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Abstract

This paper proposes a formal characterization of extended Bayesian updating for
complementarily additive subjective beliefs under ambiguity, which are compatible
with a wide range of choice behavior toward ambiguity. The main result shows that,
based on the biseparability of Ghirardato and Marinacci (2001), extended Bayesian
updating characterizes the update rule which is a step-by-step composite updating
for priors, where one of Dempster-Shafer rule, Bayes�update rule and Fagin-Halpern
rule is applied to each step. As applications, more speci�c preference relations are
examined, such as the maxmin expected utility, the rank-dependent expected utility,
and the concave expected utility preferences by Lehrer (2009).

JEL Classi�cation: D81

Keywords: ambiguous belief, Bayesian update rule, multiple priors, non-additive
measure, subjective probability, biseparable preference

1 Introduction

In most subjectively ambiguous situations, the primitive choices are concerned with mutu-
ally complementary two events associated to a gain or loss, the more or less, the better or
worse, and so forth. This paper deals with how these subjective probabilities of winning or
losing events are updated after additional information arrived in a simple dynamic decision
setting.
Although most experimental studies rely on choices among two-outcome alternatives,

called binary acts, such alternatives successfully extracted a lot about various patterns of
choice behavior such as common ratio/consequence e¤ects or ambiguity aversion. However,
seminal works by Machina (2009, 2014) and Baillon et. al (2011) demonstrated examples
which many decision models cannot accommodate with when alternatives include three
or more outcomes. It motivates this paper to focus on an axiomatization on preferences
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over binary acts, which encompass a wide range of choice behavior toward ambiguity on
alternatives with more various outcomes.
This paper characterizes an extended Bayesian updating for complementarily additive

subjective beliefs based on preferences over binary acts. As a utility representation, I
adopt a class of biseparable preferences formulated by Ghirardato and Marinacci (2001)
(hereafter GM2001), which is also a purely subjective binary version of the rank-dependent
expected utility (RDU) in Nakamura (1990), imposing independence axiom only on binary
comonotonic acts. The biseparability implies that the winning and losing probabilities are
uniquely determined for all events and complementarily additive. It imposes less restric-
tions on preferences over alternatives with three or more outcomes which are vulnerable
to Machina�s examples, although most utility representations share this complementarily
additive property.
The main result characterizes the essence of Bayesian updating consistent with a broad

range of preferences, including various ambiguity averse preferences. To be concrete,
Theorem 1 proves that biseparable preferences through weak Bayesian updating gener-
ate any composite update rule for priors, which surprisingly comprises only three update
rules, Dempster-Shafer rule (Dempster, 1967; Shafer,1976), Bayes�update rule (Gilboa and
Schmeidler, 1993; Denneberg, 1994), and Fagin-Halpern rule (Dempster, 1967; Fagin and
Halpern, 1991; Walley, 1991; Ja¤ray, 1992).
The result remarks three features. (1) Theoretically, conventional results are based on a

particular utility representation of the unconditional preferences, or intended to axiomatize
model-speci�c updating manners. However, Theorem 1 implies that the weak Bayesian
requirement on binary acts determines the bases for updating, which consist of the three
major update rules developed in the theory of belief functions. Expanded into fairly broad
range of preferences to maintain biseparability, only three rules are supported, conversely,
any update rules other than these three rules are never compatible with any biseparable
representations and weak Bayesian property.
(2) Not only the three rules were conventional, prominent and prevalent rules in the

theory of belief functions, but also they are consistent with biseparable preferences de-
veloped in the decision theory, although the biseparability delivers less information about
preferences over acts with more than three outcomes. The core nature of updating is
maintained even if more axioms are imposed on the unconditional preference relation. The
result is easily applied to more speci�c utility representations, by adding extra axioms on
the unconditional preference to generate the more speci�c updating formula.
(3) In view of experimental design, this result gives a solid foundation to assume and

concentrate on three update rules for subjects�priors from the beginning, and also provides
a de�nite method to calculate posteriors. Moreover, in the experiments consisting of two-
outcome alternatives, the result implies that conditional choices are behaviorally explained
by the proper selection of a particular utility expression and the belief updating formula.
It is also applied to any experiment concerning or including belief updating through a
strategic interaction, such as auction, signaling, learning and so on.

This paper is organized as follows. The next section begins with illustrative examples
and provides the basic de�nitions and a decision setting for updating under ambiguity.
Section 3 begins with introducing axioms on the unconditional and conditional preferences
and Bayesian updating. The main characterization result is presented in sequence. In
Section 4, various utility representations, the maxmin expected utility preferences (MEU;
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Gilboa and Schmeidler, 1989), the rank-dependent preferences (Nakamura , 1990), the
concave expected utility preferences (LEU; Lehrer, 2009) are examined as applications of
the main theorem. The last section discusses the main results, related works, applications,
and further extensions.

2 The decision setting

2.1 Illustrative example

In the following epitome of a dynamic version of Ellsberg urn (Ellsberg, 1961), there are a
red ball and two black or yellow balls, not informed about those composition.

red black yellow
f1 $100 $0 $0
f2 $0 $100 $0
f3 $100 $0 $100
f4 $0 $100 $100

Table 1

Subjects who display f1 � f2 and f4 � f3 are supposed to be ambiguous averse. After
observed the chosen ball was red or black, which color is preferred to bet 100 dollars on?
The choice displays the pattern how each winning probability is updated after knowing
red or black. In fact, in the pioneer experiment of Cohen et. al (2000), almost two third
is compatible with the full Bayesian (FB) updating rather than the maximum likelihood
updating. Dominiak et. al (2012) con�rmed that more than 80 percent of ambiguity averse
subjects�choices are consistent with FB rule, as well as more consequentialism rather than
dynamic consistency.
To illustrate a dynamic decision setting with belief updating, consider a more elaborated

example as following. There are six dice with one to six spots on every (six) face, although
every number of spots is not informed. However, it is informed that, there are at least one
face that has one to six each, out of 36 faces in total. For instance, there are a face with
one spot, a face with two spots, ... , a face with �ve spots and thirty one faces with six
spots, and so on. Now pick one of the dice and throw it once. According to the number
of pips on the die, construct the following acts. The state space is 
 = f1; 2; 3; 4; 5; 6g and
X = [0; 100]. Consider four alternatives over six states in Table 2.

f1g f2g f3g f4; 5; 6g
f1 $90 $0 $0 $0
f2 $10 $10 $10 $0
f3 $90 $0 $0 $90
f4 $10 $10 $10 $90

Table 2

There are four alternatives, one of which f1 gives $90 if the die shows 1 and $0 otherwise,
and so on. The Sure-thing Principle requires that the order between f1 and f2 has to be
the same as between f3 and f4.
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Although there seems to be more choice patterns conformed to this situation, let us
focus on a decision maker�s choice: f1 � f2 and f3 � f4. The choices also imply that
adding $1 to $10 in f2 induces f1 � f2, however it cannot alter f3 � f4 despite adding $1
to $10 in f4. This % violates the Sure-thing Principle.
These choices are supported to be represented by for all x, y 2 X, x % y

V (xAy) = � (A)x+ [1� � (A)] y,

where the subjectively ambiguous situation is summarized in a set function (Horie, 2013)

� (A) =
jAj2

36
for every A � 
.

All alternatives f1 to f4 include only two outcomes, ($90; $0), ($10; $0), or ($90; $10).
Given such an alternative, the winning event is associated to better outcome, for example,
winning event of f1 is f1g which gives $90. � (A) represents the subjective probability of
winning event A.
Now suppose that event E = f1; 2; 3g is observed. After knowing that the die showed 1,

2, or 3, which is preferred to, f1 or f2? For illustration, we compute the posterior winning
probability for every event through three pattern of updating, Dempster-Shafer (DS) rule,
Bayes�update (BU) rule, and Fagin-Halpern (FH) rule. (Detailed calculation methods of
three rules are presented in Appendix A.)

�FHE �BUE �DSE
jAj = 1 1=21 1=9 7=27
jAj = 2 4=15 4=9 16=27
jAj = 3 1 1 1

Table 3

There are three patterns of choices between f1 and f2, which are represented by these
winning probabilities. There are three patterns, so write %FHE , %BUE , and %DSE . V FHE (f1) =
30=7, V BUE (f1) = 10, and V DSE (f1) = 70=3, hence f2 �FHE f1, f1 �BUE f2, and f1 �DSE f2.
Each rule ends up with the di¤erent conditional choice.

V FHE V BUE V DSE

f1 30=7 10 70=3
f2 10 10 10

Table 4

There are three patterns of conditional choices, f1 �E f2, f1 �E f2 and f1 �E f2, so one
might think it is enough for us to capture these orders. Thus it intuitively seems su¢ cient
to have three rules, DS, BU and FH rules in a representation. In fact this conjecture is to
be proven valid in subsequent sections.
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2.2 States, acts, and preferences

Let 
 be a �nite set of states with j
j = n and � = 2
. A non-empty set in � is called an
event. Let X be a set of consequences, or outcomes which is assumed to be a connected and
separable topological space. A measurable mapping f : 
 ! X is called an act. Denote
the set of all acts by F . For the sake of simplicity, an element x in X also indicates a
constant act which assigns x for all ! 2 
. fAg denotes the act which yields f (!) if ! 2 A
and g (!) if ! 2 Ac. Throughout this paper Ac 2 � is the complement of A with respect
to 
. A two-outcome act xAy is called a binary act if x, y 2 X and A 2 �. Let F2 be the
set of all binary acts. Note that X � F2.
It is concerned with preference relations on F before and after an event E 2 � is

realized. Given an event E 2 �, a binary relation %E is called a conditional preference
relation given E. For every event E 2 �, as usual, �E and �E refer to asymmetric and
symmetric parts of %E respectively. When E = 
, %
 is interpreted as the unconditional
preference relation and we simply express it as %. The preference relation on X is invoked
from %E on constant acts.
Let � express a �nite monotone set function � : �! [0; 1] satisfying (i) � (?) = 0 and

� (
) = 1, and (ii) for all A, B 2 � with A � B, we have � (A) 5 � (B). � is also called a
capacity. Let � be the set of all �nite monotone set function � on 
. � is superadditive if
for all A, B 2 � with A \B = ?, � (A [B) = � (A) + � (B). � is said to be convex if for
all A, B 2 �, � (A [B) + � (A \B) = � (A) + � (B). If the inequality holds in equality
for all A and B in �, � is called additive. Let �0 be the set of additive set functions on 
.
Given an event E, �E is the conditional, or updated set function of � given E, i.e. for

all A 2 � with A\E = E, �E (A \ E) = 1. Note that for any event E 2 �, �E has domain
�. When E = 
, �
 is interpreted as unconditional and we simply write it �. As above,
when �E is additive, write it as pE, which is also belong to �

0.
We are concerned with an update rule of � which is a transformation of � to generate the

conditional set function of � given E as a posterior. Formally, a mapping � : �� �! �
is called an update rule of � if it maps � and a conditioning event E to �E. Note that
� (�jE) is the updated set function of � given E, which can be also written as �E in terms
of �.
It is possible to construct an update of � compositely event by event through di¤erent

manners. Fix a �, a conditioning event E and a partition of Ec, (Tk; Tk�1; : : : ; T1). Let us
consider the step-by-step updating which applies an update rule �i to every conditioning
event Ei = 
n (Tk [ � � � [ Ti). Denote �i (�) in place of �i (�jEi) if the conditioning event
Ei is explicitly given.

De�nition 1 A conditional monotone set function given E, �E is a composite update of
� if, there exists a partition of Ec, (Tk; Tk�1; : : : ; T1), k 5 jEcj,

�E (A) = �
k � �k�1 � � � � � �1 (�) (A) for all A � E,

where every �i is an update rule given Ei = 
n (Tk [ � � � [ Ti), i = 1; : : : ; k.

Subjective beliefs are sometimes represented in the form of a set of priors, a nonempty
closed and convex set C � �0, thus we deal with an update rule for a prior set. Fix a C, a
conditioning event E, and a partition of Ec, (Tk; Tk�1; : : : ; T1). The step-by-step updating
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which applies an update rule �i to every conditioning eventEi = 
n (Tk [ � � � [ Ti). Denote
�i (p) in place of �i (pjEi) if the conditioning event Ei is explicitly given.

De�nition 2 A CE � �0 is a composite update of C if, there exists a partition of Ec,
(Tk; Tk�1; : : : ; T1), k 5 jEcj, for every i = 1; : : : ; k, Ci = fpi 2 �0 j p 2 Cg such that

pi (A) = �
i � �i�1 � � � � � �1 (p) (A) for all A � Ei.

3 Characterization

3.1 Axioms

3.1.1 Axioms for unconditional preference

This section presents axioms for unconditional preferences, which are mainly standard
necessary and su¢ cient conditions for a certain class of utility representations. Therefore,
most axioms are indebted to preceding representation results to be clari�ed here. Notice
that all axioms are subjectively and behaviorally described to conform to the Savage-style
framework.
First, throughout this paper, it is assumed that every conditional preference exists as

a weak order on F .

A0 (Weak order) A preference relation %A given A 2 � is a weak order on F : (i) for
all f , g 2 F , f %A g or g %A f , (ii) for all f , g, h 2 F , if f %A g and g %A h, then
f %A g.

The existence of conditional preference relations as a weak order is thoroughly examined
in more general decision circumstances in Siniscalchi (2011).
For future references, the axiom which is de�ned only by binary acts is put an asterisk

against the number.
For the purpose of our analyses here, the next axiom is necessary to describe the

conditional preference as a non-trivial binary relation.

A1� (Essentiality) There exist an event A 2 � and consequences x, y 2 X such that
x � xAy � y.

An event E 2 � is essential if x � xEy � y for some x, y 2 X. Event E 2 � is null
if xEy � y for all x, y 2 X. Let N be a set of all null events and �� = �nN be the set
of all non-null events with respect to %. An event Ec is universal if E 2 N . An essential
event is not null, nor universal. A1� also implies there are at least one (two, in practice)
conditioning event to be e¤ective.

A2� (Boundedness) There exist consequences x�, x� 2 X such that x� � x� and for all
x 2 X, x� % x % x�.

A2� states that there are the maximum and minimum consequences in X in terms of
%. Since this axiom may not be crucial for deriving update rule, we may drop this axiom.
However, this paper still deals with degree of tractability as priority.
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A3 (Monotonicity) For all acts f , g 2 F , if f (!) % g (!) for all ! 2 
, then f % g.

A3 is standard monotonicity for general acts.

A4� (Eventwise Monotonicity) For any event A 2 �, if for some x � y, xAy � y (resp.
x � xAy), then for all a � b % c, aAc � bAc (resp. for all c % a � b, cAa � cAb).

A4� is originated from A3� in Alon and Schmeidler (2014), and it is equivalent to B3
in GM2001. If-part implies that event A 2 � is essential or universal, hence non-null.
As noted, the axiom implies that on a non-null event, choice is responsive eventwisely to
any strictly better outcome. This axiom is also crucial to characterize conditional choices
given the same subact (here, same outcomes), as well as it is critical to obtain biseparable
expression.
The next is the standard axiom for continuity and boundedness. The de�nitions below

follow Wakker (1991) and Nakamura (1990).
Given an essential event A 2 � and %, we call �1; �2; : : : a standard sequence if there

exist x, y 2 X such that x � y and either fx; yg % �k and xA�k � yA�
k+1 for all

k = 1; 2; : : :, or fx; yg - �k and �kAx � �k+1Ay for all k = 1; 2; : : :.1 A sequence �1; �2; : : :
is bounded if there exist �sup and �inf such that �sup % �k % �inf for all k with x = �sup
and y = �inf for some x, y 2 X. A sequence is strictly bounded when % in the above
expression is replaced with �.

A5�a (Archimedean) Every strictly bounded standard sequence is �nite.

Given an essential event A 2 � and %, we call �1; �2; : : : a second-order standard
sequence if for every k there exists a standard sequence �1; �2; : : : such that for some m,
l 2 N �k � �m, �k+1 � �m+l, and �k+2 � �m+2l.

A5�b (Second-order Archimedean) Every bounded second-order standard sequence is
�nite.

A5�b (Second-order Archimedian) is necessary and su¢ cient for �nite utility values on
maximal and minimal outcomes in X, thoroughly examined in Wakker (1991, 1993) and
Chateauneuf & Wakker (1993).

Let us introduce a mixture of two acts, whose de�nition is from GM2001.

De�nition 3 (B-mixture of acts) Given f , g 2 F and B 2 �, the B-mixture of f and
g is the act h 2 F such that h (!) � f (!)B g (!) for every ! 2 
.

Write the B-mixture of f and g as c (fBg). Note that for some event B 2 �, such
c (fBg) may not exist.

A6� (Binary Comonotonic Act Independence) For every essential A 2 �, everyB 2
�, and for all f , g, h 2 F2 such that f = xAy, g = x0Ay0 and h = x00Ay00, if f , g, h are
pairwise binary monotonic, and fx; x0g % x00 and fy; y0g % y00 (or fx; x0g - x00 and
fy; y0g - y00), then f % g =) c (fBh) % c (gBh).

1fx; yg % z denotes x % z and y % z for short.
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A6� is one of the necessary and su¢ cient conditions for a biseparable expression. Com-
pared to comonotonic act independence for the rank-dependent axiom, A6� is quite weaker
in the sense that, for any A � B, xAy and xBy is comonotonic, although they are not
binary comonotonic if A 6= B. In this sense, rank-dependent preferences are biseparable,
however, biseparability still suggests more �exibility. If anything, any two acts which have
the same winning event, hence a losing event, are evaluated the common winning or losing
probability, which are summing up to one for any event.

Proposition 1 (GM2001) The following statements are equivalent:
(i) % satis�es A0 (Weak Order), A1 (Essentiality), A3 (Monotonicity), A4� (Eventwise

Monotonicity), A5�a (Archimedean), A6� (Binary Comonotonic Act Independence).
(ii) There exist a continuous nontrivial monotonic representation V : F ! R of % and

a monotone set function � : �! [0; 1] such that for all f 2 F , all x % y in X, all A 2 �,
letting u (x) � V (x) for all x 2 X,

V (xAy) = � (A)u (x) + (1� � (A))u (y) . (1)

The representation V is unique up to positive a¢ ne transformations and the set function
� is unique.
In addition, A2 and A5�b are added instead of A5�a to the statement (i) if and only if

V in (ii) is bounded.

We call the representation (1) biseparable representation, which is a complementarily
additive preference relation. It is also a purely subjective binary version of the rank-
dependent utility in Nakamura (1990).
As noted above, A5�b (Second-order Archimedian) is necessary and su¢ cient to obtain

�nite utility values on extreme alternatives, thoroughly examined in Wakker (1991, 1993)
and Chateauneuf & Wakker (1993). It is shown in the proof of Theorem 3.3.(c) in Wakker
(1993). This paper deals with �nite utility-valued acts especially on counterfactual events,
which compensates for some technical complexity of the axiom.
We know many biseparable preferences such as RDU, MEU, Hurwicz criterion model

(Hurwicz, 1951; Ghirardato et. al, 2004), the disappointment aversion utility model by Gul
(1991) and so on. Here three variations in such basic models are introduced as illustrations.
Example 1 originates from Gul and Pesendorfer (2015), and Example 2 and 3 are spacial
cases in Chew and Epstein (1989), Chew et. al (1993), Grant et. al (2000).

Example 1 (Hurwicz rank-dependent utility)

V 1 (xAy) = �min
p2C

[� (pA)u (x) + (1� � (pA))u (y)]

+ (1� �)max
p2C

[� (pA)u (x) + (1� � (pA))u (y)]

=

�
��

�
min
p2C

pA

�
+ (1� �)

�
1� �

�
min
p2C

pA

���
u (x)

+

�
1�

�
�

�
min
p2C

pA

�
u (x) + (1� �)

�
1� �

�
min
p2C

pA

����
u (y) ,

where � 2 [0; 1] and a weight function � : [0; 1]! [0; 1] is increasing continuous and
onto.

8



Example 2 (max-min disappointment aversion utility)

V 2 (xAy) = min
p2C

pA
u (x) + �v

1 + �
+

�
1�min

p2C
pA

�
u (y) ,

where � 2 (�1;1) is an index of disappointment aversion. It can be written in the
explicit biseparable formula

V 2 (xAy) =
minp2C pA

1 + (1�minp2C pA) �
u (x) +

�
1� minp2C pA

1 + (1�minp2C pA) �

�
u (y) .

Example 3 (rank-dependent weighted utility)

� (A)� (x) [u (x)� v] + (1� � (A))� (y) [u (y)� v] = 0,

where � : �! [0; 1] is a monotone set function, and � : X ! R is a weight function
for consequences. It can be also written in the explicit biseparable formula

V 3 (xAy) =
� (A)� (x)

� (A)� (x) + (1� � (A))� (y)u (x)

+
(1� � (A))� (y)

� (A)� (x) + (1� � (A))� (y)u (y) .

3.1.2 Axioms for Conditional Preferences: Bayesian updating

This subsection introduces two categorized axioms on conditional preference relations. The
�rst one is for the axioms concerning an extension of Bayesian updating, relevant to the
way to revise preferences in the course of updating. The other is for the axioms prescribing
properties that conditional preferences succeed from the unconditional preference, con-
cerning actual utility representations. While these two might be logically integrated into
a consistency property, separating two properties is a crucial factor for further generaliza-
tions.
As in Savage�s interpretation of conditional preferences (Savage, 1954; p. 22), a modi�-

cation for two acts so as to agree with one another outside of B leads to de�ne conditional
preference relations. Formally, the Bayesian updating is described as follows.

Bayesian updating There exists an act a 2 F such that for all E 2 ��, all acts f , g 2 F ,
f %E g if and only if fEa % gEa.

Bayesian updating implies that the modi�cation is made by a common subact a so as
to agree with each other. In fact, the conditional preference relation given E is equivalent
to the unconditional preference relation after modi�cation. Note that Bayesian updating
requests that a particular a 2 F have to be commonly used for modifying any pair of acts.
In this regard, Bayesian updating is equivalent to the f -Bayesian update rule in Gilboa
and Schmeidler (1993), h-Bayesian updating in Ghirardato (2002) and Siniscalchi (2011).
However, �a common subact for any act�is fairly strong requirement to be relaxed below.

B1 (Weak Bayesian updating) For every x 2 X there exists an act a 2 F such that
for all E 2 ��, all f 2 F , f �E x if and only if fEa � xEa.
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B1 (Weak Bayesian Updating) is the extended version of Bayesian Updating, accom-
modating the common subact a 2 F to vary in the set of acts which are not indi¤erent.
In other words, the subact a 2 F is common to indi¤erent acts, more concretely, varying
dependent on the certainty equivalent of indi¤erent acts. After careful consideration of
this dependency, we may rewrite f �E g if and only if fEa � gEa.
B1 is to restrict its application only to binary acts for binary characterizations.

B2� (Weak Bayesian updating for Binary Acts) For every x 2 X there exists an
act a 2 F such that for all E 2 ��, all f 2 F2, f �E x if and only if fEa � xEa.

While B2� is imposed only on binary acts, since as a representation, biseparable pref-
erences are examined, therefore it is why axioms are imposed only on binary acts.

Let us turn to the second category of axioms, prescribing the properties conditional
preferences preserve.

B3 (Independence Preserved)

If a set of acts f , g, h 2 F satis�es independence under %: for every B 2 �

if f % g, then c (fBh) % c (gBh) ,

then the set of acts f , g, h 2 F satis�es independence under %E: for every B 2 �

if f %E g, then c (fBh) %E c (gBh) .

The next axiom is the binary act version of B3.

B4� (Binary Independence Preserved)

If a set of acts f , g, h 2 F satis�es independence under %: for every B 2 �

if f % g, then c (fBh) % c (gBh) ,

then the set of acts f , g, h 2 F satis�es independence under %E: for every B 2 �

if f %E g, then c (fBh) %E c (gBh) .

B3 and B4� assert that �the set of acts satisfying independence axiom�never shrink.
More speci�cally, ex ante MEU preferences satisfy binary comonotonic independence and
constant act independence, hence B2 requires that ex post preferences %E also satisfy these
two types of independence. As for RDU preferences, % satis�es comonotonic independence,
hence B3 asserts that %E also satis�es comonotonic independence. It also suggests that
unconditional SEU never generates conditional MEU.
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3.2 Elicitation of the update rule

The subsection presents the main result of this paper. Theorem 1 provides the formal
characterization of the weak Bayesian updating under biseparable preferences.

Theorem 1 Suppose that every %E2 f%AgA2� satis�es A0. The following statements are
equivalent.
(i) % satis�es

A1� Essentiality
A2� Boundedness
A3 Monotonicity
A4� Eventwise Monotonicity
A5�b Second-order Archimedian
A6� Binary Comonotonic Act Independence

and every %E2 f%AgA2� satis�es
B2� Weak Bayesian Updating for Binary Acts
B4� Binary Independence Preserved.

(ii) For all E 2 ��, there exist a unique monotone set function �E : � ! [0; 1] and a
non-constant continuous monotonic a¢ ne representation VE : F2 ! R such that for all x,
y 2 X with x % y, all A 2 �,

VE (xAy) = �E (A)u (x) + [1� �E (A)]u (y) ,

where u (x) � VE (x) for all x 2 X.
Moreover, �E is a composite update of � by BU, DS, and FH rules: there exists a

partition of Ec, (Tk; Tk�1; : : : ; T1), k 5 jEcj,

�E = �
k � �k�1 � � � � � �1 (�)

where given Ei = 
n (Tk [ � � � [ Ti), for all A � E,

�i (�) (A) 2
�
� ((A \ Ei) [ Ti)� � (Ti)

1� � (Ti)
;
� (A \ Ei)
� (Ei)

;
� (A \ Ei)

� (A \ Ei) + 1� � (A [ Ti)

�
.

Theorem 1 consists of two arguments. The �rst part demonstrates that if the ex ante
and ex post preferences satisfy the set of axioms there exists a collection of complementar-
ily additive conditional probabilities such that the probabilities represent the conditional
preference over binary acts. The latter part characterizes the update rule for calculating
such conditional probabilities constitutes a composite update of priors. In the course of
compositely updating, every update step is conducted only by one of DS, BU, and FH
update rule.
The result is most remarkable in two aspects. (i) Expanded into fairly broad range

of preferences, only three update rules are supported, conversely, any update rules other
than three rules are never compatible with any biseparable preferences with weak Bayesian
updating. (ii) Not only the big three rules were conventional, prominent, and prevalent rules
in the theory of belief functions, but also they are consistent with biseparable preferences
developed in the decision theory, although the biseparability delivers few information about
preferences over acts with more than three outcomes.

11



The three rules are considered to share the common property, Weak Bayesian property.
As seen in the proof of Theorem 1, these rules are characterized through the conditioning
act on the counterfactual event Ec, x� for DS, x for FH, and x� for BU rule. When % has a
biseparable representation, a subjective mixture of f and g is well-de�ned as in Ghirardato,
et. al (2003). For any acts f , g 2 F and any � 2 [0; 1], h = �f + (1� �) g is a subjective
mixture of f and g if h (!) � �f (!) + (1� �) g (!) for all ! 2 
.
For every b % w and some � 2 [0; 1]

�xEx
� + (1� �)xEx� � �bAwEnAx

� + (1� �) bAwEnAx�
, xE (�x

� + (1� �)x�) � bAwEnA (�x� + (1� �)x�) .

By Theorem 1, the above relationship is equivalent to x �E bAw if � satis�es the following
three pattern:

� = 1 , DS, �E (A) =
�((A\E)[Ec)��(Ec)

1��(Ec)

� = 0 , BU, �E (A) =
�(A\E)
�(E)

� is such that x � �x� + (1� �)x� , FH, �E (A) =
�(A\E)

�(A\E)+1��(A[Ec) ,
where a 2 fx�; x�; xg generates �E obtained by DH, BU, FH rule, respectively.
To see more detailed updating formula, let us calculate the exact updated probabilities

in Example 1 to 3.

Example 10 (Hurwicz rank-dependent utility updated by FH rule) Suppose that
� (A) = � (minp2C pA) is updated by FH rule, which is correspond to a (x) = x. Then
�E (A) =

�(A\E)
�(A\E)+�(Ac\E) , and �E (A) =

�(Ac\E)
�(A\E)+�(Ac\E) .

2 On the other hand, letting
� (A) = �� (A) + (1� �) � (A),

�E (A) =
�� (A \ E) + (1� �) � (A \ E)

[�� (A \ E) + (1� �) � (A \ E)] + 1� [�� (Ac \ E) + (1� �) � (Ac \ E)] .

However,

��E (A) + (1� �) �E (A)

= �
� (A \ E)

� (A \ E) + � (Ac \ E) + (1� �)
� (A \ E)

� (A \ E) + � (Ac \ E) ,

which is not equal to �E (A) unless � is additive or � 2 f0; 1g. Although the un-
conditional and conditional preferences are biseparable, they does not satisfy weak
Bayesian property (B2�) if � is not additive and � 2 (0; 1).

Example 20 (max-min disappointment aversion utility updated by BU rule) Suppose
that � (A) = minp2C pA is updated by BU rule, which is correspond to a = x�. Then
�E (A) =

�(A\E)
�(E)

. Letting � (A) = minp2C pA

1+(1�minp2C pA)�
,

�E (A) =
� (A \ E)
� (E)

=
1 + (1�minp2C pE) �
1 + (1�minp2C pA\E) �

minp2C pA\E
minp2C pE

.

2� is the conjugate of �, � (A) = 1� � (Ac) for any A 2 �.
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However, applying Theorem 1 to implicit formula for every A � E

V 2E (xAy) =
V 2 (xAy)

� (E)
= �E (A)u (x) + (1� �E (A))u (y) ,

which implies B2�.

Example 30 (updating rank-dependent weighted utility) Suppose � in implicit ex-
pression

� (A)� (x) [u (x)� v] + (1� � (A))� (y) [u (y)� v] = 0,

is updated by DS rule, to obtain �E (A) =
�((A\E)[Ec[)��(Ec)

1��(Ec) . The conditional pref-
erence is represented by

V 3E (xAy) =
�E(A)�(x)

�E(A)�(x)+(1��E(A))�(y)u (x) +
(1��E(A))�(y)

�E(A)�(x)+(1��E(A))�(y)u (y) .

It is also veri�ed to satisfy B2�.

4 Application

4.1 Maxmin expected utility preferences

The preferences represented by the maxmin expected utility proposed by Gilboa and
Schmeidler (1989) and Casadesus-Masanell et. al (2000), and the purely subjective version
is constructed by Alon and Schmeidler (2014), which is explicitly characterized by using
biseparable framework. As the update rule for its prior set in the MEU model, most deci-
sion settings adopt the full Bayesian update rule axiomatized by Pires (2001). The main
axiom is called conditional certainty equivalent consistency: for all non-null event E 2 ��,
all f 2 F and all x 2 X, if f �E x then fEx � x. It is somewhat opposite direction in
this paper, in the sense that %E inherits certain properties from %. In fact, the opposite
direction is true as long as % and %E are represented by MEU, as shown in Hanany and
Klibano¤ (2007). However, it is also veri�ed through our axiomatization in this paper,
MEU preferences are biseparable, thus all lower probabilities are compositely updated by
BU, DS, or FH rule. Pires�s certainty equivalent consistency correspond to a = x in B2�.
It is due to, MEU preferences are axiomatized by binary comonotonic acts independence
plus other axioms.
To see this, it is necessary to introduce more de�nitions and axioms to obtain the MEU

representation. Let us introduce the preference average of constant acts. The de�nition is
from Ghirardato et. al (2003) and Alon & Schmeidler (2014).

De�nition 4 (Preference average) Given x, y 2 X and an essential event A 2 �,
z 2 X is called a preference average of x and y given A if x % z % y and xAy �
c (xAz)A c (zAy).

If y % x, z is also called a preference average of x and y if it is a preference average of
y and x. Let us denote the preference average of x and y by m (xAy). Write m (fAg) for
the act h 2 F such that h (!) is a preference average of f (!) and g (!) given A for every
! 2 
.
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A7 (Uncertainty aversion) For all f , g 2 F , if f � g, then m (fAg) % f .

A8 (Certainty Independence) For all f , g 2 F and all x 2 X, if f % g, then
m (fAx) % m (gAx).

A9 (Certainty Covariance) For all f , g 2 F and all x, y 2 X such that m (fAy) �
m (gAx), f � x if and only if g � y.

Theorem 2 Suppose that every %E2 f%AgA2� satis�es A0. The following statements are
equivalent.
(i) % satis�es A1�, A2�, A3, A4�, A5�b, A6�

A7 Uncertainty aversion
A8 Certainty Independence
A9 Certainty Covariance,

and every %E2 f%AgA2� satis�es
B1 Weak Bayesian Updating
B3 Independence Preserved.

(ii) For every E 2 ��, there exist a unique nonempty closed convex set CE � �0 and a
non-constant continuous increasing a¢ ne function u : X ! R such that for all f , g 2 F

f %E g () min
p2CE

Z
u � fdp = min

p2CE

Z
u � gdp,

where CE is a composite update of C: there exists T = (T3; T2; T1) such that �E : � !
[0; 1] de�ned as �E (A) � minp2CE p (A) for every A 2 � is a composite update of �,
�E = �

3 � �2 � �1 (�), where �3 (�) = �FHE3 , �2 (�) = �BUE2 and �1 (�) = �DSE1 ,

�E (A) =
� (A [ T1)� � (T1)

[� (A [ T1)� � (T1)] + [� (E [ T1 [ T3)� � (A [ T1 [ T3)]

for every A � E.

B1-1 (Certainty Equivalent Consistency) For all E 2 �� and all f 2 F , f �E x if
and only if fEx � x.

If we assume B1-1 in place of B1, we obtain the characterization of FB rule.

Corollary 1 Suppose that every %E2 f%AgA2� satis�es A0. The following statements
are equivalent.
(i) % satis�es A1�, A2�, A3, A4�, A5�b, A6�, A7, A8, A9
and every %E2 f%AgA2� satis�es

B1-1 Certainty Equivalent Consistency
B3 Independence Preserved.

(ii) For every E 2 ��, there exist a unique nonempty closed convex set CE � �0 and a
non-constant continuous increasing a¢ ne function u : X ! R such that for all f , g 2 F

f %E g () min
p2CE

Z
u � fdp = min

p2CE

Z
u � gdp,

14



where CE is updated by

CE =
�
pE 2 �0 j p 2 C

	
where pE (A) =

p (A \ E)
p (E)

for every A 2 �.

4.2 Rank-dependent expected utility preferences

In this subsection, more generalized characterization for updating monotone set functions,
as seen in Horie (2006) is investigated. RDU preferences are also biseparable, since the
main axiom is called comonotonic independence, the very full version of A6�. Therefore,
the formulation can be made only to plus an additional axiom A10 (comonotonic act inde-
pendence) in place of A6� in (i) of Theorem 1. It enables us to give the full characterization
of BU, DS, FH update rule for monotone set functions.
Let

R
C fd� express the Choquet integral of f with respect �. Two acts f , g 2 F are

comonotonic, if there are no !, !0 2 
 such that f (!) � f (!0) and g (!) � g (!0).

A10 (Comonotonic Independence) For every essential A 2 �, every B 2 �, and for
all comonotonic f , g, h 2 F such that h weakly dominates f and g, or h is weakly
dominated by f and g, f % g =) c (fBh) % c (gBh).

Theorem 3 Suppose that every %E2 f%AgA2� satis�es A0. The following statements are
equivalent.
(i) % satis�es A1�, A2�, A3, A4�, A5�b,

A10 Comonotonic Independence
and every %E2 f%AgA2� satis�es

B2� Weak Bayesian Updating for Binary Acts
B3 Independence Preserved.

(ii) For every E 2 ��, there exist a unique monotone set function on E �E : �! [0; 1]
and a non-constant increasing a¢ ne function u : X ! R such that for all f , g 2 F ,

f %E g ()
Z
C
u � fd�E =

Z
C
u � fd�E,

where �E is a composite update of �: there exists T = (T3; T2; T1) such that �E = �
3 ��2 �

�1 (�), where �3 (�) = �FHE3 , �
2 (�) = �BUE2 and �

1 (�) = �DSE1 ,

�E (A) =
� (A [ T1)� � (T1)

[� (A [ T1)� � (T1)] + [� (E [ T1 [ T3)� � (A [ T1 [ T3)]

for every A � E.

4.3 Concave expected utility preferences

The concave integral proposed by Lehrer (2009) and Even & Lehrer (2014) is an extended
version of Choquet integral. In this section, consider the update rule tie up with preferences
represented by Lehrer expected utility (LEU).
To de�ne the concave integral, more notations are incorporated in addition to the

setting in the previous section.
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� X = R+

� u : X ! R+: a non-constant continuous increasing utility function

� IA expresses the act 1A0 2 F called the indicator of A

�
kP
i=1

�iIAi is 2N -decomposition of f if (i)
Pk

i=1 �iIAi = u � f , (ii)�i = 0 and Ai 2 � for
every k = 1; : : : ; n.

� Concave integral of u � f :R
L u � fd� = max

�
kP
i=1

�i� (Ai) j
kP
i=1

�iIAi is 2N -decomposition of f
�

� � is superadditive.

If monotone set function � is convex, LEU and CEU coincide, hence it is extension of
Choquet integral.
The concave integral with respect to � requires quite complicated calculations in gen-

eral, in this section, � is assumed to be superadditive. The symmetric consequences does
not hold under � is subadditive, since it does not imply biseparability.
The following proposition shows that, under ��s superadditivity, LEU is biseparable.

Proposition 2 Suppose that � is superadditive. Then,
R
L u � fd� is biseparable.

From this proposition, % represented by LEU with superadditive � satis�es binary
comonotonic independence. It implies that on binary acts, % behaves as preferences repre-
sented by CEU. However, %�s behavior on trinary acts is quite di¤erent as in the following
example.

Example 1 Consider the four states fa; b; c; dg and � as following.

� (a) = � (b) = � (c) = � (d) =
1

8

� (ab) = � (bc) =
2:4

8
; � (ac) =

4:8

8
; � (ad) = � (bd) = � (cd) =

2:1

8

� (abc) = � (bcd) = � (abd) = � (acd) =
6

8
; � (abcd) = 1

Assume a linear utility u (x) = x for all x 2 X. Consider the act g = (3; 2; 1; 0). The
optimal decomposition of CEU is [fa; b; c; dg ; fa; b; cg ; fabg ; fag] and the CEU value of g
is R

Cgd� =
1

8
� 3 +

�
2:4

8
� 1
8

�
� 2 +

�
6

8
� 2:4
8

�
� 1 = 9:4

8
.

However the optimal decomposition of LEU is [fa; bg ; fa; cg], and the LEU value of g isR
Lgd� =

2:4

8
� 2 + 4:8

8
=
9:6

8
.

It is caused by that fabg and facg are pairwise concave, i.e. � fabcg � � fabg < � facg �
� fag.
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Theorem 4 Suppose that every %E2 f%AgA2� satis�es A0. The following statements are
equivalent.
(i) % is represented by the concave expected utility with a superadditive monotone set

function � and u,
and %E2 f%AgA2� satis�es

B2� Weak Bayesian Updating for Binary Acts
B3 Independence Preserved.

(ii) For every E 2 ��, there exist a unique monotone set function on E, �E : �! [0; 1]
such that for all acts f and g,

f %E g ()
Z
L
u � fd�E =

Z
L
u � fd�E,

where �E is updating of � by

�E (A) =
� (A \ E)
� (E)

for every A 2 �.

5 Discussion

Gilboa and Schmeidler (1993) formulated Savage�s Bayesian paradigm as the f-Bayesian
update rule, which is formally applied to the CEU preferences with convex capacities. Their
signi�cant contribution is to establish a formal framework where the unconditional and
conditional preferences are linked through a subact f which is assumed on the unobserved
event, and to characterize the formation of posteriors through an update rule for prior
capacities. Pires (2001) and Hanany and Klibano¤ (2007) also adopted this approach to
axiomatize the full Bayesian updating for a given set of priors under MEU preferences.
Eichberger et. al (2007) and Horie (2013) characterized the full Bayesian update rule, FH
rule in this paper, for RDU preferences.
In the above literature, a set of consistent counterfactual subacts characterizes an up-

date rule, and also gives an introspectional interpretation to a decision maker�s pattern of
conditioning. For example, Gilboa and Schmeidler (1993) showed that DS rule (Shafer,
1976) (resp. BU rule) is pessimistic (resp. optimistic). As for FH update rule, the con-
sistent counterfactual act is described as the certainty equivalence, hence which exhibits a
fair degree of neutrality.
We have investigated an extension of the Bayesian updating under biseparable prefer-

ences. Only three update rules are compatible with this fairly broad range of biseparability.
However, it might also suggest the limitation in the method of unconditional-conditional
preferences approach, since further widening the sets of counterfactual subacts may not
generate any consistent preferences, and become disconnected with reality. Although it is
quite di¢ cult to test and measure out how to revise subjective uncertainty, it is the matter
for future investigation anticipated eagerly in a behavioral sense.

Acknowledgement I am deeply grateful to Chiaki Hara, Atsushi Kajii, Tadashi Sekiguchi,
Takashi Ui, Jingyi Xue for invaluable comments, discussions and encouragement. Re-
maining errors in this paper are all my own responsibility.
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Appendix A

Update rules for ambiguous beliefs

Several update rules for non-additive measures are distinguished as an extension of classical
Bayes� rule for conditional probabilities. Most update rules are initially proposed and
investigated in the theory of belief functions. In our decision theoretic framework, they are
mostly applied to monotone set functions.
Formally, an update rule of � is a transformation of � to generate the conditional

monotone set function as a posterior.
Dempster-Shafer update rule (DS rule; Dempster,1967; Shafer, 1976) is de�ned through

�DSE (A) =
� ((A \ E) [ Ec)� � (Ec)

1� � (Ec) for every A 2 �,

which is well-de�ned if 1� � (Ec) > 0.
The rule updating � like in the additive case, is called Bayes�update rule (BU rule):

Given an event E 2 � such that � (E) > 0

�BUE (A) =
� (A \ E)
� (E)

for every A 2 �.

The generalized Bayes update rule, called Fagin-Halpern update rule (FH rule; Dempster,
Fagin and Halpern, 1991; Ja¤ray, 1992) is de�ned through

�FHE (A) =
� (A \ E)

� (A \ E) + 1� � ((A \ E) [ Ec) for every A 2 �,

if it is well-de�ned.
As for the update rule for a nonempty, closed and convex prior set C � �0, the full

Bayesian update rule (FB rule) updates all priors in C through Bayes�rule:

CE =
�
pE 2 �0 j p 2 C

	
where pE (A) =

p (A \ E)
p (E)

for every A 2 � and p (E) > 0.

Appendix B

B1. Proof of Theorem 1

(i))(ii)

Throughout the proof, it is assumed that every preference relation in f%AgA2� satisfying
A0 and a non-null event E 2 �� are all �xed.
A0-A6� is summarized into the following observations:

� % has a biseparable representation. � � �Proposition 1

� An event A is essential if and only if � (A) 2 (0; 1), A is null if and only if � (A) = 0,
and A is universal if and only if � (A) = 1 � � �Proposition 3(i) in GM2001
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� V (X) � Rn and V (F2) � R2n are bounded. � � �Wakker (1991, 1993)

� Since % has a biseparable representation, a subjective mixture of f and g is well-
de�ned. � � �Ghirardato, et. al (2003)

If there is no essential event A $ E with respect to %E, �E (A) = 0 for all A $ E in (2)
satis�es (ii), therefore we consider the case where there exists at least one essential event
A $ E for the rest of the proof.
At �rst, Lemma 1 is to specify the set of possible conditioning acts a to satisfy A6�.

Lemma 1 A constant act a (�) satis�es x % y , xEa (x) % yEa (y) for all x, y 2 X if
and only if a (x) 2 fx�; x; x�g.

Proof. At �rst, assume a (x) 2 fx�; x; x�g. Pick arbitrary x, y such that x % y. If
a (x) = x, then xEa (x) = x and yEa (y) = y, the argument holds immediately. When
a = x� or x�, for any pair of x % y, we have x� % x % y % x� by de�nition. If x � y,
then the statement holds immediately. Assume x � y. Then, by monotonicity, xEa % yEa,
a 2 fx�; x�g. In any case, xEa and yEa are pairwise binary comonotonic, hence the
statement holds.
For su¢ ciency, to lead to a contradiction, assume a =2 fx�; x; x�g satis�es B2�. If a (�)

is such that for some x � y, a (x) � x and a (y) � y, xEa (x) and yEa (y) are not pairwise
binary comonotonic, thus such a (�) cannot satisfy B2�.
Assume then a (x) is such that a (x) � x for any x 2 X. However, there is no outcome

a (x�) � x� in X by A2�. On the contrary, assume a (x) is such that a (x) � x for any
x 2 X. However, there is no outcome a (x�) � x� in X, again contradiction.
Suppose a (x) is such that x � a (x) � x� for all x � x�. Take an essential event E,

x 2 X and choose � 2 (0; 1) satisfying �x� + (1� �)x � a (x). By assumption, we have
a (a (x)) � a (x), then by A4� a (x)E a (a (x)) � �x�Ea (x�) + (1� �)xEa (x), contradicting
A6�. The case where a (x) is such that x � a (x) � x� for all x � x� can be shown in the
same way. It follows that a (x) 2 fx�; x; x�g if it is constant.
Write a 2 fx�; x; x�g instead of a (x) hereafter.

Lemma 2 %E satis�es A1�-A6� on F2.

Proof. %E on F2 agrees with % through B2�, it is straightforward to satisfy A1� (es-
sentiality), A2� (Boundedness), A3 (monotonicity), A4�(Eventwise Monotonicity), A5�b
(2nd-order Archimedian) on F2. Note that the axiom with � hold on F2. Since % sat-
is�es A6� (binary comonotonic acts independence), B2� is applied to any set of binary
comonotonic acts, say xAy, x0Ay

0 and x00Ay
00 (w.l.o.g x % y , x0 % y0 and x00 % y00) satisfying

independence, so that the set of xAyEnAa, x0Ay
0
EnAa and x

00
Ay

00
EnAa also satis�es indepen-

dence. Through B4�, the same set of xAy, x0Ay
0 and x00Ay

00 satis�es binary comonotonic
independence in terms of %E.
It implies that, by Proposition 1, %E also has a biseparable representation VE such that

VE (x) = V (x) = u (x) and VE (xAy) = �E (A)u (x) + [1� �E (A)]u (y), where u (x) =
V (x) since %E on constant acts agrees with %.
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Lemma 3 If %E satis�es B2� with a 2 fx�; x�; xg, then %E is represented by VE such that
for all A 2 �

�E (A) =

8>>>>>>><>>>>>>>:

� ((A \ E) [ Ec)� � (Ec)
1� � (Ec) if a = x�

� (A \ E)
� (E)

if a = x�

� (A \ E)
� (A \ E) + 1� � (A [ Ec) if a = x

.

Proof. By Proposition 1, %E has a representation VE such that for any A � E and any
binary act xAy 2 F2 with x % y, VE (xAy) = �E (A)u (x) + [1� �E (A)]u (y).
(1) a = x�

Pick an arbitrary essential event A � E and consider x, w 2 X satisfying xEx� �
x�AwEnAx

�. Then

xEx
� � x�AwEnAx

�

, V (xEx
�)� V

�
x�AwEnAx

�� = 0
, f� (Ec)u (x�) + [1� � (Ec)]u (x)g�f� (A [ Ec)u (x�) + [1� � (A [ Ec)]u (w)g= 0
, u (x)�

n
�(A[Ec)��(Ec)

1��(Ec) u (x�) +
h
1� �(A[Ec)��(Ec)

1��(Ec)

i
u (w)

o
= 0

, u (x)� f�E (A)u (x�) + [1� �E (A)]u (w)g = 0
, x �E x�Aw

It generates Dempster-Shafer update rule of �: for all A 2 �

�E (A) =
� ((A \ E) [ Ec)� � (Ec)

1� � (Ec) .

For this x, w 2 X, consider b0, w0 2 X such that b0 � �x� + (1� �)x and w0 � �x +
(1� �)w for some � 2 [0; 1]. Due to A3, b0 % w0, x - b0 - x�, and x % w0 % w. A6� tells
that xEx� � b0Aw0EnAx� � x�AwEnAx�. Then

xEx
� � b0Aw0EnAx� � � (xEx�) + (1� �)

�
x�AwEnAx

��
, V (xEx

�) = �V (xEx
�) + (1� �)V

�
x�AwEnAx

��
, u (x) = �(A[Ec)��(Ec)

1��(Ec) [�u (x�) + (1� �)u (x)]

+
h
1� �(A[Ec)��(Ec)

1��(Ec)

i
[�u (x) + (1� �)u (w)]

, u (x; v) = �E (A)u (b
0) + [1� �E (A)]u (w0)

, x �E b0Aw0.

It implies that, for any binary act bAw and b0Aw
0, bAw %E b0Aw0 if and only if bAwEnAx� %E

b0Aw
0
EnAx

�. Therefore, if a = x�, � is updated by DS rule.
(ii) a = x�
Pick an arbitrary essential event A 2 � and consider x, b 2 X satisfying xEx� � bAx�.
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Then

xEx� � bAx�

, V (xEx�) = V (bAx�)

, u (x) = f� (E)u (x) + [1� � (E)]u (x�)g � f� (A)u (b) + [1� � (A)]u (x�)g
, u (x) = �(A)

�(E)
u (b) +

h
1� �(A)

�(E)

i
u (x�)

, u (x) = �E (A)u (b) + [1� �E (A)]u (x�)
, x �E bAx�.

It generates the Bayesian update rule of �: for all A 2 �

�E (A) =
� (A \ E)
� (E)

.

For this x, b 2 X, consider b00, w00 2 X such that b00 � �x + (1� �) b and w00 �
�x + (1� �)x� for some � 2 [0; 1]. Due to A3, b00 % w00, x - b00 - b, and x % w00 % x�.
A6� tells that xEx� � b00Aw00EnAx� � bAx�. Then

xEx� � b00Aw
00
EnAx� � � (xEx�) + (1� �) bAx�

, V (xEx�)� f�V (xEx�) + (1� �)V (bAx�)g = 0
, u (x)�

n
�(A)
�(E)

[�u (x) + (1� �)u (b)] +
h
1� �(A)

�(E)

i
[�u (x) + (1� �)u (x�)]

o
= 0

, u (x)� f�E (A)u (b00) + [1� �E (A)]u (w00)g = 0
, x �E b00Aw00

It implies that, for any binary act bAw and b00Aw
00, bAw %E b00Aw00 if and only if bAwEnAx� %

b00Aw
00
EnAx�. Therefore, if a = x�, � is updated by BU rule.
(iii) a = x
Now pick arbitrary b, w 2 X such that b � w, and consider x to satisfy x � bAwEnAx.

When x � �b+(1� �)w, x is indi¤erent to �bAwEnAb+(1� �) bAwEnAw by construction.
Then

x � �bAwEnAb+ (1� �) bAwEnAw
, u (x)�

�
�V

�
bAwEnAb

�
+ (1� �)V

�
bAwEnAw

�	
= 0

, u (x)� � f� (A [ Ec)u (b) + [1� � (A [ Ec)]u (w)g
� (1� �) f� (A)u (b) + [1� � (A)]u (w)g = 0

, u (x) + � (A) f�u (b) + (1� �)u (w)g � � (A [ Ec) f�u (b) + (1� �)u (w)g
� � (A)u (b)� [1� � (A [ Ec)]u (w) = 0

, u (x)�
n

�(A)
�(A)+1��(A[Ec)u (b) +

1��(A[Ec)
�(A)+1��(A[Ec)u (w)

o
= 0

, u (x)� f�E (A)u (b) + [1� �E (A)]u (w)g = 0
, x �E bAw
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It generates FH update rule of �

�E (A) =
� (A \ E)

� (A \ E) + 1� � (A [ Ec) .

Since the choice of b and w are arbitrary as long as x � �b+ (1� �)w, it concludes that,
for any b, w 2 X with b % w, VE (bAw) = �E (A)u (b)+ [1� �E (A)]u (w). Hence if a = x,
the statement holds and �E is transformed by FH rule.

Lemma 4 Suppose that (i) is satis�ed. Then, there exists a partition of Ec, (Tk; Tk�1; : : : ; T1),
k 5 jEcj, %E on F2 is represented by u and �E, which is a composite update of �: for all
A 2 �

�E (A) = �
k � �k�1 � � � � � �1 � � (A)

where

�i � �
�
AjEi

�
2
�
� ((A \ Ei) [ Ti)� � (Ti)

1� � (Ti)
;
� (A \ Ei)
� (Ei)

;
� (A \ Ei)

� (A \ Ei) + 1� � (A [ Ti)

�
.

Proof. If Ec is compositely updated, Ec is partitioned according to the order of updating
and a 2 fx�; x�; xg. Let S = fSm; Sm�1; : : : ; S1g be a partition of 
. Such S is determined
by %
nSi and ai 2 fx�; x�; xg, i = 1; : : : ;m. Let Ti = Si \ Ec, and T = (Tk; Tk�1; : : : ; T1)
is renumbered according to the same order in S if Ti 6= ?. Let ai 2 fx�; x�; xg express the
conditioning act on Ti. Write aT = ak � � � a1.
From lemma above, �i updating every Ti by using ai 2 fx�; x�; xg is consistent with

B2� and B4�. It remains to prove that the sequence of updating (Tk; Tk�1; : : : ; T1) is also
consistent with B2� and B4�. Assume x 2 X is such that xEaT � x�Ax�EnAaT. By
construction, we have x �E x�Ax�. Let � 2 [0; 1] satisfy x � �x� + (1� �)x�. Note that,
since every ai is x�, x�, or �x�+(1� �)x�, aS can be expressed by an �-subjective mixture
of two binary acts x�Bx� and x

�
B0x� for some B, B

0 2 �. Furthermore, xEaT and x�Ax�EnAaT
are also represented by a subjective mixture of two binary acts. It implies that, if they are
indi¤erent comonotonic acts and ai is common, then they are also indi¤erent in terms of
%Ei�1.
Starting with %E

x � E x
�
Ax� ( %E is represented by u and �k � �k�1 � � � � � �1 � �)

, xEa
k(ak�1 � � � a1) �Ek�1 x�Ax�EnAak(ak�1 � � � a1)

( % Ek�1 is represented by u and �
k�1 � � � � � �1 � �)

, xEa
kak�1(ak�2 � � � a1) �Ek�2 x�Ax�EnAakak�1(ak�2 � � � a1)

( % Ek�2 is represented by u and �
k�2 � � � � � �1 � �)

...

, xEa
kak�1 � � � (a1) �E1 x�Ax�EnAakak�1 � � � (a1)

( % Ek�2 is represented by u and �
1 � �)

, xEa
kak�1 � � � a1 � x�Ax�EnAakak�1 � � � a1

( % is represented by u and �).

By Lemma 3 and A6�, in every step, x� and x� are replaced by b and w with b % w since
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they produce only binary comonotonic acts. Every ai implies �i to be one of BU, DH, and
FH rule, thus the indi¤erence relation

x �E bAw , xE(a
k � � � a1) � bAwEnA(ak � � � a1)

generate the composite update, which completes the proof of lemma.

(ii))(i)

Proof. It is proper to assume the following:

� % has a continuous nontrivial monotonic biseparable representation V : F ! R and
a unique monotone set function � : � ! [0; 1] with � (E) 2 (0; 1) as a conditioning
event.

� u (X) is bounded.

� %E has a continuous nontrivial monotonic biseparable representation VE : F2 ! R
and a unique monotone set function �E : �! [0; 1].

� �E is a well-de�ned compositely update of � by
�
akak�1 � � � a1

�
, ai 2 fx�; x�; xg.

On F2, %E is represented by VE with �E in (ii). The reverse sequence generates �.
With this �, de�ne V : F2 ! R by V (bAw) = � (A)u (b) + [1� � (A)]u (w), where
u (x) � VE (x). By Proposition 1, A3, A4�, A5�b, A6� are satis�ed immediately under
biseparable V .
(A1�) The event E such that � (E) 2 (0; 1) is essential.
(A2�) u (X) is bounded, thus there exist consequences x�, x� 2 X, x� � x� such that

for all event A 2 � and all x, y 2 X, x� % xAy % x�.
(B2�) �E is composite update of � by

�
akak�1 � � � a1

�
, ai 2 fx�; x�; xg. For any f , g 2 F2

f �E g , fEa
kak�1 � � � a1 � fEakak�1 � � � a1.

(B4�) Since %E on F2 has a biseparable representation, for any b, w, b0, w0 2 X, b % w,
b0 % w0,

VE (�bAw + (1� �) b0Aw0) = �VE (bAw) + (1� �)VE (b0Aw0) ,
combined with monotonicity of V , %E satis�es A6�. Since % on F2 also has biseparable
representation V , B4� holds.

B2. Proofs in Applications

Proof of Theorem 2 : MEU case

Proof. (i))(ii) Theorem 2 in Alon & Schmeidler (2014) proved that A0-A9 in (i) are
su¢ cient to obtain MEU representation in a purely subjective setting. Proposition 1
assures �nite utility values on extreme alternatives x�, x�.
Since the statement (i) is more restrictive than (i) in Theorem 1, it may begin with the

result of Theorem 1. That is, there exists a partition of Ec, (Tk; Tk�1; : : : ; T1), k 5 jEcj and
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an act on Ec,
�
akak�1 � � � a1

�
, ai 2 fx�; x�; xg, i = 1; : : : ; k such that CE is a composite up-

date of C. Let T1 = f! 2 Ec j ai (!) = x� for some ig, T2 = f! 2 Ec j ai (!) = x� for some ig,
and T3 = f! 2 Ec j ai (!) = x for some ig. Rewrite

�
akak�1 � � � a1

�
as aT = xT3x�T2x

�
T1
.

Let � de�ne the corresponding biseparable expression, which constitutes lower probabili-
ties of C, � (A) := minp2C p (A) for every A 2 �.
(a) Suppose T3 = T2 = ?. Then

xEx
� � fEx�

, min
p2C

Z
u � xEx� dp�min

p2C

Z
u � fEx� dp = 0

, u (x)�min
p2C

X
!2E

p((!\E)[Ec)��(Ec)
1��(Ec) u � f = 0

, u (x)� min
p12CE

X
!2E

p1 (!)u � f = 0

, x �E f ,

where C1 = fp1 2 �0 j p 2 Cg such that p1 (A) = p((A\E)[Ec)��(Ec)
1��(Ec) for every A 2 �. The

lower probabilities of C1 is updated by DS rule, �1 (A) =
�((A\E)[Ec)��(Ec)

1��(Ec) for every A 2 �.
(b) Suppose T3 = T1 = ?. Then

xEx� � fEx�
, min

p2C

Z
u � xEx� dp�min

p2C

Z
u � fEx� dp = 0

, u (x)�min
p2C

X
!2E

p(!\E)
�(E)

u � f = 0

, u (x)� min
p22CE

X
!2E

p2 (!)u � f = 0

, x �E f ,

where C2 = fp2 2 �0 j p 2 Cg such that p2 (A) = p(A\E)
�(E)

for every A 2 �. The lower
probabilities of C2 is updated by BU rule, �1 (A) =

�(A\E)
�(E)

.
(c) Suppose T2 = T1 = ?. Then C3 is updated via FB rule, C3 = fp3 2 �0 j p 2 Cg

such that p3 (A) =
p(A\E)
p(E)

for every A 2 �. The lower probabilities of C3 is updated by FH
rule, �3 (A) =

�(A\E)
�(A\E)+1��((A\E)[Ec) .

(d) When Ti, i = 1; 2; 3 includes at most one nonempty set, C is updated compositely.

xEaT � fEaT
, min

p2C

Z
u � xEaT dp�min

p2C

Z
u � fEaT d� = 0

, u (x)�min
p2C

P
!2E2

p((!\E2)[T1)��(T1)
1��(T1) u � f = 0

, u (x)� min
p2CE

Z
u � f dp = 0

, x �E f ,
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where CE is compositely updated by (T3; T2; T1) and

�E (A) =
� (A [ T1)� � (T1)

[� (A [ T1)� � (T1)] + [� (E [ T1 [ T3)� � (A [ T1 [ T3)]

for every A � E.
The proof of the direction (ii))(i) is straightforward.

Proof of Theorem 3 : RDU case

Proof. (i))(ii) Theorem 1 in Nakamura(1990) and GM2001 proved that A0-A5b plus
A10 in (i) is su¢ cient to obtain RDU representation. Proposition 1 assures �nite utility
values on extreme alternatives x�, x�.
Since the statement (i) is more restrictive than (i) in Theorem 1, it may begin with

the result of Theorem 1. That is, there exists a partition of Ec, (T3; T2; T1) such that �E
is compositely update of � via conditioning act aT = xT3x�T2x

�
T1
de�ned in the proof of

Theorem 2.
Choose an arbitrary non-null event E 2 ��. From the above argument, % and %E are

represented by RDU with (u; �) and (u; �E) respectively.
By assumption, %E satisfy B2� with aT. For any x 2 X, any b, w 2 X with b % w,

and any event A � E,

xEaT � bAwEnAaT

,
Z
u � xEaT d��

Z
u � bAwEnAaT d� = 0

, f[� (A [ T1)� � (T1)] + [� (E [ T1 [ T3)� � (A [ T1 [ T3)]g �n
u (x)�

h
�(A[T1)��(T1)

[�(A[T1)��(T1)]+[�(E[T1[T3)��(A[T1[T3)]u (b)

+ �(E[T3[T3)��(A[T1[T3)
[�(A[T1)��(T1)]+[�(E[T1[T3)��(A[T1[T3)]u (w)

io
= 0

, u (x)� f�E (A)u (b) + [1� �E (A)]u (w)g = 0

,
Z
u � x d�E �

Z
u � bAw d�E = 0

, x �E bAw.

Therefore, any binary comonotonic act f and g in F2, we have fEaT � gEaT , f �E g.
It holds for any A 2 �, hence �E (A) is calculated as in the statement.
(ii))(i) To show this part, assume the following:

� % is represented by
R
u � f d� and %E is represented by

R
u � f d�E as stated in (ii).

� u (X) is bounded.

� �E is a well-de�ned compositely update of � by aT = xT3x�T2x�T1.

From CEU representations for %, %E and above arguments, A2�, A3, A4, A5�b, A10
are immediately satis�ed. B2� is also true since the aforementioned equations are e¤ective
retrospectively.
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Proof of Theorem 4 : LEU case

Proof of Proposition 2. Consider bAw, b, w 2 X with b % w, A 2 ��. For any B � A,
� (B) + � (AnB) 5 � (A), and for any B0 � Ac, � (B0) + � (AcnB0) 5 � (Ac). If outcomes
in event A or Ac are divided between any two events, it cause to smaller values. If w were
evaluated by � (Ac), then b was also evaluated by � (A), however by superadditivity we have
� (Ac)u (w) 5 [1� � (A)]u (w), which leads a contradiction. Therefore, the maximum isR
L
u � fd� = � (A)u (b) + [1� � (A)]u (w).

Proof of Theorem 4. When � is convex, the concave integral is equivalent to Choquet
integral, hence it is su¢ cient to begin with examining aT = xT3x�T2x

�
T1
.

Example 4 provides an example of % and %E that violates B2� when S1 or S2 is non-
empty. Therefore it remains to show that a = x� meets B2� and B3.
Now, consider a binary act bAw with b % w. As seen in the proof of Theorem 1, B2�

and B3 asserts that
x �E bAw () xEx� � bAwEnAx�,

which leads to BU rule. The optimal decomposition is � (A) = � (A), � (EnA) = � (E)�
� (A). To see this suppose that � 6= � is also optimal decomposition of 
. If so, EnA is
included in the optimal decomposition � by Co-decomposition additivity in Proposition 5
(Even and Lehrer, 2014), that is, � (E) � � (A) < � (EnA), contradicting ��s superaddi-
tivity.
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