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Abstract

Estimation results obtained by parametric models may be seriously misleading when the

model is misspecified or poorly approximates the true model. This study proposes two tests

that jointly test the specifications of multiple response probabilities in unordered multino-

mial choice models. Both test statistics are asymptotically chi-square distributed, consistent

against a fixed alternative, and able to detect a local alternative approaching to the null at a

rate slower than the parametric rate. We show that rejection regions can be calculated by a

simple parametric bootstrap procedure, when the sample size is small. The size and power

of the tests are investigated by Monte Carlo experiments.
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1 INTRODUCTION

Not infrequently, variables of interest in economic research are discrete and unordered as we often

find the variables that indicate behavior or state of economic agents. Some econometric models

have been developed to deal with these discrete and unordered outcomes. Above all, parametric

models such as the multinomial logit (MNL) and probit (MNP) models proposed by McFadden

(1974) and Hausman and Wise (1978), respectively, are widely employed, for example, in struc-

tural econometric analysis (e.g., the economic models of automobile sales in Berry, Levinsohn, &

Pakes, 1995; Goldberg, 1995) and as part of econometric methods (e.g., selection bias correction

of Heckman, 1976; Dubin & McFadden, 1984). However, results obtained by such parametric

models may be seriously misleading when the model is misspecified or poorly approximates the

true model. Thus, researchers need to examine the validity of parametric assumptions as long as

the assumptions are refutable from data alone.

This study proposes two new specification tests that are directly applicable to any multinomial

choice models with unordered outcome variables. These models set parametric assumptions on

response probabilities that an option is chosen from multiple alternatives, and identical assump-

tions are often set for all response probabilities. Problems occur when these models do not mimic

the true models because the response probabilities and partial effects of some variables on the

probabilities cannot be properly predicted. Moreover, the parameter estimation results may be

misleading and their interpretation confusing. The specification tests proposed here can be uti-

lized to justify the choice of parametric models and avoid misspecification problems.

The novelty of the tests provided in this study is that they allow us to test the specifications

of response probabilities jointly for all choice alternatives. Multinomial choice models with un-

ordered outcomes consist of multiple response probabilities, each of which may be parameterized

differently. This implies that one needs to test multiple null hypotheses to justify the parametric

assumptions of these models. A substantial number of specification tests have been developed to

test a single null hypothesis. To our knowledge, however, no joint specification tests have so far
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been theoretically suggested for multiple null hypotheses.

One test proposed here is based on the L2-distances between parametric and nonparametric

fits of response probabilities, and the other is based on moment conditions. We show that both

test statistics are asymptotically chi-square distributed, consistent against a fixed alternative, and

able to detect a local alternative approaching the null at the rate 1=
p

nhq=2, where q is the number

of independent variables.

One eminent feature of our tests is that a parametric bootstrap procedure works well to calcu-

late the rejection region for the test statistic. Since both testing methods involve nonparametric

estimation, a sufficiently large sample size could be required to establish that the chi-squared dis-

tribution is a proper approximation for the distribution of test statistics. Thus, a simple parametric

bootstrap procedure to calculate rejection regions is a practical need.

A crucial point that makes parametric bootstrap work is that the orthogonality condition holds

with bootstrap sampling under both the null and alternative hypotheses. This is different from

the specification test for the regression function that requires the wild bootstrapping procedure

to calculate the rejection region proved by Härdle and Mammen (1993). It is also noteworthy

that the parametric nature of the model leads to substantial savings in the computational cost of

bootstrapping.

Methodologically, two different approaches have been developed to construct specification

tests. One uses an empirical process, and the other a smoothing technique. We call the first

type empirical process-based tests and the second type smoothing-based tests. Most of the lit-

erature on specification tests can be categorized into one of these two types. Empirical process-

based tests are proposed by Bierens (1982), Bierens (1984), Bierens (1990), Delgado (1993),

De Jong (1996), Andrews (1997), Bierens and Ploberger (1997), Stute (1997), Stinchcombe

and White (1998), Chen and Fan (1999), and Whang (2000), among others. Smoothing-based

tests are proposed by Eubank and Spiegelman (1990), Le Cessie and van Houwelingen (1991),

Wooldridge (1992), Yatchew (1992), Gozalo (1993), Härdle and Mammen (1993), Aı̈t-Sahalia,

Bickel, and Stoker (1994), Delgado and Stengos (1994), Horowitz and Härdle (1994), Hong and
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White (1995), Y. Fan and Li (1996), Lavergne and Vuong (1996), Zheng (1996), Li and Wang

(1998), and Lavergne and Vuong (2000) to mention only a few.

These two types of tests are complementary to each other, rather than substitutional, in terms

of the power property. For Pitman local alternatives, empirical process-based tests are more

powerful than the smoothing-based tests. The empirical process-based tests can detect Pitman

local alternatives approaching the null at the parametric rate n�1=2, whereas the smoothing-

based tests can detect them at a rate slower than the parametric rate. Smoothing-based tests

are, however, more powerful for a singular local alternative that changes drastically or is of high

frequency. Empirical process-based tests can be represented by a kernel-like weight function

with a fixed smoothing parameter. Thus, it can be intuitively understood that empirical process-

based tests oversmooth the true function and obscure drastic changes of alternatives. Y. Fan and

Li (1996) show that smoothing-based tests can detect singular local alternatives at a rate faster

than n�1=2.

The two tests proposed in this study are most related to Härdle and Mammen (1993) and

Zheng (1996), both of which propose smoothing-based tests for functional forms of the regression

function. Most of the specification tests developed for functional forms of the regression function

can be directly applied to test the parametric specifications of ordered choice models such as

the parametric binary choice models because ordered choice models have only single response

probability that is equal to conditional expectation of outcome. For example, Mora and Moro-

Egido (2008) applied several specification tests, originally developed for regression functions,

to some ordered discrete choice models for a comparison of their relative merits based on their

asymptotic sizes and powers. However, extending their application to unordered multinomial

choice models is not trivial, which is carried out in this paper. Extending empirical process-

based tests and rate-optimal tests1 to unordered multinomial choice models is a task left for future

research.

This paper is organized as follows. Section 2 introduces unordered multinomial choice mod-

els and reveals problems of parametric specification. The two new test statistics are proposed
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in Section 3. The assumptions and asymptotic behaviors are provided in Section 4. Section 5

shows how to bootstrap parametrically. We investigate the size and power of the tests by con-

ducting Monte Carlo experiments in Section 6. We conclude with Section 7. The proofs of the

lemmas and propositions are provided in the appendix.

2 UNORDERED MULTINOMIAL CHOICE MODELS

We have the observations ffYi;j ; Xi;j gn
iD1gJ

j D1, where Yi;j 2 f0; 1g is a binary response variable

that takes one if individual i chooses alternative j and zero otherwise. Each individual chooses

one of J alternatives, which implies Yi;m D 0 for all m ¤ j if Yi;j D 1. Xi;j 2 Rkj is a

vector of independent variables that affect the choice decision made by individual i . Throughout

this paper, we assume that fXi;j ; Yi;j gn
iD1 is independent and identically distributed for each

j D 1; : : : ; J . With i remaining fixed, however, fXi;j ; Yi;j gJ
j D1 is not necessarily independent

or identical.

Multinomial choice models with unordered response variables is constructed by introducing

latent variables y�
i;j , which may be interpreted as the utility or satisfaction that i can obtain

by choosing alternative j . We assume each individual chooses an alternative that maximizes

personal utility; that is, Yi;j D 1 if y�
i;j > y�

i;m for all m ¤ j . Further, y�
i;j depends on a function

gj .Xi;j ; �/ and unobserved error �i;j : y�
i;j D gj .Xi;j ; �/ C �i;j , where �i;j is independent of

Xi;j and � 2 � is the parameter in a subset of a finite dimensional space �. Then, the response

probability that i chooses j can be formulated as follows:

P.Yi;j D 1jXi / D P.y�
i;j > y�

i;m 8m ¤ j jXi /

D P.�i;j � �i;m > gm.Xi;m; �/ � gj .Xi;j ; �/ 8m ¤ j jXi /; (1)

where Xi 2 Rq is a vector consisting of all independent variables. The dimension q of Xi is

equal to
PJ

j D1 kj when all variables in Xi;j are alternative-specific for all j . This occurs when

no variable in Xi;j is identical to any of those in Xi;m as long as j ¤ m.
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A specification of the functional forms of g.�/ and distributions of � lead to full parameteri-

zation of the model in the sense that parameters and response probabilities can be estimated para-

metrically. For example, if we assume linearity, gj .Xi;j ; �/ D X 0
i;j ˇ, and the type I extreme-

value distribution for �i;j for all j , we have McFadden’s (1974) MNL model in which P.Yi;j D

1jXi / D exp.X 0
i;j ˇ/=

PJ
j D1 exp.X 0

i;j ˇ/.2 An alternative model suggested by Hausman and

Wise (1978) is the MNP model, in which �i;j is assumed to be normally distributed. In both

cases, the parameters can be inferred by maximum likelihood estimation, and the choice proba-

bilities are obtained by plugging the estimated values into (1).

In empirical studies, however, functional forms of gj .�/ and distributions of �i;j are generally

unknown for all j . Moreover, functional forms of gj .�/ and distributions of �i;j in unordered

multinomial choice models may be nonidentical across j . Thus, we need joint specification tests

that indicate whether parametric specifications provide a good approximation to the true models.

The appropriate null and alternative hypotheses are as follows:

H0 W P Œm�;j .Xi / D P.Yi;j D 1jXi /� D 1; for some � 2 � and for all j

H1 W P Œm�;j .Xi / D P.Yi;j D 1jXi /� < 1; for any � 2 � and for some j ;

where mj .Xi / denotes the true response probabilities and m�;j .Xi / their parameterized variants.

3 TEST STATISTICS

Both test statistics proposed in this study are built on the features of response probabilities. One

uses the L2-distance between the parametric and nonparametric fits of response probabilities,

and the other uses moment conditions that are satisfied when the parametric response probabil-

ity is true. This implies that we test the specifications of the functional forms of gj .�/ and the

distributions of �i:j simultaneously for all j .

One may think that the rejection of the null hypothesis reveals nothing about what is mis-

specified because the tests reject the null hypothesis if any combination of the functional forms
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of gj .�/ and the distributions of �i;m for all j and m is misspecified. Nonetheless, rejection of

the null hypothesis could imply something more. Note that strict inequality holds after any trans-

formations on both sides of inequalities with any strictly increasing functions. This implies that

the distribution of the conditional response probabilities given in equation (1) could be trans-

formed into what is well-known as the normal or type-I extreme distribution. In this case, the

distributions of �i:j are not an essential specification issue, provided we can specify the func-

tional forms of gj .�/ correctly. In other words, distributional assumptions of error terms could

help us simplify the estimation of parametric models by specifying the functional forms of gj .�/

prudently.

Before presenting the test statistics, we introduce some notations. Let fh.x/ be the non-

parametric density estimator for a continuous point of Xi and mh;j .x/ the Nadaraya–Watson

kernel estimator for mj .x/ � P.Yi;j D 1jXi D x/ D E.Yi;j jXi D x/, as follows:

fh.x/ D
1

nhq

nX
iD1

K

�
Xi � x

h

�

mh;j .x/ D

Pn
iD1 K

�
Xi �x

h

�
Yi;jPn

iD1 K
�

Xi �x
h

� ;

where K.�/ is a kernel function and h is a bandwidth depending on n. In addition, we define

K.2/ as the two-times convolution product of the kernel and K.4/ as the two-times convolution

product of K.2/.

3.1 Test Statistic Based on L2-distance

We consider the weighted L2-distance between the parametric and nonparametric fits of response

probabilities for each j :

Tn;j D nhq=2

Z
Œmh;j .x/ � Kh;nm O�;j

.Xi /�
2�.x/dx;
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where Kh;nm.Xi / �
Pn

iD1 KŒ.Xi � x/=h�m.Xi /=
Pn

iD1 KŒ.Xi � x/=h� is a smoothing opera-

tor, m O�;j
.Xi / is the estimate of m�;j .Xi /, and �.�/ is an arbitrary weight function. We denote the

expectation of Tn;j by �
.HM/
j , its asymptotic variance by V

.HM/
j;j , and the covariance between

Tn;j and Tn;m by V
.HM/

j;m .

Let us introduce some further notations to provide the test statistic. Note that testing the spec-

ification of an arbitrary pair of J �1 response probabilities is a sufficient test for the null hypoth-

esis subject to
PJ

j D1 P.Yi;j D 1jXi / D 1 for all i . For notational simplicity, we omit the L2-

distances of the J th response probability from our test statistic. Let Tn �

.Tn;1; Tn;2; : : : ; Tn;J �1/0 and ON .HM/ � . O�
.HM/
1 ; O�

.HM/
2 ; : : : ; O�

.HM/
J �1 /0 be a .J � 1/ � 1 vec-

tor of weighted L2-distances and the estimates of �
.HM/
j , respectively. OV .HM/ is defined as a

.J � 1/ � .J � 1/ variance-covariance matrix whose .j; m/ elements are estimates of V
.HM/

j;m .

Then, the test statistic is

C .HM/
n � ŒTn � ON .HM/�0Œ OV .HM/��1ŒTn � ON .HM/�;

where

O�
.HM/
j D nhq=2

Z n
Kh;n

h
mh;j;�i .Xi / � m O�;j

.Xi /
io2

�.x/dx

C h�q=2K.2/.0/

Z
O�2
j .x/�.x/

fh.x/
dx

OV
.HM/

j;j D2K.4/.0/

Z
Œ O�2

j .x/�2�.x/2

f 2
h

.x/
dx

OV
.HM/

j;m D2K.4/.0/

Z
Œ O�j;m.x/�2�.x/2

f 2
h

.x/
dx

for j D 1; : : : ; J � 1 and m ¤ j . mh;j;�i .Xi / is the leave-one-out Nadaraya–Watson kernel es-

timator for mj .Xi /; that is, mh;j;�i .Xi / D
Pn

l¤i KŒ.Xl � Xi /=h�Yl;j =
Pn

l¤i KŒ.Xl � Xi /=h�.

O�2
j .�/ is the estimated conditional variance of ui;j � Yi;j � mj .Xi /, where E.ui;j jXi / D 0, and

O�j;m.�/ is the estimated covariance between ui;j and ui;m.
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Considering the nature of the model, O�2
j .�/ and O�j;m.�/ can be easily obtained. Since Yi;j is

a binary variable taking zero or one, ui;j D Œ1 � mj .Xi /�1.Yi;j D 1/ � mj .Xi /1.Yi;j D 0/,

where 1.�/ is an indicator function. The conditional variance of ui;j and the covariance between

ui;j and ui;m can then be written straightforwardly as follows:

�2
j .Xi / � E.u2

i;j jXi / D mj .Xi /Œ1 � mj .Xi /� (2)

�j;m.Xi / � E.ui;j ui;mjXi / D �mj .Xi /mm.Xi /: (3)

Thus, their consistent parametric estimators under the null hypothesis are O�2
j .x/ D m O�;j

.x/Œ1 �

m O�;j
.x/� and O�j;m.x/ D �m O�;j

.x/m O�;m
.x/, respectively.

3.2 Test Statistic Based on Moment Conditions

The test statistic is based on

Zj � EŒu�;i;jE.u�;i;j jXi /f .Xi /�;

where u�;i;j D Yi;j � mj;� .Xi /. Under the null hypothesis, Zj D 0, since E.u�;i;j jXi / D

0. Under the alternative hypothesis, EŒu�;i;jE.u�;i;j jXi /f .Xi /� D EŒE.u�;i;j jXi /
2f .Xi /� D

EfŒP.Yi;j D 1jXi / � m�;j .Xi /�
2f .Xi /g > 0:

The nonparametric estimates of Zj , denoted as Zn;j , can be obtained as follows:

Zn;j D
1

n.n � 1/

nX
iD1

nX
l¤i

1

hq
K

�
Xi � Xl

h

�
Ou�;i;j Ou�;l;j ;

where Ou�;i;j D Yi;j � m
j; O�

.Xi /. We denote the asymptotic variance of Zn;j and the covariance

between Zn;j and Zn;m by V
.Zh/

j;j and V
.Zh/

j;m , respectively.

We introduce some further notations to provide the test statistic. Note that we omit the J th

alternative for the reason discussed above. Let Zn � .Zn;1; : : : ; Zn;J �1/0 be a .J � 1/ � 1

vector and OV .Zh/ be a .J � 1/ � .J � 1/ variance-covariance matrix whose .j; m/ elements are
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estimates of V
.Zh/

j;m . Then, the test statistic is

C .Zh/
n D n2hqZ0

nŒ OV .Zh/��1Zn;

where

OV
.Zh/

j;j D K.2/ .0/
2

n

nX
iD1

Œ O�2
j .Xi /�

2fh.Xi /

OV
.Zh/

j;m D K.2/ .0/
2

n

nX
iD1

Œ O�j;m.Xi /�
2fh.Xi /

for all j D 1; : : : ; J � 1 and j ¤ m. Note that O�2
j .Xi / and O�j;m.Xi / are consistent parametric

estimators under the null hypothesis for (2) and (3), respectively.

4 THE ASYMPTOTIC BEHAVIOR

First, we provide sufficient assumptions to show the asymptotic behavior of the test statistics.

Asymptotic distributions under the null hypothesis and alternative hypothesis are then given.

Finally, we show the asymptotic behaviors of the test statistics under Pitman local alternatives.

4.1 Assumptions

The following are sufficient assumptions to show the test statistics’ asymptotic behavior.

Assumption 1: X lies on a compact set. The marginal density of Xi , denoted as f .�/, is contin-

uously differentiable and bounded away from 0.

Assumption 2: m.�/ is continuously differentiable on the support of X .

Assumption 3: P.Yi;j D 1jXi / ¤ 0 and P.Yi;j D 1jXi / ¤ 1, for all i and j . None of the

alternatives is a perfect substitute for another.

Assumption 4: �.�/ is continuously differentiable.
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Assumption 5: mj;� .�/ is continuously differentiable, and m
j; O�

.�/�mj;� .�/ D op.1=
p

n/ for all

j .

Assumption 1 establishes that the first-order derivative of f .�/ is bounded. The assumption

that X lies on a compact set may be considered a strong one because it excludes X to follow

some tractable distributions such as the normal. However, it does not confine applications of

the test to empirical study because, in general, observations rarely take an infinite value. The

assumption that f .�/ is bounded from 0 avoids the random denominator problem associated with

a nonparametric kernel estimation. It is also straightforward to see that the first-order derivative

of m.�/ is also bounded under Assumptions 1 and 2.

Assumption 3 guarantees that �2
j .Xi / ¤ 0 and �j;l.Xi / ¤ 0 for any j and l ¤ j because

�2
j .Xi / D P.Yi;j D 1jXi /P.Yi;j D 0jXi / and �j;l.Xi / D �P.Yi;j D 1jXi /P.Yi;l D 1jXi /.

It is also clear that �2
j .Xi / and �j;l.Xi / never tend to infinity owing to the nature of the model.

The fact that no alternatives are perfect substitutes for each other ensures that the variance-

covariance matrices V .HM/ and V .Zh/ are invertible.

We need Assumptions 4 and 5 to show the asymptotic behavior of C
.HM/
n and C

.Zh/
n , respec-

tively. The
p

n-consistency of the parametric estimation given in Assumption 5 can be obtained,

for example, by maximal likelihood estimation of a multinomial probit or logit model.

The kernel function assumption is as follows:

Assumption 6: The kernel K is a symmetric function and satisfies
R

K.u/du D 1,
R

jK.u/jdu <

1, sup jK.u/j < 1, and juK.u/j ! 0 as juj ! 1.

Assumption 6 is satisfied by commonly used second-order kernels, such as the Epanechnikov,

Gaussian, and quartic kernels, and the two-times convolution product of the kernel is bounded

under this assumption. Furthermore, the nonparametric density estimator and the Nadaraya–

Watson kernel estimator are consistent under Assumption 1, 2, and 6 (see, for example, Theorem

4.1 of Härdle, Müller, Sperlich, & Werwatz, 2004).
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4.2 Asymptotic Distribution under the Null Hypothesis

We provide propositions about the asymptotic distributions of C
.HM/
n and C

.Zh/
n under the null

hypothesis. The proofs of the propositions are provided in the appendix.

Proposition 1. Let Assumptions 1–4, and 6 hold. Then, under the null hypothesis,

C .HM/
n

d
�! �2

.J �1/

as h ! 0 and nhq ! 1.

Proposition 2. Let Assumptions 1–3, 5, and 6 hold. Then, under the null hypothesis,

C .Zh/
n

d
�! �2

.J �1/

as h ! 0 and nhq ! 1.

Propositions 1 and 2 indicate that the asymptotic distributions of the test statistic C
.HM/
n

and C
.Zh/
n under the null hypothesis are both chi-squared distributions with J � 1 degrees of

freedom. Therefore, we reject the null hypothesis that the parametric specification of the response

probability is identical to the true one with a probability of one if the test statistic is larger than

the (1 � ˛) quantile of the chi-squared distribution with J � 1 degrees of freedom, where ˛ is

the significance level.

4.3 Asymptotic Distribution under the Alternative Hypothesis

We show that both the test statistics are consistent, that is, their asymptotic power is equal to one.

The proofs of the lemmas are provided in the appendix.

Lemma 1. Let Assumptions 1–4, and 6 hold. Then, under the alternative hypothesis,

1

.n � 1/hq=2

Tn;j � O�
.HM/
jq

OV
.HM/

j;j

p
�!

R
Œm�;j .u/ � mj .u/�2�.u/du C O.hq=2/

f2K.4/.0/
R

�.x/2fm�;j .x/Œ1 � m�;j .x/�g2f �2.x/dxg1=2
> 0
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for all j as n ! 1 and h ! 0.

Lemma 2. Let Assumptions 1–3, 5, and 6 hold. Then, under the alternative hypothesis,

1

nh2=q

nh2=qZn;jq
OV

.Zh/
j;j

p
�!

EfŒm�;j .Xi / � mj .Xi /�
2f .Xi /gq

2K.2/ .0/Efm�;j .Xi /2Œ1 � m�;j .Xi /�2f .Xi /g

> 0

for all j as n ! 1 and h ! 0.

The proofs of Lemmas 1 and 2 provided in the appendix imply that Tn;j � O�HM
j and

nh2=qZn;j diverge for all j as the sample size n increases and OV
.HM/

j;j and OV
.Zh/

j;j converges

to constants, both strictly larger than zero. In addition, it is straightforward to see that the prob-

ability limits of OV
.HM/

j;m and OV
.Zh/

j;m under the alternative hypothesis are

2K.4/.0/

Z
�.x/2m�;j .x/2m�;m.x/2f �2.x/dx;

2K.2/ .0/EŒm�;j .Xi /
2m�;m.Xi /

2f .Xi /�;

respectively, both bounded above by Assumptions 1–4 and 6 for any j ¤ m. Thus, the following

propositions follow immediately.

Proposition 3. Let Assumptions 1–4, and 6 hold. Then, under the alternative hypothesis, C
.HM/
n

diverges in probability, and thus the asymptotic power of the test is 1.

Proposition 4. Let Assumptions 1–3, 5, and 6 hold. Then, under the alternative hypothesis,

C
.Zh/
n diverges in probability, and thus the asymptotic power of the test is 1.

The proofs of Propositions 3 and 4 are apparent from Lemmas 1 and 2 and the discussion on

the probability limits of OV
.HM/

j;m and OV
.Zh/

j;m under the alternative hypothesis mentioned above.

4.4 Asymptotic Distribution under Pitman Local Alternative

We show that both the test statistics C
.HM/
n and C

.Zh/
n have nontrivial power against Pitman

local alternatives approaching the null at the rate 1=
p

nhq=2. Proofs of the lemmas are provided
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in the appendix. Let us consider a sequence of local alternatives:

H1n W P.Yi;j D 1jXi / D m�;j .Xi / C ınlj .Xi /;

where l.�/ is a known continuous function with EŒl.�/2� < 1 and ın ! 0 at the rate 1=
p

nhq=2.

Lemma 3. Let Assumptions 1–4, and 6 hold. Then, under the local alternative hypothesis,

Tn;j � O�
.HM/
j

d
�! N.M

.HM/
j ; V

.HM/
j;j / for all j ,

where M
.HM /

j �
R

Œlj .x/ C 2mj .x/ � 2m O�;j
.x/�lj .x/�.x/dx:

Lemma 4. Let Assumptions 1–3, 5, and 6 hold. Then, under the local alternative hypothesis,

nhq=2Zn;j
d
�! N.M

.Zh/
j ; V

.Zh/
j;j / for all j ,

where M
.Zh/

j � EŒlj .x/2f .x/�:

Lemma 3 indicates that the limiting distribution of ŒTn;j � O�
.HM/
j �=V

.HM/
j;j is the nor-

mal distribution with mean M
.HM/

j ŒV
.HM/

j;j ��1=2 and variance one. Similarly, Lemma 4 in-

dicates that the limiting distribution of nhq=2Zn;j =V
.Zh/

j;j is the normal distribution with mean

M
.Zh/

j ŒV
.Zh/

j;j ��1=2 and variance one. The following propositions show that both the test statis-

tics can detect the local alternative with nontrivial powers.

Proposition 5. Let Assumptions 1–4, and 6 hold. Then, under the local alternative hypothesis,

the test statistic C
.HM/
n converges to a non-central chi-squared distribution with J � 1 degrees

of freedom:

C .HM/
n

d
�! �2

.J �1/.�/

where � D ŒM .HM /�0ŒV .HM/��1M .HM/ is a noncentrality parameter.
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Proposition 6. Let Assumptions 1–3, 5, and 6 hold. Then, under the local alternative hypothesis,

the test statistic C
.Zh/
n converges to a non-central chi-squared distribution with J � 1 degrees of

freedom:

C .Zh/
n

d
�! �2

.J �1/.
Q�/

where Q� � ŒM .Zh/�0ŒV .Zh/��1M .Zh/ is a noncentrality parameter.

The proofs of Propositions 5 and 6 are straightforward from Lemmas 3 and 4 and the discus-

sion on the probability limits of OV
.HM/

j;m and OV
.Zh/

j;m for j ¤ m in the proofs of Propositions 1

and 2.

5 BOOTSTRAP METHODS

This section presents bootstrapping methods that are useful in approximating the distribution of

test statistics when the sample size is small. We show that the parametric bootstrap procedure

works well to calculate the rejection region for the test statistic. Proofs of the propositions in this

section are provided in the appendix.

The response probability that person i chooses alternative j can be parametrically estimated

under the null hypothesis for all i and j by using the observations ffXi;j ; Yi;j gn
iD1gJ

j D1. We

randomly choose one of J alternatives (say, alternative mi ) for each person with the probabilities

equal to the estimated response probabilities. Then, we derive bootstrap observations Y �
i �

fY �
i;1; Y �

i;2; : : : ; Y �
i;mi

; : : : ; Y �
i;J g for each i D 1; � � � ; n, where Y �

i;mi
D 1 and Y �

i;j D 0 for j ¤

mi . We use ffXi;j ; Y �
i;j gn

iD1gJ
j D1 as the bootstrap observations.

Assumptions 3 and 5 can be rewritten by using the bootstrap observations as follows:

Assumption 3’: P.Y �
i;j D 1jXi / ¤ 0 and P.Y �

i;j D 1jXi / ¤ 1, for all i and j . None of the

alternatives is a perfect substitute for another.

Assumption 5’: mj;� .�/ is continuously differentiable, and m
j; O��.�/ � mj;� .�/ D op.1=

p
n/ for

15



all j ,

where O�� is the estimate of � obtained by using the bootstrap observations ffXi;j ; Y �
i;j gn

iD1gJ
j D1.

Since the bootstrap sample Y �
i;j is derived in accordance with the parametrically estimated

response probabilities m O�;j
.Xi /, Assumption 3’ implies that these probabilities do not take the

values zero and one; that is, m O�;j
.Xi / ¤ 0 and m O�;j

.Xi / ¤ 1, for all i and j .

Assumption 5’ requires that O�� be a consistent estimator of � . Clearly, Assumption 5’ is satis-

fied whenever Assumption 5 holds. Moreover, Assumption 3’ is also satisfied with a probability

of one whenever Assumptions 3 and 5 hold.

5.1 Bootstrap Methods for C
.HM/
n

With the bootstrap observations ffXi;j ; Y �
i;j gn

iD1gJ
j D1, we construct C

�.HM/
n similarly to C

.HM/
n .

By the Monte Carlo approximation for the distribution of C
�.HM/
n , we can obtain the .1 � ˛/

quantile t
�.HM/
˛ . The null hypothesis is rejected if C

.HM/
n > t

�.HM/
˛ . We show in the fol-

lowing proposition that this parametric bootstrap procedure works: under the null hypothesis,

C
�.HM/
n converges to the asymptotic distribution of C

.HM/
n ; under the alternative hypothesis,

C
�.HM/
n converges to the asymptotic distribution of test statistics under the null hypothesis.

A crucial point that makes the parametric bootstrap work is that the orthogonality condition,

E.u�
i;j jXi / D 0, holds under both the null and alternative hypotheses with a probability of one,

where u�
i;j � Y �

i;j � m�
j .Xi /, and m�

j .Xi / is the true response probability under the bootstrap

sample. This is because the model deriving the bootstrap sampling is the parametric model that

we attempt to test; that is, m�
j .Xi / D m�;j .Xi /.

Proposition 7. Let Assumptions 1–4, and 6 hold. Then, the test statistic obtained with the boot-

strap observation converges to a chi-squared distribution with J � 1 degrees of freedom:

C �.HM/
n

p
�! �2

.J �1/

as n ! 1 and h ! 0.
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5.2 Bootstrap Methods for C
.Zh/
n

The test statistic C
�.Zh/
n is constructed similarly to C

.Zh/
n by using the bootstrap observations

ffXi;j ; Y �
i;j gn

iD1gJ
j D1. By Monte Carlo approximation for the distribution of C

�.Zh/
n , we can ob-

tain the .1 � ˛/ quantile t
�.Zh/
˛ . The null hypothesis is rejected if C

.Zh/
n > t

�.Zh/
˛ . We show in

the following proposition that this parametric bootstrap procedure works: under the null hypoth-

esis, C
�.Zh/
n converges to the asymptotic distribution of C

.Zh/
n ; under the alternative hypothesis,

C
�.Zh/
n converges to the asymptotic distribution of test statistics under the null hypothesis.

Proposition 8. Let Assumptions 1–3, 5, and 6 hold. Then, the test statistic obtained with the

bootstrap observation converges to a chi-squared distribution with J � 1 degrees of freedom:

C �.Zh/
n

p
�! �2

.J �1/

as n ! 1 and h ! 0.

6 MONTE CARLO EXPERIMENTS

The size and power of the tests are examined by Monte Carlo experiments. We consider a simple

case in which each individual chooses one of three alternatives. To explore the power properties

of the tests, we consider three different true models.

The null hypothesis to be tested is the following:

H0 W P

"
m�;j .Xi / D

exp.ˇ0 C ˇ1Xi;j /PJ
j D1 exp.ˇ0 C ˇ1Xi:j /

#
D 1

for some ˇ0; ˇ1 2 R and for all j D 1; 2; 3. The null hypothesis is based on the assumptions

that the function gj .Xi;j ; �/ is linear, specifically, ˇ0 C ˇ1Xi;j , and that �i;j follows the type

I extreme-value distribution for all j . For simplicity of calculation, Xi;j is assumed to be one-

dimensional.
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We consider three different true models. Each of these true models has a specific form of

gj .�/, which can be generally written as gj .Xi;j ; �/ D j Xi;j C cj .Xi;j � 1=2/2 C dj .2Xi;j �

2=3/3. By applying specific values in  � f1; 2; 3g, c � .c1; c2; c3/, and d � .d1; d2; d3/,

we propose three kinds of true models; Model 1:  D f1; 1; 1g, c D .0; 0; 1/, and d D .0; 0; 0/,

Model 2:  D f1; 1; 5g, c D .0; 3; 5/, and d D .0; 0; 0/, and Model 3:  D f1; 1; 1g, c D

.0; 3; 5/, and d D .0; 3; 5/. The true distribution of �i;j is a type I extreme-value distribution for

all j .

These true models allow us to investigate power properties of the tests in the case of misspec-

ification due to nonlinearity and choice-specific coefficients. We can add nonlinearity to the true

function of gj .�/ by setting cj and/or dj at a nonzero value, which is imposed on all true models.

Choice-specific coefficients can be inserted by setting j at different values across j , which is

placed on Model 2. In this experiment, we do not consider the misspecification originating in

the distribution of �i;j and the omitted variables.

We derive ffXi;j g3
j D1gn

iD1 uniformly from [0,1] and ff�i;j g3
j D1gn

iD1 randomly from the type

I extreme-value distribution. Then, the latent variable y� is generated by each true model: y�
i;j D

gj .Xi;j ; �/ C �i;j . The binary outcome Yi;j is chosen to be 1, if y�
i;j > y�

i;m for all m ¤ j , and

0 otherwise. Sample sizes are n D 100 and n D 250. The critical value for each test statistic

is computed by B D 100 repetitions of the parametric bootstrap, and all results are based on

M D 1; 000 simulation runs.

For the nonparametric parts of the test statistics, Xi;j are considered to be specific to each

alternative, namely, q D 3. The quartic kernel K.z/ D .15=16/.1 � z2/2
1.jzj < 1/ is

used for nonparametric estimation. Bandwidths for the kernel estimator are chosen to be h 2

f0:30; 0:35; 0:40; 0:45g. We use the nonparametric density estimator of Xi as the weight func-

tion for C
.HM/
n ; that is, �.x/ D fh.x/.

Table 1 illustrates the size of the tests at the 5% significance level. The first and second rows

of the table show the size of the test statistics C
.HM/
n and C

.Zh/
n , respectively. The first to fourth

columns of the table illustrate the results obtained with a sample size of n D 100 and bandwidths
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Table 1: Monte Carlo estimates for the size of the test statistics C
.HM/
n and C

.Zh/
n .

n D 100 n D 250

Testnh 0:30 0:35 0:40 0:45 0:30 0:35 0:40 0:45

C
.HM/
n 0:062 0:046 0:059 0:055 0:047 0:054 0:055 0:054

C
.Zh/
n 0:058 0:064 0:063 0:077 0:065 0:074 0:064 0:049

Note: The significance level is 0:05.

h of 0:30, 0:35, 0:40, and 0:45, respectively. Similarly, the fifth to eighth columns show the result

with n D 250. Overall, the probabilities of rejection by C
.HM/
n vary with the bandwidths but

stay around the nominal size. The size of the test statistic is close to its nominal value when

h D 0:35 for n D 100 and h D 0:30 for n D 250. In contrast, C
.Zh/
n tends to overreject the null

hypothesis. The probability of rejection is close to its nominal size when h D 0:45 and n D 250.

In comparing the power performance of the tests, it is possible to correct size distortion

by using the bandwidths corresponding to the nominal size of the tests. In practice, however,

this procedure cannot be employed because we do not know the true model. Thus, we do not

correct the size distortion in this experiment. We rather show the power performance with each

bandwidth level, since choosing an appropriate bandwidth in practice is outside the scope of this

paper.

Before beginning to show the simulation results of the power performance of the test statis-

tics, we illustrate the discrepancy between the true and parametric null models. The response

probabilities in this simulation are mappings of the unit cube to the unit interval. For illustra-

tion simplicity, however, we focus on the domain of the response probabilities, being fXi D

.Xi;1; Xi;2; Xi;3/ W Xi;j 2 Œ0; 1� for all j and Xi;1 D Xi;2 D Xi;3g. In this setting, the fitted val-

ues for the response probabilities of the parametric model under the null hypothesis are always

1=3 for all j because the model does not have any alternative-variant coefficients.

Figure 1 shows how the true and null response probabilities react to the covariates. The

larger distance between the true and null models with x fixed indicates that the parametric null
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Figure 1: Discrepancy between true and estimated parametric response probabilities for Models
1, 2, and 3.
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Table 2: Monte Carlo results for the proportion of rejection of the null hypothesis by employing
the test statistics C

.HM/
n and C

.Zh/
n .

n D 100 n D 250

Test Modelnh 0:30 0:35 0:40 0:45 0:30 0:35 0:40 0:45

C
.HM/
n Model 1 0:056 0:052 0:056 0:077 0:053 0:075 0:064 0:063

Model 2 0:377 0:952 0:985 0:931 0:932 0:988 0:864 0:575

Model 3 0:149 0:298 0:190 0:109 0:721 0:616 0:418 0:334

C
.Zh/
n Model 1 0:065 0:053 0:063 0:076 0:063 0:054 0:064 0:083

Model 2 0:998 1:000 1:000 1:000 1:000 1:000 1:000 1:000

Model 3 0:672 0:709 0:791 0:838 0:995 0:999 0:999 1:000

Note: The significance level is 0:05.

model does not approximate the true model well. The parametric predictions of the response

probabilities lie close to the true response probability of Model 1 relative to Models 2 and 3 for

all j . For the second and third alternatives, the parametric null response probability appears to

lie closer to true one of Model 3 than that of Model 2. For the first alternative, however, the

distance between the true and null models seems to closer for Models 3. Summing it up, the null

model gives the best predictions of response probabilities for Model 1 and the predictions are

less accurate for Models 2 and 3. The prediction precision of the null model could reflect in the

power performance of the test statistics.

Table 2 reports the proportion of rejections of the null hypothesis at 5% significance by test

statistics C
.HM/
n and C

.Zh/
n . Both the test statistics have almost no nontrivial power when the

true model is Model 1. Non-rejection of the null hypothesis does not imply that the null model

is true. However, in fact, as the top three figures in Figure 1 exhibit, the parametric model under

the null hypothesis may provide proper approximation for the response probabilities of Model 1.

Therefore, the low power of the test statistics may be the acceptable result. In contrast, both the

test statistics have more non-trivial power when Model 2 or 3 is true. The power performance

improves along with the increase of sample size and depends on the choice of bandwidth.

By comparing the power performances of C
.HM/
n and C

.Zh/
n in Table 2, we find that C

.Zh/
n
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tends to outperform C
.HM/
n , especially when the true model is Model 2 or 3. However, this

finding may be specific to sample sizes and types of misspecifications set in this experiment. First,

C
.HM/
n incorporates more nonparametric components than C

.Zh/
n because the asymptotic mean

of Tn;j is non-zero. Thus, C
.HM/
n could be more scattered in a small sample, which impairs

its power performance. Second, the relative power performances of these two tests may differ

when we set other functional forms for g.�/ and distributions for �, because these test statistics

are constructed on different bases, L2-distance and moment conditions.

7 CONCLUSION

This study proposes two consistent specification tests for unordered multinomial choice models.

They test the specifications of multiple response probabilities jointly for all choice alternatives.

Both test statistics are asymptotically chi-square distributed with J � 1 degrees of freedom, con-

sistent against a fixed alternative, and have nontrivial power against local alternatives approaching

the null at the rate 1=
p

nhq=2. The rejection region for the test statistic can be calculated through

a simple parametric bootstrap procedure, when the sample size is small. In Monte Carlo ex-

periments, we test the specification of the MNL model under three true models to examine the

power performance of the tests. We found that both the test statistics have almost no nontrivial

power when the parametric model under the null hypothesis provides a proper approximation for

the response probabilities of the true model. Both the test statistics have more non-trivial power

when the approximation of the null model is less successful. The test performance depends on

the choice of bandwidth. We can reduce size distortion by choosing an appropriate bandwidth,

but this issue remains for future research.

The tests proposed in this study can be applied to testing the parametric specifications of

response probabilities for any unordered multinomial choice models, including MNL and MNP

models. However, these tests are not able to detect local alternatives approaching the null hy-

pothesis at the parametric rate, nor are they rate-optimal. Extending the testing procedure to
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incorporate such features is left for future research.

NOTES

1 Rate optimal tests are proposed by J. Fan and Huang (2001), Horowitz and Spokoiny (2001),

Spokoiny (2001), Baraud, Huet, and Laurent (2003), Zhang (2003), and Guerre and Lavergne

(2005), among others.
2 To be accurate, the MNL model proposed by McFadden (1974) consists of alternative-

variant coefficients, whose response probabilities are indicated by P.Yj D 1jX/ D

exp.X 0
ǰ /=Œ1 C

PJ
j D1 exp.X 0

ǰ /�. However, the models represented by alternative-variant co-

efficients are able to transform into a model with alternative-invariant coefficients without loss of

generality, which is sometimes called a conditional logit model. In this paper, we describe only

the model with alternative-invariant coefficients.
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APPENDIX

Proof of Proposition 1. It suffices to prove the following:

Tn;j � O�
.HM/
j

d
�! N.0; V

.HM/
j;j /; (A.1)

V
.HM/

j;j � OV
.HM/

j;j D op.1/; (A.2)

V
.HM/

j;m � OV
.HM/

j;m D op.1/; (A.3)
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where V
.HM/

j;j and V
.HM/

j;m are the asymptotic variance of Tn;j and covariance between Tn;j and

Tn;m, respectively. We show that they can be written as follows:

V
.HM/

j;j � 2K.4/.0/

Z
Œ�2

j .x/�2�.x/2

f 2.x/
dx;

V
.HM/

j;m � 2K.4/.0/

Z
Œ�j;m.x/�2�.x/2

f 2.x/
dx:

Proof of (A.1). Since E.ui;j jXi / D 0, we obtain the following:

Tn;j D nhq=2

Z
Œmh;j .x/ � Kh;nm O�;j

.Xi /�
2�.x/dx

D nhq=2

Z �
Kh;nŒmj .Xi / � m O�:j

.Xi /� C Kh;nui;j

�2

�.x/dx

D nhq=2

Z n
Kh;nŒmj .Xi / � m O�;j

.Xi /�
o2

�.x/dx

C
1

nh3q=2

Z Pn
iD1 K

�
Xi �x

h

�2
u2

i;j

f 2
h

.x/
�.x/dx

C
1

nh3q=2

Z Pn
iD1

P
l¤i K

�
Xi �x

h

�
K

�
Xl �x

h

�
ui;j ul;j

f 2
h

.x/
�.x/dx

� T1;j C T2;j C T3;j :

We will show that

T1;j C T2;j � O�
.HM/
j D op.1/; (A.4)

T3;j
d
�! N.0; V

.HM/
j;j /: (A.5)

Proof of (A.4). It follows that

T2;j D
1

nh3q=2

Z Pn
iD1 K

�
Xi �x

h

�2
u2

i;j

f 2
h

.x/
�.x/dx
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D
1

nhq=2
K.2/.0/

nX
iD1

u2
i;j

�.Xi /

f 2
h

.Xi /
C o.1/

D
1

hq=2
K.2/.0/

Z
�2

j .x/�.x/

fh.x/
dx C op.1/:

Thus, the proof of (A.4) is straightforward because the leave-one-out Nadaraya–Watson kernel

estimator for mj .Xi / is consistent under Assumption 1, 2, and 6, and the parametric estimator

for �2
j .x/ is consistent under the null hypothesis.

Proof of (A.5). It is clear that T3;j can be treated as a second-order degenerate U-statistic:

1

n � 1
T3;j D

1

n.n � 1/h3q=2

nX
iD1

X
l¤i

ui;j ul;j
NK.Xi ; Xl/;

where NK.Xi ; Xl/ �
R KŒ.Xi �x/=h�KŒ.Xl �x/=h�

f 2
h

.x/
�.x/dx. Letting Zi D fXi ; uig, we define

Gn.Z1; Z2/ D EZi
fŒu1;j ui;j

NK.X1; Xi /�Œu2;j ui;j
NK.X2; Xi /�g. According to the central limit

theorem for degenerate U-statistics proposed by Hall (1984),

T3;j

n�1
nh3q=2

q
2EfŒu1;j u2;j

NK.X1; X2/�2g

d
�! N.0; 1/

if

EŒG2
n.Z1; Z2/� C n�1EfŒu1;j u2;j

NK.X1; X2/�4g

EfŒu1;j u2;j
NK.X1; X2/�2g2

! 0 as n ! 1: (A.6)

Thus, it is enough to show that (A.6) and the following hold:

2h�3qEfŒu1;j u2;j
NK.X1; X2/�2g

p
�! V

.HM/
j;j : (A.7)

Proof of (A.6). First, straightforward calculation gives

EŒG2
n.Z1; Z2/�
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D E

(
�2

j .X1/�2
j .X2/

�Z
�2

j .x/ NK.X1; x/ NK.X2; x/f .x/dx

�2
)

D h4q

Z
�2

j .x/�2
j .y/

"
hq �.x/�.y/

f 2
h

.x/f 2
h

.y/
�2

j .x/f .x/K.4/
�x � y

h

�
C O.hq/

#2

f .x/f .y/dxdy

D h7qK.6/.0/

Z
Œ�.x/�3Œ�2

j .x/�3f .x/4

Œf 2
h

.x/�3
dx C O.h8q/

D O.h7q/; (A.8)

where K.6/ is defined as the two-times convolution product of K.4/.

Second, in the same way as above, we obtain

n�1EfŒu1;j u2;j
NK.X1; X2/�4g

D
1

n
E

8<:�4.x1/�4.x2/

"Z
K.x1�x

h
/K.x2�x

h
/

f 2
h

.x/
�.x/dx

#4
9=;

D
h4q

n
E

(
�4.x1/�4.x2/�4.x1/

Œf 2
h

.x1/�4

h
K.2/

�x1 � x2

h

�i4
)

C O

�
h9q

n

�
D

h5q

n

Z h
K.2/ .u/

i4
du

Z
Œ�4.x/�2�4.x/

Œf 2
h

.x/�4
f 2.x/dx C O

�
h6q

n

�
D O

�
h5q

n

�
: (A.9)

The last equation holds because �4
j .x/ � EŒu4

i;j jXi D x� is bounded by Assumption 1 and the

fact that Yi;j is a binary variable taking the values zero and one.

Next, we obtain the following:

EfŒu1;j u2;j
NK.X1; X2/�2g

2
D EfEfŒu1;j u2;j

NK.X1; X2/�2jX1; X2gg
2

D E

8<:�2
j .x1/�2

j .x2/

"Z
K.x1�x

h
/K.x2�x

h
/

f 2
h

.x/
�.x/dx

#2
9=;

2

D O.h5q/: (A.10)
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Finally, (A.8)–(A.10) indicate that (A.6) holds because O.h7q/O.h5q=n/=O.h5q/ ! 0 as

n ! 1 and h ! 0.

Proof of (A.7). It can be shown by straightforward calculation that

2h�3qEfŒu1;j u2;j
NK.X1; X2/�2g

D 2h�3qE

8<:�2
j .x1/�2

j .x2/

"Z
K.x1�x

h
/K.x2�x

h
/

f 2
h

.x/
�.x/dx

#2
9=;

D 2K.4/.0/

Z
Œ�2

j .x/�2�.x/2

Œf 2
h

.x/�2
f .x/2dx C O.h/:

p
�! V

.HM/
j;j (A.11)

because the nonparametric density estimator fh is consistent under Assumptions 1 and 6.

Proof of (A.2) and (A.3). Since the asymptotic variance V
.HM/

j;j is shown above, we derive the

asymptotic covariance V
.HM/

j;m . According to the result of (A.1), it is clear that E.T3;j T3;m/
p
�!

V
.HM/

j;m as n ! 1. Because E.ui;j ul;j / D 0 if i ¤ l , and E.ui;j ui;mjXi / D �j;m.Xi / if j ¤

m, it follows that

E.T3;j T3;m/ D
1

n2h3q
E

24Z Pn
i

P
l¤i K

�
Xi �x

h

�
K

�
Xl �x

h

�
ui;j ul;j

f 2
h

.x/
�.x/dx

35
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s

P
t¤s K

�
Xs�y

h

�
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�
Xt �y

h

�
us;mut;m
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h

.y/
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35
D 2n�2h�qE

"
nX
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X
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�

Xi �x
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�
K

�
Xl �x
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�
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h
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�.x/dx
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h

�
K

�
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h

�
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h
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#
D 2K.4/.0/

Z
Œ�j;m.x/�2�.x/2

Œf 2
h

.x/�2
f .x/2dx C O.h/

p
�! V

.HM/
j;m : (A.12)
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Thus, the proofs of (A.2) and (A.3) are straightforward from (A.11) and (A.12). ■

Proof of Proposition 2. It suffices to prove the following:

nhq=2 OZn;j
d
�! N.0; V

.Zh/
j;j /; (A.13)

V
.Zh/

j;j � OV
.Zh/

j;j D op.1/; (A.14)

V
.Zh/

j;m � OV
.Zh/

j;m D op.1/; (A.15)

where V
.Zh/

j;j and V
.Zh/

j;m are the asymptotic variance of nhq=2 OZn;j and the covariance between

nhq=2 OZn;j and nhq=2 OZn;m, respectively. We show that they can be written as follows:

V
.Zh/

j;j � 2K.2/.0/EfŒ�2.x/�2f .x/g;

V
.Zh/

j;m � 2K.2/.0/EfŒ�j;m.x/�2f .x/g:

Proof of (A.13). Under the null hypothesis, we have mj .�/ D m�;j .�/. Thus, it follows that

nhq=2 OZn;j D
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nX
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�
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D
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hq=2.n � 1/

nX
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nX
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�
Xi � Xl
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�
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C
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nX
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K
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Xi � Xl
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�
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C
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h

�
Œm�;j .Xi / � m O�;j

.Xi /�ul;j

31



C
1

hq=2.n � 1/

nX
iD1

nX
l¤i

K

�
Xi � Xl

h

�
Œm�;j .Xl/ � m O�;j

.Xl/�ui;j

� Z1;j C Z2;j C Z3;j C Z4;j :

We will prove the following:

Z1;j D op .1/ ; (A.16)

Z2;j
d
�! N

�
0; V

.Zh/
j;j

�
; (A.17)

Z3;j D op .1/ ; (A.18)

Z4;j D op .1/ : (A.19)

Proof of (A.16). Assumptions 1, 5, and 6 along with straightforward calculation show that

Z1;j D op .1/.

Proof of (A.17). Note that Z2;j can be treated as a second-order degenerate U-statistic:

hq=2

n
Z2;j D

1

n.n � 1/

nX
iD1

nX
l¤i

K

�
Xi � Xl

h

�
ui;j ul;j :

Define Gn.Z1; Z2/ D EZi
ŒfK Œ.X1 � Xi /=h� u1;j ui;j gfK Œ.X2 � Xi /=h� u2;j ui;j g�,

where Zi D fXi ; uig. According to the central limit theorem for degenerat U-statistics pro-

posed by Hall (1984),

Z2;j

h�q=2

r
2EfŒu1;j u2;j K

�
X1�X2

h

�
�2g

d
�! N.0; 1/ (A.20)

if

EŒG2
n.Z1; Z2/� C n�1EfŒu1;j u2;j K

�
X1�X2

h

�
�4g

EfŒu1;j u2;j K
�

X1�X2

h

�
�2g2

! 0 as n ! 1: (A.21)
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Thus, it is enough to show that (A.21) and the following hold:

2

hq
E

(�
u1;j u2;j K

�
X1 � X2

h

��2
)

! V
.Zh/

j;j : (A.22)

Proof of (A.21). First, straightforward calculation gives

EŒG2
n.Z1; Z2/� D E

"�
EZi

�
u1;j u2;j u2

i;j K

�
X1 � Xi

h

�
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�
X2 � Xi

h

���2
#

D E

(
�2

j .X1/�2
j .X2/

�Z
�2

j .z/K

�
X1 � z

h

�
K

�
X2 � z

h

�
f .z/dz

�2
)

D h3qK.4/.0/

Z
Œ�2

j .x/�4f .x/4dx C O.h3qC1/ C o.h3qC1/

D O.h3q/: (A.23)

In the same way, it can be shown that

1

n
E
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u1;j u2;j K

�
X1 � X2

h

��4
)

D
1

n

Z
�4

j .x/�4
j .y/

h
K

�x � y

h

�i4

f .x/f .y/dxdy

D
hq

n

Z
Œ�4

j .x/�2f 2.x/dx

Z
ŒK .u/�4 du C O

�
h2q

n

�
D O

�
hq

n

�
: (A.24)

Next, after some calculation, we obtain

E

(�
u1;j u2;j K

�
X1 � X2

h

��2
)2

D E

(
�2.X1/�2.X2/

�
K

�
X1 � X2

h

��2
)2

D h2q

�
K.2/.0/

Z
Œ�2.x/�2f 2.x/dx C O.h/

�2

D O.h2q/: (A.25)

Finally, (A.23)–(A.25) indicate that (A.21) holds because
O.h3q/CO

�
hq

n

�
O.h2q/

! 0 as h ! 0 and

nhq ! 1.
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Proof of (A.22). From equation (A.25), it is clear that

2

hq
E

(�
u1;j u2;j K

�
X1 � X2

h

��2
)

D 2K.2/.0/

Z
Œ�2.x/�2f 2.x/dx C O.h/

D 2K.2/.0/EfŒ�2.x/�2f .x/g C O.h/

! V
.Zh/

j;j : (A.26)

Proof of (A.18) and (A.19). (A.18) and (A.19) are straightforward because E.ui;j jXi / D 0 and

E.ul;j jXl/ D 0 from the definition. First, we show that Z3;j D op.1/:

Z3;j D
1

.n � 1/hq=2

nX
iD1
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Œm�;j .Xi / � m O�;j

.Xi /�ul;j

D
1

hq=2

nX
iD1

�
EXl

�
K

�
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�
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p
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�
D

1

hq=2
op.1=

p
n/ D op.1=

p
nhq/ D op.1/:

We can also prove (A.19) by similar calculation.

Proof of (A.14) and (A.15). Since the asymptotic variance is shown above, we derive the

asymptotic covariance between nhq=2 OZn;j and nhq=2 OZn;m, which we denote as V
.Zh/

j;m . From

the results of (A.16)–(A.19), it is clear that E.Z2;j Z2;m/ ! V
.Zh/

j;m as n ! 1. Because

E.ui;j ul;j / D 0 if i ¤ l , and E.ui;j ui;mjXi / D �j;m.Xi / if j ¤ m, it follows that

E.Z2;j Z2;m/
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24 nX
iD1

nX
l¤1

K

�
Xi � Xl

h

�
ui;j ul;j

nX
sD1

nX
t¤s

K

�
Xs � Xt

h

�
us;mut;m

35
D

2

.n � 1/2hq
E

8<: nX
iD1

nX
l¤1

ui;j ul;j ui;mul;m

�
K

�
Xi � Xl

h

��2

9=;
D

2n

.n � 1/hq

Z
�j;m.x/�j;m.y/

h
K

�x � y

h

�i2

f .x/f .y/dxdy

34



D 2K.2/.0/

Z
Œ�j;m.x/�2f 2.x/dx C O.h/

! V
.Zh/

j;m : (A.27)

Thus, the proofs of (A.14) and (A.15) are straightforward from (A.26) and (A.27). ■

Proof of Lemma 1. According to the proof of Proposition 1, we can write Tn;j D T1;j C T2;j C

T3;j . Thus, it is enough to show the following:

T1;j C T2;j � O�
.HM /
j D

1

hq=2
K.2/.0/

Z
f�2

j .x/ � m O�;j
.x/Œ1 � m O�;j

.x/�g�.x/

fh.x/
dx C op.1/

D O.hq=2/; (A.28)
1

.n � 1/hq=2
T3;j D

Z
Œm�;j .u/ � mj .u/�2�.u/du C op.1/; (A.29)

OV
.HM/

j;j D 2K.4/.0/

Z
�.x/2

fm�;j .x/Œ1 � m�;j .x/�g2f �2.x/dx C op.1/:

(A.30)

Since O�2
j .x/ D m O�;j

.x/Œ1 � m O�;j
.x/� converges to m�;j .x/Œ1 � m�;j .x/� in probability under

the alternative hypothesis, the proofs of (A.28) and (A.30) are straightforward.

Proof of (A.29). To show the probability limit, we apply Lemma 3.1 of Powell, Stock, and Stoker

(1989), which shows that .n�1/�1h�q=2T3;j D Nrn Cop.1/ if EŒkh�2qui;j ul;j
NK.Xi ; Xl/k

2� D

o.n/, where Nrn D EŒh�2qui;j ul;j
NK.Xi ; Xl/�.

The condition for the application of of Lemma 3.1 holds as follows:
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D O.h�q/ D O.n.nhq/�1/ D o.n/;
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since nhq ! 1. Applying Lemma 3.1, we get 1
.n�1/hq=2 T3;j D Nrn C op.1/, where

Nrn D EŒh�2qui;j ul;j
NK.Xi ; Xl/�

D h�2qEŒE.ui;j jXi /E.ul;j jXl/ NK.Xi ; Xl/�

D h�2q

Z Z
K.u�x

h
/K.v�x

h
/

f 2
h

.x/
�.x/dxŒm�;j .u/ � mj .u/�Œm�;j .v/ � mj .v/�f .u/f .v/dudv
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f 2
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Œm�;j .u/ � mj .u/�2f .u/2du C O.h/

D

Z
Œm�;j .u/ � mj .u/�2�.u/du C op.1/:

The last equality holds because
R

K.2/.s/ds D 1. ■

Proof of Lemma 2. According to the proof of Proposition 2, we can write nhq=2Zn;j D Z2;j C

op.1/; where 1
nhq=2 Z2;j is a second-order U-statistic. It is enough to show the following:

1

nh2=q
Z2;j D EfŒm�;j .Xi / � mj .Xi /�

2f .Xi /g C op.1/; (A.31)

OV Zh
j;j D 2K.2/ .0/Efm�;j .Xi /

2Œ1 � m�;j .Xi /�
2f .Xi /g C op.1/: (A.32)

Since O�2
j .x/ D m O�;j

.x/Œ1 � m O�;j
.x/� converges to m�;j .x/Œ1 � m�;j .x/� in probability under

the alternative hypothesis, the proofs of (A.32) is straightforward.

Proof of (A.32). We show that n�1h�2=qZ2;j satisfies the condition for the application of

Lemma 3.1 of Powell et al. (1989):
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Applying Lemma 3.1, we obtain 1
nhq=2 Z2;j D Nrn C op.1/, where
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■

Proof of Lemma 3. Under the local alternative hypothesis, Tn;j can be written as follows:
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Proof of Lemma 4. Under the local alternative hypothesis, nhq=2Zn;j can be written as follows:
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Proofs of Propositions 7 and 8. The proofs of Propositions 7 and 8 are on the same lines as

Propositions 1 and 2, respectively. The boundedness of ��4
j .x/ � EŒu�4

i;j jXi D x� correspond-

ing to (A.9) and (A.24) can be shown straightforwardly because Y �
i;j is a binary variable taking

the values zero and one and X lies on a compact set by Assumption 1. ■
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