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Abstract

This paper investigates the impact of low fertility on long-term capital accumulation

and economic welfare. We �nd that the impact di¤ers according to whether the low

fertility arises from a decrease in the intensive or extensive margin of fertility. We show

that an increase in the intensive margin of fertility decreases the capital stock and economic

welfare. Conversely, we identify a U-shaped relationship between the extensive margin

of fertility and the capital stock because of the existence of two opposing e¤ects, such

that the decline in fertility may reduce economic welfare. Furthermore, we show that

an intragenerational income redistribution policy can eliminate the welfare loss resulting

from the incomplete market.
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1 Introduction

Declines in fertility rates have been widely observed in most developed economies, and many

economists have examined this phenomenon. In the �eld of economic growth theory, the Solow�

Swan model is considered to provide a standard view of the relationship between population

growth and the macroeconomy. According to this model, lower population growth leads to

a higher capital�labor ratio, and thus, a higher per capita income level in the steady state.

This result is also supported by other neoclassical growth models with microfoundations; for

example, Diamond�s (1965) overlapping-generations model and the optimal growth model of

Blanchard and Fischer (1989).

Using these models, we typically �nd that lower population growth increases an agent�s

welfare in the steady state insofar as the economy is dynamically e¢ cient, that is, when the

interest rate exceeds the population growth rate.1 Furthermore, in the literature focusing on

very long-term development from Malthusian stagnation to sustainable growth, the relationship

between declining fertility and sustainable growth has been emphasized.2

To our knowledge, almost all theoretical studies have investigated the impact of low fertility

on the macroeconomy by assuming that all (female) agents have children in their lifetime, and

that low fertility is therefore described as a reduction in the number of children each mother

has (that is, the intensive margin of fertility). However, there is another important factor

that has contributed to the recent declining birthrate in low-fertility economies: namely, the

extensive margin of fertility, that is, an increase in the proportion of women who do not have

any children in their lifetime, which we call the �rate of de�nitive childlessness,�or more simply,

the �childlessness rate.�

In recent decades, such childlessness rates have increased in many developed economies.

The OECD Family Database uses the proportion of childless women at 45 years of age as a

1In other words, higher population growth decreases long-term economic welfare because of a reduction in

the capital�labor ratio. In neoclassical growth theory, this is often referred to as the �capital dilution e¤ect.�

If we also consider the possibility of income transfers between generations in a Diamond-type overlapping

generations framework, and take the �intergenerational transfer e¤ect� into account, the relationship between

population growth and economic welfare will change. Samuelson (1975) investigated this issue, and this has

been subsequently developed by Deardor¤ (1976), Michel and Pestieau (1993), and de la Croix et al. (2012).
2There are many approaches for describing the long-term economic development process and population

dynamics. Galor (2005) and Doepke (2008) provided summaries of key research in this �eld.
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measure of the childlessness rate. Table 1 compares the childlessness rate of women born in

1950 (let us call them the 1950 cohort) with the 1965 cohort. We observe two characteristics of

the data. First, the childlessness rate of the 1965 cohort is higher than that of the 1950 cohort

in many countries. In fact, the childlessness rate decreased only in Portugal, Sweden, and the

United States. Second, the childlessness rate di¤ers between countries. For instance, the rate

is less than 5% in Bulgaria and Portugal, but greater than 20% in Austria, England and Wales,

Germany, Italy, and Japan.

In this paper, we construct a model where agents face uncertainty about whether they will

have children, and consider the situation where a declining birthrate results from either each

mother having fewer children or a rise in the childlessness rate. We then explore the e¤ects of

low fertility on the steady-state capital�labor ratio and on economic welfare in the context of

both the intensive and extensive margins of fertility. In the present analysis, we treat fertility

choice (that is, whether to have children, and how many children to have, if any) as exogenous.

We �nd that the result of the analysis with the extensive margin of fertility qualitatively

di¤ers from that based on the intensive margin of fertility. We show that in the context of the

intensive margin of fertility, an increase in the fertility rate reduces the steady-state capital�

labor ratio. This result is consistent with the preceding literature. By contrast, we obtain a

U-shaped relationship between the fertility rate and the steady-state capital�labor ratio when

parents confer positive bequests on their children. To understand this result intuitively, consider

the situation where the childlessness rate falls permanently, that is, the extensive margin of

fertility expands. In this case, two opposing e¤ects exist. The �rst e¤ect is where the decrease

in the childlessness rate increases the ratio of the current to the future working population,

ceteris paribus, and leads to a fall in capital per capita in the next period. Roughly speaking,

this e¤ect is similar to the capital dilution e¤ect.

The second e¤ect is where by decreasing the childlessness rates of future generations, agents

expect that their children are more likely to have children (that is, their grandchildren). When

their children do not have their own children, they spend their entire income on their own

consumption. But when they have children, they spend their income on their children as well

as their own consumption, and their budget constraint is tighter than childless agents. In

response to an increase in the latter possibility, altruistic agents choose to increase income

transfers to their children, which leads to an increase in capital accumulation.
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Moreover, such changes lead to di¤erent implications for the relationship between fertility

and economic welfare in the long run. We show that economic welfare increases when the

decrease in the fertility rate results from the intensive margin of fertility (unless parents display

an extremely high preference for the number of children). Alternatively, we also show that

economic welfare may decrease in response to the declining fertility rate brought about by an

increase in the childlessness rate.

The literature focusing on the distinction between the intensive and extensive margin of

fertility has recently grown. Aaronson et al. (2011) examined the impact of improved schooling

opportunities on both margins of fertility in the course of the demographic transition. Gobbi

(2013) considered the impact of the gender wage gap and the preference for children on fer-

tility and childlessness. Baudin et al. (2015) investigated the relationship between fertility,

childlessness, marriage, and education using an endogenous fertility model. All of these argued

that distinguishing between the two fertility margins is important because they have di¤erent

e¤ects. The present study illustrates this in the context of economic growth. In addition, these

preceding studies explore the impact of economic shocks on the childlessness rate. This study,

on the other hand, examines the impact of the childlessness rate on economic variables. In this

sense, the present study and these existing studies are complementary.

In addition, using this model, we investigate the e¤ect of an income redistribution policy

on economic welfare. We show that the marginal utility of income of those who have children

is higher than those who are childless in equilibrium, and that such inequality in marginal

utility generates a welfare loss. When implementing intragenerational income redistribution

from agents without children to those with children, we expect the gap in the marginal utility

of income between the two groups to narrow, resulting in a reduction in welfare loss. We

rigorously analyze this issue, and derive in a simple way the income redistribution rule under

which we can eliminate the welfare loss.

The remainder of this paper is organized as follows. Section 2 introduces the model. Section

3 derives a dynamic representation of the economy in which we show that a steady-state equi-

librium exists, is unique, and is saddle-point stable. Section 4 analyzes the e¤ect of a change

in the rate of population growth on the capital�labor ratio in the steady state, and Section

5 explores its welfare implications. We investigate the optimal income redistribution rule in

Section 6. Section 7 concludes the paper.
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2 Model

Firms act competitively and produce a single good using labor and capital. The aggregate

production function has Cobb�Douglas technology, Yt = F (Kt; Lt) � AK�
t L

1��
t , where Kt,

Lt, and Yt represent the total capital stock, total labor input, and total output, respectively.

De�ning yt � Yt=Lt and kt � Kt=Lt, it is transformed as yt = f (kt) � Ak�t . We assume that
capital fully depreciates during the production process. wt and rt denote the wage rate and the

gross interest rate, respectively, and the optimal conditions for a representative �rm are given

by:

wt = (1� �)Ak�t ; (1)

rt = �Ak
��1
t : (2)

We consider a three-period overlapping-generations model, where agents live in �child,�

�young,� and �old�periods. Children do not contribute to economic activity. Young agents

have one unit of labor endowment and work inelastically, and they retire when they become

old. We refer to young agents in period t as generation-t. All agents are ex ante identical, but

they face uncertainty about having children, and � denotes the probability of having children

at the beginning of the young period. No insurance to hedge this risk exists in the economy.3

Let us refer to agents who have children as state-� agents, and those without children as state-

� agents. Each state-� young agent is assumed to have n children. We treat the number of

children in a household as a real number, and for simplicity, we assume that the n children

born from the same parent (that is, siblings) face the same state in the young period. That

is, with probability � (respectively, 1 � �), they become state-� young agents (respectively,
state-� young agents).4 Thus, the state-� young agents are classi�ed into two groups when

they become old, depending on whether they have grandchildren (put di¤erently, whether their

own children are state-� or state-�). We denote state-� young agents who have (respectively,

3We can justify this assumption from the viewpoint of reality.
4If becoming a state-� or state-� young agent were an independent event across children in each household,

each state-� young agent would have �n units of state-� children and (1� �)n units of state-� children when
he/she becomes old. In this case, the idiosyncratic uncertainty about having children is eliminated at the

household level. By contrast, we consider the situation where the number of children a household has is so small

that the law of large numbers does not apply at the household level.
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do not have) grandchildren as state-�� old agents (respectively, state-�� old agents). The (con-

ditional) probability that a state-� young agent will become a state-�� (respectively, state-��)

old agent is � (respectively, 1� �). In sum, while agents are identical in their childhood, they
are classi�ed into two groups (state-� and state-�) when young, and into three groups (state-�,

state-��, and state-��) when old.

The cohort size is large, so that although each agent faces uncertainty, there is no aggregate

uncertainty. In the aggregate economy, n� represents the rate of population growth. Denoting

the cohort size of generation-t by Nt, the population dynamics are given by:

Nt+1 = n�Nt:

Let V �t and V
�
t denote the maximized utility of state-� and state-� young agents of generation-

t, respectively. Furthermore, EVt represents the maximized expected utility before uncertainty

is resolved, that is, EVt = (1� �)V �t + �V �t . EVt is interpreted as the ex ante welfare of
generation-t, upon which we mainly focus.5

Consider the lifetime utility of a state-ij agent (those whose states are i and ij when young

and old, respectively), where:

i 2 f�; �g ; j 2
(

;; i = �

f�; �g ; i = �

Agents derive utility from their own consumption when young and old (cit and d
ij
t+1, respec-

tively), the number of their children (ni), and the welfare of their children (V jt+1) (if they have

children). Based on Razin and Ben-Zion (1975) and Lucas (2002), the lifetime utility of a

state-ij agent is described as:

u
�
cit
�
+ �u

�
dijt+1

�
+ v

�
ni
�
+ I i�V jt+1; (3)

where u0 (�) > 0, v0 (�) > 0, u00 (�) < 0 and v00 (�) < 0, and � is a discount factor. � 2 (0; 1) is the
parents�preferences toward their representative children (a measure of altruism),6 and I i is an

indicator function which takes the following value:

5From the viewpoint of ex post welfare, we can also interpret �V� + (1� �)V� as utilitarian preferences in
the steady state. (Note that the ratio of state-� agents to state-� agents is � to 1� �.)

6As another possible formulation of utility function, we could consider:
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I i =

(
0; i = �

1; i = �

As described later, to guarantee that state-� adults obtain nonnegative utility from their chil-

dren, that is, to guarantee V jt+1 � 0, we also assume u (�) � 0 and v (0) = 0.
Let us consider the state-� young agents�problem. From (3), the utility function is given

by u (c�t )+ �u
�
d�t+1

�
, where c�t and d

�
t+1 denote the consumption of generation-t state-� agents

when young and old, respectively. They consume all their disposable income in their lifetime.

The budget constraints for state-� agents are expressed as:

c�t + s
�
t = wt; (4)

d�t+1 = rt+1 (s
�
t + x

�
t ) ; (5)

where s�t and x
�
t are the savings of young state-� agents and the wealth inherited from their

parents, respectively. Their parents (generation-t� 1) leave their bequest when old (in period
t), and children receive it with interest after their parents die.7 The optimal condition for

intertemporal consumption is given by:

u0 (c�t ) = �rt+1u
0 �d�t+1� : (6)

We express V �t as V
�
t � V� (x�t ),8 and de�ne

dV �t
dx�t

���
dwt=drt+1=0

as V 0� (x
�
t ). This is interpreted as

the marginal utility of income of a state-� young agent, and we obtain:

V 0� (x
�
t ) = u

0 (c�t ) : (7)

u
�
cit
�
+ �u

�
dijt+1

�
+ b� �ni�� V jt+1;

where b� > 0 and � 2 (0; 1). This functional form is based on Becker and Barro (1988) and Barro and Becker

(1989). In Section 4, we show that even when using this utility function, Proposition 3, the main result, remains

valid. (In this regard, refer to footnote 17 for details.)
7Although we consider the situation where children receive transfers in period t (inter-vivos transfers), we

also obtain (32), (38), and (40). Thus, the main results of the present analysis are unchanged.
8Exactly, V �t should be represented as a function of x�t , wt, and rt+1; that is, V

�
t � V� (x

�
t ; wt; rt+1). For

notational simplicity, we omit wt and rt+1 when there is no risk of misunderstanding.
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The process to derive (7) is given in Appendix A.

Next, we consider the state-� agents�problem. When young, the state-� agents face uncer-

tainty regarding their state in the old period, and choose their consumption and savings when

young, denoted by c�t and s
�
t , respectively. We assume that �wt units of �nal goods are needed

to raise one child in period t. The budget constraint for the young period is given by:

c�t + s
�
t + n�wt = wt: (8)

If agents become state-�� when old (that is, their children become state-� in period t + 1),

their lifetime utility is expressed as:

u (c�t ) + �u
�
d��t+1

�
+ v (n) + �V �t+1;

where d��t+1 denotes consumption in the old period.

When old, they allocate disposable income between their own consumption and bequests

for their children. The budget constraint in the old period is expressed as:

d��t+1 + nx
�
t+1 = rt+1 (s

�
t + x

�
t ) ; (9)

where x�t is the wealth inherited from the parents, and x�t+1 is the bequest to their state-�

children.

On the other hand, if state-� agents become state-�� old, the lifetime utility is:

u (c�t ) + �u
�
d��t+1

�
+ v (n) + �V �t+1;

where d��t+1 denotes consumption in the old period, and the budget constraint is given by:

d��t+1 + nx
�
t+1 = rt+1 (s

�
t + x

�
t ) ; (10)

where x�t+1 represents the bequest to their state-� children. We assume that parents cannot

leave debt to their children; that is, the following nonnegative constraints are imposed for any

t:

x�t � 0; x�t � 0: (11)

Consequently, V �t is expressed as:
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V �t = max
�
u (c�t ) + v (n) + �

�
(1� �)u

�
d��t+1

�
+ �u

�
d��t+1

��
+ �

�
(1� �)V �t+1 + �V �t+1

�	
;

which is maximized with respect to c�t ; s
�
t ; d

��
t+1; d

��
t+1; x

�
t+1, and x

�
t+1 subject to (8)�(11). Because

�� < 1 holds, V �t is �nite-valued.
9 We express V �t as V

�
t � V� (x�t ), and de�ne

dV �t
dx�t

���
dwt=drt+1=0

as V 0� (x
�
t ). This is interpreted as the marginal utility of income for a state-� young agent.

The optimal conditions for state-� agents are summarized as follows:10

u0 (c�t ) = �rt+1
�
(1� �)u0

�
d��t+1

�
+ �u0

�
d��t+1

��
; (12)

�nu0
�
d��t+1

�
� �V 0�

�
x�t+1

�
= �u0

�
c�t+1

�
; (13)

�nu0
�
d��t+1

�
� �V 0�

�
x�t+1

�
= �u0

�
c�t+1

�
; (14)

V 0� (x
�
t ) = �rt+1

�
(1� �)u0

�
d��t+1

�
+ �u0

�
d��t+1

��
= u0 (c�t ) : (15)

We provide the process for the derivation of these equations in Appendix A. (12) represents

the optimal choice of c�t , d
��
t+1, d

��
t+1, and s

�
t . (13) and (14) correspond to the optimal choice

concerning the bequests for children, x�t+1 and x
�
t+1, respectively. If x

�
t+1 > 0 and x

�
t+1 > 0 are

chosen, (13) and (14) hold as equalities, respectively. In this case, (12) can be written as:

9This is con�rmed by rewriting the utility of a state-� agent as:

1X
i=0

(��)
i �
u
�
c�t+i

�
+ v (n) + �

�
(1� �)u

�
d��t+1+i

�
+ �u

�
d��t+1+i

��
+ � (1� �)V �t+1+i

	
:

10In addition, we also obtain the transversality conditions with regard to x�t+1 and x
�
t+1. Denoting the shadow

prices of x�t+1 and x
�
t+1 (evaluated at period 0) by �

��
t+1 and �

��
t+1, the transversality conditions are respectively

expressed as follows:

lim
T!1

���T+1x
�
T+1 = 0; lim

T!1
���T+1x

�
T+1 = 0:

Considering (9) and (10) from the viewpoint of generation-T state-k young agents, the shadow prices of

x�t+1 and x
�
t+1 are evaluated as � (1� �)u0

�
d��T+1

�
and ��u0

�
d��T+1

�
, respectively. Moreover, as con�rmed by

the Bellman equation, the current state-� young agents discount V� of the next generation at the rate of ��.

Thus, ���T+1 = � (1� �) (��)
T
u0
�
d��T+1

�
and ���T+1 = �� (��)

T
u0
�
d��T+1

�
hold. Using these equations, the above

transversality conditions are respectively expressed as:

lim
T!1

(��)
T
u0
�
d��T+1

�
x�T+1 = 0; lim

T!1
(��)

T
u0
�
d��T+1

�
x�T+1 = 0:
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u0 (c�t ) =
�rt+1
n

�
(1� �)u0

�
c�t+1

�
+ �u0

�
c�t+1

��
: (16)

(15) represents the envelope condition of a state variable, x�t , which is known as the Benveniste�

Sheinkman condition. This indicates that the marginal utility of income of a state-� young agent

is u0 (c�t ).

There are three kinds of markets: namely, goods, labor, and capital markets. In the capital

market equilibrium, total savings equal the aggregate capital stock in the next period. Total

savings in period t consist of savings by generation-t agents (young agents) and bequests by

generation-t�1 agents (old agents). Noting that the population sizes of generation-t�1 state-��
and state-�� agents are (1� �)�Nt�1 and �2Nt�1, respectively, the following equation holds:

Nt (�s
�
t + (1� �) s

�
t ) + �Nt�1 (�nx

�
t + (1� �)nx

�
t ) = Kt+1:

Taking into account that Lt = Nt holds in the labor market, the capital market equilibrium

condition is rewritten as:

� (s�t + x
�
t ) + (1� �) (s

�
t + x

�
t ) = n�kt+1: (17)

Walras�law guarantees equilibrium in the goods market.

3 Equilibrium Dynamics

We now explore the dynamic equilibrium system of the economy. First, we investigate the

properties of the steady state. We de�ne the steady state as the situation where the capital�

labor ratio, kt; factor prices, wt and rt; and an agent�s lifetime consumption pro�le, savings,

and bequests in all states are constant over time. We omit the time subscript when variables

are time invariant, for example, kt = kt+1 � k.
We specify u (c) as u (c) = log c so as to obtain an analytical solution.11 Using (4)�(6), the

11As stated earlier, we presuppose u (c) � 0. This means that c � 1 must hold. Generally, this condition is
satis�ed when A is large.
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optimal behavior of a state-� agent is derived:

c� =
1

1 + �
(w + x�) ; (18)

s� =
1

1 + �
(�w � x�) ; (19)

d� =
�r

1 + �
(w + x�) : (20)

On the other hand, the optimal conditions of a state-� agent are represented as the budget

constraints (8)�(10) and the following equations:

1

c�
= �r

�
(1� �) 1

d��
+ �

1

d��

�
; (21)

c�

(
= �

�n
d��; if x� > 0

> �
�n
d��; if x� = 0

; (22)

c�

(
= �

�n
d��; if x� > 0

> �
�n
d��; if x� = 0

; (23)

which are derived from (12)�(14), respectively. However, it is excessively di¢ cult to calculate

the solution because of (21). Instead, it is useful to introduce the following the three variables

q, �, and � when we examine the dynamic properties of the model:

q � x�

w
; (24)

� � c�

c�
=
V 0� (x

�)

V 0� (x
�)
; (25)

� � n

r
: (26)

q represents the level of a parent�s income transfer to a state-� young agent as a fraction of the

wage rate, and q � 0 must hold. � represents the ratio of the marginal utility of income of a
state-� young agent to that of a state-� young agent, and � < 1 indicates that the marginal

utility of income of state-� agents is higher than that of state-� agents. � is de�ned as the

ratio of the number of children each state-� agent has to the interest rate. Furthermore, to

simplify the analysis, we assume � = 0.12 Using (24), the optimal choice of a state-� young
12In this regard, refer to footnotes 14 and 16. Note that the qualitative features of the main results do not

change even when we explicitly incorporate the cost of childrearing, as long as we treat the fertility behavior as

exogenous.
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agent, (18)�(20) is expressed as:

c� =
1 + q

1 + �
w; (27)

s� =
� � q
1 + �

w; (28)

d� = �rc� =
�

1 + �
(1 + q) rw; (29)

and by using (8), (25), and (27), a state-� young agent�s optimal choice is expressed as follows:

c� = �
1 + q

1 + �
w; (30)

s� = w � c� =
�
1� � 1 + q

1 + �

�
w: (31)

A state-� agent decides the optimal level of bequest in the old period. In some situations,

the bequest may be operative (x > 0), and in others, the nonnegative constraints may bind

(x = 0). In this regard, we obtain the following result:

Lemma 1 In the steady state, either case may hold: (i) both x� and x� are positive; (ii) both

x� and x� are zero.

The proof of Lemma 1 is given in Appendix B. We de�ne cases (i) and (ii) as the interior solution

case and the corner solution case, respectively.13 Lemma 1 identi�es the case where neither

x� > 0 and x� = 0 nor x� = 0 and x� > 0 hold. Put di¤erently, when q > 0 (respectively,

q = 0) holds, the interior solution case (respectively, corner solution case) is realized in the

steady state. The intuition of this lemma is as follows. While state-� agents spend their

entire income on their own consumption, state-� agents spend a fraction of their income on

13In the interior solution case, our model has a feature in common with Michel and Pestieau (1998, 2005)

in the sense that the agents who leave bequests and those who do not coexist. They considered the situation

where parents are heterogeneous concerning their preferences toward bequests to their children. We can thus

regard our work as being complementary to their analysis. We consider the situation where agents in the same

cohort are ex ante identical, and all children receive a positive bequest from their parents. That is, only childless

agents do not leave bequests. Furthermore, in contrast to our work, there is no uncertainty and markets are

complete in Michel and Pestieau (1998, 2005).
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their children. This means that the budget constraint of a state-� households is tighter than a

state-� households. In response to this, altruistic parents will leave a larger bequest for state-�

children (x�) than for state-� children (x�).14 Thus, x� > 0 and x� = 0 cannot be the optimal

solution. On the other hand, the case where x� = 0 and x� > 0 is not always excluded. In the

present model, we just happen to exclude this case for a technical reason when we assume � = 0.

(In this regard, refer to footnote 16.) We now consider where the interior solution case takes

place. In the interior solution case, the optimal condition for the intertemporal consumption,

(16), yields the following equation:

� = � (� + (1� �)�) : (32)

(13) and (14) hold as equalities, so that we obtain a state-� agent�s consumption in the old

period as:

d�� =
�n

�
c� =

n

�

�

1 + �
(1 + q)w; (33)

d�� =
�n

�
c� =

n

�

�

1 + �
� (1 + q)w: (34)

Furthermore, by using (9) and (10) together with (33) and (34), x� is derived as:

x� = x� +
1

n
(d�� � d��) =

�
q +

1

�

�

1 + �
(1� �) (1 + q)

�
w: (35)

Let us consider the market equilibrium condition, (17). Using x� = qw, (28), (31), and (35),

we can calculate s� + x� and s� + x� as follows:

s� + x� =
1 + q

1 + �
�w: (36)

s� + x� =
1 + q

1 + �

�
� + �

�
(1� �) + �

�
w: (37)

Substituting (36) and (37) into (17), and noting k
w
= �

1��
1
r
, we obtain:

1 + q

1 + �

�
� + �

�
(1� �) + � + 1� �

�
�

�
=

�

1� ��: (38)

14In the case of � > 0, this e¤ect will be ampli�ed because state-� agent spend a larger fraction of their

income on their children than in the case of � = 0.
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Furthermore, observe that when using (9), s� + x� is also represented as:

s� + x� =
1

r
(d�� + nx�) = �

�
1

�

�

1 + �
(1 + q) + q

�
w: (39)

Combing this equation with (37), we derive the following relationship:

1 + q

1 + �

�
� + �

�
(1� �) + �

�
= �

�
1

�

�

1 + �
(1 + q) + q

�
: (40)

Three equations summarize the steady state of the interior solution case, (32), (38), and

(40), and we obtain the steady-state equilibrium by solving these with respect to three unknown

variables, q, �, and �. Of course, remember that q > 0 must hold for the interior solution.

Furthermore, using (38) and (40), we derive the relationship between � and � by eliminating q:

� =

�
1 +

��

� + �

�
(1� ��) + 1� �

�

��

� + �
(1� �) : (41)

Finally, we represent the steady state by two equations, (32) and (41), with respect to �

and �. Note that we interpret (32) and (41) as re�ecting the Euler equation and the market-

clearing condition, respectively. On a ��� plane, (32) is drawn as an upward-sloping line that
passes the points (�; �) = (��; 0) and (�; 1), and (41) is a downward-sloping line that passes�
1; (1� �)

�
1 + 1

�
��
�+�

��
, as depicted in Fig. 1.

Let ��, ��, and q� denote the values of �, �, and q in the steady state, respectively. In the

interior solution case, q� > 0 holds, and �� and �� are obtained as the intersection of (32) and

(41). Here, let us de�ne �+ as:

�+ � �

1 + �

1� �
�

1

�
: (42)

The following important property holds:

Proposition 1 (i) When � > �+, the interior solution case holds, that is, parents leave positive

bequests to their children. In this case, �� < 1 and �� � � hold (�� = � holds when � = 1).

Furthermore, x� > x� > 0 holds.

(ii) When � � �+, the corner solution case holds, that is, parents do not leave a bequest,

x� = x� = 0. In this case, �� = 1 and �� = � �
+

�
hold.
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Proof. First, we examine the intersection of (32) and (41). As shown in Fig. 1, � < 1 holds

at the intersection if and only if the point (�; �) = (�; 1) lies above the locus of (41). That is:

1 >

�
1 +

��

� + �

�
(1� ��) + 1� �

�

��

� + �
(1� �) :

This is equivalent to � > �+. Furthermore, we con�rm from (32) that when � < 1, � < � holds

at the intersection if and only if � < 1. (We also observe that � = � always holds when � = 1.)

In sum, we obtain the following properties regarding the intersection.

(i) � < 1 and � � � hold when � > �+ (� = � holds when � = 1);

(ii) � = 1 and � = � hold when � = �+;

(iii) � > 1 and � > � hold when � < �+.

Next, we show that q > 0 holds if and only if � > �+. From (38) and (40), we derive:

1� �
�

�
1

�

�

1 + �
(1 + q) + q

�
=

�+�
�
(1� �) + �

�+�
�
(1� �) + �

�

: (43)

We examine the property of q which satis�es (43). We con�rm from (43) that q increases as �

increases and decreases as � increases, and that q = 0 holds when � = �+ and � = 1. Items

(i) to (iii) above indicate that q� > 0 holds if and only if � > �+, and that �� < 1 and �� � �
hold (� = � holds when � = 1). Furthermore, because �� < 1 holds, we con�rm from (35) that

x� > x� > 0 holds, and thus, Proposition 1 (i) is proved.

Conversely, when � < �+, the level of q satisfying (43) becomes negative. Taking the

nonnegative constraint on q into account, a corner solution (q� = 0) is attained when � � �+.
Because x� = x� = 0, d��t+1 = d

��
t+1 holds immediately from (9) and (10). Using (4)�(6), (8)�(10),

and (12), we obtain:

c� = c� =
1

1 + �
w; (44)

s� = s� =
�

1 + �
w; (45)

d� = d�� = d�� =
�

1 + �
rw: (46)
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Substituting (45) into (17), and taking k
w
= �

1��
1
r
and (42) into account, we obtain the following

result as the corner solution:

� = �
�+

�
: (47)

Here, the proof of Proposition 1 (ii) is completed.

Proposition 1 points out that �+ < 1 is required to guarantee the existence of the interior so-

lution. We assume �+ < 1 throughout the present analysis. Broadly speaking, this assumption

means that we consider the situation where � is not very small. As discussed earlier, parents

discount the future generation�s welfare at the rate of ��. Proposition 1 signi�es that parents

leave positive bequests to their children when � and � are not too low.

In particular, Proposition 1 (i) states that parents leave positive bequests to their children

when � > �+. We can see that x� > x� > 0 holds, and explained the reason when we

interpreted Lemma 1. That is, the budget constraint of a state-� household is tighter than a

state-� household. In response to this, altruistic parents choose x� > x�.15 Here, it is important

to note that although state-� agents receive a larger amount of income transfer than state-�

agents, �� < 1 continues to hold in equilibrium; that is, the marginal utility of income of the

state-� agents (V 0� (x
�)) is still higher than that of the state-� agents (V 0� (x

�)). This result is

a consequence of the market incompleteness. State-� young agents have to decide s� before

knowing whether they will become state-�� or state-�� old agents. Recall also that there is

no insurance to hedge this risk. In such a situation, d�� > d�� holds from (9) and (10). In the

interior solution case, as shown in (22) and (23), the optimal intergenerational income transfer

is implemented to satisfy,

15As seen from (3), we assume the additively separable utility with respect c and n. If we consider the case

where the utility is not additively separable with respect to c and n, the marginal utility of consumption is

in�uenced by a change in n. Suppose that the marginal utility of consumption increases as n increases. In this

case, compared to the additively separable utility case, the marginal utility of consumption of state-� agents

is much higher, while that of state-� agents is lower, and thus, x� > x� becomes easier to hold. On the

hand, suppose that the marginal utility of consumption decreases as n increases. In this case, compared to the

additively separable utility case, the marginal utility of consumption of state-� agents becomes lower, while

that of state-� agents becomes higher. If this e¤ect is su¢ ciently strong, it is possible that the marginal utility

of the state-� agents is lower than that of the state-� agents, even though the budget constraint of the state-�

agents is tighter, and thus x� < x� arises.
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d��

d��
=
c�

c�
:

Thus, �� < 1 holds. If there were an insurance contract to cover this uncertainty, the state-

� young agents would purchase the insurance to equate the marginal utility of consumption

of state-�� with that of state-��. That is, d�� = d�� would hold, and thus, c� = c� (or

equivalently, �� = 1) would hold.

Proposition 1 (ii) states that parents choose not to leave bequests to their children when

� < �+. In this case, the young agents�lifetime income is w, regardless of their state. Because

� = 0 is assumed, the lifetime budget constraint of a state-� agent is identical to that of a

state-� agent, and consequently, �� = 1 is realized.16

We obtain the stability of the steady state by examining the transition dynamics. Similarly

to the de�nition of q, �, and �, let us de�ne qt, �t, and �t as follows:

qt �
x�t
wt
; �t �

c�t
c�t
; �t �

n

rt
:

In the log-utility function case, we obtain the following result:

Proposition 2 : qt = q� and �t = �� hold for any t. The level of �t converges to �� monoton-

ically, which means that the capital stock kt also converges to its steady state monotonically.

The proof is in Appendix C. Proposition 2 indicates that in a transition process, the control

variables qt and �t immediately jump to the steady-state values, and the state variable �t
converges from the initial value �0 to the steady-state value. Remembering that �t and rt has

a negative relationship by de�nition of �t, and that rt is a decreasing function of kt, �t has a

positive correlation with kt. That is, kt converges from the initial value k0 to the steady-state

value.
16If we explicitly consider the childrearing cost (� > 0), �� < 1 (that is, c� > c�) will hold when x� = x� = 0

is chosen. In other words, u0 (c�) > u0 (c�) holds. In this case, it is possible that an altruistic parent decides

to leave a positive bequest for only state-� agents (that is, x� > 0 and x� = 0). In this case, there exist two

thresholds b�� and b�+, where x� = x� = 0 when � 2 [0; b��], x� > x� = 0 when � 2 (b��; b�+], and x� > x� > 0
when � 2 (b�+; 1].
However, as will be explained in Section 4, to obtain the main result, the situation where �� < 1 holds when

x� > 0 is important, and whether x� is positive or zero does not matter. Thus, we assume � = 0 to help keep

the analysis as simple as possible.
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Furthermore, we can see that the interest rate is higher than the population growth rate

in the steady state. As argued in Proposition 1, �� � � (or equivalently, �n
r
� ��) holds, and

recall that we assume �� < 1. Thus, �n < r holds in the steady state.

4 Population Growth and the Steady-State Capital Stock

Let us examine the e¤ect of population growth on the capital stock per capita at the steady

state. The rate of population growth, �n, rises (i) when n (the intensive margin of fertility)

increases, or (ii) when � (the extensive margin of fertility) increases.

To begin, we consider the interior solution case (that is, �+ < � � 1). As stated in Section
3, the steady state is expressed as the intersection of (32) and (41). Analyzing (32) and (41),

we obtain the following proposition.17

Proposition 3 : In the interior solution case (�+ < � < 1), the following hold:

(i) As n increases, k� decreases.

(ii) There is a U-shaped relationship between k� and �. That is, there exists b� 2 (�+; 1) such
that dk

�

d�
< 0 for any � 2 (�+; b�) and dk�

d�
> 0 for any � 2 (b�; 1).

Proof. (i) Observe that the graphs of (32) and (41) remain unchanged when n rises. This

implies that the steady state �� is independent of n, that is, d�
�

dn
= 0. Noting that � � n

�A
k1��,

we immediately con�rm that k decreases as n increases.

(ii) Di¤erentiating (32) with respect to � yields:

d��

d�
= � (1� ��) + � (1� �) d�

�

d�
; (48)

and di¤erentiating (41) with respect to � yields:

d��

d�
= ��� + � + ��

� + �

d��

d�
� 1

�2
��

� + �
(1� �) : (49)

17Even if we use the utility function based on Becker and Barro (1988) and Barro and Becker (1989) (refer

to footnote 6 on this point), Proposition 3 remains valid, as rigorously discussed in Appendix D.
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From (48) and (49), we obtain:�
1 + �

� + � + ��

� + �
� (1� �)

�
d��

d�
= �

�
�
� + � + ��

� + �
� (1� ��) + (1� �) ��

� + �

1

�2

�
; (50)�

1 + �
� + � + ��

� + �
� (1� �)

�
d��

d�
= � (1� ��)� �1� �

�2
��

� + �
(1� �) : (51)

The bracket on the left-hand side, 1+��+�+��
�+�

� (1� �), is positive. We can see from Proposition
1 that �� � 1 holds, so that the sign of the right-hand side of (50) is negative. Thus, we con�rm
that d�

�

d�
< 0 holds.

Taking into account that both �� and 1��
�2

are decreasing functions of �, we observe that

the right-hand side of (51) is an increasing function of � (and of course, it is also continuous).

Moreover, as shown in Proposition 1, �� = 1 when � = �+ and �� < 1 when � = 1. Using

this, we �nd that the right-hand side of (51) is negative when � = �+ and positive when � = 1,

which indicates that there exists b� 2 (�+; 1) such that d��
d�
< 0 for any � 2 (�+; b�) and d��

d�
> 0

for any � 2 (b�; 1). That is, we obtain a U-shaped relationship between �� and �. By de�nition
of � � n

r
= n

A�
k1��, �� and k� has a positive relationship. Therefore, k� has a U-shaped

relationship with �.

Proposition 3 (i) states that when a decrease in the population growth rate is brought about

by a decrease in the number of children each state-� adult bears, k� increases. As shown by (9)

and (10), we interpret that n represents the cost of bequests, x� and x�, and that a decrease

in n infers a reduction in the cost of x� and x�, which leads to an increase in k�.

In contrast, Proposition 3 (ii) maintains that the impact of the extensive margin of fertility

on k� di¤ers from the impact of the intensive margin. The U-shaped relationship means that

for a high value of �, k� decreases as � falls. This result is novel; therefore, let us explain

the mechanism in detail. To begin, we explain it using an illustration. The graph of (32)

rotates counterclockwise around a �xed point (�; �) = (�; 1) as � rises. In other words, it shifts

downward in the region where � < �. On the other hand, the graph of (41) shifts downward in

parallel when � rises. Fig. 2 (a) shows the situation. As shown, �� always falls, but the impact

of an increase in � on �� (and thus, k�) is ambiguous.18 Fig. 2 (b) depicts the situation where

� rises marginally from � = �+. In this case, the intersection moves from point A to point

A0, and thus, � decreases as � rises. By contrast, Fig. 2 (c) illustrates the case where � falls

18As described in the proof for Proposition 3 (ii), d�
�

d� < 0 holds true.
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marginally from � = 1. The intersection moves from point B to point B0, and in this case, �

decreases as � falls.

Next, let us interpret this outcome. The key point is that there are two countervailing

e¤ects. First, the graph of the Euler equation, (32), shifts downward in response to an increase

in �, which leads to an increase in k. This e¤ect implies that an increase in the population

growth rate has a positive impact on capital accumulation. As shown in Proposition 1 (i),

�� < 1 holds in the interior solution case. Recall that this is equivalent to V 0� (x
�) < V 0� (x

�),

that is, the marginal utility of income of state-� agents is higher than that of state-� agents.

This plays an important role in this result. When � increases, children are more likely to

be state-� adults when they grow up, and altruistic parents anticipate that their children�s

(expected) marginal utility of income will rise. Accordingly, they will increase income transfers

to their children, and this increases k.19 Moreover, we can see from (50) that the gap in the

marginal utility of income between state-� and state-� agents widens as � increases. Thus, this

e¤ect becomes larger as � becomes higher.

On the other hand, when � � �+, parents do not make an income transfer to their children
(x� = x� = 0). In this case, V 0� (x

�) = V 0� (x
�) holds, and thus, the magnitude of this positive

e¤ect is zero.

Second, the graph of the market-equilibrium condition, (41), shifts upward in response to a

decrease in �, and this raises k. This e¤ect indicates that an increase in the population growth

rate has a negative impact on capital accumulation. To understand this better, consider the

contribution of s� to capital accumulation. Note that state-� agents do not have children, and

that the population ratio of state-� agents to the next generation�s cohort size is 1� � to n�.
Thus, an increase in s� by one unit raises kt+1 by 1��

n�
units, and this e¤ect becomes large as �

decreases.

In summary, we �nd two countervailing e¤ects regarding the impact of the extensive margin

of fertility on the capital stock. When � is close to �+, the positive (�rst) e¤ect is negligible,

and is dominated by the negative (second) e¤ect. Thus, an increase in the fertility rate de-

creases k. On the other hand, when � is close to one, the negative e¤ect is negligible, and is

19Put di¤erently, market incompleteness is an important factor in deriving the result. If the market were

complete, �� = 1 (or equivalently, V 0� (x
�) = V 0� (x

�)) would hold. In this case, the children�s expected marginal

utility �V 0� (x
�) + (1� �)V 0� (x�) does not change even when � changes, such that the parents do not have any

incentive to increase the bequest.
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dominated by the positive e¤ect. In this case, the increase in the fertility rate � decreases k.

Consequently, the relationship between � and k is drawn as a U-shaped curve, as depicted in

Fig. 3. Parenthetically, as shown in Proposition 1, the levels of k are the same when � = �+

and � = 1.

Finally, let us note the relationship between the fertility rate and k in the corner solution

case (� � �+). Recall that �� = � �+
�
holds, and we obtain the following result.

Proposition 4 : In the corner solution case (� < �+), the following hold:

(i) As n increases, k� decreases.

(ii) As � increases, k� decreases.

Proof. �� = � �
+

�
is equivalent to r� = 1

��+
n�. From (2), r and k has a negative relationship.

Thus, k� decreases as n or � rises.

When x� = x� = 0, only the fertility rate n� matters for k�, and whether the increase

in fertility is brought about by the intensive margin or the extensive margin does not matter.

This is because, as we have stated earlier, when � rises, the positive e¤ect is missing, and only

the negative e¤ect exists.

5 Population Growth and Steady-State Welfare

We now explore the relationship between population growth and long-term economic welfare.

As we obtain a new insight in the interior solution case, we only pay attention to this (that is,

� > �+) in the remainder of the analysis.

We focus on the ex ante welfare EV = �V� + (1� �)V�, where V� and V� represent the
levels of V �t and V �t in the steady state, respectively. For notational convenience, we de�ne

U� as U� � u (c�) + � [�u (d��) + (1� �)u (d��)], which represents the expected utility of the
state-� young agents stemming from their own consumption, and we express V� and V� as,

respectively:
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V� = u (c
�) + �u (d�) ; (52)

V� = U� + v (n) + �EV: (53)

Using (53), EV is represented as:

EV =
1

1� �� [(1� �)V� + � (U� + v (n))] : (54)

5.1 E¤ect of the Intensive Margin of Fertility on Economic Welfare

We consider the e¤ect of a permanent increase in n on EV . We obtain the following equation

from (54):

dEV

dn
=

1

1� ��

�
(1� �) dV�

dn
+ �

�
dU�
dn

+ v0 (n)

��
: (55)

dV�
dn

and dU�
dn

represent the change in the utility stemming from consumption of state-� and

state-� agents, respectively, and we obtain the following property.

Lemma 2 dV�
dn
= dU�

dn
= � 1

n
1

1�� [(1 + �)�� (1� �) �] < 0 holds.

The proof of Lemma 2 is given in Appendix E. As we explained in Section 3, the interest rate

r exceeds the population growth rate n�. This lemma argues that the utility stemming from

consumption falls in the steady state when n increases. This results comes from a contraction

in the consumption possibility set because of dk
dn
< 0, and this result indicates that the present

model is consistent with the result obtained from the preceding literature. On the other hand,

because the number of children is incorporated into the utility function, a rise in n has a direct

positive impact on the utility. The term v0 (n) = � 1
1+n

> 0 represents this e¤ect. Applying

Lemma 2 to (55), we obtain:

dEV

dn
=

1

1� ��

�
� 1
n

1

1� � [(1 + �)�� (1� �) �] + ��
1

1 + n

�
: (56)

The �rst term in (56) represents the welfare loss stemming from a decline in consumption,

and the second term in (56) indicates the welfare gain stemming from having more children.

We con�rm that unless � is extremely high, the negative welfare e¤ect outweighs the positive

welfare e¤ect, and consequently, EV falls as n increases.
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5.2 E¤ect of the Extensive Margin of Fertility on Economic Welfare

We consider the e¤ect of a permanent increase in � on EV . From (54), we obtain:

dEV

d�
=

�

1� ��EV +
1

1� ��

�
U� + v (n)� V� + (1� �)

dV�
d�

+ �
dU�
d�

�
=

1

1� �� (V� � V�) +
1

1� ��

�
(1� �) dV�

d�
+ �

dU�
d�

�
: (57)

Here, noting that:

dV�
d�

= u0 (c�)
dc�

d�
+ �u0 (d�)

dd�

d�
; (58)

dU�
d�

= � (u (d��)� u (d��)) +
�
u0 (c�)

dc�

d�
+ �

�
�u0 (d��)

dd��

d�
+ (1� �)u0 (d��) dd

��

d�

��
;

(59)

and substituting (58) and (59) into the above equation, we obtain the following:

dEV

d�
=

1

1� �� fV� � V� + �� (u (d
��)� u (d��))g

+
1

1� ��

�
(1� �)

�
u0 (c�)

dc�

d�
+ �u0 (d�)

dd�

d�

�
+�

�
u0 (c�)

dc�

d�
+ �

�
�u0 (d��)

dd��

d�
+ (1� �)u0 (d��) dd

��

d�

���
: (60)

A change in � a¤ects EV through the following channels. First, an increase in � raises (respec-

tively, reduces) the probability of becoming state-� (respectively, state-�) young agents. V��V�
captures this e¤ect. In addition, as is captured by (59), if they become state-� young agents

(with probability �), they are more (respectively, less) likely to become state-�� old agents and

consume d�� (respectively, state-�� old agents and consume d��) because their children are also

more likely to become state-� young agents in the next period. The term �� (u (d��)� u (d��))
represents this e¤ect. In the steady state, each future state-� young agent will face the same

situation, and the welfare of future generations is discounted at the rate of ��. Consequently,

the e¤ect of a change of agents�states on ex ante welfare is obtained as:

1X
t=0

(��)t fV� � V� + �� (u (d��)� u (d��))g ;
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and this is equivalent to the �rst term of (60). We call this the �state e¤ect.�

Moreover, an increase in � changes the consumption pro�les of agents in each state. The

terms for (60) in the second curly brackets represent this e¤ect. We call this the �allocation

e¤ect.�

State E¤ect. The state e¤ect is positive if and only if V� � V� + �� (u (d��)� u (d��)) > 0:
Concerning this, we obtain V� � V� > 0 holds. Roughly speaking, the state-� agent�s optimal
decision is attainable for a state-� agent (that is, choosing c� = c� and d�� = d�� = d� is

feasible for the state-� agent) because x� � x�, and furthermore, the state-� agent derives

positive utility from their children. Thus, the state-� agent�s utility V� is greater than V�. (A

rigorous proof is given in Appendix F). On the other hand, u (d��)� u (d��) < 0 holds because
d�� < d��.20 This negative e¤ect comes from a state-� agent�s consumption being lower as

� increases. Thus, in general, the sign of the state e¤ect is ambiguous. In this regard, the

following property holds:

Lemma 3 There exists � 2 (0; 1) such that the state e¤ect is positive for any � � �.

Proof. From (53) and (54), we obtain:

V� � V� =
1

1� �� (U� + v (n)� (1� �)V�) : (61)

Suppose that � = 1. In this case, the following equalities hold. (The �rst equality comes from

(61).)

V� � V� + �� (u (d��)� u (d��))

=
1

1� � (U� + v (n)) + �� (u (d
��)� u (d��))

=
1

1� � fu (c
�) + � [�u (d��) + (1� �)u (d��)] + � (1� �) � (u (d��)� u (d��)) + v (n)g

=
1

1� �
�
u (c�) + �

�
� (2� �)u (d��) + (1� �)2 u (d��)

�
+ v (n)

	
> 0:

20From (33) and (34), d�� = �d�� holds in the interior solution case. Recall that �� < 1 holds in equilibrium.

24



Because c�, d��, d��, c�, and d� are continuous with respect to �, the lemma holds true.

This lemma indicates that the state e¤ect becomes positive when � is large. When the

parents place more weight on the welfare of their children, agents derive higher utility from

their children, and thus the positive e¤ect outweighs the negative consumption e¤ect.

Allocation E¤ect. Let us focus on the second term in (60):

(1� �)
�
u0 (c�)

dc�

d�
+ �u0 (d�)

dd�

d�

�
+�

�
u0 (c�)

dc�

d�
+ �

�
�u0 (d��)

dd��

d�
+ (1� �)u0 (d��) dd

��

d�

��
:

(62)

The �rst and second terms represent the allocation e¤ects relating to state-� and state-� agents,

respectively. We de�ne ��c and �
�
c as �

�
c � u0 (c�) dc

�

d�
and ��c � u0 (c�) dc

�

d�
, respectively. These

are then expressed as:

��c � u0 (c�)
dc�

d�
=
1

c�
dc�

d�
=

1

1 + q

dq

d�
+

�

1� �
1

�

d�

d�
; (63)

��c � u0 (c�)
dc�

d�
=
1

c�
dc�

d�
= ��c +

1

�

d�

d�
: (64)

The last equality of (63) comes from (27) and 1
w
dw
d�
= �

1��
1
�
d�
d�
. Moreover, in the interior solution

case, from (29), (33), and (34), we obtain the following equations, respectively:

u0 (d�)
dd�

d�
= ��c +

1

r

dr

d�
;

u0 (d��)
dd��

d�
= ��c ;

u0 (d��)
dd��

d�
= ��c :

Using these results, (62) is rewritten as:

(1� �)
�
(1 + �)��c + �

1

r

dr

d�

�
+ � [(1 + �)��c + � (1� �) (��c � ��c )] : (65)

We interpret the allocation e¤ect by using (65). Note that the lifetime income of state-�

and state-� agents, evaluated in their young periods, are w + x� and w + x�, respectively,

and recall that the marginal utility of income of state-� and state-� agents is expressed as
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V 0� (x
�) = u0 (c�) and V 0� (x

�) = u0 (c�), respectively. The e¤ects of a change in the lifetime

income on welfare (we are permitted to refer to them as income e¤ects), V 0� (x
�) d

d�
(w + x�)

and V 0� (x
�) d

d�
(w + x�), are represented as:

(1 + �)��c = V
0
� (x

�)
d

d�
(w + x�) ; (66)

(1 + �)��c = V
0
� (x

�)
d

d�
(w + x�)�

�
1 + � +

�

�

�
V 0� (x

�)

�
dc�

d�
� dc

�

d�

�
: (67)

We provide the process for the derivation of (66) and (67) in Appendix G.

Using (66), we observe that the allocation e¤ect concerning a state-� young agent is com-

posed of the income e¤ect and the e¤ect of a change in the interest rate. That is:

V 0� (x
�)
d

d�
(w + x�) + �

1

r

dr

d�
:

On the other hand, the allocation e¤ect of state-� young agents is expressed as:

V 0� (x
�)
d

d�
(w + x�)�

�
1 + � +

�

�

�
V 0� (x

�)

�
dc�

d�
� dc

�

d�

�
+ � (1� �) (��c � ��c ) : (68)

The �rst term represents the income e¤ect.

Remember that the market is incomplete because there is no insurance available to hedge a

household�s risk about having children. As discussed in Proposition 1, if such insurance existed

and the market was consequently complete, c� = c� (or equivalently, �� = 1) would hold. Thus,

in a complete market economy, the second and third terms of (68) would vanish.

The second and third terms are interpreted as that they represent the welfare loss resulting

from the incompleteness of the market. As shown in the proof of Proposition 3, d�
�

d�
< 0 holds,

which means that the consumption gap between c� and c� widens as � increases. We obtain
dc�

d�
� dc�

d�
> 0 as long as the capital income share, �, takes an economically reasonable value.21

21Through a numerical calculation, we observe that when � � 1 and � � 1, dc�d� �
dc�

d� > 0 holds as long as

� is less than, roughly speaking, 0.9. By contrast, we also observe that when � exceeds 0.9, dc
�

d� �
dc�

d� > 0

does not hold in a narrow range of �. (For example, when � = � = 1 and � = 0:95, it does not hold when

(�+ �) 0:03 < � < 0:15.) As � approaches to unity, as seen in (1), w converges to zero. In the interior solution
case, x� > 0 holds, and as shown in (24), q diverges to in�nity. We guess that this might cause the irregular

result. Besides, the situation where � > 0:9 is not an economically important case, so we focus only on that

where dc�

d� �
dc�

d� > 0 holds.
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Considering that u0 (c�) < u0 (c�) (or equivalently, �� < 1) holds in equilibrium, such a change

has a negative impact on welfare.22

Let us examine the sign of the allocation e¤ect (65). To do this, let us rewrite (65) using

(63), (64), and 1
r
dr
d�
= �1

�
d�
d�
as:

(1 + �)
1

1 + q

dq

d�
+ (1 + ��)

�

�

d�

d�
+

�
(1 + �)

�

1� � � � (1� �)
�
1

�

d�

d�
: (69)

Recall that we summarized the steady state of the dynamical system as three equations,

(32), (38), and (40). Using these equations, we can decompose (69) into two terms: one is a

term whose sign is the same as that of d�
d�
(or equivalently, dk

d�
), and the other is a term not

linked by d�
d�
:

T1
d�

d�
+ T2

1

�2
; (70)

where:

T1 =

�
1 + �

1� � � � (1� �)�
� + � + ��

�
(1� �) (1 + q)

�
1

�
� � + � + ��

� + �
� (1 + ��)

�

�
> 0;

T2 = (1� �) �
�
(1 + q)

1

�
� �

� + �
(1 + ��)

�

�

�
� 0:

22When dc�

d� �
dc�

d� > 0, the second term is negative. Alternatively, the third term is positive when
d�
d� < 0 (note

that we obtain 1
�
d�
d� = �

�
c���c from the de�nition of � � c�

c� ). However, the third term is always dominated by the

second term. To show this, we rewrite the third term as � (1� �) (��c � ��c ) = � (1� �)V 0� (x�)
�
�dc

�

d� �
dc�

d�

�
.

The third term is dominated by the second term if and only if:

(1 + � +
�

�
� �(1� �))dc

�

d�
< (1 + � +

�

�
� ��(1� �))dc

�

d�
:

From c� � �c�, we obtain dc�

d� =
d�
d� c

� + dc�

d� �. Substituting this into the left-hand side of the necessary and

su¢ cient condition, we obtain:

(1 + �� +
�

�
)
1

1� �
d�

d�
< (1 + � +

�

�
)
1

c�
dc�

d�
:

From c� � c� � (1� �) c�, we obtain:

1

c� � c�

�
dc�

d�
� dc

�

d�

�
= � 1

1� �
d�

d�
+
1

c�
dc�

d�
> 0:

Considering this inequality, we con�rm that the necessary and su¢ cient condition holds true.
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We provide the process of the calculation to derive (70) and the proof for the signs of T1
and T2 in Appendix H. To understand (70), we focus on (49):

d��

d�
= ��� + � + ��

� + �

d��

d�
� 1

�2
��

� + �
(1� �) :

The �rst term of (49) represents the e¤ect of a change in the factor prices w and r, which is

caused by a change in k, on c�=c�(� ��). In contrast, the second term of (49) represents that a
change in the ratio of the population size of state-� agents to state-� agents, 1��

�
, also a¤ects

c�=c� directly. (Note that d
d�

�
1��
�

�
= � 1

�2
.)

Note that the term T2
1
�2
in (70) is generated from the second term of (49). To see this,

consider a special case where � = 0, that is, the situation where agents derive no utility from

consumption in the old period, and thus only state-� agents save to leave bequests for their

children. In this case, T2 = 0 holds. Furthermore, because q = �
1�� holds, as con�rmed by (38)

and (40), (70) is expressed as:

�

�
1

1� �
1

�
� �
�

�
d�

d�
:

Thus, the sign of the allocation e¤ect is the same as the sign of d�
d�
when � = 0.23

Alternatively, when � 6= 0, not only state-�, but also state-� young agents save. In this

case, the ratio of the population size of state-� agents to that of state-� agents, 1��
�
, also a¤ects

the level of k� through the change in c�=c�. The term T2
1
�2
represents the e¤ect of a change in

the population ratio on the ex ante welfare.

In sum, the allocation e¤ect is as follows:

Lemma 4 (i) When � > 0, the allocation e¤ect is (a) positive when dk�

d�
� 0, and (b) ambiguous

when dk�

d�
< 0.

(ii) When � = 0, the allocation e¤ect is positive if and only if dk
�

d�
> 0:

Finally, we summarize the impact of a change in � on EV . The state e¤ect is not always

positive, and neither is the allocation e¤ect. Accordingly, in general, the relationship between

the extensive margin of fertility and economic welfare is not clear. Nevertheless, Lemma 3

23 1
1��

1
� >

�
� is con�rmed as follows. Because � = 1 � �� holds from (41), the inequality is expressed as

1� �� > (1� �) ��. Subtracting (1� ��)� from both sides, we obtain (1� ��) (1� �) + � > ��. Taking (32)
into account, this is equivalent to �

� > ��. Because �� < 1,
1

1��
1
� >

�
� holds true.
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indicates that the state e¤ect is positive when � is high. In addition, Lemma 4 argues that

the allocation e¤ect is also positive when dk�

d�
� 0 holds. In this regard, Section 4 elucidates

that dk�

d�
� 0 holds when � is high. Consequently, when both � and � are high, a rise in the

population growth rate brought about by a rise in the extensive margin of fertility raises ex

ante economic welfare.

6 Optimal Income Transfer Policy Rule

As discussed in Section 3, u0 (c�) > u0 (c�) holds in the steady state because of market incom-

pleteness, and we have shown in Section 5, this accounts for the welfare losses. One could

expect that we could mitigate or even eliminate this welfare loss by transferring some income

from state-� to state-� young agents. (For example, we can regard a child allowance policy as

an example of this type of income transfer.) We now explore the optimal income transfer rule

under which the welfare loss is canceled out.

Suppose that the government collects �wt units of income from each young agent as a labor

income tax (� represents the tax rate), and that the tax revenue is transferred to the state-�

young agents in a lump-sum fashion. Assuming a balanced budget, the net income transfer

which each state-� young agent receives is 1��
�
�wt. Thus, the budget constraints for state-�

and state-� agents in the young period are modi�ed as follows, respectively:

c� + s� = (1� �)w;

c� + s� =

�
1 +

1� �
�

�

�
w:

Accordingly, the steady-state allocation is derived as follows:
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c� =
1� � + q
1 + �

w;

s� =
� (1� �)� q

1 + �
w;

d� = �
1� � + q
1 + �

rw;

c� = �
1� � + q
1 + �

w;

d�� =
�

�
c� =

1

�

�

1 + �
(1� � + q)w;

d�� =
�

�
c� = �

1

�

�

1 + �
(1� � + q)w;

s� =

�
1 +

1� �
�

�

�
w � c� =

�
1 +

1� �
�

� � �1� � + q
1 + �

�
w;

x� = x� + (d�� � d��) =
�
q +

1

�

�

1 + �
(1� �) (1� � + q)

�
:

Using these results and a similar procedure to derive (38) and (40), and noting that the market-

equilibrium condition (17) remains the same, we obtain the following equations:

1� � + q
1 + �

�
� + �

�
(1� �) + �

�

�
+
�

�
=

�

1� ��; (71)

1� � + q
1 + �

�
� + �

�
(1� �) + �

�
+
�

�
= �

�
1

�

�

1 + �
(1� � + q) + q

�
: (72)

The Euler equation (32) remains valid because this policy does not distort prices, that is:

� = � [� + (1� �)�] :

The steady-state solution is calculated from (32), (71), and (72).

Recall that if a market is complete, u0 (c�) = u0 (c�), or equivalently, � = 1 holds. From (32),

we con�rm that � = � also holds under a complete market.24 That is, the e¢ cient allocation is

characterized by � = 1 and � = �.

24That is, the capital�labor ratio k = (��A)
1

1�� is independent of �.
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We examine whether we can achieve the e¢ cient allocation in the steady-state equilibrium

with an incomplete market when � is appropriately chosen. Substituting � = 1 and � = � into

(71) and (72), we obtain the following equations, respectively:

�q + � + � =
�

1� � (1 + �) ��; (73)

� = ��q: (74)

Of course, (32) is consistent with � = 1 and � = �. Let � � denote the level of � which satis�es

(73) and (74). We obtain � �, the optimal income transfer rule, in the following simple form:

� � =
��

� + ��

�
�

1� � (1 + �) �� � �
�
=

���

� + ��

� �
�+

� 1
�
: (75)

The last equality comes from the de�nition of �+ � 1��
�

�
1+�

1
�
. From (75), we con�rm � � > 0

because �+ < � holds in the interior solution case. Fig. 4 illustrates (73) and (74) on a

q � � plane, drawn as downward- and upward-sloping lines, respectively, and the intersection
indicates � �. Using this result, we can obtain the properties of � �. First, consider the case

where � rises. The graph of (73) in Fig. 4 shifts upward, and the slope of (74) becomes steeper,

and consequently, � � rises, as depicted in Fig. 5.25 As observed in the previous section, the gap

in the marginal utility of income between state-� and state-� agents widens (put di¤erently, �

becomes smaller) as � increases. This is the intuitive reason why a higher level of � is needed

to attain � = 1.

From (73) and (74), we immediately con�rm that the impact of � on � � is qualitatively the

same as the impact of � on � �. That is, � � becomes higher as � rises. On the other hand, when

� increases, we con�rm from (75) that � falls.26

25From (73) and (74), q is calculated as:

q =
�

1� � (1 + �)
��

� + ��
� �

� + ��
:

Although the e¤ect of a rise in � on q appears ambiguous in Fig. 5, we easily con�rm that q necessarily

increases when � increases.
26From (75), the following is obtained:

@��

@�
=

��

(� + ��)
2

�
�

1� � (�� � 1)� 1
�
:
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7 Concluding Remarks

This paper investigated the impact of the intensive and extensive margins of fertility on long-

term capital accumulation and economic welfare, for which we argued that disentangling the

intensive and extensive margins of fertility is important. We showed that when the low fertility

rate is brought about by a fall in the number of the children each parent has (the intensive

margin), a negative relationship between the population growth rate and the capital�labor ratio

is obtained. This result is consistent with existing studies in this area. However, when the low

fertility rate is brought about by a rise in the childlessness rate (extensive margin), we showed

the relationship between the population growth rate and the capital�labor ratio exhibits a U-

shaped relationship. This result largely di¤ers from the e¤ect of the intensive margin of fertility

on capital accumulation.

In terms of the welfare analysis, we showed that a rise in the intensive margin of fertility

reduces ex ante welfare (unless agents have an extremely high preference toward the number

of children). On the other hand, we also showed that the relationship between the extensive

margin of fertility and ex ante economic welfare is not determined a priori, but showed that

they exhibit a positive relationship when agents�preferences toward their children are not small

and the childlessness rate is not very high. In addition, market incompleteness is an important

characteristic of our present model, and we showed that this incompleteness accounts for the

welfare loss. In this regard, we presented the optimal income transfer rule under which the

welfare loss may be eliminated.

This paper attempted to show how easily the impact of a declining birthrate on the macro-

economy can be changed by simply modeling the population dynamics. For this reason, we

omitted many interesting features. For example, it would be very interesting to reconsider this

issue considering the probability of having children to be endogenous.27 Delayed birth timing is

also an important factor in explaining childlessness.28 We defer these interesting developments

Because �� < 1, we con�rm that @�
�

@� < 0 holds.
27It is often pointed out that childlessness appears to be related to educational attainment (for example,

OECD Family Database (2010)). However, there is some controversy. Monstad et al. (2008), for example,

argued that although the data show a statistically signi�cant correlation, such that women with more education

are more commonly childless, they do not �nd evidence of a causal relationship between being an educated

woman and childlessness.
28For models of delayed birth timing, see d�Albis et al. (2010) and Momota and Horii (2013).
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to future research.
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Appendix A

We �rst provide the process for the derivation of (7), and then describe the derivation of (12)�

(15).

Derivation of (7) The optimal conditions for a state-� young agent are expressed as (4)�(6);

that is:

c�t + s
�
t = wt;

d�t+1 = rt+1 (s
�
t + x

�
t ) ;

u0 (c�t ) = �rt+1u
0 �d�t+1� :

From these equations, c�t ; s
�
t ; and d

�
t+1 are expressed as the function of x

�
t , wt, and rt+1; for

example, c�t = c� (x�t ; wt; rt+1). Households consider wt and rt+1 as given. Because we focus

only on the household�s optimal problem in this appendix, let us express the optimal solution

only as a function of x�t ; that is, c
�
t = c

� (x�t ), s
�
t = s

� (x�t ), and d
�
t+1 = d

� (x�t ). Using these,

V �t is expressed as:

V �t = V� (x
�
t ) � u (c� (x�t )) + �u (d� (x�t )) :

Using this, we obtain the following:

V 0� (x
�
t ) = u

0 (c� (x�t ))
dc�t
dx�t

+ �u0 (d� (x�t ))
dd�t+1
dx�t

= u0 (c� (x�t ))

�
dc�t
dx�t

+
1

rt+1

dd�t+1
dx�t

�
: (76)

(Strictly speaking, dc
�
t

dx�t
should be written as dc�t

dx�t

���
dwt=drt+1=0

, and this is applied to others simi-

larly.) Under the condition of dwt = 0 and drt+1 = 0, we obtain the following equations from

(4) and (5):

dc�t
dx�t

+
ds�t
dx�t

= 0;

dd�t+1
dx�t

= rt+1

�
ds�t
dx�t

+ 1

�
:
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By applying these equations to (76), we obtain (7):

V 0� (x
�
t ) = u

0 (c�t ) :

Derivation of (12)�(15) A state-� young agent chooses c�t ; s
�
t ; d

��
t+1; d

��
t+1; x

�
t+1, and x

�
t+1 to

maximize:

u (c�t ) + v (n) + �
�
(1� �)u

�
d��t+1

�
+ �u

�
d��t+1

��
+ �

�
(1� �)V�

�
x�t+1

�
+ �V�

�
x�t+1

��
;

subject to the constraints (8)�(11). The �rst-order conditions are derived as:

u0 (c�t ) = �rt+1
�
(1� �)u0

�
d��t+1

�
+ �u0

�
d��t+1

��
; (77)

�nu0
�
d��t+1

�
� �V 0�

�
x�t+1

�
; (78)

�nu0
�
d��t+1

�
� �V 0�

�
x�t+1

�
: (79)

If x�t+1 > 0 and x�t+1 > 0 are chosen, (78) and (79) hold as equalities, respectively. Now we

show that (12)�(15) can be obtained from (77)�(79). First of all, (77) is the same as (12), and

using (7), we obtain (13) from (78).

Let us show that V 0� (x
�
t ) = u0 (c�t ) holds. By using (77)�(79) and the budget constraints

(8)�(10), the optimal solution is expressed as a function of x�t , wt, and rt+1, for example,

c�t = c
� (x�t ; wt; rt+1).

Households consider wt and rt+1 as given. As has been explained earlier, we express the

optimal solution only as a function of x�t ; that is, c
�
t = c

� (x�t ), s
�
t = s

� (x�t ), d
��
t+1 = d

�� (x�t ),

d��t+1 = d
�� (x�t ), x

�
t+1 = x

� (x�t ), and x
�
t+1 = x

� (x�t ). Using these, V
�
t is expressed as:

V �t = V� (x
�
t ) � u (c� (x�t )) + v (n) + � [(1� �)u (d�� (x�t )) + �u (d�� (x�t ))]

+ � [(1� �)V� (x� (x�t )) + �V� (x� (x�t ))] :

Using this, we obtain the following:

V 0� (x
�
t ) = u

0 (c�t )
dc�t
dx�t

+ �

�
(1� �)u0

�
d��t+1

� dd��t+1
dx�t

+ �u0
�
d��t+1

� dd��t+1
dx�t

�
+ �

�
(1� �)V 0�

�
x�t+1

� dx�t+1
dx�t

+ �V 0�
�
x�t+1

� dx�t+1
dx�t

�
: (80)
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(Strictly speaking, dc
�
t

dx�t
should be written as dc�t

dx�t

���
dwt=drt+1=0

, and this is applied to others simi-

larly.) Under the condition of dwt = 0 and drt+1 = 0, we obtain the following equations from

(8)�(10):

dc�t
dx�t

+
ds�t
dx�t

= 0;

dd��t+1
dx�t

+ n
dx�t+1
dx�t

= rt+1

�
ds�t
dx�t

+ 1

�
;

dd��t+1
dx�t

+ n
dx�t+1
dx�t

= rt+1

�
ds�t
dx�t

+ 1

�
:

Applying these equations to (80) yields:

V 0� (x
�
t ) =

ds�t
dx�t

�
�u0 (c�t ) + �rt+1

�
(1� �)u0

�
d��t+1

�
+ �u0

�
d��t+1

���
+�rt+1

�
(1� �)u0

�
d��t+1

�
+ �u0

�
d��t+1

��
+ (1� �)

�
�V 0�

�
x�t+1

�
� �nu0

�
d��t+1

�� dx�t+1
dx�t

+ �
�
�V 0�

�
x�t+1

�
� �nu0

�
d��t+1

�� dx�t+1
dx�t

:

From (78) and (79), we observe that �V 0j
�
xjt+1

�
� �nu0

�
d�jt+1

�
= 0 holds (j = �, �) when

xjt+1 > 0, and that when �V
0
j

�
xjt+1

�
� �nu0

�
d�jt+1

�
> 0, xjt+1 = 0 (that is,

dxjt+1
dx�t

= 0) holds. Put

di¤erently,
�
�V 0�

�
xjt+1

�
� �nu0

�
d�jt+1

�� dxjt+1
dx�t

= 0 holds. Furthermore, by using (77), we obtain

(15):

V 0� (x
�
t ) = �rt+1

�
(1� �)u0

�
d��t+1

�
+ �u0

�
d��t+1

��
= u0 (c�t ) :

Finally, using this and (79), we obtain (14).

Appendix B

In proving Lemma 1, we show that the following two cases never take place: (a) x� > 0 and

x� = 0, and (b) x� > 0 and x� = 0.

Suppose that case (a) occurs. In this case, (13) and (14) hold as an inequality and an

equality, respectively. Thus, noting that � � c�=c�, the following inequality holds:

�d�� < d��: (81)

36



At the same time, we obtain the following equation from (9) and (10):

d�� � d�� = n (x� � x�) > 0; (82)

where the last inequality holds by the de�nition of case (a). Note that the following condition

is necessary in order for (81) to be consistent with (82):

� < 1: (83)

When q = 0 (that is, x� = 0), we obtain from (8) and (9), and (30):

d�� = r (s� + x�) = r

�
w + x� � w

1 + �
�

�
> rw

�
1� 1

1 + �
�

�
: (84)

Note that (12) is expressed as:

1 = �r

�
(1� �) c

�

d��
+ �

c�

d��

�
: (85)

Taking into account that (14) holds as an equality, and applying (84) to the above equation,

we obtain the following inequality:

1 < �r

24(1� �) 1
1+�
�w�

1� 1
1+�
�
�
rw

+ �
�

�n

35 ;
or equivalently:

1 < (1� �)
�
1+�
��

1� 1
1+�
�
� + ��

�
: (86)

Note that �
1+�
�=
�
1� 1

1+�
�
�
< 1 holds when � < 1, so that the following inequality is necessary

to satisfy (86):

� < �: (87)

On the other hand, considering (13) holds as an inequality, and applying (84) and (27) to

(13), we obtain:
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r

�
w + x� � 1

1 + �
�w

�
� �n

�

1

1 + �
w;

or equivalently:

x� <

�
�

1 + �
+
�

�

�

1 + �
� 1
�
w � 0: (88)

The last inequality comes by using (83) and (87). Observe that (88) contradicts the assumption

x� > 0. Therefore, case (a) never takes place.

We can show that case (b) never occurs using a similar argument. In contrast to case (a),

(13) and (14) hold as an equality and an inequality, respectively. In this case, the following

inequality holds:

�d�� > d��: (89)

Here, (82) is modi�ed as:

d�� � d�� = n (x� � x�) < 0: (90)

Thus, the following condition must hold:

� > 1: (91)

When x� = 0, we obtain the following equation by using (8) and (10):

d�� = r (w � c�) = rw
�
1� 1 + q

1 + �
�

�
; (92)

where the last equality comes from (30). Using (13) and (92), (85) is rewritten as:

1 = �r

24(1� �) �
�n
�+ �

1+q
1+�
�w�

1� 1+q
1+�
�
�
rw

35 ;
or equivalently:

1 = (1� �) �
�
�+ �

� 1+q
1+�
�

1� 1+q
1+�
�
: (93)
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Because � 1+q
1+�
� > 1 � 1+q

1+�
� holds when q > 0 and � > 1, the following condition is necessary

to satisfy (93):

�� < �: (94)

On the other hand, from (13) and (90), we obtain:

c� =
�

�n
d�� =

�

�n
(d�� � nx�) :

Applying (27) and (92) to the above equation, we derive the following equation:

�

1 + �
(1 + q) + �q =

�

�

�
1� 1 + q

1 + �
�

�
<
1

�

�
1� 1 + q

1 + �
�

�
;

where the last inequality comes from (94). We obtain the following result from the above

inequality:

(1 + �) q <
1

�
� 1 < 0; (95)

where the last inequality comes from (91). Observe that (95) contradicts the assumption x� > 0

(that is, q > 0). Therefore, case (b) never takes place.

Appendix C

We prove Proposition 2. The proof is quite easy in the corner solution case (x� = x� = 0).

First, q = 0 and � = 1 immediately hold from x� = 0 and (44), respectively. Second, from (45)

and (17), we obtain:

n�kt+1 =
�

1 + �
wt:

Taking (1) into account, we con�rm that the capital stock kt converges to its steady state

monotonically.

Next, we examine the interior solution case (x� > x� > 0). First, c�t , s
�
t , c

�
t , s

�
t , d

��
t , d

��
t , x

�
t ,

s�t + x
�
t , and s

�
t + x

�
t are obtained only by replacing q, �, �, and w in (27)�(31) and (33)�(37)

with qt, �t, �t, and wt, respectively. From the Euler equation (16), the following is derived:
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1

�t
=
�

n
rt+1

(1 + qt)wt
(1 + qt+1)wt+1

�
(1� �) + � 1

�t+1

�
:

Observe that this coincides with (32) in the steady state. Note that wt+1
rt+1

= 1��
�
kt+1 holds, and

we rewrite the above equation as:

1

�t
nkt+1 = �

�

1� �
1 + qt
1 + qt+1

�
1� � + � 1

�t+1

�
wt: (96)

From the market-equilibrium condition (17), we obtain the following, which corresponds to

(38):

1 + qt
1 + �

�
� + �

�
(1� �t) +

�

�

�
wt = nkt+1: (97)

Using (9) and a similar argument to derive (39), we obtain:

s�t + x
�
t =

1

rt+1

�
d��t+1 + nx

�
t+1

�
= n

wt+1
rt+1

�
1

�

�

1 + �
(1 + qt+1) + qt+1

�
:

Using this, we obtain the following equation, which corresponds to (40):

1� �
�

nkt+1

�
1

�

�

1 + �
(1 + qt+1) + qt+1

�
=
1 + qt
1 + �

�
� + �

�
(1� �t) + �

�
wt: (98)

Thus, the transitional dynamics are described by (96), (97), and (98): the di¤erence system

with regard to qt, �t, and kt.

Dividing both sides of (97) by (98) and solving it for qt+1, we obtain:

qt+1 =
1

� + � + ��

�
�
� (1 + �) �

1� �
(� + � + ��)� (� + �)�t
�� + � (� + �) (1� �t)

� �
�
: (99)

Dividing both sides of (97) by (96), we derive the following equation:

1

�t

1

1 + �

�
� + �

�
(1� �t) +

�

�

�
= �

�

1� �
1

1 + qt+1

�
1� � + � 1

�t+1

�
:

Substituting (99) into the above equation, we obtain the �rst-order di¤erence equation with

respect to �t:

�t+1 =
�2�� (� + � + ��)�t

f� (� + � + ���) + (1� �) ��g � � f(� + �) (1 + (1� �)��) + (1� �)���2g�t
;
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or equivalently:

1

�t+1
=
� (� + � + ���) + (1� �) ��

�2�� (� + � + ��)

1

�t
� (� + �) (1 + (1� �)��) + (1� �)���

2

��� (� + � + ��)
: (100)

Fig. 6 illustrates (100). The slope is greater than unity given the assumption �� < 1, so

that there exists a unique steady state, �t = �t+1 � ��. We con�rm that �� < 1 is guaranteed

because � > �+ � 1��
�

�
1+�

1
�
holds in the interior solution case. Note that �t is a control variable

in period t. In this regard, the following result holds:

Lemma 5 �t = �� is chosen for any t.

Proof. Suppose that �s > �� is chosen in period s. In this case, �t > 1 holds in a �nite period

t. However, the optimal condition for agents is not consistent with �t > 1.

Next, suppose that �s < �� is chosen in period s. In this case, limt!1 �t = 0 holds. We will

show that this situation violates the transversality conditions. As described in footnote 10, the

transversality conditions are represented as:

lim
t!1

(��)t
x�t+1
d��t+1

= 0; (101)

lim
t!1

(��)t
x�t+1
d��t+1

= 0: (102)

In the interior solution case, (13) and (14) hold as equalities, so that the following equation is

derived:

d��t+1 = �t+1d
��
t+1:

Using (9), (10), and the above equation, we obtain:

d��t+1

�
1 + n

x�t+1
d��t+1

�
= d��t+1

�
1 + n

x�t+1
d��t+1

�
= �t+1d

��
t+1

�
1 + n

x�t+1
d��t+1

�
;

and thus:

x�t+1
d��t+1

=
1

n

�
1

�t+1

�
1 + n

x�t+1
d��t+1

�
� 1
�
:

Using this equation, (102) is rewritten as:
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lim
t!1

(��)t
1

n

�
1

�t+1

�
1 + n

x�t+1
d��t+1

�
� 1
�
= 0:

Taking limt!1 (��)
t = 0 into account, the following equation must hold to satisfy the above

equation:

lim
t!1

(��)t
1

�t+1

�
1 + n

x�t+1
d��t+1

�
= 0: (103)

Performing a simple calculation, we con�rm that the coe¢ cient of 1
�t+1

in (100) exceeds 1
��
;

that is:

� (� + � + ���) + (1� �) ��
�2�� (� + � + ��)

>
1

��
:

The intercept of (100) is negative, and thus, we �nd that the growth rate of 1
�t+1

is larger

than 1
��
, which means that (103) is violated. Therefore, only �t = �� is consistent with the

equilibrium condition.

Taking Lemma 5 into account, (99) is represented as:

qt+1 = q
� � 1

� + � + ��

�
�
� (1 + �) �

1� �
(� + � + ��)� (� + �)��
�� + � (� + �) (1� ��) � �

�
:

That is, qt does not have any transition process either. We obtain the dynamics of kt from (96):

kt+1 =
�

n

�

1� � ((1� �)�
� + �)wt =

A��

n
((1� �)�� + �) k�t :

Therefore, kt converges from the initial value k0 to the steady-state value.

Appendix D

In this appendix, instead of (3), we use an alternative functional form to express a state-ij

agent�s utility function, which is based on Becker and Barro (1988) and Barro and Becker

(1989):

u
�
cit
�
+ �u

�
dijt+1

�
+ b� �ni�� V jt+1;
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where b� > 0 and � 2 (0; 1). Let us specify u (c) = log c. We show that the main result, the

e¤ect of both margins of fertility on the long-run capital stock, dk
�

dn
and dk�

d�
, is unchanged from

a qualitative viewpoint, and that Proposition 3 remains valid. That is, (i) there is a U-shaped

relationship between k� and �, and (ii) k� decreases as n increases.

State-� agents do not have children (n� = 0), so that their utility is expressed as u (c�t ) +

�u
�
d�t+1

�
, which is the same as the utility function appearing in Section 2. Moreover, their

budget constraints are represented as (4) and (5). Thus, the optimal behavior of the state-�

agents does not change, and is represented as (6).

The utility functions of state-�� agents and state-�� agents are expressed as, respectively:

u (c�t ) + �u
�
d��t+1

�
+ b�n�V �t+1;

u (c�t ) + �u
�
d��t+1

�
+ b�n�V �t+1:

Let us de�ne � as � � b�n�, and rewrite the above functions as follows:
u (c�t ) + �u

�
d��t+1

�
+ �V �t+1;

u (c�t ) + �u
�
d��t+1

�
+ �V �t+1:

Taking into account that n is treated as exogenous, � is considered an exogenous variable. The

optimal problem of state-� agents is expressed as:

V �t = max
�
u (c�t ) + �

�
(1� �)u

�
d��t+1

�
+ �u

�
d��t+1

��
+ �

�
(1� �)V �t+1 + �V �t+1

�	
;

subject to (8)�(11). Thus, the optimal behavior of the state-� agents is represented by the

same equations as (12)�(14).

The �rm�s optimal behavior, (1) and (2), and the market equilibrium condition, (17), are

una¤ected by the functional form of the utility function. We assume � = 0 as we do so in the

main text. Consequently, as we obtained in Section 3, we obtain (32) and (41), that is:

�� = � (� + (1� �)��) ;

�� =

�
1 +

��

� + �

�
(1� ���) + 1� �

�

��

1 + �
(1� �) :
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The steady state of the interior solution case is derived from these equations.

Based on (32) and (41), the e¤ect of both margins of fertility on the long-run capital stock,
dk�

dn
and dk�

d�
, is examined. Thus, it is immediately con�rmed that the qualitative property of

dk�

d�
is the same as Proposition 3. That is, there is a U-shaped relationship between k� and �.

On the other hand, when we examine dk�

dn
, we should note that � � b�n�; that is, contrary

to Section 4, � varies as n changes. From (32) and (41), we obtain, respectively:

1

��
d��

dn
=
1

�

d�

dn
+

1� �
� + (1� �)��

d��

dn
;

d��

dn
= ��

�
1 +

��

� + �

�
d��

dn
+

�
�

� + �

�2 �
(1� ���) + 1� �

�
(1� �)

�
d��

dn
:

Eliminating d��

dn
from the above equations and rearranging, we obtain:

�
1 + �� (1� �)

�
1 +

��

� + �

��
1

��
d��

dn
=

(
1 +

1� �
��

�
��

� + �

�2 �
(1� ���) + 1� �

�
(1� �)

�)
1

�

d�

dn
:

(104)

By de�nition of � and �, 1
�
d�
dn
= 1

n
� 1

r
dr
dn
and d�

dn
= � �

n
hold, and using them, (104) is rewritten

as:�
1 + �� (1� �)

�
1 +

��

� + �

��
1

r�
dr�

dn

= (1� �) + (1� �)
"
��

�
1 +

��

� + �

�
� �

�
��

� + �

�2
1

��

�
(1� ���) + 1� �

�
(1� �)

�#
; (105)

where r� denotes the interest rate in the steady state. We examine the sign of the right-hand

side of (105). We obtain �� < 1 in the interior solution case, so that from (41), we obtain�
1 +

��

� + �

�
(1� ���) + 1� �

�

��

� + �
(1� �) < 1;

or equivalently, �
(1� ���) + 1� �

�
(1� �)

�
��

� + �
< ���:

Applying this to the bracket on the right-hand side of (105), we obtain:
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��

�
1 +

��

� + �

�
� �

�
��

� + �

�2
1

��

�
(1� ���) + 1� �

�
(1� �)

�
> �

�
�

�
1 +

��

� + �

�
� �

�
��

� + �

��
=

��

� + �
[(� + �) + � (� � �)]

=
��

� + �
[� (1 + �) + � (1� �)] > 0:

Thus, the sign of the right-hand side of (105) is positive. Hence, dr
�

dn
> 0 holds. Noting that

r = A�k��1, dk
�

dn
< 0 is con�rmed.

Appendix E

First, we examine dV�
dn
. Substituting (27) and (29) into the utility function of state-�, we obtain:

V� = (1 + �) logw + � log r +

�
� log � + (1 + �) log

1 + q�

1 + �

�
:

As we argued in the proof of Proposition 3 (i) that the graphs of (32) and (41) remain unchanged

when n rises, and thus that �� and �� remain unchanged. In this case, from (38), we obtain q�

is kept unchanged as well. That is, d�
�

dn
= d��

dn
= dq�

dn
= 0 holds. Taking this into account, we

obtain:
dV�
dn

=

�
(1 + �)

1

w

dw

dk
+ �

1

r

dr

dk

�
dk�

dn
:

Considering that k
w
dw
dk
= � and k

r
dr
dk
= � � 1 hold from w = A (1� �) k� and r = A�k��1, we

obtain:

dV�
dn

= [(1 + �)�� (1� �) �] 1
k�
dk�

dn
:

Furthermore, let us explore 1
k
dk
dn
in the steady state. Recalling that � � n

r
and r = A�k��1, we

obtain:

log � = log n+ (1� �) log k � logA�:

Di¤erentiating the above equation with respect to n, and noting d��

dn
= 0, we derive the following:

n

k�
dk�

dn
= � 1

1� �: (106)

Consequently, we obtain the following result:
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dV�
dn

= � 1
n

1

1� � [(1 + �)�� (1� �) �] : (107)

Here, note that (1 + �)� � (1� �) � > 0 holds on the assumption of �+ < 1. (Recall that

�+ � 1��
�

�
1+�

1
�
.) Thus, dV�

dn
< 0 holds.

Next, we consider dU�
dn
, where U� � log c� + � [� log d�� + (1� �) log d��]. In the interior

solution case, observe that the following equations hold from (25), (22), and (23), respectively:

c� = �c�;

d�� =
�n

�
c�;

d�� =
�n

�
�c�:

Substituting these into U� yields:

U� = (1 + �) log c
� + � log n+ (1 + ��) log �+ � log

�

�
:

Recalling d��

dn
= 0, we obtain:

dU�
dn

= (1 + �)
1

c�
dc�

dn
+ �

1

n
:

Here, we examine 1
c�
dc�

dn
in the steady state. From (27), we obtain:

log c� = log (1 + q) + logw � log (1 + �) :

Di¤erentiating the above equation with respect to n, and noting that dq�

dn
= 0 and k

w
dw
dk
= �

hold, we obtain:
1

c�
dc�

dn
=
1

w

dw

dn
=
1

w

dw

dk

dk

dn
=
�

k

dk

dn
:

Applying this to the above equation, we derive the following equation:

dU�
dn

=
1

n

�
(1 + �)�

n

k

dk

dn
+ �

�
:

Furthermore, applying (106) to the above equation, we obtain:

dU�
dn

= � 1
n

1

1� � [(1 + �)�� (1� �) �] : (108)

Comparing (107) with (108), we con�rm that dV�
dn
= dU�

dn
holds.
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Appendix F

Consider the behavior of agents (let us say generation j) in the steady state. The budget

constraint for a state-� agent is:

c�j + s
�
j = w;

d��j+1 + nx
�
j+1 = r

�
s�j + x

�
�
;

d��j+1 + nx
�
j+1 = r

�
s�j + x

�
�
:

Here, suppose that generation-j state-� agents choose the same steady- state consumption

pro�le as a state-� agent; that is, c�j = c� and d��j+1 = d��j+1 = d�. In this case, s�j = s�

holds. Note that such an allocation is feasible for the generation-j state-� agents because the

nonnegative constraint (11) is satis�ed; that is:

x�j+1 =
r

n
(s� + x� � d�) = r

n
(x� � x�) > 0;

x�j+1 =
r

n
(s� + x� � d�) = r

n
(x� � x�) > 0:

The utility of the generation-j state-� agents in this case, V �j , is expressed as following:

V �j = u (c
�) + �u (d�) + v (n) + �

�
�V�

�
x�j+1

�
+ (1� �)V�

�
x�j+1

��
> u (c�) + �u (d�) = V�:

The above inequality comes from the nonnegative utility of having children. When the state-�

agents choose their allocation optimally, their welfare, V� is no less than V �j ; that is, V� � V �j .
Combining this with the above inequality, we obtain V� > V�.

Appendix G

We provide the process of derivation of (66) and (67).
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Derivation of (66). Taking the logarithm of (27), and di¤erentiating with respect to �, we

obtain:

1

c�
dc�

d�
=

1

w + x�
d

d�
(w + x�) =

1

1 + �

1

c�
d

d�
(w + x�) :

We use (27) to derive the last equality. Noting that the left-hand side of the above equation is

��c by de�nition, and that V
0
� (x

�) = u0 (c�) = 1
c�
, (66) is obtained:

(1 + �)��c = V
0
� (x

�)
d

d�
(w + x�) :

Derivation of (67). From x� = qw and (35), the following equation is obtained:

w + x� = (w + x�)

�
1 +

1

�

�

1 + �
(1� �)

�
: (109)

Taking the logarithm, and di¤erentiating with respect to �, we obtain:

1

w + x�
d (w + x�)

d�
=

1

w + x�
d (w + x�)

d�
+

� 1
�

�
1+�

1 + 1
�

�
1+�

(1� �)
d�

d�
;

and furthermore, applying (109) to the right-hand side of the above equation, the following is

derived:

d (w + x�)

d�
=

�
1 +

1

�

�

1 + �
(1� �)

�
d (w + x�)

d�
� 1
�

�

1 + �
(w + x�)

d�

d�
:

Divide both terms in this equation by c�. Taking into account that V 0� (x
�) = u0 (c�) = 1

c�
=

1
c�
1
�
= V 0� (x

�) 1
�
holds, the following equation is derived:

V 0� (x
�)
d (w + x�)

d�
=

�
1 +

1

�

�

1 + �
(1� �)

�
1

�
V 0� (x

�)
d (w + x�)

d�
� 1
�

�

1 + �

w + x�

c�
1

�

d�

d�
:

Here, we apply (66) and c� = 1
1+�

(w + x�) to the right-hand side of the above equation:

V 0� (x
�)
d (w + x�)

d�
=

�
1 +

1

�

�

1 + �
(1� �)

�
1 + �

�
��c �

�

�

1

�

d�

d�

= (1 + �)��c +

�
1 + � +

�

�

�
1� �
�

��c �
�

�

1

�

d�

d�
:
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Note that ��c = �
�
c +

1
�
d�
d�
holds from c� = �c�. Applying this to the �rst term of the right-hand

side of the above equation, we obtain:

V 0� (x
�)
d (w + x�)

d�
= (1 + �)��c +

�
1 + � +

�

�

�
1

�

�
(1� �)��c �

d�

d�

�
: (110)

We obtain the following equation by subtracting the term 1
c�
dc�

d�
from the both sides of ��c =

��c +
1
�
d�
d�
:

1

c�

�
dc�

d�
� dc

�

d�

�
=
1

�

d�

d�
+

�
1� c

�

c�

�
1

c�
dc�

d�
:

Apply V 0� (x
�) = 1

c�
and c� = �c� to the left- and right-hand sides, respectively, and we obtain

the following equation:

V 0� (x
�)

�
dc�

d�
� dc

�

d�

�
= �1

�

�
(1� �)��c �

d�

d�

�
: (111)

Finally, combining (110) with (111), (67) is obtained:

(1 + �)��c = V
0
� (x

�)
d

d�
(w + x�)�

�
1 + � +

�

�

�
V 0� (x

�)

�
dc�

d�
� dc

�

d�

�
:

Appendix H

First, the process of the calculation to derive (70) is given:

T1
d�

d�
+ T2

1

�2
;

where:

T1 =

�
1 + �

1� � � � (1� �)�
� + � + ��

�
(1� �) (1 + q)

�
1

�
� � + � + ��

� + �
� (1 + ��)

�

�
;

T2 = (1� �) �
�
(1 + q)

1

�
� �

� + �
(1 + ��)

�

�

�
:

Then, we show that T1 > 0 and T2 � 0 hold.
Recall that the levels of q, �, and � in the steady state are obtained as the solution of (32),

(38), and (41). From (41), we obtain:
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d�

d�
= ��� + � + ��

� + �

d�

d�
� 1

�2
��

� + �
(1� �) : (112)

Substitute (41) into (38) to eliminate �, and we obtain:

(1 + q)

�
� + � + ��

�
�+

1� �
�

�

�
=
1 + �

1� ��: (113)

Di¤erentiating (113) with respect to � yields:

dq

d�

�
� + � + ��

�
�+

1� �
�

�

�
+ (1 + q)

�
� + � + ��

�

d�

d�
� �

�2

�
=
1 + �

1� �
d�

d�
:

Applying (113) to the �rst term of the left-hand side of the above equation, we obtain:

(1 + �)
1

1 + q

dq

d�
=

�
(1 + �)� (1 + q) (1� �) � + � + ��

�

�
1

�

d�

d�
+
1

�2
(1� �) � (1 + q) 1

�
:

(114)

By substituting (112) and (114) into (69), (70) is derived.

Next, let us show that T1 > 0 holds in the interior solution case (� > �+). T1 > 0 holds if

and only if:

(� + � + ��)

�
�
1 + ��

� + �

�

�
+
(1� �) (1 + q)

�

1

�

�
<

�
1 + �

1� � � � (1� �)
�
1

�
:

Applying (113) to the left-hand side of the above inequality, the following is obtained:

(� + � + ��)

�
�
1 + ��

� + �

�

�
+

1 + �

(� + � + ��) �+ 1��
�
��

�
<

�
1 + �

1� � � � (1� �)
�
1

�
: (115)

From (41), we observe that � >
�
1 + ��

�+�

�
(1� ��), and taking 1��

�
�� > 0 into account, we

immediately con�rm that the following is larger than the left-hand side of (115):

(� + � + ��)

0@�1 + ��
� + �

��
1 + ��

�+�

�
(1� ��)

+
1 + �

(� + � + ��) �

1A :
We observe that this term is equivalent to � (1 + ��) �

1���+
1+�
�
. Thus, the following inequality

is a su¢ cient condition for T1 > 0:
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� (1 + ��)
�

1� �� +
1 + �

�
<

�
1 + �

1� � � � (1� �)
�
1

�
:

By solving this with respect to �, we express the su¢ cient condition as follows:

� <
1

�

1
(1��)(1+��)�

�(1+�)�(1��)�(1��) + 1
: (116)

Here, note that (1��)(1+��)�
�(1+�)�(1��)�(1��) is an increasing function of �, assuming that �

+ < 1 (cf.

Section 3), and that it takes the maximum value 1��
�
when � = 1. Thus, we obtain:

(1� �) (1 + ��)�
� (1 + �)� (1� �) � (1� �) <

1� �
�

;

or equivalently:

1 <
1

�

1
(1��)(1+��)�

�(1+�)�(1��)�(1��) + 1
:

As shown in Proposition 1, � � � < 1 holds. Hence, (116), a su¢ cient condition for T1 > 0,

holds true.

Finally, let us show that T2 � 0 holds in the interior solution case. T2 � 0 holds if and only
if:

�

� + �
(1 + ��)

�

�
� (1 + q) 1

�
: (117)

Using (38), (117) can be rewritten as:

�

� + �
(1 + ��)� � �

1� � (1 + �)
�

�+�
�
(1� �) + �

�

;

or equivalently:

(1 + ��)

�
(1� �)� + ��

� + �

�
� �

1� � (1 + �)�: (118)

Recall that � is a decreasing function of �, as discussed in Section 4. Thus, the left-hand side of

(118) is an increasing function of �, while the right-hand side of (118) is a decreasing function

of �. Hence, if (118) holds at � = 1, it is guaranteed that (118) holds true for any � 2 [�+; 1].
De�ne the level of � at � = 1 as �min. When � = 1, (118) is expressed as:
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1 +
��

� + �
� 1

1� ��min: (119)

Recall that Proposition 1 (i) argues that � = � holds when � = 1. Taking (41) into account,

�min is derived as:

�min =

�
1 +

��

� + �

�
(1� ��) :

Because � < 1, (119) holds, and thus, (118) holds for any � 2 [�+; 1]. Therefore, T2 � 0 holds.
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Table 1: Definitive Childlessness. 

 

Country 
Women who were 

born in  
1950 1965 

Austria 12.6 21.1 
Bulgaria  1.3  4.4 

Czech Republic  6.6  7.2 
England and Wales 13.9 20.5 
Germany (Western) 14.8  20.3* 

Greece  9.6 16.3 
Hungary  9.1  9.6 
Ireland 12.2 18.4 
Italy 13.0   20.1** 
Japan 18.4 24.9 

Netherlands 14.6 18.3 
Norway 10.0 12.1 
Poland  9.5 15.5 

Portugal 11.0  4.0 
Romania  6.3 11.5 

Slovak Republic  9.8 11.1 
Slovenia  4.4  9.0 
Sweden 13.9 12.9 

United States 15.1 14.4 
Note: The superscript `*' indicates the childlessness rate of the 1955 cohort. 

     The superscript `**' indicates the childlessness rate of the 1964 cohort. 

Sources : Data except Japan are obtained from OECD (2014). 

Data for Japan are obtained from the National Institute of Population and Social 

Security Research (2006).  
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Fig. 1: Graph of (32) and (41). 
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Fig. 2: Effect of a change in 𝝅𝝅 on steady state. 
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Fig. 3: Relationship between 𝝅𝝅 and 𝒌𝒌. 
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Fig. 4: Optimal income transfer 𝝉𝝉∗. 
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Fig. 5: Effect of an increase in 𝝅𝝅 on 𝝉𝝉∗. 
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Fig. 6: Transitional dynamics. 
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