations, 

allowing for the modeling of spatial dependence. In our case, we must define the spatial 

weight matrix W for all potential edges in y; thus, W is a matrix of order N(N – 1) × N(N – 1). 

In general, for any two distinct possible edges (i, j) ∈ V × V and (k, l) ∈ V × V, we set the 

corresponding element of W to 1 if the possible edges share the outgoing or incoming vertex 

(either i = k or j = l)7 and 0 otherwise.  

Perhaps a more intuitive explanation is that a given value at position (i, j) in matrix W 

corresponds to a possible volatility spillover from market i to market j. The elements of W 

define the neighbors of each edge; if two edges share an outgoing vertex, they model the 

information flow from the same market, and it is thus conceivable that their presence in the 

network might be related. Similarly, we consider the edges to be neighbors when they share 

the incoming vertex. For any row (column) p in W, the nonzero values designate the 

neighbors for edge p. Now, it should be clear why the definition of the dependent variable in 

(20) was chosen in the particular way it was. If we set insignificant volatility spillovers to 0, 

the ρWy on the right-hand side always yields zero elements whenever the two volatility 

spillovers (edges) are unrelated. We can therefore specify W exogenously and simultaneously 

take into account the structure of the Granger causality volatility spillover network. 

The interpretation of the spatial lag model effects is different than the interpretation of 

the usual regression coefficients because the incorporation of the spatial dependence has the 

effect that a unit change in a predictor k does not simply correspond to a change of βk of the 

dependent variable (LeSage, 2008). The spatial dependence between neighboring 

observations means that a change of a predictor in one spatial unit (in our case, a spillover 

between two markets, or equivalently, an edge) may induce changes in the values of the 

dependent variable of its neighbors, which in turn may induce changes back into the initial 

spatial unit. Thus, the effect of the predictor is both direct within a given spatial unit and 

indirect through a feedback loop of its neighbors.  

More formally, for a predictor k, we may calculate a matrix Sk(W) = (I – ρW)-1βk, which 

describes the overall effect of a unit change in predictor k. A so-called average direct effect 

describes the isolated effect of a changing predictor on the dependent variable of its 

                                                            
7 For the purposes of estimation, we have used the row-standardized version of W, where the sum of elements in 

each row is equal to 1. 
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corresponding spatial unit, taking into account the effects of neighbors (averaged over all 

units). An average indirect effect contains information regarding how much the dependent 

variable in a spatial unit would change on average as a result of a unit change in the 

corresponding variable in all other spatial units (except for the initial one). The average total 

effect is the sum of the average direct and indirect effects.  

As for the matrix Sk(W), its diagonal elements are related to the direct effects and off-

diagonal elements to the indirect effects. The proportion of direct and indirect effects in the 

total effects may vary depending on several factors, notably by the interconnectedness defined 

by W and the strength of the spatial dependence given by ρ. 

 

4.5.2 Model specification 

The extent of volatility spillovers is explained via variables related to the importance, 

development and liquidity of the equity market. We have considered variables that are readily 

available and that are used in the previous literature; the detailed definitions of the variables 

are presented in Appendix B. As our dependent variable corresponds to the extent of volatility 

spillovers from market i to market j, each country/market variable corresponds either to the 

out-vertex market (“i”) or in-vertex market (“j”). We have considered the same set of 

explanatory variables for in- and out-vertex markets at first, but the four stocks and foreign 

exchange variables were not important for the in-vertex market; additionally, we made a 

pragmatic choice to report only the results from the models, where four (stock and foreign 

exchange) market variables were not used for the in-vertex market.  

First, we employ the following set of explanatory variables to capture various angles of 

market size: log of the market capitalization expressed in current US dollars, log of the market 

capitalization to GDP, and log of the turnover ratio. 

Then, we consider equity market conditions using two variables: equity market returns 

over the given subsample and realized volatility on the equity market calculated from daily 

returns over the given subsample. 

In addition, we also consider conditions on the foreign exchange market with foreign 

exchange returns measured in terms of the local currency to the US dollar and realized 

volatility on the foreign exchange market calculated from daily returns over the given 

subsample. 
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Furthermore, we account for the external relationship of a given country by employing 

the following: net trade to GDP; and foreign direct investments measured as net inflows to 

GDP and net outflows to GDP. 

Finally, to capture how distant markets are in terms of time, we use two time-proximity 

measures: temporal proximity between closing hours of two markets (always positive) and 

temporal proximity between the out-vertex market and the US market (always positive). 

Two additional notes are important to the description of our data. Our subsamples were 

rolled one month ahead, and the estimation window has a length of 12 months. However, 

except for the market variables, we have data with an annual sampling frequency; these 

observations correspond to a given year. Therefore, if we have a subsample beginning in say 

May 2009 and ending in April 2010, for example, we have two observations for a given 

variable, i.e., one for 2009 and one for 2010. We used a simple linear weighting scheme in 

which the weight was distributed between two annual observations based on the ratio of 

months in a given year. In the example above, the observation in 2009 received a weight of 

0.75 and the observation in 2010 received a weight of 0.25. As market volatilities might be of 

considerable difference between markets, we standardized each of the return series over the 

entire period prior to the calculation of market volatilities. The realized volatility was then 

calculated for a given subsample from standardized returns, which allows the market 

volatilities across different markets to be compared within one model. Next, for each model, 

all variables were standardized to have a zero mean and unit variance; spatial temporal 

variables are an exception. In this manner, we can observe the relative importance of market 

and country variables on the propagation of volatility shocks. 

In Table 2, we report the results from the Moran I test and Geary test to support our 

choice of the spatial model specification. For purposes of comparison, we also report 

Nagelkerke’s pseudo R2 and the AIC.8 

 

  

                                                            
8 The analysis was performed in R using the spdep package (Bivand, 2012). 
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5 Empirical results and discussion 

5.1 Connectedness of markets: A network approach to return spillovers 

Before we present our results, we illustrate the need to use network variables to describe 

complex relationships between markets. To this end, we plot two Granger causality networks. 

Figure 1a depicts the visual structure of complex volatility relationships, which corresponds 

to a subsample period of the highly volatile year of 2008, a subsample with the highest 

harmonic centralization. Obviously, the plot cannot be interpreted for its complexity. 

However, Figure 1b corresponds to a much calmer period beginning in September 2013 and 

ending in August 2014. However, although the resulting network corresponds to a period with 

the lowest harmonic centralization and the relationships appear to be less chaotic, the figure 

remains difficult to visually interpret. To describe such complex systems, we might resort to 

network variables either on the network or vertex level. 

 

<< Insert Figure 1 around here >> 

 
In Figure 2, we plot four time-varying measures of connectedness based on the 97 

subsamples. The top left panel captures the evolution of out-degree centralization, where 

several peaks of the out-degree centralization are visible. Such peaks correspond to periods 

when one or more markets exert a significant influence (in the Granger sense) on the 

volatilities of other markets in the network. For example, when out-degree centralization 

peaked, the US stock market had an out-degree of 23 (Hong Kong had the highest of 26), 

which is a considerable outlier with only 5.8 being the mean. Peaks indicate the presence of a 

few markets that are subject to an extremely large number of volatility spillovers. Peaks are 

frequent in the out-degree centralization, but such events do not appear to occur in the in-

degree centralization. 

Both out/in-degree centrality and mean harmonic weighted centrality measure the 

density or compactness of the Granger causality network, i.e., the interconnectedness of 

volatility spillovers around the world. Their evolution is similar, with two periods of a high 

number of volatility spillovers and a declining pattern throughout the end of the examined 

period. The two periods of the high number of volatility spillovers correspond to the financial 

crisis (2008) and the European debt-crisis (2011). A notable observation is the sharp drop 

after 2011, leaving only approximately 15% of the statistically significant volatility spillovers. 
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One possible explanation is that we actually observe a period of intense cross-market 

relationships beginning in 2007 and ending in 2012. 

 

<< Insert Figure 2 around here >> 

 

To further elaborate on the connectedness of the markets under study, Table 1 provides 

some basic statistics of out-/in-degree and harmonic centralities. To emphasize the 

heterogeneity of our sample, we divided markets into frontier, emerging and developed. 

However, we refrain from comparing out/in-degrees and harmonic centrality across these 

groups for the following reasons. For example, the position of the US market might appear to 

be surprising with an average of 5.8 out-degrees. However, this observation actually resonates 

well with the motivation of our paper: when sampling with daily data frequency, the trading 

hours of national exchanges matter significantly regarding volatility spillovers. The 

explanation for this particular out-degree is that even if we agree that the US stock market 

might be the most influential in the world, as national exchanges begin trading, additional 

information interferes with news from the US market, leading to the insignificance of 

volatility spillovers in a direct bivariate test between the US and other markets in our sample 

– particularly in those markets in which trading begins later the next business day. However, 

higher out/in-degrees and weighted harmonic centrality is observed for markets that operate in 

the same time zones. Naturally, as trading closes at the same time, it is more likely that there 

will be more linkages within this group of markets. We find this pattern among the European 

markets. 

 

<< Insert Table 1 around here >> 

 

Another notable result revealed from a further analysis of in- and out-degree 

centralization is the correlation between these two connectedness measures (plotted in Figure 

3). The left panel of Figure 3 suggests that there are markets that tend to influence – and 

others that are more likely to be influenced by – other markets. A positive correlation between 

in/out-degrees can be interpreted as a market situation in which volatility is propagated across 

markets because markets with a higher out-degree are also those with a higher in-degree. A 

negative correlation then indicates a market situation in which volatility is propagated from a 

few markets to many others, i.e., spillovers originate from a few markets and spill over to 
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other markets, whereas these “infected” markets do not propagate shocks back to the markets 

of origin. Such a drop in correlation between in/out-degree centrality is visible at the 

beginning of our sample period until 2009. During this period, there were apparently markets 

with increasing influence; to put it more simply, only a few markets were propagating 

volatility shocks to other markets around the world. 

 

<< Insert Figure 3 around here >> 

 

The stability of our Granger causality networks is assessed using survival ratios that are 

plotted in Figure 4. Although we use rolling subsamples, the structure of the volatility 

spillover network appears to be stable over time: more than half of the surviving spillovers 

remain even after a year, which indicates that the structure of the network changes only 

moderately.  

 

<< Insert Figure 4 around here >> 

 
Thus far, our results reveal that volatility spillovers are quite common around the 

world; moreover, there are some markets that tend to propagate shocks more intensively than 

others, while other markets are more prone to receive shocks or to be influenced rather than 

transmitting shocks or influencing other markets. The next two figures depict the most and 

least influential and influenced markets (Figures 5 and 6, respectively). Both figures lead to a 

number of interesting observations. 

The most influential markets in our sample are frequently those in which the trading 

session closes before the closing times of the European markets (e.g., Turkey at the beginning 

of our sample before the extension of trading hours). This is the consequence of our sample 

selection. It also shows that when modeling volatility spillovers between markets, we should 

not ignore how closely they are trading, i.e., the temporal proximity effect. The most 

influenced markets (see Figure 6) are those that are in business after the European markets 

close, namely the Argentinian, Canadian or US markets. It is intriguing to see the Argentinian 

market in one group with Canada and the US because they are quite different with respect to 

size and liquidity. However, our findings show that time proximity and trading hours matter. 

An interesting observation can be made with respect to the Chinese stock market. It is 

quite a large stock market but was only occasionally highly influential. To the contrary, the 
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market is frequently the least influential and is also the least influenced by other markets in 

the world, which suggests that during our sample period, the Chinese market was segmented 

with regard to volatility spillovers. 

 

<< Insert Figure 5 around here >> 

 

<< Insert Figure 6 around here >> 

 

5.2 Determinants of volatility spillovers 

Our baseline results that are based on specifications described in Section 3.5.2 are presented 

in Table 2, which summarizes model coefficients. The dynamics of the effects is presented as 

a complementary representation in graphical form in Figures 7–11. 

The key observation in Table 2 is the significant and negative coefficient of the 

temporal proximity between markets (see also Figure 7). As expected, the further apart the 

closing hours between stock markets, the smaller the magnitude of the volatility spillover 

between markets. The temporal proximity to the US market has a similar impact on volatility 

spillovers, as corresponding coefficients are almost always negative and significant across 

subsamples. However, the effect of the temporal distance to the US market is smaller than the 

effect between two markets. Moreover, we can also observe a sudden decrease in the role of 

the US market for volatility spillovers during the annual sample ending in May 2012 (Figure 

7). We therefore conclude that the US market is important for the propagation of volatility 

spillovers among markets, although its role seems to be declining. 

The second observation of interest is that the spatial coefficient ρ is always positive 

and significant, and its value is mostly above 0.90. This result leads us to conclude that the 

spatial regression framework has merit because volatility spillovers are highly dependent; the 

size of a volatility spillover depends on the size of volatility spillovers already present in the 

out- and in-vertex markets. The result has some implications with regard to direct and indirect 

effects. First, average indirect effects are much larger, although they are highly correlated 

with direct effects across all subsamples; this dependence is not explicitly reported but is 

available upon request. The explanation for such sizeable discrepancies is that the markets are 

highly interconnected, as a number of markets exhibit more than 10 linkages in average (see 

Table 1). Therefore, a unit increase in a given variable is propagated across the entire 

network, as witnessed by a large spatial coefficient ρ. The implication of this result is that 
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indirect relationships matter in highly interconnected markets. Sometimes, the indirect impact 

is more than 20 times higher than the direct impact. However, it must be noted that the signs 

of direct and indirect effects are equal and direct and that indirect effects are highly 

correlated. Hence, in the remainder of our discussion, we focus on results related to average 

direct impacts. 

 

5.2.1 Effects of the out-vertex market 

We observe a particularly consistent impact of the size of the market: the market 

capitalization coefficient is positive and significant in most cases (Table 2) and implies that 

larger markets propagate volatility shocks of greater size. Markets that are more important 

within a given economy (measured by a higher market capitalization to GDP) are associated 

with lower volatility spillovers. However, because we work with standardized variables, the 

effect of market capitalization to GDP is much lower than the market size itself. 

Further, our results confirm our prior hypothesis that market liquidity matters for 

volatility spillovers. We plot the dynamics of the market liquidity effect in Figure 8 and 

observe that markets with a higher turnover ratio propagate larger volatility spillovers in the 

network. 

 

<< Insert Table 2 around here >> 

 

<< Insert Figure 7 around here >> 

 

<< Insert Figure 8 around here >> 

 

How are volatility spillovers in a specific country related to the country’s external 

economic factors? If equity markets mimic the underlying economies, then more export-

oriented countries should also have a higher tendency to propagate volatility spillovers. This 

proposition is partially confirmed in our results as coefficients of the net trade to GDP are 

mostly positive and often significant. However, for some subsamples, particularly those 

corresponding to the period of the financial crisis, the respective coefficient is negative and 

significant, which might have resulted because the number of spillovers from the US market 

was increasing, while the US market had a negative net trade. A similar idea is behind using 
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FDI net outflows in our specifications, where the effects were positive and significant most of 

the time. Compared to market capitalization, both net trade to GDP and FDI net outflows to 

GDP have a rather small effect on the propagation of equity market volatility (Figure 9). 

<< Insert Figure 9 around here >> 

 

We have also studied the effects of the equity and foreign exchange market conditions 

of the out-vertex market on volatility spillovers (Figure 10). Generally, the estimated 

coefficients across different subsamples changed signs, which suggests that volatility 

spillovers are difficult to predict because they might materialize in the same manner under 

either bullish or bearish market conditions. However, we admit that the results might also 

reflect a general increasing or decreasing trend on the world stock markets during the 

observed period. For example, during 2008, when the markets were declining, we observed a 

higher number of significant volatility spillovers, which corresponds to the positive 

coefficient for the given subsamples. Similarly, mixed results are also observed for forex 

returns, where appreciation of the local currency is, for some periods, associated with larger 

volatility spillovers, while smaller spillovers prevail in other periods. 

 

<< Insert Figure 10 around here >> 

 

Finally, we assess the volatility spillovers on the equity and forex markets. It appears 

that the size of the local market’s volatility does not necessarily lead to larger volatility 

spillovers (Table 2), although such tendencies are more likely to be observed at the end of our 

sample period (Figure 10). Periods with negative coefficients can be explained by conditions 

in which volatility in a given market is local in nature and does not spread across markets. 

An increase in the volatility in the foreign exchange market increases investors’ risks 

(Table 2). As local and international investors transfer investments to other (less risky) 

markets, the volatility in both markets increases and might be propagated. Such tendencies are 

observed in our results, as most of the coefficients on the foreign exchange volatility variable 

are positive and also significant in many instances (Figure 10). 

 

5.2.2 Effects of the in-vertex market 

The key evidence from the effects of the in-vertex market is that the impact of variables 

related to the in-vertex market is frequently much less significant than the impact of out-
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vertex markets. The characteristics and market conditions of the markets from which 

volatility shocks are propagated therefore appear to be more important than the characteristics 

of the markets to which volatility shocks are transmitted. However, there are two variables 

that appear to systematically influence the extent of the received volatility spillovers: market 

capitalization and market liquidity (see Table 2 and Figure 11). The larger the market, the less 

severe the volatility spillovers to that market. This finding suggests that market size protects a 

market from spillovers from other markets. Although this finding has certain implications for 

international equity portfolio diversification management, the effect of the market size is 

rather small compared to other variables. 

Finally, trading activity increases the vulnerability of a country to receiving volatility 

shocks from other markets, which is evidenced by the effects of positive turnover ratios. 

 

<< Insert Figure 11 around here >> 

 
 

6 Conclusion 

We study volatility spillovers among 40 equity markets over the period spanning from 

January 2, 2006, to December 31, 2014. We use daily closing-hours data across a number of 

time zones; therefore, we employ a careful data alignment strategy to study volatility 

spillovers using a Granger causality framework. Using information from Granger causality 

tests estimated for 97 overlapping subsamples, we construct Granger causality networks and 

study the structure of these networks along with the determinants of volatility spillovers. We 

employ spatial regressions that account for the endogenous interconnectedness of markets 

around the world. Our main findings can be summarized as follows: 

 The interconnectedness of markets peaked during the financial crisis of 2008: 40% of 

the total of 1560 volatility spillovers among the 40 markets were identified and found 

to be statistically significant. A similar peak was also found for the period between 

2011 and 2012 during the European debt crisis, where more than 35% of all possible 

volatility spillovers were statically significant (see Figure 2). 

 The interconnectedness of markets seems to be slightly declining, which might be 

sample-specific, as during recent years, we note an unprecedented level of 

connectivity of market volatilities, which declined recently, leading to decreases in the 

interconnectedness of markets at both the market and global levels (see Table 1). 
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 Volatility spillovers appear to be stable, as even after 12 months (non-overlapping 

subsample), over 50% of the relationships survive (see Figure 4). However, we 

conclude that volatility spillovers are less persistent then return spillovers, as the ratio 

of surviving return spillovers exceeds 70%, as shown by Lyócsa et al. (2015). 

 We find strong evidence of a temporal proximity effect for volatility spillovers. The 

further apart that closing hours are between stock markets, the lower the size of the 

volatility spillover between markets (see Figure 7 and the results shown in Table 2). 

 Temporal proximity effect is smaller but still statistically significant when the 

temporal distance to the US market is considered. This finding implies that the larger 

the temporal distance to the US market from a given market, the less likely such 

market is to propagate volatility spillovers to other markets in the world (see Figure 7 

and the results in Table 2). 

 Markets are highly interconnected, as the statistically significant spatial coefficient is 

almost always over 0.90. This finding suggests that spatial effects cannot be ignored 

when modeling the interrelatedness of markets. For example, a unit change in a 

variable affecting the volatility spillovers on several markets can have a much larger 

effect on the propagation of volatility spillovers into some other market (indirect 

effect) than a unit change of the same variable on the given market (direct effect). In 

fact, within our empirical framework, indirect effects were always larger than direct 

effects, sometimes over 20 times larger (see Figure 7 for the spatial coefficient and 

Table 2 for direct and indirect effects). 

 The larger the market (in terms of market capitalization), the larger the volatility 

spillover from that market. Simultaneously, the larger the market, the smaller the 

volatility shocks propagated to that market (see Table 2). 

 When markets are more liquid (in terms of turnover ratio), they propagate larger 

volatility shocks, but they are also subject to larger volatility shocks themselves (see 

Table 2). 

 More export-oriented countries are more likely to propagate larger volatility shocks 

(see Table 2). 

 During times of higher equity and foreign exchange volatility, larger volatility 

spillovers are more likely to occur. However, these results are not entirely 
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unambiguous and should be taken cautiously, as for a few periods, the opposite effect 

was observed (see Table 2). 

There are several implications that can be drawn from our study. For example, if the 

interconnectedness of markets (through volatility) depends not only on fundamentals but also 

on the temporal distance between trading sessions, then diversifying equity portfolios across 

the globe (with regard to temporal distances) might be beneficial. There are several 

explanations at hand for such an effect. Perhaps it takes time (a larger temporal distance) for 

new information to be correctly priced into assets. Another explanation might be that with 

increasing temporal distance between two markets, new relevant information arrives that 

counteracts or distorts the previous information leading to smaller volatility spillovers. 

Our study also provides a strong link between market interconnectedness and portfolio 

diversification. When markets are interconnected, two types of events matter for volatility 

shock propagation. First, these events are happening on a given market. Second, these events 

are increasingly happening in other markets that are interrelated through market volatility. 

The evidence thus implies that choosing markets that exhibit lower levels of 

interconnectedness (measured via network characteristics) can be beneficial for international 

portfolio diversification purposes. 
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Appendix A 

Code Country Index 
Frontier markets 
AR Argentina MSCI ARGENTINA 
HR Croatia CROATIA CROBEX 
EE Estonia OMX TALLINN (OMXT) 
RO Romania ROMANIA BET 
SL Slovenia SLOVENIA-DS Market 
Emerging markets 
BR Brazil MSCI BRAZIL 
CZ Czech Republic PRAGUE SE PX 
HU Hungary BUDAPEST
CN China SHANGHAI SE COMPOSITE 
IN India S&P BSE NATIONAL 200 
ID Indonesia IDX COMPOSITE 
MY Malaysia DJGL MALAYSIA  
MX Mexico MEXICO IPC (BOLSA) 
PL Poland WARSAW GENERAL INDEX 20 
RU Russia RUSSIA-DS Market 
ZA South Africa SOUTH AFRI-DS Market 
KR Republic of Korea KOREA SE KOSPI 200 
TH Thailand BANGKOK S.E.T. 
TR Turkey TURKEY-DS Market 
Developed markets 
AU Australia ASX 200 
AT Austria ATX - AUSTRIAN TRADED INDEX 
BE Belgium BEL ALL SHARE 
CA Canada S&P/TSX Composite index 
DK Denmark DENMARK-DS Market
FI Finland OMX HELSINKI 25 
FR France FRANCE CAC 40 
DE Germany DAX 30 PERFORMANCE 
GR Greece GREECE-DS Market 
IE Ireland IRELAND SE OVERALL
IT Italy MSCI ITALY 
JP Japan NIKKEI 225 STOCK AVERAGE 
NL Netherlands AMSTERDAM MIDKAP 
HK Hong Kong HANG SENG 
NO New Zealand AEX ALL SHARE 
PT Portugal PORTUGAL PSI-20 
ES Spain IBEX 35 
SE Sweden OMX STOCKHOLM 30 
CH Switzerland SSMI 
UK United Kingdom FTSE ALL SHARE 
US United States of America RUSSELL 2000 
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Appendix B 

Indicator name Definition 
Market capitalization 
of listed companies 
(% of GDP) 

Market capitalization (also known as market value) is the share price times the 
number of shares outstanding. Listed domestic companies are the domestically 
incorporated companies listed on the country's stock exchanges at the end of 
the year. This indicator does not include investment companies, mutual funds, 
or other collective investment vehicles. 

Market capitalization 
of listed companies 
(current US$) 

Market capitalization (also known as market value) is the share price times the 
number of shares outstanding. Listed domestic companies are domestically 
incorporated companies listed on the country's stock exchanges at the end of 
the year. This indicator does not include investment companies, mutual funds, 
or other collective investment vehicles. Data are in current US dollars. 

Net trade in goods 
and services  
(% of GDP) 

Net trade in goods and services is derived by offsetting imports of goods and 
services against exports of goods and services. Exports and imports of goods 
and services comprise all transactions involving a change of ownership of 
goods and services between the residents of one country and the rest of the 
world. Data are in current US dollars and are divided by GDP. 

Turnover ratio 
(%) 

Turnover ratio is the total value of shares traded during the period divided by 
the average market capitalization for the period. Average market capitalization 
is calculated as the average of the end-of-period values for the current period 
and the previous period. 

Foreign direct 
investment, net 
inflows  
(% of GDP) 

Foreign direct investments are the net inflows of investment to acquire a 
lasting management interest (10 percent or more of voting stock) in an 
enterprise operating in an economy other than that of the investor. Such 
investments are the sum of equity capital, reinvestment of earnings, other long-
term capital, and short-term capital as shown in the balance of payments. This 
series shows net inflows (new investment inflows less disinvestment) in the 
reporting economy from foreign investors and is divided by GDP. 

Foreign direct 
investment, net 
outflows  
(% of GDP) 

Foreign direct investments are the net outflows of investment to acquire a 
lasting management interest (10 percent or more of voting stock) in an 
enterprise operating in an economy other than that of the investor. Such 
investments are the sum of equity capital, reinvestment of earnings, other long-
term capital, and short-term capital as shown in the balance of payments. This 
series shows net outflows of investment from the reporting economy to the rest 
of the world and is divided by GDP. 

Source: World Bank WDI database
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Appendix C Descriptive statistics variables used in spatial regressions 
 Equity returns Equity volatility Forex returns Forex volatility Market cap. Market cap. to GDP Net trade to GDP FDI net outflows to GDP FDI net inflows to GDP 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD 
Frontier markets 
AR 0.318 0.540 0.943 0.260 0.139 0.156 0.695 0.756 24.637 0.314 2.398 0.565 0.029 0.012 0.310 0.170 1.872 0.374 
HR 0.021 0.360 0.889 0.532 0.003 0.099 0.981 0.304 24.035 0.326 3.825 0.325 -0.023 0.034 0.519 0.880 4.020 2.824 
EE 0.100 0.404 0.968 0.368 -0.002 0.095 0.977 0.311 21.711 0.389 2.528 0.428 0.002 0.056 4.495 4.075 8.183 3.624 
RO 0.065 0.403 0.935 0.424 0.030 0.137 0.976 0.328 23.911 0.336 2.661 0.374 -0.069 0.047 0.103 0.150 3.513 2.369 
SL 1.378 3.973 0.382 0.942 -0.002 0.095 0.977 0.311 23.040 0.482 3.044 0.484 0.021 0.030 0.980 1.637 1.301 1.227 
Emerging markets 
BR 0.059 0.262 0.925 0.400 0.022 0.162 0.931 0.372 27.763 0.212 4.068 0.220 -0.001 0.014 0.768 0.630 2.851 0.560 
CZ -0.016 0.247 0.932 0.437 -0.001 0.131 0.976 0.340 24.544 0.207 3.099 0.255 0.040 0.014 1.705 0.888 3.703 0.906 
HU 0.015 0.313 0.956 0.357 0.024 0.149 0.981 0.322 23.971 0.283 2.969 0.298 0.043 0.029 11.935 20.587 13.187 20.459 
CN 0.173 0.625 0.961 0.347 0.003 0.099 0.963 0.369 29.019 0.178 4.240 0.441 0.046 0.024 1.427 0.228 4.069 0.481 
IN 0.148 0.321 0.938 0.390 0.044 0.113 1.001 0.261 27.817 0.203 4.368 0.244 -0.051 0.012 0.906 0.476 2.057 0.606 
ID 0.217 0.327 0.979 0.292 0.038 0.113 0.897 0.418 26.290 0.459 3.668 0.217 0.022 0.019 0.905 0.240 1.967 0.525 
MY 0.110 0.215 0.955 0.378 -0.011 0.065 1.005 0.194 26.569 0.296 4.948 0.170 0.164 0.048 5.323 0.922 3.595 1.247 
MX 0.118 0.238 0.941 0.371 0.032 0.118 0.959 0.388 26.728 0.227 3.623 0.180 -0.015 0.004 0.983 0.447 2.398 0.460 
PL 0.005 0.242 0.969 0.309 0.018 0.181 0.964 0.373 25.783 0.185 3.512 0.221 -0.013 0.020 0.960 0.995 2.971 1.912 
RU 0.035 0.322 0.890 0.480 0.056 0.165 0.694 0.319 27.509 0.245 4.023 0.371 0.081 0.013 3.360 0.325 3.213 0.785 
ZA 0.108 0.164 0.945 0.315 0.071 0.151 0.983 0.283 27.169 0.119 5.206 0.238 -0.007 0.012 0.666 0.820 1.817 0.797 
KR 0.068 0.208 0.957 0.379 0.024 0.153 0.035 0.305 27.598 0.220 4.471 0.157 0.030 0.017 2.163 0.310 0.891 0.100 
TH 0.130 0.284 0.993 0.272 0.010 0.050 0.682 0.595 26.161 0.437 4.327 0.297 0.045 0.025 2.027 0.909 3.047 1.034 
TR 0.134 0.349 0.980 0.238 -0.017 0.064 0.898 0.494 26.212 0.246 3.529 0.212 -0.053 0.018 0.371 0.159 2.087 0.786 
Developed markets                 
AU 0.026 0.185 0.965 0.357 0.033 0.152 0.959 0.392 27.807 0.162 4.637 0.238 -0.009 0.010 1.188 1.063 3.866 0.625 
AT -0.016 0.274 0.954 0.385 -0.002 0.095 0.977 0.311 25.319 0.417 3.209 0.449 0.034 0.009 6.072 5.298 3.662 4.941 
BE 0.024 0.229 0.962 0.345 -0.002 0.095 0.977 0.311 26.352 0.195 4.039 0.236 0.003 0.009 13.099 12.547 15.786 13.241 
CA 0.042 0.171 0.904 0.495 0.007 0.097 0.963 0.343 28.234 0.178 4.731 0.163 -0.004 0.016 3.341 0.852 3.485 1.834 
DK 0.101 0.258 0.954 0.372 -0.003 0.095 0.977 0.312 26.062 0.159 4.165 0.189 0.045 0.011 2.977 1.472 0.834 1.715 
FI 0.053 0.268 0.976 0.327 -0.002 0.095 0.977 0.311 25.820 0.370 4.153 0.388 0.024 0.023 2.946 3.251 1.799 3.570 
FR 0.001 0.198 0.970 0.344 -0.002 0.095 0.977 0.311 28.281 0.154 4.264 0.187 -0.013 0.004 2.862 1.660 1.495 1.039 
DE 0.086 0.214 0.961 0.356 -0.002 0.095 0.977 0.311 27.997 0.150 3.719 0.180 0.057 0.005 3.190 0.751 1.707 0.643 
GR -0.110 0.322 0.966 0.235 -0.002 0.095 0.977 0.311 25.005 0.647 3.215 0.595 -0.060 0.040 0.675 0.539 0.870 0.426 
IE -0.002 0.291 0.945 0.419 -0.002 0.095 0.977 0.311 25.249 0.341 3.664 0.353 0.165 0.052 14.470 7.104 17.124 4.151 
IT -0.047 0.223 0.971 0.323 -0.002 0.095 0.977 0.311 26.951 0.384 3.154 0.395 0.000 0.015 1.834 1.033 0.800 0.599 
JP 0.028 0.257 0.964 0.337 -0.005 0.116 0.987 0.250 28.958 0.098 4.265 0.187 -0.002 0.016 1.987 0.475 0.200 0.173 
NL 0.016 0.223 0.936 0.434 -0.002 0.095 0.977 0.311 27.176 0.190 4.323 0.228 0.090 0.012 38.298 19.815 35.289 22.405 
HK 0.075 0.259 0.943 0.441 -0.019 0.155 0.975 0.333 27.697 0.097 6.127 0.137 0.057 0.040 33.905 6.653 31.100 4.278 
NO 0.042 0.249 0.923 0.422 0.007 0.127 0.979 0.317 26.204 0.199 3.984 0.248 0.131 0.019 3.461 1.941 3.461 1.941 
PT -0.022 0.244 0.974 0.283 -0.002 0.095 0.977 0.311 25.108 0.230 3.538 0.221 -0.045 0.039 2.722 1.687 3.903 1.300 
ES 0.011 0.228 0.987 0.300 -0.002 0.095 0.977 0.311 27.776 0.172 4.387 0.174 -0.016 0.033 3.778 3.060 3.122 1.170 
SE 0.064 0.221 0.959 0.367 0.000 0.131 0.975 0.337 26.929 0.208 4.592 0.208 0.058 0.008 5.863 1.958 3.220 3.148 
CH 0.026 0.184 0.955 0.390 -0.034 0.090 0.981 0.300 27.708 0.093 5.223 0.204 0.098 0.011 8.306 4.642 3.823 4.436 
UK 0.034 0.165 0.954 0.397 0.063 0.138 0.942 0.333 28.718 0.156 4.736 0.156 -0.022 0.004 3.709 4.825 3.760 2.782 
US 0.083 0.221 0.950 0.410 0.019 0.118 0.959 0.364 30.457 0.133 4.712 0.127 -0.037 0.009 2.528 0.379 1.686 0.419 
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Figure 1: Granger causality networks 
Note: 1a corresponds to a subsample beginning in January 2008 and ending in December 2008, and 1b 
corresponds to a subsample beginning in September 2013 and ending in August 2014. 
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Figure 2: Time-varying spillovers: network centralization  
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Table 1 Connectedness of markets: vertex centrality 
 Out-degree In-degree Weighted harmonic centrality 

Mean SD Max Trend R2 Mean SD Max Trend R2 Mean SD Max Trend R2 
Frontier markets 
AR 4.6 3.5 13 -4.7 14.5% 17.8 10.5 32 -25.1 c 45.0% 9.5 5.7 18.66 -10.4 25.9%
HR 8.2 8.6 28 -7.7 6.4% 3.8 4.1 15 -7.0 b 23.2% 11.4 7.9 25.02 -4.4 2.5% 
EE 2.7 3.3 18 0.5 0.2% 1.4 2.2 9 -0.2 0.1% 8.1 6.3 20.03 -5.2 5.4% 
RO 5.9 4.5 18 -4.8 9.1% 4.3 3.3 16 -5.2 c 19.6% 12.4 5.2 20.81 -8.5 21.5%
SL 4.1 5.4 22 -4.9 6.3% 4.5 5.8 21 0.2 0.0% 9.3 7.2 22.44 -5.3 4.4% 
Emerging markets 
BR 4.8 3.2 15 -3.2 7.5% 17.4 10.1 31 -21.4 35.7% 10.3 4.9 19.30 -6.4 b 13.7%
CZ 18.0 6.1 26 -14.4 c 44.0% 6.0 5.3 17 -13.5 c 50.6% 18.2 4.0 23.82 -9.7 c 47.2%
HU 10.7 6.5 21 -2.4 1.0% 4.7 3.4 15 -3.2 7.1% 14.4 4.2 21.95 -2.8 3.4% 
CN 6.0 7.7 26 -17.5 b 41.1% 0.8 1.0 4 0.8 4.7% 12.3 5.8 23.24 -13.1 c 40.3%
IN 7.0 5.3 21 5.9 9.9% 3.6 2.9 14 -6.0 c 34.2% 13.1 4.8 20.80 2.6 2.3% 
ID 8.6 7.2 26 -1.3 0.3% 3.9 2.6 16 -1.8 3.7% 14.3 5.7 23.62 -7.3 13.0%
MY 9.2 9.3 31 -23.2 c 49.2% 4.6 4.7 19 2.9 3.0% 13.8 6.6 25.33 -15.9 c 45.7%
MX 5.8 5.2 18 -3.3 3.2% 16.7 6.9 28 -9.2 14.2% 10.4 6.0 20.03 -3.2 2.2% 
PL 17.7 5.5 28 -7.5 a 14.7% 8.6 5.4 20 -4.9 6.5% 17.7 3.8 24.64 -6.6 b 24.5%
RU 15.5 7.6 27 4.1 2.3% 4.7 2.5 12 -2.0 5.1% 16.9 4.1 23.77 -0.6 0.1%
ZA 16.1 5.9 28 -5.8 7.6% 6.4 4.6 23 -8.2 b 25.2% 17.0 4.0 24.00 -5.0 12.7%
KR 7.4 4.6 19 -6.2 14.7% 2.4 2.1 11 -1.6 4.5% 14.0 4.9 21.15 -6.4 13.7%
TH 5.4 5.7 22 -3.2 2.4% 2.9 3.1 14 -1.2 1.1% 11.2 6.5 22.51 -6.2 7.0% 
TR 15.9 8.6 30 -18.6 a 36.8% 4.8 3.6 14 -6.2 b 23.6% 16.6 6.4 25.14 -13.5 b 35.1%
Developed markets 
AU 8.5 6.9 25 -9.7 15.6% 2.6 2.5 13 -2.3 6.5% 14.5 5.0 23.33 -9.3 a 27.4%
AT 10.9 1.8 14 -2.7 a 18.1% 15.6 3.8 26 -7.3 b 29.9% 13.9 2.8 18.06 -5.1 b 26.2%
BE 10.6 1.7 15 -3.1 c 26.2% 21.1 4.3 32 -5.1 11.3% 14.1 3.0 19.71 -5.3 b 24.6%
CA 4.3 2.0 9 -0.4 0.3% 19.5 7.7 30 -9.8 12.8% 10.1 4.5 16.94 -0.5 0.1% 
DK 16.9 2.8 22 -3.7 a 14.1% 7.3 2.7 13 -5.3 c 30.3% 17.1 2.7 21.21 -4.3 19.3%
FI 16.6 2.5 20 -2.8 10.0% 14.0 2.8 21 -5.8 c 32.7% 16.9 2.8 21.14 -4.6 21.4%
FR 10.6 1.2 13 -2.2 a 26.6% 21.5 3.0 29 -2.7 6.4% 13.8 2.7 18.82 -4.6 22.6%
DE 10.9 1.7 16 -4.6 c 56.6% 22.1 3.4 31 -2.7 5.0% 14.1 3.1 19.78 -6.3 b 34.2%
GR 13.3 8.6 26 -25.6 b 70.5% 4.2 5.0 17 -11.2 b 39.0% 15.5 5.5 22.65 -15.6 c 64.7%
IE 16.0 3.3 24 -2.4 4.3% 11.5 3.4 19 -4.5 a 13.5% 16.5 3.0 22.14 -4.3 16.1%
IT 17.0 2.3 22 -4.7 c 34.9% 13.8 5.6 28 -9.6 b 23.5% 17.2 2.8 21.76 -5.8 a 33.8%
JP 7.2 6.7 25 -3.2 1.9% 3.1 2.9 13 -4.8 b 22.1% 13.2 5.8 23.93 -3.8 3.4% 
NL 11.2 2.5 17 -2.0 5.3% 21.6 3.2 30 -3.3 8.5% 14.2 3.4 19.85 -4.6 14.9%
HK 11.4 8.7 33 -10.9 12.3% 5.7 5.4 21 4.8 6.3% 15.7 6.0 26.57 -11.5 29.1%
NO 17.1 3.7 24 -3.7 8.1% 10.2 4.8 20 -8.6 25.1% 17.3 3.2 22.81 -5.2 a 21.0%
PT 3.8 2.0 10 -2.6 a 13.0% 19.6 7.6 34 -12.6 b 21.9% 10.1 3.5 15.05 -4.5 c 13.4%
ES 10.3 1.5 14 -3.0 c 32.6% 21.0 4.4 32 -6.0 a 14.7% 13.7 2.7 19.80 -5.4 c 31.5%
SE 16.9 3.0 25 -0.9 0.7% 13.1 2.7 19 -0.3 0.1% 17.1 3.0 23.17 -3.3 9.9% 
CH 16.7 3.2 23 -4.6 16.3% 13.9 3.9 23 -3.3 5.7% 17.1 3.3 22.31 -5.8 24.3%
UK 10.8 2.7 18 -1.6 2.8% 21.1 3.2 28 -2.6 5.3% 14.0 3.2 20.66 -4.1 12.7%
US 5.8 5.3 24 -4.5 5.7% 18.3 5.3 26 -1.6 0.7% 10.6 5.6 23.26 -2.7 1.8% 
MG -0.054 c -0.054 c -0.061 c 

Note: trend denotes the estimated trend coefficient of a simple linear time trend regression, in which the 
dependent variable is out-degree (in-degree or harmonic centrality) of a corresponding market. a, b, and c denote 
statistical significance at the 10%, 5%, and 1% level, respectively. We have used the HAC Newey-West standard 
errors estimated with automatic bandwidth selection and a quadratic spectral weighting scheme as in Newey 
and West (1994). MG corresponds to the pooled mean group estimator. 
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Figure 3: In-/out-degree relationship 
Note: The left panel is a scatterplot of average in- and out-degrees. The right panel is a time series of in-/out-
degree correlations calculated for each of the 97 subsamples. 
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Figure 4: In-/out-degree relationship 
Note: The left panel denotes the average ratio of surviving return spillovers after x number of months. The right 
panel denotes the time variation of a ratio of surviving return spillovers after one month (upper right figure) and 
12 months (lower right figure). 
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Figure 5: Top 3 markets with the highest out-degree degout(i) over all subsamples 
Note: A point is drawn at time t for three markets with the highest (left panel) or lowest (right panel) out-degree.   
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Figure 6: Top 3 markets with the highest in-degree degin(i) over all subsamples 
Note: A point is drawn at the time t for three markets with the highest (left panel) or lowest (right panel) in-
degree. 
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Table 2 Estimates of the average direct and indirect effects of the spatial lag model for selected subperiods corresponding to given years 
(cont.) 
  31.12.2006 31.12.2007 31.12.2008 31.12.2009 31.12.2010 
(x1000) Direct   Indirect  Direct  Indirect  Direct  Indirect  Direct  Indirect  Direct  Indirect  
Intercept 46.49 d 71.95 d 68.11 d 72.21 d 81.57 d

Temporal distance variables 
Temporal proximity  -0.056 d -0.376 b -0.074 d -1.640 d -0.084 d -1.371 d -0.080 d -0.531 b -0.087 d -2.086 d

Temporal proximity to US -0.006 a -0.039 -0.026 d -0.576 d -0.012 d -0.198 b -0.014 d -0.093 a -0.027 d -0.647 d

Out-vertex market variables 
Equity market returns -5.443 d -36.421 b -9.330 d -205.385 d 4.221 d 68.835 c -2.238 b -14.852 -2.169 a -51.814 a

Equity realized volatility -1.302 -8.714 -1.300 -28.619 0.095 1.552 1.356 a 9.001 3.010 c 71.885 b

Forex return -1.657 a -11.086 -1.918 b -42.220 b -0.536 -8.743 -0.604 -4.005 6.529 d 155.950 d

Forex realized volatility 1.858 b 12.429 2.712 c 59.705 c 1.343 21.894 -4.149 d -27.533 b -0.394 -9.419
Market capitalization 11.620 d 77.749 b 10.166 d 223.788 d 5.324 d 86.813 b 7.286 d 48.348 b 14.499 d 346.292 d

Market capitalization to GDP -5.570 d -37.270 a -5.449 d -119.954 d -5.802 d -94.604 c -5.761 d -38.226 b -8.503 d -203.081 d

Turnover ratio -0.159 -1.061 -1.271 -27.985 4.909 d 80.042 c 2.449 b 16.250 a 4.377 c 104.540 c

Net trade to GDP 3.602 d 24.102 a 2.406 b 52.974 b -1.643 a -26.794 a -0.985 -6.539 0.430 10.263
FDI net outflows 2.763 d 18.485 a 1.956 b 43.057 b 4.262 d 69.497 c 2.749 c 18.242 a 2.231 a 53.276 a

In-vertex market variables 
Market capitalization -3.611 c -24.165 -0.801 -17.623 -9.014 d -146.979 c -3.204 b -21.261 0.073 1.734
Market capitalization to GDP 0.901 6.029 0.764 16.819 3.146 b 51.297 b 0.037 0.244 1.236 29.510
Turnover ratio 1.896 a 12.688 -2.729 b -60.080 b 2.433 b 39.668 a -0.200 -1.329 -0.947 -22.609
Net trade to GDP -0.942 -6.300 -0.139 -3.068 -2.996 d -48.847 b -1.329 -8.820 0.458 10.941
FDI net inflows -0.337 -2.255 0.178 3.908 -0.759 -12.377 -1.078 -7.150 0.420 10.041
Spatial coefficient (ρ) 0.875 d    0.983 d    0.961 d    0.874 d    0.989 d    
Spatial error model - fit statistics 
pseudo R2 (Nagelkerke) 0.568 0.648 0.718 0.699 0.673
AIC -6613.9 -6459.7 -6464.6 -6506.8 -5846.1
SD residual 0.028 0.030 0.030 0.029 0.036
Correlation fitted vs. observed 0.758      0.810     0.850     0.839     0.826     
Dependent variable 
Mean and standard dev. 0.031 0.044 0.044 0.051 0.053 0.057 0.050 0.054 0.062 0.064
lower and upper quartile 0.000   0.031  0.000  0.044  0.000  0.053  0.000  0.050  0.000  0.062  
Spatial tests 
Moran I 0.109 d 0.205 d 0.176 d 0.162 d 0.224 d

Geary Test 0.854 d    0.852 d    0.817 d    0.838 d    0.811 d    
Significance at 10%, 5%, 1%, and 0.1% is denoted by “a”, “b”, “c”, and “d” superscripts, respectively. 
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Table 2 Estimates of the average direct and indirect effects of the spatial lag model for selected subperiods corresponding to given years 
  31.12.2011 31.12.2012 31.12.2013 31.12.2014 
(x1000) Direct  Indirect  Direct  Indirect  Direct  Indirect  Direct  Indirect  
Intercept 69.23 d 51.30 d 34.18 d 50.39 d

Temporal distance variables 
Temporal proximity  -0.068 d -1.251 d -0.059 d -0.346 b -0.048 d -0.779 d -0.061 d -1.307 d

Temporal proximity to US -0.027 d -0.494 d -0.007 b -0.042 -0.001 -0.022 -0.011 c -0.228 c

Out-vertex market variables 
Equity market returns -1.490 -27.392 -1.827 b -10.644 5.507 d 90.170 c -17.199 d -368.432 d

Equity realized volatility 7.849 d 144.275 d 3.191 d 18.593 a 0.513 8.397 14.724 d 315.397 d

Forex return 3.605 d 66.268 c -3.692 d -21.513 a -1.455 -23.825 2.262 b 48.457 b

Forex realized volatility 2.159 c 39.675 b 0.630 3.672 0.682 11.164 -6.246 d -133.794 d

Market capitalization 12.348 d 226.968 d 10.281 d 59.902 a 1.840 30.132 5.837 d 125.044 c

Market capitalization to GDP -2.972 b -54.628 a -6.352 d -37.012 a -0.063 -1.035 2.522 54.022
Turnover ratio -4.989 d -91.698 c -0.718 -4.181 5.417 d 88.688 b -1.034 -22.140
Net trade to GDP 5.060 d 93.016 d -0.950 -5.534 -0.417 -6.830 4.325 d 92.646 d

FDI net outflows 2.686 c 49.375 b 3.579 d 20.853 a 1.757 b 28.761 a -3.198 c -68.505 c

In-vertex market variables 
Market capitalization -4.277 c -78.611 b -5.362 d -31.242 a -2.638 b -43.193 a -8.957 d -191.868 d

Market capitalization to GDP 2.597 b 47.743 a 2.601 b 15.158 1.998 a 32.716 2.941 b 63.007 a

Turnover ratio -1.419 -26.077 2.781 b 16.205 2.321 b 38.002 a 5.146 d 110.238 c

Net trade to GDP 0.041 0.763 0.510 2.969 0.311 5.086 -0.121 -2.592
FDI net inflows -0.150 -2.756 -0.443 -2.579 0.779 12.747 -2.164 b -46.351 b

Spatial coefficient (ρ) 0.970 d    0.857 d    0.961 d    0.981 d    

Spatial error model - fit statistics 
pseudo R2 (Nagelkerke) 0.661 0.585 0.575 0.594
AIC -6687.340 -6632.105 -6729.290 -6238.747
SD residual 0.028 0.028 0.027 0.032
Correlation fitted vs. observed 0.817     0.769     0.764     0.777     
Dependent variable 
Mean and standard dev. 0.042 0.048 0.036 0.044 0.029 0.042 0.034 0.051
lower and upper quartile 0.000  0.042  0.000  0.036  0.000  0.029  0.000  0.034  
Spatial tests 
Moran I 0.170 d 0.119 d 0.128 d 0.172 d

Geary Test 0.830 d    0.859 d    0.807 d    0.816 d    
Significance at 10%, 5%, 1%, and 0.1% is denoted by “a”, “b”, “c”, and “d” superscripts, respectively. 
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Figure 7: Average direct effects of temporal coefficients, spatial and Nagelkerke coefficients 
(out-vertex) 
Note: Bullets denote statistically significant coefficients at the 5% significance level. 
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Figure 8: Average direct effects of market capitalization and market liquidity (out-vertex) 
Note: Bullets denote statistically significant coefficients at the 5% significance level. 
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Figure 9: Net trade to GDP and FDI outflows to GDP (out-vertex) 
Note: Bullets denote statistically significant coefficients at the 5% significance level. 

   



44 
 

 
Figure 10: Equity and forex market returns and volatility direct effects (out-vertex) 
Note: Bullets denote statistically significant coefficients at the 5% significance level. 
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Figure 11: Average direct effects of market capitalization and market liquidity (in-vertex) 
Note: Bullets denote statistically significant coefficients at the 5% significance level. 

 


