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Abstract

We formulate the pension fund’s problem of choosing optimal pension schemes in an infi-

nite, discrete-time setting as a sequence of Nash bargaining problems in which the members

(contributors) of the fund are the bargainers and the disagreement points are determined

by the utility levels they can attain by quitting and receiving lump-sum payments from the

fund. We show that if the members are heterogeneous in their subjective time discount rates,

then the sequence of the Nash bargaining solutions, obtained at each point in time, leads to

an inefficient allocation of consumption processes, thereby indicating a source of dynamic

inconsistency in pension fund management. Based on a set of micro data, we show the

welfare loss of dynamic inconsistency can be as high as 14% of the members’ total wealth,

and the dynamically inconsistent choices of pension schemes tend to favor myopic members.

JEL Classification Codes: D51, D53, D61, D81, D91, E43, G12.

Keywords: Pension fund, Discount factor, discount rate, dynamic inconsistency, Nash

bargaining solution.

1 Introduction

In any aging society, good management of a pension system is of paramount importance, and

yet there seems no sound theoretical model in which we can discuss its efficacy. The purpose

of this paper is to provide such a model. Although many social and economic factors are

apparently relevant in pension fund management, there are three aspects, from the viewpoint

of microeconomic theory, of pension fund management that deserve special attention.

First, the members (subscribers, contributors) of the pension fund wish to smooth con-

sumption but have limited access to financial markets. In other words, they wish to save before

∗The paper is part of the academic projects on Economic Analysis of Intergenerational Issues: Searching for
Further Development, funded by the Grant-in-Aid for Specially Promoted Research (grant number 22000001) from
Japan’s Ministry of Education, Culture, Sports, Science and Technology. We are grateful to the participants at the
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Experiments’ and its Global COE Project ‘Human Behavior and Socioeconomic Dynamics’. I acknowledge
the program/project contributors: Yoshiro Tsutsui, Fumio Ohtake, and Shinsuke Ikeda. My email address is
hara.chiaki.7x@kyoto-u.ac.jp.
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retirement and maintain similar consumption levels after retirement, but the pension fund, as

an institutional investor, typically has a better trading technology with lower transaction costs.

Second, the amount of contributions that the pension fund collects from its members may de-

pend on the members’ incomes but not on their preferences. For example, the fund may collect

a fixed proportion of the members’ monthly salaries, but must not collects amounts that are

contingent on their unobservable characteristics, such as subjective time discount rates, for legal

or informational reasons. Third, the fund may scrap the scheme that is currently in place and

implement a new one. From each member’s perspective, this means that what he ends up with

contributing to and receiving from the fund after retirement may well be different from what

he is supposed to do so at the time of joining it.

The model of this paper has the following characteristics to take these three aspects into

consideration. First, there is a group of members who have no income, other than pension

benefits, after retirement, and no access to financial markets, so that they cannot save their

earnings to the post-retirement period. The fund, on the other hand, has full access to financial

markets so that it can borrow and lend at the market rate without incurring any transaction

costs. Its mission is, therefore, to save on behalf of its members. However, since the fund is

not allowed to differentiate members by their preferences, any two members with equal incomes

must necessarily make the same contribution and, thus, enjoy the same consumption process.

This is true even when the two have different discount rates and, thus, prefer different levels of

contributions. This constraint renders the optimal pension-scheme choice problem a collective

choice problem, which we formulate as a Nash bargaining problem among the members. In

other words, the fund chooses a pension scheme that maximizes the so-called Nash product

(Nash (1950)), the product of the utility levels that the members attain by staying in the fund

in excess of those which they attain by quitting and receiving lump-sum payments from the

fund. We interpret the Nash product as representing the rules or codes of conduct that the fund

is supposed to obey, possibly as a result of laws and regulations. Finally, even after the fund

chooses a scheme by solving the Nash bargaining solution, the fund has another opportunity to

choose, again, a scheme by solving the Nash bargaining solution once some time has elapsed.

Since the members now have different future income processes (shifted backwards by one period)

and have accumulated a larger sum of contributions at the fund, the new solution typically calls

for levels of contributions that are different from what was planned in the old solution. This is

the type of dynamic inconsistency in pension fund management that we analyze in this paper.

It arises from the fact that the fund is unable to commit itself to any particular pension scheme.

Since the model of this paper builds on the members’ incomes and preferences and fully

specifies what they can or cannot receive by staying in or quitting the fund, we could ask many

interesting and important questions regarding pension fund management. Of these, we shall

focus on how the heterogeneity in the members’ subjective time discount rates renders the

fund’s choice of pension schemes biased towards some members and dynamically inconsistent.

The first thing we should notice then is the impact of discount rates on the disagreement points.

Since each member has no earning after retirement, the consumption process from quitting the
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fund involves higher consumption levels on early periods and lower (in fact, zero) consumption

levels on late periods. Such a process would be more appreciated by the more myopic members

(the members having higher discount rates). This, at first sight, seems to suggest that the more

myopic members are better treated at the Nash bargaining solution. This line of thoughts is,

however, flawed because it misses the role of prices, or interest rates, in the bargaining solution

of Nash (1950). Indeed, our first main result (Proposition 5) shows that for every profile of

the members’ preferences, there is a price process under which all members are equally treated.

Based on this result, our second result (Proposition 6) shows that if the members have differing

discount rates, then, for each member, there is a price process under which that member is

better treated than any other member. An intriguing aspect of the second result is that besides

the most myopic member and the most patient one, any member, having a moderate discount

rate, may well be best treated if we impose no restrictions on equilibrium interest rates. These

results points to the need to impose restrictions on interest rates to identify the nature of optimal

pension schemes.

As for the nature and extent of dynamic inconsistency, our results are empirical. Based

on the micro data from the Preference Parameters Study of Osaka University’s 21st Century

COE Program ‘Behavioral Macrodynamics Based on Surveys and Experiments’ and its Global

COE project ‘Human Behavior and Socioeconomic Dynamics’, we will give (in Section 9) some

estimates of the welfare losses, in terms of the fraction of the total wealth that could be foregone

were the dynamic consistency guaranteed. The fraction is far from negligible, and can be as

large as 14%. We will also see that the dynamic inconsistency tends to favor myopic members,

that is, the contribution that the fund actually collects from each member on a later earning

period turns out to be smaller than the contribution that it plans, on an earlier period, to collect

on the later earning period.

We should also mention two things we do not investigate in our model. First, we do not deal

with the dynamic inconsistency of the members. We assume, instead, that they are dynam-

ically consistent and stationary, that is, they always retain the same ranking between future

consumption processes as time elapses and use the same utility functions regardless of the period

on which they make decisions. While experimental evidences, earlier one of which are mentioned

in Loewenstein and Prelec (1992), often suggests otherwise, the assumption of dynamically con-

sistent members has the virtue of allowing us to pin down any dynamic inconsistency in the

fund’s choice to the way its choice is made, particularly the lack of commitment. Second, we

do not deal with transfers of purchasing power among members. We assume, instead, that in

any pension scheme, the discounted present value of the benefits each member receives from the

fund after retirement is equal to that of the contributions he pays in to the fund before retire-

ment. By assuming away the transfers among members, we are excluding, say, schemes that are

financed by the pay-as-you-go method, which nowadays tend to favor older generations at the

sacrifice of younger ones, and for which welfare consequences are quantifiable with monetary

units. We shall not deal with them, simply because we intend to concentrate on the the conflict

of interest arising from heterogeneous preferences, which is a theoretically challenging research
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topic.

Since this paper lies at the intersection of finance and bargaining theory and touches on

behavioral economics, it is related to many existing works. Of these, the one we should mention

here is Jackson and Yariv (2014). They considered the problem of aggregating profiles of

individuals’ stationary time-additive intertemporal utility functions that are defined on the

set of common consumption processes into a single social utility function defined on the same

set of common consumption processes. They proved (Theorem 2) that if the individuals are

heterogeneous in their discount rates, then the dictatorial rules are the only aggregation rules

that satisfy unanimity and always leads to dynamically consistent social utility functions. The

Nash products are no exception to their theorem: they satisfy unanimity but does not generate

dynamically consistent objective functions for the fund. The type of dynamic (in-)consistency

that we analyze in this paper is, however, different from the notion of dynamic (in-)consistency

that they took up: the fund’s objective function, albeit dynamically inconsistent in the sense

of Jackson and Yariv (2014), changes over time, because the disagreement points change as

a consequence of reduced time to retirement and increased contributions accumulated at the

fund. We are interested in the extent of dynamic inconsistency resulting from changing objective

functions, and we even propose, in Section 6, a measure of such inconsistency that relies one

the objective function that may be dynamically inconsistent in the sense of Jackson and Yariv

(2014).

This paper is organized as follows. In Section 2, we lay out the environment the fund is

faced with. In Section 3, we define pension schemes that the fund can implement if it can

commit itself to the scheme it chooses at the beginning. In Section 4, we define the resulting

consumption processes if the fund revises the existing scheme on each period. In Section 5,

we define objective functions that the fund may have. In Section 6, we define state-dependent

objective functions, a particular case of which is the Nash product. In Section 7, we deal with

an easy, but important, case in which the members of the fund are identical in their incomes

and preferences. In Section 8, we present the two main results of this paper, regarding whether

the members are symmetrically or asymmetrically treated. In Section 9, we give an empirical

analysis of dynamic inconsistency. In Section 10, we conclude the paper by indicating some

possible extensions of the model of this paper.

2 Model

2.1 Commodities and prices

The time span of consumption is {0, 1, 2, . . . }, which we denote by T . There is only one type

of goods at each date. Denote by L the set of all sequences, or real-valued functions defined

on T . We write each c ∈ L as (c(0), c(1), c(2), . . . ), (c(t))t∈T , and so on. For each c ∈ L and

t ∈ T , write ct = (c(t), c(t + 1), c(t + 2), . . . ) ∈ L. Denote by L+ the set of all elements of L

of which all the entries are nonnegative, and by L++ the set of all members of L of which all

the entries are strictly positive. Denote by `∞ the set of all elements of L that are bounded
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and write C = `∞ ∩ L+. We take `∞ as the commodity space and C as the consumption set.

Denote by `1 the set of all elements of L that are absolutely summable. Write P = `1 ∩ L++.

We take P as the price space. Each element p of `1 defines a continuous linear functional on

`∞ via
∑∞

t=0 p(t)c(t) for every c ∈ `∞. Although the topological dual of the commodity space

`∞ is larger than `1, Prescott and Lucas (1972) showed that if the consumers’ utility functions

discount future felicities, as the additively separable utility functions, which we assume later,

would do, then for every equilibrium price in the topological dual of C, there is a price process in

P that constitute an equilibrium with the same consumption processes. In this sense, restricting

prices on P comes with no loss of generality. For each (c, p) ∈ C×P , write p ·c =
∑∞

t=0 p(t)c(t).

Let p ∈ P be a process of prices of the goods available at each date. The price, at date t of

the discount bond that matures at date t+ 1 is then equal to p(t+ 1)/p(t). The (continuously

compounded) discount rate at date t is equal to ln p(t)− ln p(t+1). For the price process p ∈ P ,

define the (continuously compounded) interest rate process r ∈ L by r(t) = ln p(t)− ln p(t+ 1),

that is,

exp(−r(t)) =
p(t+ 1)

p(t)

for every t. The implicit assumption in this benchmark model is that the pension fund has full

access to bond markets but the members has none.

2.2 Members of the pension fund

Let I be the set of (names of) members (subscribers, contributors) of the pension fund. We

assume throughout this paper that I is finite. Occasionally, we let I = {1, 2, . . . , I}. Let ρi > 0.

Let ui : R++ → R. Assume that ui(0) = 0 and that ui is twice continuously differentiable and

satisfies u′′i < 0 < u′i and the Inada condition on R++. Then the utility function Ui of member

i over consumption processes ci ∈ C+ is defined by

Ui(ci) =
∞∑
t=0

exp(−ρit)ui(ci(t)).

That is, we assume that each member i has time-additive expected utility functions over con-

sumption processes, with the continuously compounded discount rates ρi. The important

properties embedded in this definition of Ui are dynamic consistency and stationarity. Then

Ui(ci) ≥ 0 and Ui(ci) <∞ because ui is concave,
∑

t exp(−ρit) <∞, and ci is bounded. Since

the domain of ui coincides with R+, we are excluding the utility functions having constant

coefficients of relative risk aversion at least as large as one.

In the subsequence analysis, it is useful or even necessary to use monotone transformations of

Ui, rather than Ui itself. Of these, the first one is Ũi, which is defined by Ũi = (1−exp(−ρi))Ui.
This has the advantage that the coefficients multiplied to the ui(ci(t)) add up to one. The

second one is Ûi, which is defined by Ûi = u−1
i ◦ Ũi. The advantage of this transformation is

that the utility level Ûi(ci) is the (unique) level of consumption that member i finds, if received

in perpetuity, equally desirable to ci. It may not be concave, but we will use the function ui

5



such that Ûi is guaranteed to be concave.

Each member i has an initial endowments, or income stream, which is denoted by ei ∈ C.

Let ti ∈ T be the period on which member i has just retired and starts receiving pension

benefits. A typical situation we have in mind is where ei(t) > 0 for every t < ti and ei(t) = 0 for

every t ≥ ti. The members would then like to smooth his consumption over time (before and

after retirement), but they cannot do so because they have no access to asset markets. Since

the pension fund has full access to asset markets, it is its role to provide the members with

more smoothed consumption on behalf of its members. Throughout this paper, we implicitly

assume that the fund knows (observes) ei. In addition to ei, member i has an accumulated

contribution, denoted by ai ∈ R+ that is held by the fund on period zero. This accumulated

contribution is the monetary value of the contributions he has made during the time span up

to period zero, which are not explicitly modeled here, and is to be eventually be paid back to

him. We allow for the case where ti = 0, which means that member i has contributed to the

fund and retired, and only receives benefit from the fund in the time span explicitly modeled

here.

To summarize, member i is characterized by his felicity function ui, continuously com-

pounded discount rate ρi, income process ei, accumulated contribution ai, and time to retire-

ment ti. Together with the price process p, the state of the pension fund on period zero is

summarized as a profile
(
(ei, ai, ti)i∈I , p

)
∈ (C ×R+ × T )I × P . This profile, however, evolves

as time passes, in the way that can be formulated as follows. Write S = (C ×R+ × T )I × P
and define ST as the set of all sequences in S (mappings from T into S). We thus write

(s(t))t∈T = (s(0), s(1), s(2), . . . ) ∈ ST with s(t) ∈ S for every t. Each element of S specifies

the state of a given period, while each element of ST specifies the state of the entire time

span. We shall thus refer to each element of S as a state and each element of ST as a state

process. A typical element of S we consider is of the form
( (
eti, ki(t), (ti − t)+

)
i=1,2,...,I

, pt
)
.

Here, eti = (ei(t), ei(t + 1), ei(t + 2), . . . ) and this is member i’s income process from pe-

riod t onwards; (ti − t)+ = max {ti − t, 0} and this is his time, on period t, to retirement;

pt = (p(t), p(t+ 1), p(t+ 2), . . . ) and this is the price process from period t onwards; and ki(t) is

his deposit kept in the fund on (the beginning of) period t, to be calculated in the next section.

In the subsequent analysis, we shall occasionally use ei, ai, ti to denote generic elements of C,

R+, and ti ∈ T , not necessarily those characterizing member i, but this will cause no confusion.

3 Pension schemes

In this section, we formulate an anonymous pension scheme, which is applied to all members

equally and, as such, any two members of the same income process and the same retirement age

would necessarily have the same consumption process. We also assume that the contribution

that each member makes to the fund on each period depends on the income he obtains on that

period, but not the income on the other periods. We then formally analyze the allocation of

consumption processes attained by such a pension scheme, assuming that the fund does not

revise the scheme once it is determined on period zero.
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This situation can be formulated as follows. Let h : R+ × T → R and assume that 0 ≤
h(x, t) ≤ x for every (x, t) ∈ R+×T . Denote by H the set of all functions h : R+×T → R that

satisfy this condition, and call each element of H an anonymous pension scheme, or, simply,

a pension scheme. We interpret h(x, t) as the contribution that each member i makes to the

fund on period t < ti when his income on that period is equal to x. Then consumer i consumes

ei(t) − h(ei(t), t) on period t. Up to (but not including) period ti, he has accumulated the

contributions

ai +

ti∑
τ=0

p(τ)h(ei(τ), τ)

in the nominal term (that is, the monetary value under the price process p). In this scheme, he

receives the benefit bi ∈ R+ constantly on each period from period ti onwards such that

∞∑
τ=ti

p(τ)bi = ai +

ti−1∑
τ=0

p(τ)h(ei(τ), τ),

that is,

bi =

ai +

ti−1∑
τ=0

p(τ)h(ei(τ), τ)

∞∑
τ=ti

p(τ)

. (1)

The resulting consumption process ci is given by

ci(t) =

{
ei(t)− h(ei(t), t) if t < ti,

ei(t) + bi if t ≥ ti,
(2)

where bi is defined by (1). Then ci ∈ C. It is convenient to give a name to the allocation thus

generated, making explicit reference to the initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

.

Definition 1 Let h ∈ H,
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S, and c = (c1, c2, . . . , cI) ∈ CI . We say

that the allocation c of consumption processes is generated by the scheme h without revision

from the initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

if for every i, ci satisfies (1) and (2).

Note that

p · ci = p · ei + ai (3)

for every i. To grasp the nature of the consumption process attained by a pension scheme,

denote by chi the consumption process defined by (2) and by c∗i the solution to the standard

utility maximization problem of maximizing Ui(ci) subject to (3), if it exists, which is what

member i would choose were he to have full access to financial markets. Then chi (t) > 0 (unless

bi = 0) and c∗i (t) (by the Inada condition) for every t ≥ ti. Since ei(t) = 0 for every t ≥ ti,

ei(t)− chi (t) < 0 and ei(t)− c∗i (t) < 0 for every t ≥ ti. Thus, both chi and c∗i exhibit demand for
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consumption smoothing. The difference lies in the possible signs of the savings ei(t)− chi (t) and

ei(t)−c∗i (t) on periods t < ti prior to retirement. The former must not be negative, because the

pension contribution must not be negative, while the latter may be negative, because member

i can borrow money on period t at financial markets, to which he has full access. Now consider

another member j and define chj and c∗j in the same way as we defined chi and c∗i for member

i. We can then see another type of difference. If ei = ej and ti = tj , that is, if the two

members earn the same income on every period and retire on the same period, then chi = chj ,

that is, they must necessarily enjoy the same consumption process. In general, however, c∗i 6= c∗j
unless Ui = Uj . That is, if their discount rates or felicity functions are different, then they

would typically choose different consumption processes were they to have full access to financial

markets. Such a difference does not exist in the consumption processes generated by pension

schemes, because the amount of contributions specified by pension schemes may depend on

incomes but not on preferences.

It will turn out to be useful to define a process that represents the deposits member i has

in the fund, and write the generated consumption process in terms of the deposit process.

Then khi (t) is the deposit for member i, the difference between the contributions that member

i has accumulated and the benefits he has received so far up to (but not including) period t,

measured in the nominal term. As a convention, which is consistent with the definition of ai,

we let khi (0) = ai.

Definition 2 Let h ∈ H,
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S, c = (c1, c2, . . . , cI) ∈ CI , k = (k1, k2, . . . , kI) ∈

CI , and (s(t))t∈T ∈ ST . We say that the allocations c and k of consumption and deposit pro-

cesses and the state process (s(t))t∈T are generated by the scheme h without revision from the

initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

if for every i, ki(0) = ai and

ci(t) =


ei(t)− h(ei(t), t) if t < ti,

ei(t) +
ki(t)
∞∑
τ=t

p(τ)

if t ≥ ti, (4)

ki(t+ 1)− ki(t) = p(t) (ei(t)− ci(t)) . (5)

s(t) =
((
eti, ki(t), (ti − t)+

)
i=1,2,...,I

, p
)

for every t ∈ T .

In the sequel, the allocations of consumption and deposit processes in Definition 2 are denote

by ch and kh. The following lemma shows that Definitions 1 and 2 are in fact equivalent.

Lemma 1 Let h ∈ H,
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S, and c = (c1, c2, . . . , cI) ∈ CI . The allocation

c of consumption processes is generated by the scheme h without revision from the initial state(
(ei, ai, ti)i=1,2,...,I , p

)
if and only if there is a unique k = (k1, k2, . . . , kI) ∈ CI such that the

allocations c and k of consumption and deposit processes are generated by the scheme h without

revision from the initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

.
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We denote c and k in this lemma by ch and kh to make their dependence on h explicitly,

although this notation keeps their dependence on state
(

(ei, ai, ti)i=1,2,...,I , p
)

implicit.

Proof of Lemma 1 It suffices to prove that if bi is defined by (1) for every i, and the allocations

c and k of consumption and deposit processes are generated by the scheme h without revision

from the initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

, then

bi =
ki(t)
∞∑
τ=t

p(τ)

for every t ≥ ti. By induction, ki(ti) = ai +
∑ti−1

τ=0 p(τ)h(ei(τ), τ). Thus, the above equality

holds when t = ti. Assume that it holds for t and prove it for t+ 1. Then,

ki(t+ 1)
∞∑

τ=t+1

p(τ)

=
ki(t)− p(t)bi
∞∑
τ=t

p(τ)− p(t)
=

( ∞∑
τ=t

p(τ)

)
bi − p(t)bi

∞∑
τ=t

p(τ)− p(t)
= bi.

///

The advantage of Definition 2 over Definition 1 is the following inductive (recursive) property.

The proof is easy, which we omit.

Lemma 2 Let h ∈ H,
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S, c = (c1, c2, . . . , cI) ∈ CI , and k = (k1, k2, . . . , kI) ∈

CI . Then the allocations c and k of consumption and deposit processes are generated by the

scheme h without revision from the initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

if and only if the allo-

cations ct and kt of consumption and deposit processes are generated by the scheme ht without

revision from the initial state
((
eti, a

t
i, (ti − t)+

)
i=1,2,...,I

, pt
)

for every t.

An important implication of this lemma is that

pt · eti + ki(t) = pt · cti, (6)

which shows that the market value of current and future consumptions is always equal to the

sum of the market value of current and future incomes and the deposit kept in the fund. It

generalizes the equality (3) on period zero to the analogous one on every period t.

4 Pension scheme with revision

To implement a pension scheme h ∈ H, the fund needs to commit itself to the scheme over

the entire time span. However, there are some cases where the fund cannot commit itself to

any scheme and, instead, revises the scheme it has chosen before. In this section, we define the

9



consumption processes would actually be attained in such a situation, in a way analogous to

Definition 2. Denote the set of all sequences in H (mappings of T into H) by HT .

Definition 3 Let (ht)t∈T ∈ HT ,
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S, c = (c1, c2, . . . , cI) ∈ CI , k =

(k1, k2, . . . , kI) ∈ CI , and (s(t))t∈T ∈ ST . We say that the allocations c and k of consumption

and deposit processes and the state process (s(t))t∈T are generated by the sequence of pension

schemes, (ht)t∈T , with revision from the initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

if for every i, ki(0) =

ai and

ci(t) =


ei(t)− ht(ei(t), 0) if t < ti,

ei(t) +
ki(t)
∞∑
τ=t

p(τ)

if t ≥ ti, (7)

ki(t+ 1)− ki(t) = p(t) (ei(t)− ci(t)) . (8)

s(t) =
((
eti, ki(t), (ti − t)+

)
i=1,2,...,I

, pt
)

for every t ∈ T .

According to this definition, on each period t, the fund intends to implement a scheme

ht ∈ H and does indeed implement it on that period, but once the next period t+ 1 comes, he

scraps his own decision on the previous period, intends to implement another scheme ht+1 ∈ H,

and does indeed implement it on period t+1. Note that ci(t) does not depend on hτ if ti ≤ τ ≤ t,
that is, any member’s post-retirement consumption is not affected by any subsequent change in

pension schemes. The proof of the next lemma is easy, which we omit.

Lemma 3 Let (ht)t∈T ∈ HT ,
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S, c = (c1, c2, . . . , cI) ∈ CI , and k =

(k1, k2, . . . , kI) ∈ CI . Suppose that the allocations c and k of consumption and deposit processes

are generated by the sequence of pension schemes, (ht)t∈T , with revision from the initial state(
(ei, ai, ti)i=1,2,...,I , p

)
. Then, for every t ∈ T , the allocations ct = (ct1, c

t
2, . . . , c

t
I) and kt =

(kt1, k
t
2, . . . , k

t
I) of consumption and deposit processes are generated by the sequence of pension

schemes, (hτ )τ≥t, with revision from the initial state
((
eti, ki(t), (ti − t)+

)
i=1,2,...,I

, pt
)

.

The next proposition shows that the resulting consumption allocation can also be generated

by a pension scheme to which the fund commit itself.

Proposition 1 Let
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S and (ht)t∈T ∈ HT . Let c and k be the allocations

of consumption and deposit processes generated by (ht)t∈T with revision from the initial state(
(ei, ai, ti)i=1,2,...,I , p

)
. Define h ∈ H by h(x, t) = ht(x, 0) for every (x, t) ∈ R+×T . Let ch and

kh be the allocations of consumption and deposit processes generated by h with revision from the

initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

. Then c = ch and k = kh.

There are two important implications of this proposition. First, p · ci = ai + p · ei, because

p · chi = ai + p · ei. Second, to make any welfare comparison, it suffices to compare allocations
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that can be generated by pension schemes that are implemented throughout the entire time

span.

Proof of Proposition 1 For every t < ti, by (7), (4), and the definition of h, ci(t) = chi (t).

Thus, by (8) and (5), ki(t+1)−ki(t) = khi (t+1)−khi (t). Since ki(0) = ai = khi (0), ki(t) = khi (t)

for every t ≤ ti. As for t ≥ ti, we can show, by induction using (8) and (5), that ki(t) = khi (t).

Thus, by (7) and (2), ci(t) = chi (t) for every t > ti. ///

5 Pension fund’s objective functions

In this section, we formulate the pension fund’s objective functions and postulate that the fund

chooses pension schemes to maximize its objective function. Recall that Ui(C) is the range of

member i’s utility function. Denote by W the set of the functions W :
∏
i Ui(C) → R. The

welfare evaluation of the allocation c = (c1, c2, . . . , cI) ∈ CI of consumption processes is given by

W (U1(c1), U2(c2), . . . , UI(cI)). We regard W as the set of the objective function that the fund

may have and also of the social welfare function with respect to which we assess the desirability

of consumption allocations.1 Here are some examples of elements of W .

Example 1 1. There is a λ = (λ1, λ2, . . . , λI) ∈ RI
+ such that W (r) =

∑
i λimi for every

m = (m1,m2, . . . ,mI) ∈ RI . Restrictive as it may seem, this functional form covers many

consumption allocations of interest. Let’s say a pension scheme h∗ is efficient if there is

no other pension scheme h such that Ui(c
h
i ) ≥ Ui(ch

∗
i ) for every i and Ui(c

h
i ) > Ui(c

h∗
i ) for

some i. Write

M =
({(

U1

(
ch1

)
, U2

(
ch2

)
, . . . , UI

(
chI

))
∈ RI | h ∈ H

}
−RI

+

)⋂
RI

+,

then an equivalent definition is that

M
⋂({(

U1

(
ch
∗

1

)
, U2

(
ch
∗

2

)
, . . . , UI

(
ch
∗
I

))}
+
(
RL

+ \ {0}
))

= ∅.

Since H is a convex subset of the set of all real-valued functions defined on R+ × T ,

the mapping h 7→ ch is affine, and the Ui are concave, M is a convex subset of RI .

Hence, by the separation hyperplane theorem, for every efficient scheme h∗, there is a

λ ∈ RI
+ \ {0} such that h∗ is a solution to the problem of maximizing

∑
i λiUi(c

h
i ) subject

to h ∈ H. Therefore, every efficient allocation is a solution to the problem of maximizing

an objective function of the form W (m) =
∑

i λimi. Note, however, that W is strictly

increasing if and only if λ ∈ RI
++. This welfare function is often used to establish the

existence of a competitive equilibrium in general equilibrium theory via Negishi’s (1960)

approach. In that approach, the coefficients λi are determined so that the market value

1More generally, we could formulate the fund’s objective in terms of a binary relation on RI . By doing so, we
could accommodate, for example, the leximin ordering, on which the solution to the Nash bargaining problem
by Imai (1983) is based.
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of the consumption vector that each consumer receives at the Pareto efficient allocation

corresponding to the λi is equal to that of his initial endowment vector. In our modoel,

since the market value of the benefit each member receives after retirement is always equal

to that of the contributions he makes before retirement regardless of the values of the λi,

we cannot pin down the values of the λ to use to find the optimal pension scheme. For

this reason, we will not use W (m) =
∑

i λimi as the fund’s objective function.

2. Although every member is assumed to maintain the membership (subscription) of the

pension fund throughout the entire time span, let’s consider what he would obtain if

he quit. If member i quits on period zero, then he would receive ai (in the nomi-

nal term) from the fund. He can consume it immediately, but cannot save it for fu-

ture consumption, because he has no access to asset markets by assumption. Thus,

the consumption process he would attain is
(
ei(0) + (p(0))−1ai, ei(1), ei(2), . . .

)
. Write

mi = Ui
(
ei(0) + (p(0))−1ai, ei(1), ei(2), . . .

)
and defineW by lettingW (m) =

∏
i(mi−mi)

for every m = (m1,m2, . . . ,mI) ∈ RI . Although this function is strictly increasing on

the set
∏
i(mi,∞) but not on the entire RI , it is an important objective function be-

cause it is the solution obtained by Nash (1950) to the bargaining problem, for which the

disagreement point is given by the utility levels that the members would obtain if they

quit.

3. In the Nash bargaining problem, the convexity of the utility possibility set is justified by

interpreting that the bargainers have expected utility functions and bargain over lotteries

defined on the set of (deterministic) consequences; and the scale invariance of the Nash

bargaining solution is justified by noticing that once we accept this interpretation, every

affine transformation of an expected utility function represents the same risk attitudes.

In fact, Kihlstrom, Roth, and Schmeidler (1981) showed that if the two-person bargaining

problem is modified by replacing a bargainer by another one who is more risk averse, while

retaining the same set of consequences, then the other bargainer, who has the same utility

function before and after the modification, obtains a higher utility at the Nash bargaining

solution after modification. Preceding to them, Aumann and Kurz (1977) introduced the

concept of fear of ruin, which measures the unwillingness to take large risks, and proved

the the bargainer with a lower fear of ruin obtains a higher utility.

In our model, if we consider the Nash bargaining solution based on the utility function Ui,

as we did in part 2, then we are presuming that the risk attitude of member i is represented

by ui. This presumption may well turn out to be inappropriate. First, since what the

members actually receive are deterministic consumption processes, there is no apparent

reason why we should include their risk attitudes as one of the determinants of the optimal

pension scheme. Second, even if we should, for whatever reason, take the member’s risk

attitudes into consideration, there is no reason why we should use Ui (or, equivalently,

ui) for member i, because his risk attitude may well be different from the attitude that is

represented by ui, which is used to represent intertemporal elasticity of substitution. In
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other words, member i may not have time-additive expected utility functions, and may

well have recursive utility functions of the type of Epstein and Zin.

Without knowing what the members’ risk attitudes are, it would perhaps be most straight-

forward to assume that the members are as close to risk-neutrality as is consistent with the

preferences represented by the Ui. To do so, we use a strictly increasing transformation

Ûi of Ui that is least concave, that is, if Ũi is another strictly transformation of Ui and

concave, ψ is concave, and Ûi = ψ ◦ Ũi, then ψ must in fact be affine. A least concave

utility function can easily be constructed if the function

y 7→
(
u′i
(
u−1
i (y)

))2
u′′i
(
u−1
i (y)

) (9)

of ui(R+) into R is convex. The proof goes as follows. For each i and ci ∈ C, define

Ûi(ci) so that (1− exp(−ρi))−1ui(Ûi(ci)) = Ui(ci), or Ûi(ci) = u−1
i ((1− exp(−ρi))Ui(ci)).

By modifying the analysis in Section 3.16 of Hardy, Littlewood, and Polya (1952), we

can show that Ûi is concave if and only if the function (9) is convex. It is then easy

to show that Ûi is a least concave utility function. Note that by the definition of Ûi, if

b = (1, 1, . . . ) ∈ C and κ ∈ R+, then Ûi(κb) = κ for every i. Thus, the least concave

utility functions Ûi are all normalized so that all members assign the same utility level to

each constant consumption stream. It is also easy to check that the function (9) is convex

if ui exhibits constant absolute risk aversion (−u′′i (xi)/u′i(xi) does not depend on xi) or

constant relative risk aversion (−u′′i (xi)xi/u′i(xi) does not depend on xi). We can then

apply the Nash bargaining solution to the Ûi.

4. Define

M = M
⋂(

I∏
i=1

[mi,∞)

)
,

where mi is defined in part 2. This is compact because M is closed and bounded from

above. Denote the maximum value of the i-th coordinate by mi. This is the maximum

utility that member i can receive from a pension scheme for which no member has incentive

to quit the fund. Assume that mi > mi for every i. Define W by letting

W (m) = min

{
m1 −m1

m1 −m1

,
m2 −m2

m2 −m2

, . . . ,
mI −mI

mI −mI

}
for every m = (m1,m2, . . . ,mI) ∈ RI . If I = 2, then the solution to the problem of

maximizing W (m) subject to m ∈ M gives the solution to the Nash bargaining problem

by Kalai and Smorodinsky (1975).

If the fund has the objective function W and no plan to revise the scheme it chooses on

period 0, then its maximization problem can be formulated as
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max
(c,k,h)∈CI×CI×H

W (U1(c1), U2(c2), . . . , UI(cI)),

subject to c and k are generated by h

without revision from s,

(10)

If (c, k, h) is a solution to this problem, then c = ch and k = kh, that is, c and k are uniquely

determined by h. Thus, in such a case, we simply say that h is a solution to (11). By suppressing

the state s from which the processes c and k, we can state this maximization problem more

simply as

max
h∈H

W (U1(c1), U2(c2), . . . , UI(cI)). (11)

6 Pension fund’s state-dependent objective functions

In many cases of interest, the fund’s objective function changes from period to period depending

on the states to be realized. This is true particularly when the objective functions are imposed on

the fund by some other entity, such as the government. To formulate such objective functions, we

denote by W S the set of all mappings from S into W . Each element of W S is regarded a profile

of objective functions that depends on states. We shall thus call it simply a state-dependent

objective function, and write it as (W (· | s))s∈S , with W (· | s) ∈ W for each s ∈ S.

We have already encountered a state-dependent objective function. Indeed, in part 2 of

Example 1, the objective function was defined through the utility levels mi at the disagreement

points determined by the consumption processes
(
ei(0) + (p(0))−1ai, ei(1), ei(2), . . .

)
, which de-

pends on the state s =
(

(ei, ai, ti)i=1,2,...,I , p
)

.

For a state-dependent utility function (W (· | s))s∈S , we define a resulting consumption al-

location c∗ = (c∗1, c
∗
2, . . . , c

∗
I) ∈ CI , along with the allocation k∗ = (k∗1, k

∗
2, . . . , k

∗
I ) ∈ CI

of deposit processes, the sequence (ht)t∈T ∈ HT of pension schemes, and the state process

(s(t))t∈T ∈ ST , as follows. To start, we let k∗i (0) = ai and s(0) =
(

(ei, k
∗
i (0), ti)i=1,2,...,I , p

)
.

Let t ∈ T and suppose that k∗i (t) has been determined for every i. Then we define s(t) =( (
eti, k

∗
i (t), (ti − t)+

)
i=1,2,...,I

, pt
)
. Then let (cht , kht , ht) be a solution to the problem

max
(c,k,h)∈CI×CI×H

W (U1(c1), U2(c2), . . . , UI(cI) | s(t)),

subject to c and k are generated by h

without revision from s(t).

(12)

Then we let c∗(t) = cht(0), k∗(t+1) = kht(1), and s(t+1) =
((
et+1
i , k∗i (t+ 1), (ti − (t+ 1))+

)
, pt+1

)
.

Thus, we have inductively defined c∗, k∗, (ht)t∈T , and s. The following definition gives a name

to the allocations of consumption and deposit processes thus generated.

Definition 4 Let (W (· | s))s∈S ∈ W S ,
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S, c∗ = (c∗1, c

∗
2, . . . , c

∗
I) ∈ CI ,

k∗ = (k∗1, k
∗
2, . . . , k

∗
I ) ∈ CI , and (ht)t∈T ∈ HT . We say that the allocations c∗ and k∗ of
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consumption and deposit processes and the process (ht)t∈T of pension schemes are gener-

ated by the state-dependent objective function (W (· | s))s∈S with revision from the initial state(
(ei, ai, ti)i=1,2,...,I , p

)
if c∗, k∗, and (ht)t∈T are defined via (12).

According to the above definition, in each state s(t), the fund uses an objective function

W (· | s(t)), chooses a pension scheme ht that maximizes the value of the objective function, and

implement the scheme only on that period; on the next period, the fund scraps the scheme

it chose on the previous period, uses a new objective function W (· | s(t + 1)), chooses a new

pension scheme ht+1 that maximizes the value of the new objective function, and implement

the new scheme only on that period; and this behavior is repeated indefinitely. Along with

the generated consumption and deposit processes c∗ and k∗, a process of objective functions,

(W (· | s(t)))t∈T , is also generated.

The behavior is considered as naive and myopic, as it does not take into consideration the

fact that the current pension scheme is scrapped on the next period. An alternative formation

is that when solving the maximization problem, the fund takes into consideration the fact that

it will scrap the scheme and implement the new scheme. We do not employ this formulation

because we believe that our formulation has more practical relevance.

The following lemma is straightforward. We omit its proof.

Lemma 4 Let (W (· | s))s∈S ∈ W S,
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S, c∗ ∈ CI , k∗ ∈ CI , and

(ht)t∈T ∈ HT . If the allocations c∗ and k∗ of consumption and deposit processes and the process

(ht)t∈T of pension schemes are generated by the state-dependent objective function (W (· | s))s∈S
with revision from the initial state

(
(ei, ai, ti)i=1,2,...,I , p

)
, then the allocations c∗ and k∗ of con-

sumption and deposit processes are generated by the process (ht)t∈T of pension schemes with

revision from the initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

,

Since the objective functions W (· | s(t)) keep changing as time elapses, and we are interested

in the dynamic inconsistency in the fund’s choices that lead to a suboptimal consumption

allocation. More specifically, let t ∈ T and τ ∈ T with t < τ , and compare ht(· , τ − t) and

hτ (· , 0). The former is the pension scheme that is planned on period t on the contributions to

be made on period τ . The latter is the pension scheme that is (chosen and) implemented on

period τ . If the two are different, then we say that the process of pension schemes is dynamically

inconsistent.

We now introduce a measure of dynamic inconsistency for consumption allocations that are

generated by a state-dependent objective function. Let (W (· | s))s∈S ∈ W S and
(

(ei, ai, ti)i=1,2,...,I , p
)
∈

S, which we denote by s, and let c∗ ∈ CI . Suppose that the allocation c∗ of consumption pro-

cesses is generated by the state-dependent objective function (W (· | s))s∈S with revision from

the initial state
(

(ei, ai, ti)i=1,2,...,I , p
)

. Then member i attains the utility level Ûi (c∗i ). Our

measure of inefficiency, or dynamic inconsistency, is defined along the lines of Debreu (1951),

as follows. For each θ ≥ 0, define sθ ∈ S by sθ =
(

(θei, θai, ti)i=1,2,...,I , p
)

. That is, every

member’s initial income process and initial deposit are scaled down by the common factor θ.

Denote by Θ1 the set of all θ ≥ 0 for which there is an hθ ∈ H such that Ûi
(
cθi
)
≥ Ûi (c∗i ), where
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(
cθi
)
i

is the allocation of consumption processes generated by hθ without revision starting from

sθ. In other words, we let θ ∈ Θ1 if and only if the fund can guarantee the utility levels that the

members attain at the allocation c∗ even when the initial endowments and deposits are scaled

down by factor θ, as long as it can commit itself to implementing whatever scheme it decides on

period zero. Define θ∗1 = inf Θ1, and we let 1− θ∗1 as a measure of dynamic inconsistency. It is

the maximum fraction of the resources that can be given up if the fund can commit itself to any

scheme it chooses on period zero, while still guaranteeing the utility levels that the members

would receive at the allocation generated by the state-dependent objective function.

An alternative measure of dynamic inconsistency can be defined as follows. Denote by Θ2

the set of all θ ≥ 0 for which there is an hθ ∈ H such that W (U1(cθ1), U2(cθ2), . . . , UI(c
θ
I) | s) ≥

W (U1(c∗1), U2(c∗2), . . . , UI(c
∗
I) | s), where s =

(
(ei, ai, ti)i=1,2,...,I , p

)
and cθ is the allocation of

consumption processes generated by hθ without revision starting from sθ =
(

(θei, θai, ti)i=1,2,...,I , p
)

.

In other words, we let θ ∈ Θ2 if and only if the fund can guarantee the level that the objective

function attains at the allocation
(
cθi
)
i

even when the initial endowments and deposits are scaled

down by factor θ, as long as it can commit itself to implementing whatever scheme it decides on

period zero. Note that we use the initial state s, not the scaled-down state sθ, in the objective

function W (· | s). Define θ∗2 = inf Θ2, and we let 1− θ∗2 as a measure of dynamic inconsistency.

If W is nondecreasing, then Θ1 ⊆ Θ2. Hence θ∗1 ≥ θ∗2 and 1− θ∗1 ≤ 1− θ∗2. That is, the second

measure of dynamic inconsistency is no smaller than the first. A more conceptual difference

between the two measures is that while the second measure relies on the objective function

W (· | s), which may itself be dynamically inconsistent in the sense of Jackson and Yariv (2014),

the first measure relies only on the utility functions Ûi, which is dynamically consistent.

7 Case of homogeneous members

If the members are sufficiently homogeneous, then the choice of the objective function does not

affect what the fund should choose. We now give two sufficient conditions for this to be the

case. We say that Ui exhibits constant relative risk aversion if so does the felicity function ui,

that is, −u′′i (xi)xi/u′i(xi) does not depend on xi. Since the domain of ui is assumed to contain

0, the constant must necessarily be less than one. We say that a pension scheme h is linear if

h(·, t) : R+ → R is linear for every t ∈ T . Denote by HL the set of all linear pension schemes.

Proposition 2 Let
(

(ei, ai, ti)i=1,2,...,I , p
)
∈ S and suppose that U1 = U2 = · · · = UI and

t1 = t2 = · · · = tI . Suppose also that for each i, there is a θi > 0 such that θ−1
1 e1 = θ−1

2 e2 =

· · · = θ−1
I eI and θ−1

1 a1 = θ−1
2 a2 = · · · = θ−1

I aI . If, in addition, either of the following two

additional conditions is met, then there is an h ∈ HL such that for every V ∈ W , h is a

solution to (11). Moreover, if ĥ is another solution, then ch = cĥ and kh = kĥ.

1. θ1 = θ2 = · · · = θI .

2. The Ui exhibit constant relative risk aversion.
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Proof of Proposition 2 For each (ei, ai, ti, p) ∈ C ×R+× T ×P , define D(ei, ai, ti, p) as the

set of all ci ∈ C such that ci(t) ≤ ei(t) for every t < ti and

ci(t) = ei(t) +

ai +

ti−1∑
τ=0

p(τ)(ei(τ)− ci(τ))

∞∑
τ=ti

p(τ)

for every t ≥ ti. Then D(ei, ai, ti, p) is nonempty and convex. Since, for every ci ∈ D(ei, ai, ti, p),

ci(ti) = ci(ti+1) = ci(ti+2) = · · · and these values are uniquely determined by ci(0), ci(1), . . . , ci(ti−
1), it can be easily shown that D(ei, ai, ti, p) is compact with respect to the sup-norm topol-

ogy. Since Ui is continuous with respect to the sup-norm topology, there is a solution to the

problem of maximizing Ui(ci) subject to ci ∈ D(ei, ai, ti, p). Since Ui is strictly concave and

D(ei, ai, ti, p) is convex, the solution is unique. Moreover, for every ci ∈ C, there is an h ∈ H
such that ci = chi starting from state (ei, ai, ti, p) if and only if ci ∈ D(ei, ai, ti, p). Furthermore,

if ei(t) > 0, denote this value by κ(t), then κ(t) ∈ [0, 1]. If ei(t) = 0, then let κ(t) be any value

in [0, 1]. Define h ∈ H by h(x, t) = (1 − κ(t))x for every (x, t) ∈ R+ × T . Then h ∈ HL and

c∗ = ch. That is, the solution to the problem of maximizing Ui(ci) subject to ci ∈ D(ei, ai, ti, p)

can be generated by a linear scheme.

1. Since e1 = e2 = · · · = eI , a1 = a2 = · · · = aI , and t1 = t2 = · · · = tI , D(e1, a1, t1, p) =

D(e2, a2, t2, p) = · · · = D(eI , aI , tI , p). Since U1 = U2 = · · · = UI , the unique solutions c∗i
to the problems of maximizing Ui(ci) subject to ci ∈ D(ei, ai, ti, p) are all identical, and the

objective function V (c) in the fund’s maximization problem (11) coincides with the I-tuple of

the individual members’ common utility levels Ui(ci). Let h ∈ HL be such that chi = c∗i , then

(c∗, kh, h) is the solution to (12).

2. Consider two members i and j, with the unique solutions c∗i and c∗j to the problems

of maximizing Ui(ci) subject to ci ∈ D(ei, ai, ti, p) and analogously for j. We now prove that

θ−1
i c∗i = θ−1

j c∗j . To do so, note first that for every cj ∈ C, cj ∈ D(ej , aj , tj , p) if and only

if θiθ
−1
j cj ∈ Ci because ei = θiθ

−1
j ej and ai = θiθ

−1
j aj . Then, since Ui = Uj and they are

homothetic, and since c∗j is the solution in D(ej , aj , tj , p), θiθ
−1
j c∗j is the solution in D(ei, ai, ti, p),

that is, c∗i = θiθ
−1
j c∗j .

Take any i and let h be a linear scheme that generates c∗i . We now prove that c∗j = chj for

every j 6= i as well. In fact, since θ−1
1 e1 = θ−1

2 e2 = · · · = θ−1
I eI and θ−1

1 c∗1 = θ−1
2 c∗2 = · · · = θ−1

I c∗I ,

for every t ∈ T , if ei(t) > 0 for every i, then c∗1(t)/e1(t) = c∗2(t)/e2(t) = · · · = c∗I(t)/eI(t). Thus

c∗j = chj for every j 6= i as well. We next prove that h is a solution to (12). Let ĥ ∈ H,

then cĥi ∈ D(ei, ai, ti, p) for every i. Hence Ui(c
ĥ
i ) ≤ Ui(c

∗
i ) for every i. Thus V (cĥ) ≤ V (c∗).

Hence h is a solution to (11). Moreover, if ĥ is another solution, then Ui(c
ĥ
i ) = Ui(c

∗
i ) for every

i. Hence, by the uniqueness of the solution to the problem of maximizing Ui(ci) subject to

ci ∈ D(ei, ai, ti, p), c
ĥ
i = c∗i for every i. ///
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The following proposition shows that the sequence of pension schemes is dynamically con-

sistent in the case of homogeneous members.

Proposition 3 If either of the two conditions of Proposition 2 is met, then for every state-

dependent objective functions, the pension fund is dynamically consistent.

Proof of Proposition 3 Let (V (· | s))s∈S be a state-dependent objective function, and let

the sequence (ht)t∈T of pension schemes, the allocations c∗ and k∗ of consumption and deposit

processes, and the state process s∗ be generated by (V (· | s))s∈S . Let ĥ be a solution to (11).

We shall prove that c∗ = cĥ by showing by induction on t that c∗(t) = cĥ(t) for every t.

For each (ei, ai, ti, p) ∈ C ×R+ × T ×P , define D(ei, ai, ti, p) as in the proof of Proposition

2. It follows immediately from the definition of kĥ that kĥ1 (t) = kĥ2 (t) = · · · = kĥI (t) for every

t in the first case of Proposition 2. Thus, for every i, the objective function V (· | sĥ(t), t) is a

strictly increasing transformation of Ui(ci), where ci ∈ D(eti, k
ĥ
i (t), (ti− t)+, pt). It follows from

induction t that θ−1
1 kĥ1 (t) = θ−1

2 kĥ2 (t) = · · · = θ−1
I kĥI (t) in the second case of Proposition 2.

Since the Ui are identical and homogeneous, for every i, the objective function V (· | sĥ(t), t) is a

strictly increasing transformation of Ui(ci), where ci ∈ D(eti, k
ĥ
i (t), (ti − t)+, pt). The same can

be said of for the k∗i (t): By inductively applying the proof of Proposition 2, for every t ∈ T ,

k∗1(t) = k∗2(t) = · · · = k∗I (t) in the first case of the proposition and θ−1
1 k∗1(t) = θ−1

2 k∗2(t) =

· · · = θ−1
I k∗I (t) and in the second case of the proposition. Hence, in either case, for every

i, the objective function V (· | s∗(t), t) is a strictly increasing transformation of Ui(ci), where

ci ∈ D(eti, k
∗
i (t), (ti− t)+, pt). Thus, to consider the problem of maximizing the state-dependent

objective function on each period t, it suffices to consider the problem of maximizing Ui(ci)

subject to ci ∈ D(eti, k
ĥ
i (t), (ti− t)+, pt) or ci ∈ D(eti, k

∗
i (t), (ti− t)+, pt). In particular, for every

i, cĥi is obtained by maximizing Ui(ci) subject to ci ∈ D(ei, ai, ti, p), and, for every t, c∗i (t) is

obtained by maximizing Ui(ci) subject to ci ∈ D(eti, k
∗
i (t), (ti − t)+, pt) and letting c∗i (t) = ci(0)

for its unique solution ci.

We now prove that for every t, cĥ,t belongs to D(eti, k
ĥ
i (t), (ti−t)+, pt) and solves the problem

of maximizing Ui(ci) subject to ci ∈ D(eti, k
ĥ
i (t), (ti − t)+, pt). Indeed, if such a ci is chosen on

period t onwards, then the consumption process
(
cĥi (0), cĥi (1), . . . , cĥi (t− 1), ci

)
is obtained.

Since
(
cĥi (0), cĥi (1), . . . , cĥi (t− 1), ci

)
∈ D(ei, ai, ti, p), the definition of ĥ implies that

Ui

(
cĥi (0), cĥi (1), . . . , cĥi (t− 1), ci

)
≤ Ui(cĥi ).

This implies that Ui(ci) ≤ Ui
(
cĥ,ti

)
because

Ui(ci) =

t−1∑
τ=0

exp(−ρi(τ))ui(ci(τ)) + exp(−ρit)Ui(cti)

for every ci. Thus cĥ,t solves the problem of maximizing Ui(ci) subject to ci ∈ D(eti, k
ĥ
i (t), (ti −

t)+, pt).
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By construction, for every t, chti is the unique solution to the problem of maximizing Ui(ci)

subject to ci ∈ D(eti, k
∗
i (t), (ti − t)+, pt). When t = 0, this implies that ch0i = cĥi . Thus

c∗i (0) = ct̂i(0). Hence k∗i (1) = kĥ(1). Let t ≥ 1 and suppose that k∗i (t) = kĥi (t). Then

D(eti, k
∗
i (t), (ti− t)+, pt) = D(eti, k

ĥ
i (t), (ti− t)+, pt). Hence chti = cĥ,ti . Thus c∗i (t) = ct̂i(t). Hence

k∗i (t+ 1) = kĥ(t+ 1), and the proof is completed. ///

8 Nash bargaining solution

In this section, we consider the case where the pension fund’s objective function is the so-called

Nash product, the maximization of which leads to the Nash bargaining solution. The main

results of this paper are Propositions 4, 5, and 6. Together, they show that depending on the

price processes p, all members may be equally treated and any particular member may be most

favorably treated. The lemmas leading to these propositions are provided before them.

In the following lemma, we give a first-order necessary and sufficient condition for a pension

scheme to generate the Nash bargaining solution. To state it, for each member i, each scheme

h, and each function η : R+ × T → R+, if h+ εη ∈ H for every sufficiently small ε > 0, denote

by πi(η |h) the (right) derivative of the function ε 7→ Ũi

(
ch+εη
i

)
evaluated at ε = 0, where

Ũi = (1− exp(−ρi))Ui. Since Ũi is differentiable and ch+εη
i is affine in ε, this function is indeed

differentiable and

πi(η |h)

=−
∑
t<ti

(1− exp(−ρi)) exp(−ρit)u′i
(
chi (t)

)
η(ei(t), t)

+ exp(−ρiti)u′i
(
chi (ti)

) ∑
t<ti

p(t)η(ei(t), t)∑
t≥ti p(t)

=
∑
t<ti

(
exp(−ρiti)u′i

(
chi (ti)

) p(t)∑
τ≥ti p(τ)

− (1− exp(−ρi)) exp(−ρit)u′i
(
chi (t)

))
η(ei(t), t)

(13)

Thus πi(η |h) is linear in η. Define p̄i ∈ R1+ti
++ by letting p̄i(t) = (1−exp(−ρi)) exp(−ρit)u′i

(
chi (t)

)
for every t. Then define p̄i ∈ R1+t∗

++ by letting p̄i(t) = pi(t) for every t < t∗ and p̄i(t∗) =∑∞
τ=t∗

pi(τ). Define p̄ ∈ R1+ti
++ analogously. For each t < ti, if η(ei(t), t) = 1 and η(ei(τ), τ) = 0

whenever τ < ti and τ 6= t, then

πi(η |h) = p̄i(ti)
p̄(t)

p̄(ti)
− p̄i(t). (14)

Lemma 5 Suppose that the function (9) is concave for every i. For each i, let

ci = ei +

(
ai
p(0)

, 0, 0, . . .

)
∈ C.
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Let h∗ ∈ H and suppose that Ûi(c
h∗
i ) > Ûi(ci) for every i. Then h∗ is a solution to the problem

of maximizing
∏I
i=1

(
Ûi(c

h
i )− Ûi(ci)

)
by choosing an h ∈ H subject to the constraint that

Ûi(c
h
i ) > Ûi(ci) for every i if and only if there is a θ = (θ1, θ2, . . . , θI) ∈ RI

++ such that that

θ1u
′
1

(
Û1

(
ch
∗

1

))(
Û1(ch

∗
1 )− Û1(c1)

)
= · · · = θIu

′
I

(
ÛI

(
ch
∗
I

))(
ÛI(c

h∗
I )− ÛI(cI)

)
. (15)

and
I∑
i=1

θiπi (h− h∗ |h∗) ≤ 0 (16)

for every h ∈ H.

Proof of Lemma 5 By the chain rule,

d

dε
ln

(
I∏
i=1

(
Ûi

(
c
h∗+ε(h−h∗)
i

)
− Ûi(ci)

))∣∣∣∣∣
ε=0

=

I∑
i=1

d

dε
ln
(
Ûi

(
c
h∗+ε(h−h∗)
i

)
− Ûi(ci)

)∣∣∣∣
ε=0

=

I∑
i=1

(
u−1
i

)′ (
Ũi
(
ch
∗
i

))
Ûi
(
ch
∗
i

)
− Ûi (ci)

πi(h− h∗ |h∗)

=
I∑
i=1

πi(h− h∗ |h∗)

u′i

(
Ûi
(
ch
∗
i

))(
Ûi
(
chi
)
− Ûi

(
ch
∗
i

)) .

Thus, if h∗ is a solution, then
I∏
i=1

(
Ûi

(
c
h∗+ε(h−h∗)
i

)
− Ûi(ci)

)
≤ 0 for every h ∈ H and ε ≥ 0,

and, hence,
I∑
i=1

πi(h− h∗ |h∗)

u′i

(
Ûi
(
ch
∗
i

))(
Ûi
(
chi
)
− Ûi

(
ch
∗
i

)) ≤ 0.

Thus, if we define θ = (θ1, θ2, . . . , θI) ∈ RI
++ by letting θi =

(
u′i

(
Ûi
(
ch
∗

1

))(
Ûi(c

h∗
i )− Ûi(ci)

))−1

for each i, then both (15) and (16) hold.

Suppose that there is no θ for which both (15) and (16) hold. Define θ = (θ1, θ2, . . . , θI) ∈
RI

++ by letting θi =
(
u′i

(
Ûi
(
ch
∗

1

))(
Ûi(c

h∗
i )− Ûi(ci)

))−1
for each i, then (15) holds. Thus,

(16) must not hold, that is, there is an h ∈ H for which (16) fails to hold. Thus,

d

dε
ln

(
I∏
i=1

(
Ûi

(
c
h∗+ε(h−h∗)
i

)
− Ûi(ci)

))∣∣∣∣∣
ε=0

> 0.
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Hence, for such an h and a sufficiently small ε > 0, Ûi

(
c
h∗+ε(h−h∗)
i

)
− Ûi (ci) for every i and

I∏
i=1

(
Ûi

(
c
h∗+ε(h−h∗)
i

)
− Ûi (ci)

)
>

I∏
i=1

(
Ûi

(
ch
∗
)
− Ûi (ci)

)
.

Thus h∗ is not a solution. ///

If all members have the same income process, then the first-order condition for the Nash

bargaining solution has a particularly intuitive form.

Lemma 6 Suppose that the function (9) is concave for every i. Assume that there are a t∗ ≥ 1

and a e∗ ∈ C such that ti = t∗ and ei = e∗ for every i. For each i, let

ci = ei +

(
ai
p(0)

, 0, 0, . . .

)
∈ C.

Let h∗ ∈ H and suppose that Ûi(c
h∗
i ) > Ûi(ci) for every i. For each i, define pi ∈ P by

letting pi(t) = (1− exp(−ρi)) exp(−ρit)u′i
(
ch
∗
i (t)

)
for every t. Then define p̄i ∈ R1+t∗

++ by letting

p̄i(t) = pi(t) for every t < t∗ and p̄i(t∗) =
∑∞

τ=t∗
pi(τ). Define p̄ analogously. Then h∗ is a

solution to the problem of maximizing
∏I
i=1

(
Ûi(c

h
i )− Ûi(ci)

)
by choosing an h ∈ H subject to

the constraint that Ûi(c
h
i ) > Ûi(ci) for every i if and only if there is a θ = (θ1, θ2, . . . , θI) ∈ RI

++

such that

θ1u
′
1

(
Û1

(
ch
∗

1

))(
Û1(ch

∗
1 )− Û1(c1)

)
= · · · = θIu

′
I

(
ÛI

(
ch
∗
I

))(
ÛI(c

h∗
I )− ÛI(cI)

)
. (17)

and

I∑
i=1

θip̄i(t) ≥ p̄(t) for every t ≥ t∗, (18)

I∑
i=1

θip̄i(t) = p̄(t) for every t ≥ t∗ with h∗(e∗(t), t) > 0, (19)

I∑
i=1

θip̄i(t∗) = p̄(t∗). (20)

Proof of Lemma 6 Suppose that h∗ is a solution and let θ be as Lemma 5. By multiplying a

scalar to θ if necessary, we can assume that (20) holds. For each t < ti, define ηt ∈ H by letting

ηt(x, τ) = 1 if (x, τ) = (ei(t), t) η
t(x, τ) = 0 otherwise. Since supxi>0 u

′
i(xi) = ∞, ch

∗
i (t) > 0

and, hence, h(e∗(t), t) = e∗(t) − ch
∗
i (t) < e∗(t). Thus, h∗ + εη ∈ H for every sufficiently small

ε > 0. By (14),

πi(η
t |h∗) = p̄i(t∗)

p̄(t)

p̄(t∗)
− p̄i(t). (21)
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Thus, by (16) and (20) and (20),

0 ≥
∑
i

θiπi(η
t |h∗) = p̄(t)−

∑
i

θip̄i(t).

Hence (18) holds. If, in addition, h∗(e∗(t), t) > 0, then h − εη ∈ H for every sufficiently small

ε > 0. Thus

0 ≥
∑
i

θiπi(−ηt |h∗) = −p̄(t) +
∑
i

θip̄i(t).

Thus (19) holds.

Suppose conversely that there is a θ for which (18), (19), and (20) holds. Let h ∈ H, then

h− h∗ =
∑
t<ti

(h(e(t), t)− h∗(e(t), t)) ηt(e(t), t).

Since π(· |h∗) is linear for each i, by (21) and (20),∑
i

θiπi(h− h∗ |h∗)

=
∑
i

θi

(∑
t<ti

(h(e(t), t)− h∗(e(t), t))πi(ηt(e(t), t))

)

=
∑
i

θi

(∑
t<ti

(h(e(t), t)− h∗(e(t), t))
(
p̄i(t∗)

p̄(t)

p̄(t∗)
− p̄i(t)

))

=
∑
t<ti

(h(e(t), t)− h∗(e(t), t))

(∑
i

θi

(
p̄i(t∗)

p̄(t)

p̄(t∗)
− p̄i(t)

))

=
∑
t<ti

(h(e(t), t)− h∗(e(t), t))

(
p̄(t∗)−

∑
i

θip̄i(t)

)
.

By (18), p̄(t∗) −
∑

i θip̄i(t) ≤ 0. If, in addition, h(e(t), t) − h∗(e(t), t) < 0, then h∗(e(t), t) > 0

and hence, by (19), p̄(t∗)−
∑

i θip̄i(t) = 0. Thus (16) holds. ///

The next proposition shows that when all members retirement ages, any consumption pro-

cess, once scaled up or down to satisfy the budget constraint, can be attained at the Nash

bargaining solution, if there is no restriction on the price process under consideration. The

proof is based on a fixed-point argument, just like the proof of the existence of a competitive

equilibrium.

Proposition 4 Let t∗ ∈ T \{0} and b ∈ C∩L++ and suppose that b(t) = b(t∗) for every t > t∗.

Define e∗ ∈ C by

e∗(t) =

{
b(t) if t < t∗,

0 if t ≥ t∗.

Then there is a p ∈ P such that if ei = e∗, ai = 0, and ti = t∗ for every i, and h∗ is a solution
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to the problem of maximizing
∏I
i=1

(
Ûi(c

h
i )− Ûi(e∗)

)
subject to Ûi

(
chi
)
≥ Ûi(e∗) for every i by

choosing an h ∈ H under the price process p, then

ch
∗
i =

p · e∗
p · b

b

for every i.

Proof of Proposition 4 Our proof consists of four steps.

Step 1 For each p ∈ P , consider the following maximization problem:

max
c∗∈C

∏
i

(
Ûi(c∗)− Ûi(e∗)

)
subject to c∗(t) = c∗(t∗) for every t > t∗,

p · c∗ ≤ p · e∗,
Ûi(c∗) ≥ Ûi(e∗) for every i.

(22)

Define p̄ = (p̄(t))t≤t∗ ∈ R1+t∗
++ by letting p̄(t) = p(t) for every t < t∗ and p̄(t∗) =

∑∞
τ=t∗

p(τ).

For each c∗ ∈ C, define c̄∗ = (c̄(t))t≤t∗ ∈ R1+t∗
+ by letting c̄∗(t) = c∗(t) for every t ≤ t∗, and

similarly for b̄ and ē∗. Then (22) can be rewritten as

max
c̄∗∈R1+t∗

+

∏
i

(
Ûi(c̄∗)− Ûi(ē∗)

)
subject to p̄ · c̄∗ ≤ p̄ · ē∗,

Ûi(c̄∗) ≥ Ûi(ē∗) for every i,

(23)

where, by a slight abuse of notation, Ûi(c̄∗) is meant to be Ûi(c∗) and similarly for Ûi(ē∗). Then

ē∗ satisfies the constraints and the set of all c̄∗’s that satisfy them is convex and compact. Since

the objective function is continuous, there is a solution. Moreover, since u′i(x) → ∞ as x → 0

for every i, for every t < t∗ and every sufficiently small ε > 0, if we define c̄∗ by replacing ē∗(t)

by ē∗(t)−εp̄(t∗) and ē∗(t∗) (which is equal to zero) by εp̄(t), and retaining the other coordinates

of ē∗, then Ûi(c̄∗) > Ûi(ē∗) for every i. Thus, at every solution, Ûi(c̄∗) > Ûi(ē∗) for every i.

Since it is strictly quasi-concave on the set of all such c̄∗’s, the solution is unique. Denote it by

y(p̄). We have thus defined a function y : R1+t∗
++ → R1+t∗

+ .

Step 2 It is easy to show that y is continuous and homogeneous of degree zero, and that

p̄ · y(p̄) = p̄ · ē∗ for every p̄ ∈ R1+t∗
++ . Since the Ûi are strictly increasing, if p̄ 6∈ R1+t∗

++ , then

there is no solution to the problem (23). We now prove by a contradiction argument that

if (p̄n)n is a sequence on R1+t∗
++ , p̄ ∈ R1+t∗

+ \
(
R1+t∗

++ ∪ {0}
)
, and p̄n → p̄ as n → ∞, then

‖y(p̄n)‖ → ∞. If not, then, by taking a subsequence if necessary, we can assume that there is

a c̄∗ ∈ C such that y(p̄n) → c̄∗∗ as n → ∞. Let c̄∗ ∈ C and suppose that p̄ · c̄∗ ≤ p̄ · ē∗ and

Ûi(c̄∗) ≥ Ûi(ē∗) for every i. Without loss of generality, we can assume that c̄∗ ∈ R1+t∗
++ because,

if not, then c̄∗(t) = 0 for some t and we could replace such coordinate can be replaced by a

sufficiently small ε > 0 to increase the Ûi (c̄∗). Then p̄ · c̄∗ > 0. If Ûi(c̄∗) = Ûi(ē∗) for every i for
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some i, then
∏
i

(
Ûi(c̄∗)− Ûi(ē∗)

)
= 0. Hence

∏
i

(
Ûi(c̄

∗
∗)− Ûi(ē∗)

)
≥
∏
i

(
Ûi(c̄∗)− Ûi(ē∗)

)
. If

Ûi(c̄∗) > Ûi(ē∗) for every i for every i, then, for each n, define

c̄n∗ =
p̄n · ē∗
p̄n · c̄∗

c̄∗,

then, for every sufficiently large n, p̄n · c̄n∗ = p̄n · ē∗ and Ûi(c̄
n
∗ ) > Ûi(ē∗) for every i. Moreover,

since p̄ · c̄∗ > 0, c̄n∗ → c̄∗ as n→∞. Thus∏
i

(
Ûi(c̄

n
∗ )− Ûi(ē∗)

)
≤
∏
i

(
Ûi(y(p̄n))− Ûi(ē∗)

)
.

Hence, by taking the limits of both sides as n→∞, we obtain∏
i

(
Ûi(c̄∗)− Ûi(ē∗)

)
≤
∏
i

(
Ûi(c̄

∗
∗)− Ûi(ē∗)

)
.

Thus c̄∗∗ is a solution to the problem (23) under p̄ 6∈ R1+t∗
++ . This is a contradiction. Hence

‖y(p̄n)‖ → ∞.

Step 3 Define b̄ ∈ R1+t∗
++ by letting b̄(t) = b(t) for every t ≤ t∗. Define z : R1+t∗

++ → R1+t∗ by

letting

z(p̄) = y(p̄)− p̄ · ē∗
p̄ · b̄

b̄

for every p̄ ∈ R1+t∗
++ . Then z is continuous and homogenous of degree zero, and satisfies Walras’s

law, that is, p̄ · z(p̄) = 0 for every p̄ ∈ R1+t∗
++ . Since 0 < p̄ · ē∗ < p̄ · b̄, the set{

p̄ · ē∗
p̄ · b̄

b | p̄ ∈ R1+t∗
++

}
is bounded. Thus z is bounded from below and if (p̄n)n is a sequence on R1+t∗

++ , p̄ ∈ R1+t∗
+ \(

R1+t∗
++ ∪ {0}

)
, and p̄n → p̄ as n → ∞, then ‖z(p̄n)‖ → ∞. Thus, by Proposition 17.C.1 of

Mas-Colell, Whinston, and Green (1995), there is a p̄ ∈ R1+t∗
++ such that z(p̄) = 0, that is,

y(p̄) =
p̄ · ē∗
p̄ · b̄

b̄.

Let p ∈ P and assume that p(t) = p̄(t) for every t < t∗ and
∑∞

τ=t∗
p(τ) = p̄(t∗). Let c̄∗ = y(p̄)

and define c∗ ∈ C by letting c∗(t) = c̄∗(t) for every t ≤ t∗ and c∗(t) = c̄∗(t∗) for every t > t∗.

Then c∗ coincides with
p · e∗
p · b

b

and solves the problem (22).

Step 4 Let h∗ ∈ H and assume that h∗(e∗(t), t) = e∗(t)− c∗(t) for every t < t∗, then

ch
∗
i =

p · e∗
p · b

b
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for every i, because p ·c∗ = p ·e∗. Let h ∈ H and suppose that Ûi
(
chi
)
≥ Ûi(e∗) for every i. Then

ch1 = ch2 = · · · = chI , and, for every i, p · chi ≤ p · e∗ and chi (t) = chi (t∗) for every t > t∗. Since c∗ is

the solution to the problem (22),
∏I
i=1

(
Ûi(c

h∗
i )− Ûi(e∗)

)
≥
∏I
i=1

(
Ûi(c

h
i )− Ûi(e∗)

)
. Thus h∗

is a solution to the problem of maximizing
∏I
i=1

(
Ûi(c

h
i )− Ûi(e∗)

)
subject to Ûi

(
chi
)
≥ Ûi(e∗)

for every i by choosing an h ∈ H under the price process p. ///

The following proposition can be derived from Proposition 4 by letting b = (1, 1, . . . ) and

noticing that Ûi(κb) = κ for every κ ∈ R+. It claims that all the members may well be equally

treated under some price process.

Proposition 5 Let t∗ ∈ T \ {0}. Then, there are an e∗ ∈ C and a p ∈ P such that if

ei = e∗, ai = 0, and ti = t∗ for every i, and if h∗ is a solution to the problem of maximizing∏I
i=1

(
Ûi(c

h
i )− Ûi(e∗)

)
subject to Ûi

(
chi
)
≥ Ûi(e∗) for every i by choosing an h ∈ H under the

price process p, then Û1

(
ch
∗

1

)
= Û2

(
ch
∗

2

)
= · · · = ÛI

(
ch
∗
I

)
.

The following proposition shows that for every member, there is a price process under which

the member is best treated among all the members at the Nash bargaining solution. The proof

is based on Farkas’s lemma and the aggregation theorem of heterogeneous discount rates along

the lines of Weitzman (2001), Gollier and Zeckhauser (2005), and Hara (2008).

Proposition 6 Suppose that ρi 6= ρj whenever i 6= j. Let t∗ ∈ T \ {0}. Suppose that t∗ ≥ 3 or

|I| ≤ 2. Then, for every i, there are an e∗ ∈ C and a p ∈ P such that if ei = e∗, ai = 0, and

ti = t∗ for every i, and if h∗ is a solution to the problem of maximizing
∏I
i=1

(
Ûi(c

h
i )− Ûi(e∗)

)
subject to Ûi

(
chi
)
> Ûi(e∗) for every i by choosing an h ∈ H under the price process p, then

Ûi
(
ch
∗
i

)
> Ûj

(
ch
∗
j

)
for every j 6= i.

Proof of Proposition 6 To start, we note that by replacing each consumption process c∗ ∈ C
satisfying c∗(t) = c∗(t∗) for every t > t∗ by c̄∗ ∈ R1+t∗

+ satisfying c̄∗(t) = c∗(t) for every

t ≤ t∗, we can regard the utility function Ũi as defined on R1+t∗
+ . Then we prove the following

fact. Let c̄∗ be the solution to the problem (23). For each i, define p̄i ∈ R1+t∗
++ by letting

p̄i(t) = (1− exp(−ρi)) exp(−ρit)u′i(c̄∗(t)) for every t < t∗ and p̄i(t∗) = exp(−ρit∗)u′i(c̄∗(t∗)). We

then claim that p̄ is a strictly positive linear combination of the p̄i. Indeed,

∇ ln

(
I∏
i=1

(
Ûi (c̄∗i)− Ûi(ē∗)

))

=

I∑
i=1

∇ ln
(
Ûi (c̄∗)− Ûi(ē∗)

)

=
I∑
i=1

(
u−1
i

)′ (
Ũi (c̄∗)

)
Ûi (c̄∗)− Ûi (c̄∗)

∇Ũi (c̄∗)

=

I∑
i=1

1

u′i

(
Ûi (c̄∗)

)(
Ûi (c∗)− Ûi (ē∗)

) p̄i.
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Hence this is a strictly positive linear combination of the p̄i. It is, also, a strictly positive

multiple of p̄, because c̄∗ is the solution to (23) and Ûi (c̄∗) > Ûi (ē∗) for every i. Thus, p̄ is a

strictly positive linear combination of the p̄i.

Now, let b = (1, 1, . . . ) ∈ C. By Proposition 4, there are an e∗ ∈ C and a p ∈ P such that if

h∗ is a solution to the problem of maximizing
∏I
i=1

(
Ûi(c

h
i )− Ûi(e∗)

)
subject to Ûi

(
chi
)
≥ Ûi(e∗)

for every i by choosing an h ∈ H under the price process p, then

ch
∗
i =

p · e∗
p · b

b

for every i. Denote the vector on the right-hand side by c∗. For each i, define

pi = ((1− exp(−ρi)) exp(−ρit))t∈T ∈ P

and p̄i = (p̄i(t))t≤t∗ ∈ R1+t∗
++ by letting p̄i(t) = (1 − exp(−ρi)) exp(−ρit) for every t < t∗ and

p̄i(t∗) = exp(−ρit∗).
We now prove that for every i, there is no (µj)j 6=i ∈ R

I\{i}
+ such that p̄i =

∑
j 6=i µj p̄j . This

is true if |I| ≤ 2 because ρi 6= ρj whenever i 6= j. Suppose that t∗ ≥ 3 and there are an i and a

(µj)j 6=i ∈ R
I\{i}
+ such that p̄i =

∑
j 6=i µj p̄j . Then

∑
j 6=i

µj(1− exp(−ρj)) = 1− exp(−ρi),∑
j 6=i

µj(1− exp(−ρj)) exp(−ρj) = (1− exp(−ρi)) exp(−ρi),∑
j 6=i

µj(1− exp(−ρj)) exp(−2ρj) = (1− exp(−ρi)) exp(−2ρi).

Thus ∑
j 6=i

µj(1− exp(−ρj))
1− exp(−ρi)

(exp(−ρj)− exp(−ρi))2

=
∑
j 6=i

µj(1− exp(−ρj))
1− exp(−ρi)

(exp(−ρj))2 −

∑
j 6=i

µj(1− exp(−ρj))
1− exp(−ρi)

exp(−ρj)

2

= exp(−2ρi)− (exp(−ρi))2 = 0.

Thus, ρj = ρi whenever µj > 0, but this is a contradiction because there is a j 6= i such that

µj > 0. Hence there is no (µj)j 6=i ∈ R
I\{i}
+ such that p̄i =

∑
j 6=i µj p̄j .

Therefore, by Farkas’s lemma, there is a v̄ = (v(t))t≤t∗ ∈ R1+t∗ such that p̄i · v̄ > 0 and

p̄j · v̄ ≤ 0 for every j 6= i. Define v = (v(t))t∈T ∈ `∞ by letting v(t) = v̄(t) for every t ≤ t∗ and

v(t) = v̄(t∗) for every t > t∗. Then pj · v = p̄j · v̄ for every j ∈ I. For every ε ≥ 0 sufficiently
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close to zero, define bε = b+ εv. Then bε ∈ C ∩ L++, bε(t) = bε(t∗) for every t > t∗, and

d

dε
Ûj(κb

ε)

∣∣∣∣
ε=0

=
(
u−1
j

)′ (
Ũj(κb)

) d

dε
Ũj(κb

ε)

∣∣∣∣
ε=0

=
1

u′j

(
Ûj(κb)

) d

dε
Ũj(κb̄

ε)

∣∣∣∣
ε=0

=
1

u′j(κ)
u′j(κ)pj · v = pj · v

for every j ∈ I. Thus

d

dε

(
Ûi(κb

ε)− Ûj(κbε)
)∣∣∣∣
ε=0

= pi · v − pj · v > 0

for every j 6= i. Since Ûi(κb) − Ûj(κb) = κ − κ = 0, there is an ε̄ > 0 such that for every

ε ∈ (0, ε̄), Ûi(κb
ε) > Ûj(κb

ε) for every j 6= i. Moreover, by the continuous differentiability of

the uj , such an ε̄ can be taken to be uniform with respect to κ over every compact interval of

R++, that is, for all κ and κ satisfying 0 < κ < κ < ∞, there is an ε̄ > 0 such that for every

ε ∈ (0, ε̄) and every κ ∈ [κ, κ], Ûi(κb
ε) > Ûj(κb

ε) for every j 6= i.

Define eε∗, p
ε ∈ P , and hε ∈ H as in Proposition 4 except that b is replaced by bε. Then

bε → b and eε∗ → e∗ as ε→ 0, and ch
ε

i = κεbε for every i, where

κε =
pε · eε∗
pε · bε

=
p̄ε · ēε∗
p̄ε · b̄ε

.

As we showed at the beginning of this proof, p̄ε is a strictly positive combination of the p̄εi .

Hence,

0 <
1

2
min
i

p̄i · ē∗
p̄i · b̄

< min
i

p̄i · ēε∗
p̄i · b̄ε

≤ κε ≤ 1

for every sufficiently small ε > 0. Thus, there is an ε̄ > 0 such that for every ε ∈ (0, ε̄),

Ûi(κb
ε) > Ûj(κb

ε) for every j 6= i. We can thus complete the proof by letting e∗ = eε∗ and

p = pε for any ε ∈ (0, ε̄). ///

9 Empirical results on dynamically inconsistency

In this section, we report some empirical results on the nature and extent of dynamic incon-

sistency. To simplify the analysis, we use the following assumptions regarding the initial state(
(ei, ai, ti)i=1,2,...,I , p

)
.

Assumption 1 1. I = 2.

2. For every i, ti = 2.

3. For every i, ai = 0.

4. For every i, ei(t) = 1 for every t = 0, 1 and ei(t) = 0 for every t ≥ 2.
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5. There is a γ ∈ (0, 1) such that ui(xi) = x1−γ
i for every i and every xi > 0.

6. ρ1 > ρ2, that is, δ1 < δ2.

7. Let h0 ∈ H be a Nash bargaining solution in the state
(

(ei, ai, ti)i=1,2,...,I , p
)

, then ch0i is

a scalar multiple of (1, 1, . . . ) ∈ C.

None of these assumptions needs explanation, possibly except for Condition 7. The existence

of such a price process p is guaranteed by Proposition 4, where b = (1, 1, . . . ). Our intension here

is to show that even if the pension fund plans to achieve the perfect consumption smoothing,

it may still change the scheme on period one.

The assumption is admittedly unrealistic, because it requires that there be only two members

and only two periods for them to work, that the earnings be equal between the two members and

over the two working periods, and they have the same felicity function that exhibits constant

relative risk aversion. Yet, it does make some sense to use empirical data on the heterogeneity

of discount rates to assess the extent of dynamic inconsistency, because the method to do so

can be extended to more general cases.

Before presenting our empirical results, let us give a brief theoretical analysis of the Nash

bargaining solution on period 0. First, since ai = 0 for every i, we can assume without loss of

generality that
∑∞

t=0 p(t) = 1. Second, define p̄ ∈ R3
++ by p̄(t) = p(t) for every t = 0, 1 and

p̄(2) =
∑∞

t=2 p(t). For each i, define p̄i ∈ R3
++ by p̄i(t) = (1 − exp(−ρi)) exp(−ρit) for every

t = 0, 1 and p̄i(2) = exp(−2ρi).

For simplicity, write c0
∗ = ch0i for each i. Then, by Proposition 4, c0

∗ = (p̄(0) + p̄(1))b =

(1 − p̄(2))b. In particular, each member saves, in real term, p̄(2) on each of periods 0 and 1.

Thus Ûi
(
c0
∗
)

= 1− p̄(2) for every i.

For each t = 0, 1, denote by ct∗ the consumption process that each member can receive from

period t onwards by quitting on period t. Then c0
∗ = (1, 1, 0, 0, . . . ) and

c1
∗ =

(
1 +

p̄(0)p̄(2)

p̄(1)
, 0, 0, . . .

)
.

Thus Ûi
(
c0
∗
)

= (1− exp(−2ρi))
1/(1−γ) and

Ûi
(
c1
∗
)

= (1− exp(−ρi))1/(1−γ)

(
1 +

p̄(0)p̄(2)

p̄(1)

)
.

Since ρ1 > ρ2, the utility level of member 1 (the more myopic member) at the disagreement

point is higher than that of member 2 on both periods, as suggested in the introduction.

To estimate the heterogeneity of discount rates, we use the micro data from the Preference

Parameters Study of Osaka University’s 21st Century COE Program ‘Behavioral Macrodynam-

ics Based on Surveys and Experiments’ and its Global COE Project ‘Human Behavior and

Socioeconomic Dynamics’. Surveys were conducted annually from 2002 to 2010 in Japan.2 The

2Surveys were conducted in the US, China, and India as well, albeit with lower frequency.
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number of respondents varies from year to year, 1418 on 2002 to 6181 on 2008. Each question-

naire, intended to elicit such preference parameters as subjective discount rates and coefficients

of risk aversion, consists of forty questions, of which we use Question 6 for our estimation. It

reads, roughly, as follows: Imagine that you can receive either one million yen in one month later

or receive another amount, say X yen, in thirteen months later. For which value of X would

you prefer to receive one million yen in one month?3 The values of X listed in the question and

the corresponding (not continuously compounded) annual rates of return are listed in Table 1.

Of the 5,123 respondents who made transitive and monotone choices in Question 6 in the

survey on 2010,4 the percentages of those who chose X yen thirteen months later over one

million yen one month later for each of the ten values of X are listed in the third column of

Table 1. We can see there that 1.35% of the respondents have negative discounts rates of −5%

or lower, and 3.18 (= 100 − 96.82) % of them have the discount rates of 100% or higher. The

fourth column is the percentage of those who chose to receive X yen, but not X ′ yen with any

X ′ < X, thirteen months later over one million yen one month later. For example, since 28.91%

of the respondents chose to receive 1,001,000 yen thirteen months later and the 43.86% of the

respondents chose to receive 1,005,000 yen thirteen months, the difference between the two,

14.95%, is the percentage of those who chose 1,005,000 yen but none of the smaller amounts

in the question. Referring to the second column, which lists the annual rates of return of the

amounts X in this question, we can infer that these 14.95% of the respondents have the discount

rates between 1% and 5%, which are listed, along with those for the other values of X, on the

fifth column. Then, we simply take the middle point of the two, 3%, as the discount rate of

this subgroup. This is the way we assign the discount rate to the respondents who chose X

yen thirteen months later but not X ′ yen for any X ′ < X, which are listed on the last column,

except for the subgroups at the top and bottom rows. Those on the top of the table have

discount rates −5% or lower, and we assume, somewhat arbitrarily, that they have discount

rates −7.5%; and those on the bottom of the table have discount rates 100% or higher, and we

assume, somewhat arbitrarily, that they have discount rates 200%.

Based on these responses, we determine the discount factors of the two members in As-

sumption 1 in the following two method. First, we simply take their discount factors to be the

first and third quantiles of the sample distribution of the discount factors. The first quantile is

nothing but the median of the discount factors of the respondents whose discount factors are

less than the median of all respondents, and the third quantile is nothing but the median of

the discount factors of the respondents whose discount factors are more than the median of all

respondents. Thus, the two members in our model represent those with discount rates higher

than the median and those with discount rates lower than the median. In this case, the first

3The actual wording of the question is different, so that it is in line with other questions in the questionnaire.
Its English version, given to subjects in the US, reads as follows: Now let’s assume that you have the option to
receive $10,000 in one month or receive a different amount in thirteen months. Compare the amounts and timing
in Option A with Option B and indicate which amount you would prefer to receive for all ten choices.

4We have eliminated the respondents who made the (non-transitive or non-monotone) choices such that, for
some X and X ′ with X < X ′, choosing X yen thirteen months later over one million yen one month later, and,
yet, choosing one million yen one month later over X ′ yen thirteen months later.
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Table 1: Percentages of the respondents who chose X yen thirteen months over one million yen
thirteen months later

response
category
X

annual rate
of return
(in percent)

percentages of
respondents
who chose X
yen thirteen
months later

percentages of
respondents who
chose X yen, but
not any X ′ yen
with X ′ < X,
thirteen months
later

range of dis-
count rates (in
percent) con-
sistent with
the choice

discount
rates (in
percent)
assigned

950,000 −5 1.35 1.35 (−∞,−5] −10
1,000,000 0 3.81 2.46 [−5, 0] −2.50
1,001,000 0.1 28.91 25.10 [0, 0.1] 0.05
1,005,000 0.5 43.86 14.95 [0.1, 0.5] 0.3
1,010,000 1 59.48 15.62 [0.5, 1] 0.75
1,020,000 2 65.49 6.01 [1, 2] 1.5
1,060,000 6 79.58 14.09 [2, 6] 4
1,100,000 10 89.24 9.66 [6, 10] 8
1,300,000 30 94.11 4.87 [10, 30] 20
2,000,000 100 96.82 2.71 [30, 100] 65

[100,∞) 200

Table 1 shows, in the 5,123 respondents on the 2010 survey, the amounts X to be received
thirteen months later; the annual rates of return, in percent, of the amounts X; the percentages
of the respondents who chose X yen thirteen months later over one million yen one month later;
the percentages of respondents who chose X yen, but not any X ′ yen with X ′ < X, thirteen
months later; the ranges of the discount rates, in percent, that are consistent with choosing
X, but not any X ′ yen with X ′ < X, thirteen months later; and the discount rates with the
respondents in the subgroups are assume to have.

member’s discount rate is equal to 4% and the second member’s discount rate is equal to 0.05%.

In the second method, we eliminate all the respondents who exhibited no discounting (that is,

those who chose one million yen thirteen months later over one million yen one month later,

and constitute 2.46% of all respondents), assume that the remaining responses are drawn from

a gamma distribution, and estimate the two parameters that determine the gamma distribution

by the monotone likelihood method. Then, we calculate, with respect to the gamma distribution

having the parameters we estimated, the conditional mean of the discount rates given that they

are higher than the median, and the conditional mean of the discount rates given that they are

lower than the median. Finally, we set the first member’s discount rate at the first conditional

mean and the second member’s discount factor at the second conditional mean. The discount

rates chosen for the two members are 16.15% and 0.18%.

Of these two methods, the first one is simpler and can accommodate negative discount rates.

The second one involves estimation of gamma distributions and is in line with the analysis of

Weitzman (2001), who showed that the distribution of the discount rates that more than 1,500
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PhD-level economists think should be used for the cost-benefit analysis of mitigating climate

change can be well approximated by a gamma distribution. Because of the definition of gamma

distributions, however, negative discount rates must be eliminated.

As for the common coefficient of relative risk aversion, or, more appropriately in the present

context, the intertemporal elasticity of substitution, we do not use any particular estimate but

simply try various values in our estimation. The reason for not attempting to pin down any

estimate of intertemporal elasticity of substitution is that we have no data set on it. Although

there is a vast literature on the estimates of coefficients of risk aversion, and the questionnaire

that we use does indeed contain some questions to elicit coefficients of risk aversion, we should

not take its reciprocal as the estimate of the intertemporal elasticity of substitution, because,

as we discussed in Example 1, the members may well have recursive utility functions, but not

necessarily additive separable expected utility functions, once the risks are taken into consid-

eration. As we will see, the value of the first measure of inefficiency, introduced in Section 6

depends sensitively on the value of intertemporal elasticity of substitution, which is another

reason why we do not use any particular estimate for it.

Table 2 shows the nature and extent of welfare losses resulting from the dynamically in-

consistent choices of schemes. The first three columns list the members’ discount rates and

coefficients γ of constant relative risk aversion that we use for estimation. The fourth column

lists the contribution that each member makes on each of periods 0 and 1 at the Nash bargaining

solution obtained on period 0. This contribution is, however, not realized on period 1. The fifth

column lists the contributions on period 1 generated by the Nash bargaining solution obtained

on that period. The sixth columns list the (common) utility level at the Nash bargaining solu-

tion obtained on period 0, which is not realized. The seventh and eighth column list the utility

levels generated by the dynamically inconsistent choices of schemes of the two sequential Nash

bargaining solutions.

The last column lists lower bounds on the first measure of inefficiency of the consumption

process generated by the dynamically inconsistent choices of pension schemes. They measure

roughly how much, in percentage, we can reduce the members’ incomes (with the same per-

centage applied to all periods and all members) while allowing them to enjoy the same utility

levels as those obtained at the dynamically inconsistent choices of pension schemes, if the fund

can commit itself to the scheme it chooses on period zero. They were calculated as follows.

Note first that the utility functions Ûi are homogeneous of degree one, because the felicity func-

tions ui exhibit constant relative risk aversion. Thus, if the endowments ei are scaled down

by factor θ and, at the same time, the pension scheme h at the Nash bargaining solution on

period 0 for the original income processes ei is changed to another pension scheme h′ such that

h′(x, t) = θh(θ−1x, t) for every (x, t), then the consumption processes generated by h′ with the

scaled down income processes θei coincide with the consumption processes generated by h with

the income processes ei and then scaled down by factor θ. In short, the utility possibility set

with the scaled down income processes θei can be obtained by scaling down the utility possibility

set with the original income process ei by factor θ. Now, calculate the ratio Û2(c∗)/Û1(c∗) of the
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two members’ utility levels at the (common) consumption process c∗ that is generated when the

fund has no commitment to the scheme it chose on period 0. Let c′∗ be a (common) consump-

tion process such that
(
Û1(c′∗), Û2(c′∗)

)
belongs to the utility possibility set (so that the pair of

utility levels can be attained by some pension scheme on period 0 if the fund can commit itself

to it) and Û2(c′∗)/Û1(c′∗) = Û2(c∗)/Û1(c∗). Let θ = Û1(c∗)/Û1(c′∗). We then claim that 1− θ is a

lower bound on the first measure of inefficiency. Indeed, suppose that the scheme h attains the

the pair
(
Û1(c′∗), Û2(c′∗)

)
of utility levels with the income processes ei. Define another scheme

h′ by letting h′(x, t) = θh(θ−1x, t) for every (x, t). Then h′ attains the (common) consumption

process θc′∗. Since Ûi(θc
′
∗) = θÛi(c

′
∗) = Ûi(c∗), the pair

(
Û1(c∗), Û2(c∗)

)
of utility levels can

be attained with the scaled-down income processes θei. In addition, if
(
Û1(c′∗), Û2(c′∗)

)
lies on

the frontier of the utility possibility set (so that it cannot be Pareto-dominated by the pair

of utility levels generated by any scheme even if the fund can commit itself to it), then 1 − θ
coincides with the first measure of inefficiency. Indeed, the pair cannot be attained with any

scaled-down income processes θ′ei with θ′ < θ, because if it were generated by some scheme, say

h′′, then define another scheme h′′′ by letting h′′′(x, t) = (θ′)−1h′′(θ′x, t) for every (x, t). Then

h′′′ would generate the (common) consumption process (θ′)−1c∗ with the income processes ei.

Since Ûi
(
(θ′)−1c∗

)
= (θ′)−1Ûi (c∗) > θ−1Ûi (c∗) = Ûi (c′∗), this is a contradiction to the hypoth-

esis that
(
Û1(c′∗), Û2(c′∗)

)
lies on the frontier of the utility possibility set. Thus 1− θ coincides

with the first measure of inefficiency.

Although there are many candidates for a consumption process c′∗ such that
(
Û1(c′∗), Û2(c′∗)

)
belongs to the utility possibility set and Û2(c′∗)/Û1(c′∗) = Û2(c∗)/Û1(c∗), the one we use is such

that c′∗(0) = c′∗(1). In other words, each member makes, in real term, the same contribution on

both periods before retirement. This choice of c′∗ is mainly for computational simplicity, but

probably not unreasonable, because the Nash bargaining solution obtained on period 0 has this

property.

We calculated lower bounds on the first measure of inefficiency introduced for ten cases.

The first four cases are for the discount rates derived from the first and third quantiles of the

distribution of the 5,123 responses. The second four cases are for the discount rates derived from

estimating the gamma distribution generating the responses to which positive discount rates

are assigned. In each of these two groups, we have five different coefficients γ of relative risk

aversion, 0.1, 0.2, 0.5, 0.8, and 0.9. Note first that the measure of inefficiency is an increasing

function of the coefficient of constant relative risk aversion, or, in other words, a decreasing

function of the intertemporal elasticity of substitution. This is consistent with our intuition.

The very purpose of pension schemes is to smooth consumption for members before and after

retirement. The less willing they are to accept bumpy consumption, the higher the welfare loss

caused by the dynamically inconsistent choices of schemes, relative to the consumption process

generated by the dynamically consistent one, which is, by Assumption 1, constant over time.

Second, the welfare loss is non-negligible in size. It may be well more than 5% of the total

wealth of the members even when γ is as small as 0.2, and it may exceed 14% if γ is 0.8 or

higher. Third, while the contributions that each member makes on periods 0 and 1 are equal
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(because each has the constant income and consumption over these periods) at the dynamically

consistent choice of pension scheme (the Nash bargaining solution obtained on period 0), the

contribution that is actually made on period 1 at the dynamically inconsistent choice (the Nash

bargaining solution obtained on period 1) is lower than the contribution at the dynamically

consistent choice. This can probably be attributed to the fact that the disagreement point

shifts to the direction that favors the more myopic member (member 1), although it is not a

general phenomenon. According to our separate calculation (not listed here), in some extreme

cases, such as member 1’s discount rate is 0.1, member 2’s discount rate is 0.55, and γ = 0.5,

the contribution that is actually made on period 1 is higher than the contribution planned on

period 0.

The consequence of the lower-than-planned contribution on period 1 is that the utility level

of the more patient member (member 2) is always lower at the dynamically inconsistent choice

than at the dynamically consistent choice, and the utility level of the more myopic member

(member 1) has the same property except for the cases in which γ ≥ 0.5 in the first specification

of discount rates, and γ = 0.9 in the second specification of discount rates. In short, unless

the members are very averse to consumption fluctuation, the dynamic inconsistency favors the

more myopic member, because the fund needs to offer, on their second earning period, a pension

scheme which the myopic member has no incentive to quit despite the fact that he has made

a (relatively) large contribution on the first earning period (at the Nash bargaining solution

obtained on period 0).
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10 Conclusion

We have provided a model of pension fund management to assess its efficacy. Our main results

are that depending on the price processes under which the fund can borrow and lend, all

members may well be equally treated or any particular member may well be best treated.

Based on a set of micro data, we have shown the welfare loss of dynamic inconsistency can

be as high as 14% of the members’ total wealth, and the dynamically inconsistent choices of

pension schemes tend to favor myopic members.

The model of this paper, being restrictive, admits many directions of future research. First

and foremost, we should accommodate uncertainty in the model and allow the pension fund to

trade not only the riskless asset but also risky ones. The Nash bargaining problem is, then,

more difficult to solve, because the utility possibility set is determined the volatility of the risky

assets and the market price of risk. Second, recall that the interest rate process r is defined by

letting r(t) = ln p(t) − ln p(t + 1) for every t. Then suppose that there are the borrowing and

lending rate processes, r and r, such that r(t) ≤ r(t) ≤ r(t) for every t, and that the members

can borrow at the rate r(t) and lend at the rate r(t). This means that unlike the pension

fund, which can borrow and lend at the rate r(t), the members have to incur transactions costs

r(t)− r(t) when borrowing and r(t)− r(t) when lending. This assumption is milder and more

realistic than the assumption, maintained throughout the paper, that the members have no

access to financial markets. The utility level that each member can attain from quitting the

fund, which determines the disagreement point, would be higher, and the more myopic members

would benefit at the Nash bargaining solution, under this milder assumption. Third, we should

allow the members of the fund to receive not only salaries but also dividends (from stocks he

owns) or rents (from apartments he owns), from which he does not contribute to the fund. Then,

they can receive nonzero consumption levels after retirement even when quitting the fund and,

again, this would affect the disagreement point. Those who receive higher dividends will benefit

at the Nash bargaining solution in this more general setting. Fourth, although we assume that

the members have additively separable utility functions, it would be better to assume that they

have recursive utility functions, because this weaker restriction on utility functions allow us

to disentangle intertemporal elasticity of substitution and risk aversion, if the latter can be

identified. As discussed in part 3 of Example 1, we can then use the recursive utility function

to define the utility possibility set and the less risk-averse members would then benefit at the

Nash bargaining solution.

Finally, we should give a fuller empirical analysis of the nature and extent of dynamic incon-

sistency. Our present analysis is limited to the case of two members, two earning periods, and

identical income processes. We should extend it to the case of arbitrary numbers of members,

earning periods, and types of income processes.
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