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Abstract

Idiosyncratic wage risk exhibits cyclical variation. The present paper analyzes how such risk

�uctuations a¤ect business cycles using a heterogeneous-agent model with uninsured idiosyncratic

wage risk and indivisible labor. I introduce risk �uctuations as uncertainty shocks and calibrate

those shocks to the U.S. micro-level wage data. When moved by both uncertainty and aggregate

TFP shocks, the model generates a weakly negative correlation between total hours worked and

average labor productivity and large �uctuations in the labor wedge close to those in the U.S.

economy. Without uncertainty shocks, hours and productivity comove strongly and the labor

wedge varies little.

Keywords: Uninsured idiosyncratic wage risk; Indivisible labor; Uncertainty shocks; Hours-productivity correlation; Labor

wedge

JEL classi�cation: E32, E24, D31

�Takahashi: Yoshidahonmachi, Sakyo-ku, Kyoto 606-8501, Japan. Email: takahashi@kier.kyoto-u.ac.jp,
Tel: +81-75-753-7153. I am grateful to Aubhik Khan, Bill Dupor, and Julia Thomas for their comments,
encouragement, and guidance. I would also like to thank Paul Evans, Tomoyuki Nakajima, Richard Roger-
son, Ken Yamada, Tomoaki Yamada, an anonymous referee, the associate editor, the editor, and semi-
nar/conference participants for their helpful comments. This work is supported by JSPS KAKENHI Grant
Number 26780119.



Time-Varying Wage Risk, Incomplete Markets, and Business Cycles 2

1. Introduction

Idiosyncratic earnings risk exhibits cyclical �uctuations (Storesletten et al. (2004), Heath-

cote et al. (2010), and Guvenen et al. (2014)). Further, empirical and theoretical analyses

�nd that an increase in wage uncertainty increases labor supply (Parker et al. (2005) and

Flodén (2006)). However, the implication for labor market �uctuations has not been studied.

How do changes in idiosyncratic wage uncertainty a¤ect business cycles? The present paper

examines the question quantitatively using a general equilibrium model.

The model analyzed here is built upon a heterogeneous-agent, incomplete asset mar-

kets model with indivisible labor (Chang and Kim (2006, 2007), Alonso-Ortiz and Rogerson

(2010), and Krusell et al. (2010, 2011)). Individuals face idiosyncratic wage risk because idio-

syncratic labor productivity changes stochastically. Individuals cannot fully insure against

this risk because there is only one asset, physical capital. They partially self-insure by hold-

ing capital and making employment choice. Importantly, when the process for idiosyncratic

productivity is calibrated to micro-level wage data, the model generates realistic heterogene-

ity in labor earnings and wealth across individuals.

The present paper introduces risk variation into the model using uncertainty shocks in

the spirit of Bloom (2009), i.e., time-varying standard deviation of idiosyncratic productivity

shocks. I measure the variation in idiosyncratic wage risk in the U.S. using the Panel Study

of Income Dynamics (PSID) and calibrate uncertainty shocks to the empirical evidence.

Introducing uncertainty shocks substantially improves the present model�s ability in ac-

counting for the U.S. labor market dynamics. One improvement is seen in the correlation

between total hours worked and average labor productivity (output per labor hour). With

uncertainty and aggregate TFP shocks, the model generates a weakly negative correlation

close to that in the U.S. (�0.17 in the model compared with �0.32 in the U.S.).1 In contrast,

1The data on total hours worked is taken from Cociuba et al. (2009). As Shimer (2010) argues, it is the
most comprehensive data on hours worked. The data used here is for 1947Q3�2009Q3. The weakly negative
correlation after 1984 is widely documented. Gali and Gambetti (2009) �nd a slightly positive correlation
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the model without uncertainty shocks produces a strong, positive correlation (0.83). Hence,

introducing varying risk breaks the counterfactually strong hours-productivity comovement.

The other improvement appears in the volatility in the labor wedge. The labor wedge is

the gap between average labor productivity and the marginal rate of substitution of leisure

for consumption in a representative-agent setting and it is volatile in the U.S. (Chari et al.

(2007) and Shimer (2010)). With uncertainty and aggregate TFP shocks, the present model

generates the volatility of the labor wedge that is 70% of that in the U.S. The number is only

17% without uncertainty shocks. Thus, introducing risk variation helps the model account

for a substantial portion of the labor wedge volatility seen in the U.S. economy.

The main mechanism is the (ex-post) distribution e¤ect. As the volatility in idiosyn-

cratic productivity shocks increases, the mobility between di¤erent productivity increases.

This reduces the positive productivity-wealth correlation, which arises from the persistence in

productivity, and it changes the wealth distribution conditional on productivity. In particu-

lar, the wealth distribution for the low productivity shifts towards larger wealth. Since given

productivity individuals below a certain level of wealth choose to work, the low-productivity

employment decreases. In contrast, the wealth distribution for the high productivity shifts

towards smaller wealth. However, they are so productive that their wealth threshold for

employment is near the top tail of the distribution. Thus, the number of individuals below

the threshold increases only slightly, so does their employment. Total hours worked de-

creases. Average productivity increases because the share of high-productivity employment

increases. Output and consumption move only slightly because labor input, measured in

e¢ ciency units, changes little. Hence, the labor wedge rises.

The (ex-ante) uncertainty e¤ect also moves the labor market. An increase in idiosyn-

cratic wage risk increases the incentive to self-insure and labor supply, especially those of

before 1984, while the data used here suggests a weakly negative correlation (�0.30). Gali and Gambetti
(2009) use data on the nonfarm business sector, while the data used here includes the farm, government, and
military sectors. The present paper uses the most comprehensive data because the labor wedge is computed
using the consumption data for the entire economy.
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small-wealth individuals. This only increases the low-productivity employment because high-

productivity, small-wealth individuals chose employment even before the rise in risk. The

high-productivity employment slightly decreases because the low-productivity employment

increases and the wage rate falls. Total hours worked and output increase. As the com-

position of workers shifts towards low productivity, average labor productivity falls. Con-

sumption drops slightly because precautionary saving increases. The labor wedge decreases.

I solve the model excluding the distribution e¤ect, i.e., shutting down the ex-post changes

in the volatility in idiosyncratic shocks. The hours-productivity correlation is 0.69 and the

labor wedge volatility is 22% of that in the U.S. Thus, the distribution e¤ect is dominant.

Uncertainty shocks act as a labor supply shock. Benhabib et al. (1991) and Chris-

tiano and Eichenbaum (1992) also consider such shocks in an e¤ort to break the strong

hours-productivity comovement in business cycle models (Kydland and Prescott (1982) and

Hansen (1985)). However, their models assume a representative agent and without changes in

the composition of workers with di¤erent productivity, relatively strong hours-productivity

comovement remains when calibrated to the U.S. economy.2 Further, the labor wedge is

constant (zero). In contrast, incorporating realistic heterogeneity in wealth and produc-

tivity across individuals, the calibrated varying risk model here simultaneously generates a

hours-productivity correlation and a labor wedge volatility that are close to those in the U.S.

The present paper contributes to the literature on varying idiosyncratic earnings risk by

analyzing its impact on labor market dynamics. While existing studies analyze how time-

varying income risk a¤ects aggregate �uctuations (Krusell and Smith (1998) and McKay

(2015)), the welfare cost of business cycles (Krusell and Smith (1999), Storesletten et al.

(2001), Mukoyama and Şahin (2006), and Krusell et al. (2009)), and asset pricing (Krusell

and Smith (1997), Pijoan-Mas (2007), and Storesletten et al. (2007)), they assume exogenous

2Benhabib et al. (1991) include home-production technology shocks. Their benchmark model generates
a hours-productivity correlation of 0.49. Christiano and Eichenbaum (1992) include government spending
shocks. When estimated using establishment hours data, their model generates a correlation of 0.58.
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earnings or inelastic labor supply and do not analyze labor market �uctuations.3

The present paper is also related to recent work on uncertainty shocks to �rm-speci�c

risk. Bloom et al. (2014) and Bachmann and Bayer (2013) investigate how uncertainty shocks

interact with input adjustment costs. Arellano et al. (2012) consider �nancial frictions, while

Schaal (2015) analyzes labor search frictions. In these two models, uncertainty shocks trigger

heterogeneous changes in labor demand across �rms, generating negative hours-productivity

comovement and a volatile labor wedge. In the present model, the variation in the labor

wedge arises solely from the variation in the labor market wedge, i.e., the gap between the

real wage and the marginal rate of substitution, while the product market wedge, i.e., the

gap between average labor productivity and the real wage, is always zero. In contrast,

the variation in the product market wedge also contributes to the movement in the labor

wedge in Arellano et al. (2012) and Schaal (2015).4 Empirical evidence is mixed. While

Karabarbounis (2014) �nds the dominant role of the labor market wedge in the U.S., Bils

et al. (2016) �nd that the product market wedge is as important as the labor market wedge.

The present paper proceeds as follows. Section 2 analyzes the PSID data and quanti�es

cyclical variation in idiosyncratic wage risk. Section 3 lays out the model, while Section 4

determines the parameter values. Section 5 examines the impact of uncertainty shocks on

business cycles. Section 6 analyzes the implication for labor income risk. Section 7 concludes.

2. Cyclical Fluctuations in Idiosyncratic Wage Risk

This section analyzes the PSID data and provides an estimate for the cyclical variation in

idiosyncratic wage risk in the U.S.5 Idiosyncratic wage risk is computed as the cross-sectional

3One exception is Lopez (2010), which assumes divisible labor and a di¤erent borrowing constraint from
that assumed here. His model generates a counterfactually strong hours-productivity correlation of 0.96.

4In Arellano et al. (2012), the variation in the labor wedge solely arises from changes in the product
market wedge. Both the labor and product market wedges vary in Schaal (2015)�s model.

5Appendix A1 explains the data.
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dispersion of residuals in a wage regression and its cyclical variation is analyzed.6

For each person-year observation of the PSID data, I compute the hourly wage dividing

the annual labor income by the annual total labor hours. For each year, I then �t individual

wages to the wage process assumed in the present paper, which is derived as follows.7 First,

an individual wage wai;t (i: individual and t: year) is w
a
t x

a
i;t, where w

a
t is the wage rate per

e¢ ciency unit of labor and xai;t is person-speci�c labor productivity:
8

lnwai;t = lnw
a
t + lnx

a
i;t: (1)

Second, xai;t follows an AR(1) process:

lnxai;t = �
a
x;t lnx

a
i;t�1 + "

a
x;i;t, "

a
x;i;t � N(0; �a2"x;t): (2)

As shown by Chang and Kim (2006), (1) and (2) imply the following wage process:

lnwai;t = �
a
x;t lnw

a
i;t�1 + (lnw

a
t � �ax;t lnwat�1) + "ax;i;t; "ax;i;t � N(0; �a2"x;t): (3)

I identify idiosyncratic wage risk in three ways. First, I estimate (3) each year for 1969�

1991 with ordinary least squares (OLS), replacing (lnwat � �ax;t lnwat�1) with a constant.

In practice, variables such as years of education in�uence individual wages (Card (1999)

and Heathcote et al. (2010)), and individuals could forecast their wage, at least partially. To

isolate the pure risk that individuals face, I control for demographic variables:

lnwai;t = �
a
x;t lnw

a
i;t�1 + (lnw

a
t � �ax;t lnwat�1) + Zi;t�t + "ax;i;t; "ax;i;t � N(0; �a2"x;t); (4)

where Zi;t includes sex, education, experience (de�ned as age minus education minus six),

and experience-squared.9 I estimate (4) each year as is done for (3), but for 1975�1991

because the data on education is discontinuous in 1974.
6This approach is similar to that taken by recent studies that estimate uncertainty shocks to �rm-speci�c

risk (Bloom (2009) and Bachmann and Bayer (2013)).
7The process is used in Chang and Kim (2006, 2007), Alonso-Ortiz and Rogerson (2010), and others.
8A variable with a superscript a indicates an annual value, distinguishing it from its quarterly counterpart.
9Controlling for occupation does not change the cyclical risk variation substantially.
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Lastly, I take into account the selection e¤ect and follow Chang and Kim (2006) in

introducing the selection equation:

Ii;t = Vi;tt + v
a
i;t; v

a
i;t � N(0; �a2v;t); (5)

where Ii;t = 1 if the individual worked in both years t and t � 1. The variables Vi;t include

marital status, the number of children, education, experience, experience-squared, sex, and

a constant. I conduct Heckman-type estimation using (4) and (5) each year for 1975�1991.

The upper panel of Figure 1 plots the idiosyncratic wage risk series estimated in the

three ways d�a"x;t = std(d"ax;i;t). Consistent with Heathcote et al. (2010), they increase over
time. To isolate their cyclical variation, I compute the percent deviation from trend using

the Hodrick-Prescott �lter with a smoothing parameter of 10.10 The lower panel shows this

detrended result. The three series are similar and all the correlations exceed 0.90. Hence, I

focus on the series based on OLS, which is the longest.

Four empirical regularities characterize the cyclical component of idiosyncratic wage risk.

First, idiosyncratic wage risk varies over time. The standard deviation is 3.2% and the

volatility relative to the output volatility is 1.73. Second, idiosyncratic wage risk exhibits

some persistence, typically remaining above or below trend for about two years. Its �rst-order

autocorrelation is 0.20, but it is not statistically signi�cantly di¤erent from zero. Third, risk

variation is approximately symmetric. The size and persistence of idiosyncratic wage risk

are similar when it is above and below trend. Fourth, idiosyncratic wage risk is acyclical.

The correlation with output is 0.18 and it is not statistically signi�cantly di¤erent from

zero.11 Further, idiosyncratic wage risk remained low during the 1981�1982 recession, but it

increased during the 1973�1975 and 1990�1991 recessions. Section 4 uses these �ndings to

10The result does not change substantially when using a smoothing parameter of 6:25 or 100.
11The �nding is consistent with that of Heathcote et al. (2010), who �nd that the standard deviation of

(residual) wages shows no clear cyclicality. They also estimate the standard deviation of permanent and
transitory shocks to individual wages. I detrend their result based on the �di¤erence speci�cation�using the
Hodrick-Prescott �lter with a smoothing parameter of 10. The correlation with (detrended) output is �0.06
for the standard deviation of permanent shocks and 0.00 for transitory shocks. Both correlations are not
statistically signi�cantly di¤erent from zero. I thank the authors for making their result available.
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calibrate uncertainty shocks in the model described below.

3. Model

The model analyzed here is built upon the model of Chang and Kim (2006, 2007). Indi-

viduals face idiosyncratic productivity risk and make consumption-saving and employment

choice. I introduce risk variation into the environment using uncertainty shocks in the sense

of Bloom (2009), i.e., time-varying standard deviation of idiosyncratic productivity shocks.

3.1. Individuals

There is a continuum of individuals of measure one. Individuals di¤er in labor pro-

ductivity x. The momentary utility function is u(c; h), where c is consumption and h is

hours worked. As in Hansen (1985) and Rogerson (1988), labor is indivisible: h 2
�
h; 0
	
.

Individuals earn labor income of wxh, where w is the wage rate per e¢ ciency unit of labor.

Individuals face time-varying wage risk because log of idiosyncratic productivity lnx

follows an AR(1) process, lnx
0
= �x lnx + �

0
x, where �

0
x � N(0; �2�x); and ��x is a Markov

chain. As in existing studies (Bloom (2009), Bloom et al. (2014), and Bachmann and Bayer

(2013)), individuals learn of the size of ��x one period ahead, and ��x represents the volatility

of shocks not to x, but to x
0
, where a prime denotes the next-period value.12

Asset markets are incomplete, and individuals cannot fully insure themselves against

idiosyncratic wage risk. As in Aiyagari (1994), individuals partially self-insure by holding

physical capital k, which is the only asset. There is a borrowing limit: k � k (k < 0).

De�ne V (k; x; z; �; ��x) as the beginning-of-period value of an individual characterized

by (k; x) under the aggregate state (z; �; ��x), where z is aggregate TFP, log of which follows

an AR(1) process, and � denotes the individual distribution over k and x. This beginning-

12This timing assumption captures the concept of risk. The business cycle results presented in Section 5
are largely unchanged under the assumption that individuals learn of ��x contemporaneously.
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of-period value re�ects the individual�s current employment choice:

V (k; x; z; �; ��x) = max
�
V E(k; x; z; �; ��x); V

N(k; x; z; �; ��x)
	
: (6)

The individual�s within-period value conditional on working V E(k; x; z; �; ��x) is

V E(k; x; z; �; ��x) = max
c;k

0

n
u(c; h) + �E

h
V (k

0
; x

0
; z

0
; �

0
; �

0

�x)jx; z; �; ��x
io
; (7)

s.t. c = w(z; �; ��x)xh+ [1 + r(z; �; ��x)]k � k
0
; k

0 � k; c � 0; �0 = �(z; �; ��x);

where � is the discount factor, E is the conditional expectation, r is the rental rate of capital,

and � is the law of motion for �: The value of nonemployment V N(k; x; z; �; ��x) is

V N(k; x; z; �; ��x) = max
c;k

0

n
u(c; 0) + �E

h
V (k

0
; x

0
; z

0
; �

0
; �

0

�x)jx; z; �; ��x
io
; (8)

s.t. c = [1 + r(z; �; ��x)]k � k
0
; k

0 � k; c � 0; �0 = �(z; �; ��x):

3.2. Representative Firm

A representative �rm produces the �nal good Y using capital K and labor L. The

production function is Y = zF (K;L) and it exhibits constant returns to scale. Given r and

w, the �rm chooses K and L; maximizing static pro�ts. The �rst-order conditions are

r(z; �; ��x) = zFK(K(z; �; ��x); L(z; �; ��x))� �; (9)

and

w(z; �; ��x) = zFL(K(z; �; ��x); L(z; �; ��x)); (10)

where � is the capital depreciation rate.

3.3. General Equilibrium

A recursive competitive equilibrium is a set of functions
�
w; r; V E; V N ; V; c; k

0
; h;K; L;�

�
satisfying the following conditions.
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1. Individuals�Optimization:

The value functions V (k; x; z; �; ��x); V
E(k; x; z; �; ��x), and V

N(k; x; z; �; ��x) satisfy

(6) ; (7), and (8), while c(k; x; z; �; ��x); k
0
(k; x; z; �; ��x), and h(k; x; z; �; ��x) are the

associated policy functions.

2. Firms�Optimization:

The representative �rm chooses K(z; �; ��x) and L(z; �; ��x) to satisfy (9) and (10).

3. Labor Market Clearing:

L(z; �; ��x) =

Z
xh(k; x; z; �; ��x)�([dk � dx])

4. Capital Market Clearing:

K(z; �; ��x) =

Z
k�([dk � dx])

5. Goods Market Clearing:Z �
k
0
(k; x; z; �; ��x) + c(k; x; z; �; ��x)

	
�([dk � dx])

= zF (K(z; �; ��x); L(z; �; ��x)) + (1� �)
Z
k�([dk � dx])

6. Evolution of Individual Distribution:

�(z; �; ��x) is consistent with individual choices and the laws of motion for (x, z; ��x).

Let �x(x
0jx; ��x) be the transition probability from x to x

0
under ��x : For all D � K,

�
0
(D; x

0
) =

Z
f(k;x)jk0 (k;x;z;�;��x )2Dg

�x(x
0jx; ��x)�([dk

0 � dx0 ]):

4. Calibration and the Steady State

I determine the parameter values on idiosyncratic productivity by matching moments of

the model�s individual wages with those of the PSID wages. I choose the other parameter

values so that the model�s steady state replicates several features of the U.S. economy. The

end of this section presents the steady-state distributions of wealth and labor income.
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4.1. Parameters Other Than Idiosyncratic Productivity

Table 1 lists the parameters other than those on idiosyncratic productivity. One period

is one quarter. The discount factor � is 0.9829, implying a one percent rental rate of capital.

The momentary utility is u(c; h) = ln c� Bh with B = 3:061. The employment rate is 60%

as in Chang and Kim (2007) and it is close to the average U.S. employment-population ratio

for 1948Q1�2009Q3. Individuals use one third of their time when working (h = 1=3). The

borrowing limit is k = �2:0 and individuals can borrow up to 44% of the average annual

income. This is similar to the limit set by Krusell and Smith (1998).13

The production function is Y = zK1��L� and labor�s share � is 0.64. The capital

depreciation rate � is 0.025. Aggregate TFP z follows ln z
0
= �z ln z+�

0
z, where �

0
z � N(0; �2�z).

As in Cooley and Prescott (1995), �z = 0:95; and ��z = 0:007.
14

4.2. Parameters on Idiosyncratic Productivity

Four parameters concern idiosyncratic productivity x. The �rst is the persistence in

lnx, or �x. The other three parameters concern �uctuations in idiosyncratic wage risk �"x.

The analysis in Section 2 �nds no strong cyclicality in the estimated annual idiosyncratic

wage risk c�a"x. Hence, the benchmark is the independent risk model, where �"x evolves
independently of aggregate TFP z. A Markov chain with three states, high (H), middle (M),

and low (L), is assumed. Motivated by the symmetry of risk variation discussed in Section

2, �"x;H = (1 + �)��"x, �"x;M = ��"x, and �"x;L = (1 � �)��"x, where ��"x is the steady-state

risk and � > 0 is the size of risk variation. With a probability of ��"x , �"x stays unchanged,

while it transitions to each of the other two states with a probability of (1� ��"x )=2.

The values of the four parameters (�x; ��"x ; �; ��"x ) are determined as follows. I simulate

the model, which is quarterly, with 60,000 individuals for 1,500 periods (discarding the �rst

13The business cycle results with k = �4:0 and 0:0 do not substantially di¤er from that with k = �2:0:
14The model here includes uncertainty shocks and using the estimate of Cooley and Prescott (1995), who

only include aggregate TFP shocks, might overstate the volatility of aggregate TFP. Assuming a lower volatil-
ity of aggregate TFP shocks (��z = 0:005) does not change the present paper�s main results substantially.
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500 periods) and generate the panel data on annual wages, which is comparable to the PSID

wage data. I then choose the model parameter values so that four moments match between

the PSID and model annual wages. The �rst two moments are the persistence in individual

wages b�ax and the long-run idiosyncratic wage risk c�a"x : I compute them by estimating (3)

with year dummies using the pooled OLS. The other two moments are the standard devia-

tion of idiosyncratic wage risk relative to the output volatility, std(c�a"x); and the �rst-order
autocorrelation, corr(c�a"x ;\�a"x;�1). I compute c�a"x by estimating (3) each year with OLS and
then remove trend using the Hodrick-Prescott �lter with a smoothing parameter of 10.

The PSID moments in the second column of Table 2A pin down the parameter values

for the independent risk model as in the fourth column of Table 2B. The persistence in

idiosyncratic productivity is �x = 0:930; while the steady-state risk is ��"x = 0:223: These are

close to Chang and Kim (2007)�s values: As for risk variation, the persistence ��"x is 0:90

and the size � is 0:067. As shown, the model�s moments match the PSID ones well.

The moments of the constant risk model, where idiosyncratic wage risk is constant at

the steady state, are presented in the third column of Table 2A. Because of endogenous em-

ployment choice, the annual idiosyncratic wage risk estimated using the model data exhibits

some variation. However, the volatility is much smaller than the PSID one. This �nding

provides further evidence for �uctuations in idiosyncratic wage risk.

4.3. Steady State

The inequality of wealth and labor income in the present model is comparable to that

in the U.S. The Gini coe¢ cient of annual labor income is 0.54 at the steady state and 0.65

in the 1991 PSID.15 The Gini coe¢ cient for wealth is 0.63 in the model. Since it is di¢ cult

to de�ne individual wealth in the actual economy, I compare this individual-level wealth

inequality with the household-level inequality in the U.S. According to Díaz-Giménez et al.

15Appendix B1 explains the solution method for the steady state. I generate the distribution of annual
labor income through the model simulation with 60,000 individuals. Appendix A2 explains the PSID data.
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(1997), the Gini coe¢ cient is 0.78 in the 1992 Survey of Consumer Finances.

Further, the present model generates a weakly positive correlation between wealth and

labor income of 0.29, which is close to 0.23 in the U.S. (Díaz-Giménez et al. (1997)).16 Since

idiosyncratic productivity is persistent, individuals with higher current productivity tend

to hold larger wealth. Further, individuals are more likely to work when they have higher

current productivity and smaller wealth. These two factors generate the weakly positive

correlation between wealth and labor earnings in the model.

5. Business Cycle Results

This section analyzes how time-varying idiosyncratic wage risk a¤ects business cycles.

5.1. Time-Varying Idiosyncratic Wage Risk and Business Cycles

Table 3 lists the business cycle moments of the U.S. and model economies.17 Introducing

uncertainty shocks substantially improves two labor market statistics in the models. One

is the correlation between total hours worked and average labor productivity.18 The inde-

pendent risk model generates a weakly negative correlation (�0.17) close to the U.S. value

(�0.32), while the constant risk model produces a strong positive correlation (0.83).

The other is the volatility in the labor wedge. The labor wedge is the ratio of average

labor productivity to a representative individual�s marginal rate of substitution of leisure for

consumption. As in Chang and Kim (2007), it is computed by lnwedge = lnY=H� lnH1=C

with  = 1:5. The labor wedge is volatile in the U.S. The independent risk model reproduces

the feature reasonably well: The volatility is about 70% of that in the U.S. In contrast, the

16The steady state is similar to that of Chang and Kim (2007). Table 2 of Chang and Kim (2007) provides
more evidence that the distributions of wealth and income are comparable to the U.S. counterparts.
17Appendix A3 explains the source of the U.S. data. Appendix B2 explains the solution method for the

business cycle, which is based on Krusell and Smith (1997, 1998) and Takahashi (2014). The same sequence
of aggregate TFP is used for all the simulations.
18Total hours worked is H �

Z
h(k; x; z; �; ��x)�([dk � dx]):
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constant risk model accounts for only 17% of the empirical volatility.

Figure 2 shows how these improvements depend on risk variation. Even under almost

no persistence (��"x = 0:4), the hours-productivity correlation is 0.06 and the volatility of

the labor wedge is 56% of that in the U.S. Even when the size of risk variation � decreases

by almost 40% (� = 0:04), the independent risk model generates a low hours-productivity

correlation of 0.28 and accounts for 44% of the volatility in the labor wedge seen in the U.S.

Introducing risk variation also increases the volatility of hours worked and reduces the

output-productivity correlation, moving their values closer to the U.S. data. One problem in

the independent risk model is the acyclical labor wedge, while the wedge is countercyclical

in the U.S. Section 5.3 shows that this problem is �xed by introducing a negative correlation

between aggregate TFP growth and idiosyncratic wage risk.

Lastly, the independent and constant risk models generate similar volatilities and comove-

ments of output, consumption, and investment. Thus, introducing variation in idiosyncratic

wage risk strengthens the model�s ability to explain labor market �uctuations, without weak-

ening its ability to account for other business cycle moments.

5.2. Responses to a Rise in Idiosyncratic Wage Risk

To clarify the mechanism behind the above results, I analyze the response of the indepen-

dent risk model to a rise in idiosyncratic wage risk �"x. The simulation starts from the steady

state. For initialization, �"x is in the middle state (i.e., at the steady state) for 150 periods

and then it moves into the high state, rising by 6.7% for one period. I normalize the period

of this risk rise to period 0, as in the upper-left panel of Figure 3. The timing assumption

implies that the dispersion of idiosyncratic productivity shocks in period 1 increases, while

individuals learn of it in period 0. Aggregate TFP is �xed at its steady-state level.

The remaining panels of Figure 3 show the responses of other variables. Output increases

and then returns to the pre-shock level. Consumption drops initially and then recovers.
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Hours increases in period 0, drops below the pre-shock level in period 1, and then recovers.19

Average labor productivity and the labor wedge move in a direction exactly opposite to that

of hours. These results explain why introducing variation in idiosyncratic wage risk weakens

the hours-productivity comovement and increases the volatility of the labor wedge.

I turn to micro-level responses underlying these aggregate responses. Indivisible labor

implies a threshold rule for employment: Given current productivity, individuals whose

wealth is below a certain level choose to work. Further, those wealth thresholds increase

with productivity. Figure 4 shows the determination of the employment rate for the low and

high productivity groups.20 The upward sloping curve is the cumulative wealth distribution,

while the vertical line is the wealth threshold for employment. Hence, the employment rate

is determined by the intersection of the two. Below, I explain how the rise in risk shifts the

threshold for employment, the wealth distribution, and thereby the employment rate.

The timing assumption implies two e¤ects of the rise in idiosyncratic wage risk. The �rst

is an uncertainty e¤ect. In period 0, individuals become more uncertain about their future

wage and change their current labor supply. This is described in Figure 4 by a shift in the

wealth threshold for employment without a shift in the wealth distribution. The second is a

distribution e¤ect. When the volatility of idiosyncratic productivity shocks actually increases

in period 1, the dispersion of idiosyncratic productivity increases. As explained below, this

also shifts the wealth distribution given productivity. In contrast, the uncertainty e¤ect

disappears because uncertainty returns to the pre-shock level. Hence, both the threshold for

employment and the wealth distribution conditional on productivity shift in period 1.

In period 0, the low-productivity employment increases and to a lesser extent the high-

productivity employment decreases. As for the low productivity, their wealth threshold for

19Although total hours worked shows a sawtooth response, its �rst-order autocorrelation is 0.68 in the
independent risk model and it is comparable to that in the U.S. data (0.75).
20I consider 17 levels of idiosyncratic productivity: x1 < ::: < x17. The low productivity group is those

with x6 and between the 10-20 percentiles in the idiosyncratic productivity distribution, whereas the high
productivity are those with x12 and between the 80-90 percentiles.
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employment shifts to the right, increasing their employment rate. This occurs because those

around the threshold have small wealth and increase labor supply to insure against greater

risk. In contrast, the threshold for the high productivity shifts to the left, decreasing their

employment slightly. Those around the threshold have large wealth and are well insured.

Further, the wage rate falls because the low-productivity employment increases. Total hours

worked increases. Output increases less than hours, not only because aggregate TFP and

capital remain unchanged, but also because employment disproportionately increases among

the low productivity. Average labor productivity decreases. Consumption drops slightly

because precautionary saving increases. The labor wedge decreases.

In period 1, the low-productivity employment decreases and to a lesser degree the high-

productivity employment increases. Because of the increased volatility in idiosyncratic pro-

ductivity shocks, the mobility between di¤erent productivity increases. This greater mobility

reduces the positive productivity-wealth correlation, which is generated by the persistence

in idiosyncratic productivity. Speci�cally, the wealth distribution of the low productivity

shifts to larger wealth, decreasing their employment. The opposite occurs for the high pro-

ductivity and their wealth distribution shifts towards smaller wealth. However, since the

wealth threshold for employment is substantially high, the number of individuals below the

threshold increases only slightly, so does their employment.

Further, relative to the pre-shock one, the wealth threshold for employment shifts to

the left for both the low and high productivity: Wage uncertainty returns to the pre-shock

level, while the wage rate is a bit lower due to a slight increase in the high-productivity

employment. However, the shifts in the wealth distributions have a dominant e¤ect on

employment, especially for the low-productivity one. I quantify their role by the following

thought experiment. In period 1, the dispersion in idiosyncratic productivity increases and

the wealth thresholds for employment also shift as described in Figure 4. However, the wealth

distributions given productivity are unchanged from period 0. Hence, the employment rate is
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determined by the intersection of the period 0 wealth distribution and the period 1 threshold.

In such a case, total hours worked in period 1 is lower than the pre-shock level only by 0.11%

in contrast to 0.75% when the wealth distributions also shift. Hence, while the increased

dispersion in idiosyncratic productivity itself reduces employment, the impact is substantially

ampli�ed by the shifts in the wealth distributions conditional on productivity.21

In contrast, output and consumption increase only slightly in period 1 because e¢ ciency-

weighted labor increases little. Hence, the labor wedge rises. Crucially, even though idio-

syncratic wage risk increases only for one period, it takes long for the wealth-productivity

distribution to return to the pre-shock one. Thus, the distribution e¤ect has a persistent

impact on total hours worked, average labor productivity, and the labor wedge.

Following Bachmann and Bayer (2013), I analyze the psych risk model, which shuts down

the distribution e¤ect: Individuals receive information on changes in idiosyncratic wage risk

�"x and respond, but those changes in �"x never realize ex post.
22

As seen above, the uncertainty e¤ect alone lowers the hours-productivity correlation and

increases the volatility of the labor wedge. However, the impact is small. As shown in Table 3,

the psych risk model generates a positive hours-productivity correlation of 0.69 and accounts

for only 22% of the empirical volatility of the labor wedge. Figure 3 shows the response of

the psych risk model to the one-period increase in idiosyncratic wage risk considered above.

The response is qualitatively similar to that of the independent risk model.23 However, the

negative hours-productivity comovement disappears much more quickly and the labor wedge

�uctuates much more modestly in the psych risk model. Hence, the main impact of changes

21The increase in saving in period 0 also shifts the wealth distributions to larger wealth. However, the
e¤ect is quantitatively small. See footnote 23.
22In the model solution described in Appendix B2, the value function iteration (Step 4) is the same as in

the independent risk model. However, in the simulation (Step 5), while individuals respond to changes in
idiosyncratic wage risk �"x (the sequence of �"x is the same as that fed into the independent risk model), the
steady-state value of �"x is used to update the idiosyncratic productivity distribution, leaving the distribution
unchanged from the steady state.
23Total hours worked in period 1 is slightly lower than the pre-shock level even in the psych risk model.

Individuals increase saving in period 0 due to the elevated uncertainty. See Marcet et al. (2007) on the
ex-post wealth e¤ect under constant idiosyncratic income risk.
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in idiosyncratic wage risk arises from the distribution e¤ect.

5.3. Countercyclical Risk Model

This subsection analyzes the countercyclical risk model, where idiosyncratic wage risk is

negatively correlated with aggregate TFP growth. The independent risk model is rationalized

based on the result in Section 2 that the estimated annual idiosyncratic wage risk is acyclical.

As shown above, however, a rise in idiosyncratic wage risk increases output slightly in the

independent risk model. Hence, when estimated using the model data, a weakly positive cor-

relation appears between annual idiosyncratic wage risk and output (0.35). In contrast, the

countercyclical risk model presented below generates a negative correlation (�0.51). Hence,

the reality should lie between the two polar cases.

In the countercyclical risk model, �"x is high (low) when aggregate TFP z fell (rose) by

more than 1.67% (i.e., one grid point) from the previous to current periods.24 Otherwise,

�"x is in the middle state. As before, �x = 0:930 and ��"x = 0:223. Changes in z govern the

transition probabilities of �"x. I set � = 0:112; targeting the volatility of annual idiosyncratic

wage risk relative to the output volatility in the U.S., as is done for the independent risk

model and as shown in Table 2.

Four points are worth mentioning for the business cycle results in Table 3. First and

most importantly, the main results of the present paper survive: Introducing countercyclical

risk substantially reduces the hours-productivity correlation and increases the volatility of

the labor wedge. Second, the countercyclical risk model generates a countercyclical labor

wedge, �xing the problem in the independent risk model. In the countercyclical risk model,

the distribution e¤ect of a rise in idiosyncratic risk raises the labor wedge, while at the same

time a fall in aggregate TFP decreases output. Third, the output-productivity correlation

becomes closer to the U.S. data. Fourth, output is smoothed even relative to the constant

24The business cycle results do not change substantially under the assumption that aggregate TFP growth
from the current to next periods is negatively correlated with �"x :
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risk model because a rise in risk raises output, mitigating the output decline caused by a

drop in aggregate TFP.

To summarize, the cyclicality of idiosyncratic wage risk is not very relevant to the main

results of the present paper. However, it a¤ects the movement of output and other labor

market statistics. The reality should be a weakly negative correlation between aggregate

TFP growth and idiosyncratic wage risk, and even if included such a feature, the present

model would still account for the U.S. labor market �uctuations reasonably well.

5.4. Quantifying Composition E¤ect

The uncertainty and distribution e¤ects change the composition of workers. They move

aggregate employment and the share of low-productivity workers in the same direction,

generating negative comovement between total hours worked and average labor productivity.

To examine whether the composition e¤ects in the independent and countercyclical risk

models are comparable to the U.S. counterpart, I conduct a regression in Solon et al. (1994)

using the model data and compare the results with the U.S. one. Speci�cally, I estimate the

following equation with OLS:

� lnwt = �1 + �2t+ �3�CIt + �t; (11)

where wt is the economy-wide average wage in year t, CIt is a cyclical indicator, and �t is

an error term. I then estimate (11), replacing lnwt with the average of log of wages from

the balanced panel data. Comparing the coe¢ cient �3 from the two regressions reveals the

composition e¤ect. While the economy-wide average wage is a¤ected by changes in the

composition of workers, the average wage computed from the balanced panel data is free

from such a composition bias and �3 reveals the true cyclicality of individual wages.

Table 4 presents the result. As in Solon et al. (1994), three cyclical indicators are con-

sidered: the unemployment rate (U), log of GDP (lnY ), and log of per capita hours worked
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(lnH).25 The U.S. result, which is taken from Solon et al. (1994), shows a strong composi-

tion e¤ect. Individual wages are much more procyclical than the average wage. The result

indicates that the share of low-productivity workers increases during expansions.

The independent and countercyclical risk models show a composition e¤ect similar to

the U.S. one.26 Individual wages increase more strongly with labor input than the average

wage. Hence, the share of low-productivity workers increases with labor input. A deviation

from the U.S. result is observed when GDP is a cyclical indicator in the independent risk

model. In that model, the distribution e¤ect of an increase in risk increases output and also

the share of high-productivity workers. As a result, the average wage moves with GDP more

strongly than individual wages. In contrast, the result in the countercyclical risk model is in

line with the U.S. result, and as argued above, the reality should lie between the two models.

The constant risk model shows essentially no composition e¤ect and the average wage

and individual wages are almost equally procyclical. In the model, aggregate TFP shocks

are the solo driver for aggregate �uctuations. A fall in aggregate TFP reduces labor demand,

without signi�cantly a¤ecting labor supply, as in the prototype equilibrium business cycle

model. The wage rate falls, and employment decreases across all productivity groups almost

uniformly, leaving the composition of workers largely unchanged.27

The analysis so far has focused on the composition of workers. Next, I examine the

composition of individuals switching from employment to nonemployment. If unproduc-

tive workers disproportionately become nonemployed during recessions, then the quality of

the remaining workforce improves. Berger (2015) argues that countercyclical restructuring

generates such a pattern in the U.S.

I categorize employed individuals in year t� 1 into four equal groups according to their
25In the models, the nonemployment rate is used as the unemployment rate, while the per capita hours

worked is equal to total hours worked.
26I use balanced panel data for 20 years, which is the same as the U.S. data used by Solon et al. (1994).
27Appendix F of Supplementary Materials shows the response of the independent risk model to aggregate

TFP shocks.
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average wage in that year. I then compute the transition rate from employment to nonem-

ployment, the EN rate, between years t � 1 and t for each group. The result is compared

between the PSID and model data.28

Table 5 shows the result. The overall EN rate is countercyclical in the U.S. The EN rate

tends to be countercyclical for the low wage, but not so strongly for the highest wage, as is in

line with the argument by Berger (2015). The constant risk model implies the opposite. The

EN rate is more countercyclical for the high wage because they are highly productive and

their employment decisions are more sensitive to changes in the aggregate wage rate. The

independent risk model fails to account for the countercyclicality of the overall EN rate. As

seen above, the model implies a weak correlation between output and labor input, and it also

implies a low correlation between output and the EN rate. In contrast, the countercyclical

risk model generates a result much closer to the U.S. data. However, the countercyclicality of

the EN rate is still too weak for the low wage and too strong for the high wage. Introducing

risk variation also raises the volatility in the EN rate, moving it closer to the U.S. data, but

the models still understate the empirical one.

The results in this subsection suggest that introducing risk variation generally improves

the model�s ability in accounting for the cyclicality of the composition of workers in the

U.S. However, there remains a substantial gap on the EN rate between the model and U.S.

economies. Accounting for the strong countercyclicality of the low-wage EN rate and the

weaker countercyclicality for the high wage would require additional features, such as coun-

tercyclical restructuring as in Berger (2015) and unemployment bene�ts. Such modi�cations

are likely to amplify the composition e¤ect already present in the current varying risk mod-

els, i.e., the pattern that the share of low-productivity workers increases with aggregate

employment, and hence they would strengthen the main results of the present paper.

28For the model data, employed are those with positive labor hours in a year. For the PSID data, employed
are those with annual labor hours larger than 240 hours as in Chang et al. (2014):
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6. Implications for Labor Earnings Risk

This section shows that the independent and countercyclical risk models, which are cali-

brated to the variation in idiosyncratic wage risk in the U.S., generate cyclical variation in

idiosyncratic earnings risk generally in line with that documented by Guvenen et al. (2014).29

I then examine whether introducing changes in the skewness of idiosyncratic productivity

shocks narrows a remaining gap between the U.S. and model results.

Table 6 summarizes the result. Let�s start with the standard deviation of annual earnings

growth (i.e., a log earnings growth rate), �earnings, which is the conventional measure for

earnings risk. It is weakly countercyclical, showing a correlation with output of �0.38.30

The risk volatility relative to the output volatility is 1.22. As highlighted by Guvenen et al.

(2014), the risk variation is much smaller than the �nding by Storesletten et al. (2004).

The independent and countercyclical risk models account for the risk volatility in the U.S.

well. In contrast, the constant risk model substantially understates the empirical volatility.

Further, the risk-output correlation suggests that the reality should be somewhere between

the independent and countercyclical risk models, i.e., a weakly negative correlation between

aggregate TFP growth and idiosyncratic wage risk. These �ndings provide further support

for the earlier calibration using the cyclical variation in idiosyncratic wage risk in the U.S.

As for statistics related to the skewness, Guvenen et al. (2014) �nd that the di¤erential

between the 90th and 50th percentiles of annual earnings growth, L90�50, is procyclical in

the U.S. and it is positively correlated with GDP growth.31 In contrast, the di¤erential

between the 50th and 10th percentiles, L50�10, is countercyclical. Hence, Kelly�s skewness

of earnings growth is procyclical.32

29I thank Guvenen et al. (2014) for making their result available. The model statistics are computed using
the panel data with 60,000 individuals for 1,500 periods used for calibration in Section 4.2.
30I compute the percent deviation from trend using the Hodrick-Prescott �lter with a smoothing parameter

of 10, as is done to the estimate for idiosyncratic wage risk.
31As discussed in footnote 24 of Guvenen et al. (2014), these statistics are detrended with linear trend and

then their average is added. The same is applied to the model statistics.
32Kelly�s skewness is ((L90�50)�(L50�10))/(L90�10), where L90�10 is the di¤erential between the 90th
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The present paper�s models generate a procyclical skewness of earnings growth, even

though the skewness of idiosyncratic productivity shocks is constant at zero. In the constant

risk model, L50�10 is countercyclical. A decline in aggregate TFP lowers the aggregate wage

rate, increasing a �ow from employment to nonemployment. Hence, getting very low income

growth is more likely during recessions and L50�10 rises. Getting high earnings growth is

not very much a¤ected by changes in the aggregate wage rate and L90�50 is acyclical. In the

independent risk model, a rise in idiosyncratic risk increases L90�50, L50�10, and output.

Hence, L90�50 and L50�10 become more procyclical than in the constant risk model. In the

countercyclical risk model, a rise in idiosyncratic risk raises L90�50 and L50�10, while a fall in

aggregate TFP reduces output simultaneously. Thus, L90�50 and L50�10 are countercyclical.

Given that the reality should lie between the independent and countercyclical risk mod-

els, the biggest problem in the model results is the weak procyclicality of L90�50. Making

L90�50 more procyclical is not likely to weaken the main results of the present paper signi�-

cantly.33 Nontheless, I examine here whether simply introducing the procyclical skewness of

idiosyncratic productivity shocks mitigates the gap between the U.S. and model results. I

employ a speci�cation similar to Guvenen et al. (2014) and include it into the independent

and countercyclical risk models. Below, I present the countercyclical risk model with the pro-

cyclical skewness of idiosyncratic productivity shocks, while Appendix D in Supplementary

Materials describes the independent risk model with the procyclical skewness.

There are three states for the standard deviation and skewness of idiosyncratic productiv-

ity shocks "
0
x:
34 If aggregate TFP changed from the previous to current periods by less than

and 10th percentiles. The measure is more robust to outliers than the third central moment.
33In the independent risk model, a rise in idiosyncratic wage risk increases both output and L90�50. Hence,

increasing the procyclicality of L90�50 means enhancing the composition change arising from an increase in
the high-productivity employment. In the countercyclical risk model, a rise in wage risk increases L90�50,
but a fall in aggregate TFP lowers output simultaneously. Hence, increasing the procyclicality of L90�50
means weakening the composition change arising from an increase in the high-productivity employment.
However, as the analysis in Section 5.2 suggests, the composition e¤ect mainly arises from a decrease in the
low-productivity employment. Hence, the main results of the present paper are likely to survive under more
procyclical L90�50.
34Guvenen et al. (2014) consider two states instead of three states herein.
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�1:67% (i.e., one grid point), then the standard deviation-skewness state is Middle-Zero and

"
0
x s N(0; �2�x) with ��x = 0:223.

35 If aggregate TFP fell by more than 1.67%, then the state

is High-Negative:

"
0

x s N(�1;N ; (1 + �H)
2�21) with probability p (12)

N(�2;N ; (1 + �H)
2�22) with probability 1� p:

If aggregate TFP rose by more than 1.67%, then the state is Low-Positive:

"
0

x s N(�1;P ; (1� �L)2�21) with probability p (13)

N(�2;P ; (1� �L)2�22) with probability 1� p:

There are four restrictions:

p�1;N + (1� p)�2;N = 0 (14)

p�1;P + (1� p)�2;P = 0 (15)

p[�21;N + (1 + �H)
2�21] + (1� p)[�22;N + (1 + �H)2�22] = (1 + �)2�2�x (16)

p[�21;P + (1� �L)2�21] + (1� p)[�22;P + (1� �L)2�22] = (1� �)2�2�x ; (17)

with � = 0:112. The �rst two imply that the mean of "
0
x is zero. The rest implies that the

standard deviation is unchanged from the original countercyclical risk model.

I introduce modest changes in the skewness of idiosyncratic productivity shocks. The

other parameter values are inherited from the original independent and countercyclical risk

models and those values are chosen so that the models are consistent with the short-run

and long-run features of the U.S. economy, including the distributions of wealth and labor

35The business cycle results do not change substantially under the assumption that aggregate TFP growth
from the current to next periods is positively correlated with the skewness in idiosyncratic productivity
shocks in the next period "

0

x.
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income. Introducing too large variation in the skewness of idiosyncratic productivity shocks

may break these successes and inferences obtained in such a model would not be reliable.36

Hence, the present paper focuses on how much a small departure from the original models

can mitigate the remaining gap between the U.S. and model results.

Given these considerations, I set p = 0:5; �1 = 0:239; �2 = 0:150; �1;N = �0:1; �1;P =

0:1; �2;N = 0:1; and �2;P = �0:1:37 The above conditions imply �H = 0:139 and �L =

0:142: As in the original countercyclical risk model, the standard deviation of idiosyncratic

productivity shocks varies by 11.2% and it is negatively correlated with aggregate TFP

growth. In addition, the skewness of idiosyncratic productivity shocks is positively correlated

with aggregate TFP growth. The skewness (i.e., the third central moment) is 0.489 in Low-

Positive and �0.439 in High-Negative. The same values of (p; �1; �2; �1;N ; �1;P ; �2;N ; �2;P )

are used for the independent risk model with the procyclical skewness.

As shown in Table 6, introducing the procyclical skewness of idiosyncratic productivity

shocks makes L90�50 more procyclical, moving closer to the Guvenen et al. (2014)�s result,

although a substantial gap remains. The �nding suggests that explaining Guvenen et al.

(2014)�s �nding more closely requires additional modi�cations to the current setting. The

main results of the present paper survive: The models with uncertainty shocks can account

for the low hours-productivity correlation and the volatile labor wedge seen in the U.S. data.

36Making the skewness of idiosyncratic productivity shocks strongly procyclical under the present speci-
�cation brings about large changes in the kurtosis and the strongly countercyclical median. McKay (2015)
proposes a speci�cation where the skewness of idiosyncratic earnings risk changes continuously as opposed to
discretely here and uses a mixture of three normals as opposed to two normals herein. His analysis suggests
that the speci�cation is �exible enough to account for Guvenen et al. (2014)�s moments well. I choose the
present speci�cation mainly for computational reasons discussed in footnote 37. An interesting exercise is
to include McKay (2015)�s speci�cation into the present setting. I would like to leave it to future research.
37One way to choose these parameter values is to use a simulated method of moments, targeting Guvenen

et al. (2014)�s moments, as is done by McKay (2015). However, it is too computationally intensive. I use the
method similar to Takahashi (2014), which is based on Krusell and Smith (1997, 1998) algorithm. It takes
several hours to solve the model one time even though I use a computer including Intel Core i7 Processor
with 6 cores, 12 threads, and 3.3GHz and solve the model with Fortran. Further, the model frequency is
quarterly, while Guvenen et al. (2014)�s moments are annual. Hence, additional simulation is needed to
generate the model data in the annual frequency.
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7. Conclusion

Is cyclical variation in idiosyncratic wage risk relevant to business cycles? The present

paper has investigated the question quantitatively using a heterogeneous-agent model with

uninsured idiosyncratic wage risk. I have introduced risk variation using uncertainty shocks

and calibrated those shocks to micro-level evidence. The analysis suggests that cyclical vari-

ation in idiosyncratic wage risk would be an important driver for labor market �uctuations.

One remaining task is to account for the �nding of Guvenen et al. (2014) more closely.

While the present paper�s models are partly consistent with their �nding, it is far from

perfect. Two modi�cations would be needed. One is labor supply. Introducing the intensive

margin adjustments as in Chang et al. (2014) and unemployment as in Krusell et al. (2015)

would be important. The other is the wage process. The present paper has assumed an AR(1)

process for idiosyncratic productivity and introduced risk variation in a simple way. Future

work should allow richer dynamics in idiosyncratic productivity and uncertainty. The present

paper�s �nding indicates that it would be interesting to evaluate aggregate implications of

cyclical variation in idiosyncratic wage risk in those extended models.
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Parameter Description Value

� Discount factor 0.9829

B Disutility of labor 3.061

h Working hours 1=3

k Borrowing limit �2:0

� Labor share 0:64

� Capital depreciation rate 0.025

�z Persistence in aggregate TFP 0.95

��z Volatility of aggregate TFP shocks 0.007

Table 1: Parameters other than those on idiosyncratic productivity.
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U.S. Constant Independent Countercyclical

A. Calibration momentsb�ax 0.854 0.855 0.855 0.855c��a"x 0.282 0.279 0.282 0.280

std(c�a"x) 1.729 0.373 1.745 1.707

corr(c�a"x ; d�a"x;�1) 0.198 �0:299 0.265 �0.331

B. Parameters

�x - 0.930 0.930 0.930

��x - 0.223 0.223 0.223

���x - - 0.900 -

� - - 0.067 0.112

Table 2: Calibration moments and the parameter values on idiosyncratic productivity.

Panel A lists the moments of annual individual wages used for calibration. std is the standard

deviation relative to the output volatility. corr is a correlation. I take logs of c�a"x and remove
trend using the Hodrick-Prescott �lter with a smoothing parameter of 10. Panel B shows

the parameter values.
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U.S. Constant Independent Psych Countercyclical

std(Y ) 1.69 1.37 1.40 1.37 1.22

std(C) 0.54 0.32 0.34 0.33 0.34

std(I) 2.85 3.10 3.12 3.19 3.02

std(H) 1.00 0.57 0.72 0.59 0.90

std(Y=H) 0.63 0.48 0.83 0.50 0.54

std(wedge) 1.40 0.23 0.98 0.31 0.95

corr(Y;C) 0.78 0.90 0.85 0.89 0.92

corr(Y; I) 0.80 0.99 0.98 0.99 0.99

corr(Y;H) 0.80 0.96 0.58 0.93 0.84

corr(Y; Y=H) 0.31 0.95 0.70 0.91 0.45

corr(H; Y=H) �0.32 0.83 �0.17 0.69 �0.10

corr(H;wedge) �0.94 �0.96 �0.80 �0.86 �0.94

corr(Y;wedge) �0.67 �0.86 0.01 �0.65 �0.61

Table 3: Business cycle statistics. I take logs of all of the series and remove trend using

the Hodrick-Prescott �lter with a smoothing parameter of 1,600. std is a standard deviation.

The volatility of output is multiplied by 100. Other volatilities are their ratio with respect

to the output volatility. corr is a correlation.
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U.S. Constant Independent Countercyclical

Economy-wide U �0.006 �0.017 0.000 �0.003

(0.002) (0.003) (0.046) (0.002)

lnY 0.293 0.467 0.559 0.172

(0.077) (0.036) (0.115) (0.116)

lnH 0.373 0.743 0.053 �0.096

(0.101) (0.117) (0.274) (0.127)

Balanced panel U �0.014 �0.014 �0.012 �0.012

(0.004) (0.006) (0.030) (0.003)

lnY 0.617 0.326 0.429 0.531

(0.165) (0.141) (0.122) (0.184)

lnH 0.699 0.636 0.829 0.404

(0.223) (0.248) (0.144) (0.214)

Table 4: Composition e¤ect. The table shows the estimated coe¢ cient �3 in (11). The

values in parentheses are standard errors. The U.S. result is taken from Solon et al. (1994).
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Wage percentile U.S. Constant Independent Countercyclical

corr(EN; Y ) all �0.66 �0.74 �0.19 �0.64

0�25th �0.53 �0.05 0.14 �0.37

25-50th �0.44 �0.42 0.07 �0.53

50�75th �0.66 �0.60 �0.27 �0.56

75�100th �0.24 �0.70 �0.38 �0.64

std(EN) all 8.87 2.18 3.30 3.99

0�25th 12.15 6.30 9.57 9.06

25-50th 15.07 2.92 6.14 4.30

50�75th 13.08 3.25 4.47 4.25

75�100th 10.57 2.89 3.68 4.33

Table 5: Probability of moving from employment to nonemployment (EN rate). I take

logs of all of the series and remove trend using the Hodrick-Prescott �lter with a smoothing

parameter of 10. std is the standard deviation relative to the output volatility. corr is a

correlation.

5



U
.S
.

st
an
da
rd
de
vi
at
io
n

C
on
st
an
t
In
de
pe
nd
en
t
C
ou
nt
er
yc
lic
al

In
de
pe
nd
en
t
C
ou
nt
er
cy
cl
ic
al

sk
ew
ne
ss

Z
er
o

Z
er
o

Z
er
o

P
ro
cy
cl
ic
al

P
ro
cy
cl
ic
al

La
bo
r
m
ar
ke
t
dy
na
m
ic
s

st
d
(w
ed
g
e)

1.
40

0.
23

0.
98

0.
95

0.
98

0.
76

co
rr
(H
;Y
=H
)

�
0.
32

0.
83

�
0.
17

�0
.1
0

�0
.1
8

0.
16

St
d
of
ea
rn
in
gs
gr
ow
th

st
d
(�
ea
r
n
in
g
s
)

1.
22

0.
37

0.
95

1.
16

0.
95

1.
08

co
rr
(�
ea
r
n
in
g
s
;Y
)

�0
.3
8

�0
.5
0

0.
17

�0
.6
0

0.
25

�0
.5
9

3r
d
m
om
en
t
of
ea
rn
in
gs
gr
ow
th

co
rr
(S
k
ew
n
es
s;
�
ln
Y
)

0.
74

0.
56

0.
36

0.
71

0.
46

0.
75

co
rr
(L
90
�
50
;�
ln
Y
)

0.
73

0.
08

0.
29

�0
.4
6

0.
35

�0
.2
5

co
rr
(L
50
�
10
;�
ln
Y
)

�0
.6
7

�0
.5
9

�0
.0
2

�0
.8
5

�0
.0
2

�0
.8
2

T
ab
le
6:
C
yc
lic
al
va
ri
at
io
n
in
th
e
la
bo
r
m
ar
ke
t
an
d
ea
rn
in
gs
ri
sk
.
Fo
r
th
e
st
an
da
rd
de
vi
at
io
n
of
ea
rn
in
gs
gr
ow
th
,
�
ea
r
n
in
g
s
,
I

ta
ke
it
s
lo
g
an
d
re
m
ov
e
tr
en
d
us
in
g
th
e
H
od
ri
ck
-P
re
sc
ot
t
�l
te
r
w
it
h
a
sm
oo
th
in
g
pa
ra
m
et
er
of
10
.
st
d
is
th
e
st
an
da
rd
de
vi
at
io
n

re
la
ti
ve
to
th
e
ou
tp
ut
vo
la
ti
lit
y.
co
rr
is
a
co
rr
el
at
io
n.

6



1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990

0.2

0.25

0.3

0.35

Le
ve

l

OLS Controlled OLS Heckman

1970 1972 1974 1976 1978 1980 1982 1984 1986 1988 1990
10

0

10

Pe
rc

en
t d

ev
ia

tio
n

Year

Figure 1: U.S. idiosyncratic wage risk. Upper panel: level. Lower panel: percent devia-

tion from trend.

7



0 0.02 0.04 0.06 0.08
0.5

0

0.5

1

o

0 0.02 0.04 0.06 0.08
0

0.5

1

1.5

λ

o

0.2 0.4 0.6 0.8
0.5

0

0.5

1
co

rr
(H

,Y
/H

)

o

0.2 0.4 0.6 0.8
0

0.5

1

1.5

ρ
σ ε x

st
d(

w
ed

ge
)

o

Figure 2: Risk variation and labor market statistics. Dotted line: U.S. data. Circle:

benchmark independent risk model.

8



2 0 2 4 6 8
10

0

10
Risk

2 0 2 4 6 8

1

0

1

Y

independent
psych

2 0 2 4 6 8

1

0

1

H

2 0 2 4 6 8

1

0

1

Y/H

2 0 2 4 6 8

1

0

1

Wedge

2 0 2 4 6 8

1

0

1

C

Figure 3: Impulse response to an increase in idiosyncratic wage risk. Horizontal axis:

period. Vertical axis: percent deviation from the pre-shock level.

9



1.6 1.55 1.5
0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

0.29
Low productivity

wealth

C
um

ul
at

iv
e 

de
ns

ity

48.5 49 49.5
0.94

0.945

0.95

0.955

wealth

High productivity

period 1
period 0
period 1

Figure 4: E¤ect of a rise in idiosyncratic wage risk on the employment rate. Left: indi-

viduals between the 10-20th pecentiles in the productivtiy distribution. Right: individuals

between the 80-90th percentiles.

10



Supplementary Materials

Appendix A: Data

This section explains the source of the U.S. data analyzed in the present paper.

A1: Individual Wage Data

I take data for heads of households from the family-level �le of the PSID. Individual wages

are the ratios of annual labor income (1969: V514�1992: V21484) to annual hours worked

(1969: V465�1992: V20344).1 They are converted to real wages in terms of 1983 dollars

using the CPI.2

I exclude the following observations.

� Observations whose heads change in the year (1969: V791�1992: V21388).

� Observations with major assignments assigned to the labor income and/or hours.3

� Observations with wages of less than one dollar (in 1983 dollars) or higher than 500

dollars (in 1983 dollars).4

� The most recent Latino sample and the Survey of Economic Opportunity sample.

� Observations with fewer than 100 annual hours.
1Numbers in parentheses are variable labels of the PSID. I exclude the interview year of 1993 because

data on major assignment for labor income are not available.
2I take �Consumer Price Index for All Urban Consumers: All Items� from the FRED database at the

Federal Reserve Bank of St. Louis. Using the PCE de�ator instead of the CPI does not substantially change
the moments used for calibration in Table 2A.

3See Swanson (2007) for details. For labor hours, I use the total hour accuracy (1969: V466�1984:
V10038) until 1984, and after 1984, the main job hour accuracy (1985: V11141�1992: V20339), the overtime
hour accuracy (1985: V11143�1992: V20341), and the extra job accuracy (1985: V11145�1992: V20343). For
labor income, I use the accuracy code for wages and salaries (1970: V1192�1992: V20430) and the accuracy
code for labor income except wages and salaries (1970: V1197�1992: V20435). For 1969, the accuracy code
for total income is used (V515).

4Eliminating observations with wages of less than half of the legal minimum wage does not substantially
change the cyclical variation in idiosyncratic wage risk.

1



� Self-employment observations (1969: V641�1992: V20696).

� Observations in the agricultural sectors (1969: V640�1992: V20701).

� Top-coded observations for income.

Other variables are age (1969: V1008�1992: V20651), sex (1969: V1010�1992: V20652),

marital status (1969: V607�1992: V21522), and the number of children (1969: V550�

1992: V20654). For years of education, I select �Grade Completed�(1975: ER30169�1992:

ER30748) from the individual-level �le and de�ne experience as age minus education minus

six.

A2: Individual Labor Income Data

The 1992 PSID individual-level �le provides annual labor income data in 1991 for individ-

uals, including those other than heads of households. I take total labor income (ER30750),

excluding individuals younger than 16 (ER30736) and individuals with major assignments

on their income and/or hours worked (ER30751, ER30755).

A3: Macroeconomic Data

The data period is from 1947Q3 to 2009Q3. Output is �Real Gross Domestic Product

(billions of chained 2005 dollars)�taken from Table 1.1.6 of the Bureau of Economic Analysis

(BEA). Consumption is �Personal Consumption Expenditures (PCE)� less durable goods

obtained from Table 2.3.5 of the BEA. Investment is the sum of durable goods consumption

in Table 2.3.5 and private �xed investment (including residential investment) in Table 5.3.5.

I compute the real values of consumption and investment using the price index for Gross

Domestic Product in Table 1.1.4. The data on total labor hours are the data constructed by

Cociuba et al. (2009).5

5I am grateful to the authors for making the data available.
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Appendix B: Solution Methods

This section describes the solution method for the steady state and the business cycle.

B1: Steady State

The solution method for the steady state is similar to that of Chang and Kim (2007).

1. Discretize the idiosyncratic state (k; x). Set 100 log-spaced points over [�2, 250] for k:

For x, set 17 evenly spaced points over [�3��"x=
p
1� �2x, 3��"x=

p
1� �2x] and compute

the transition matrix using the method of Tauchen (1986).

2. Set a guess for the discount factor �.

3. Solve the individual optimization problem and obtain the beginning-of-period value

function V (k; x). The aggregate state (z; �; �"x) is constant at the steady state and

hence omitted.

(a) Compute the steady-state wage rate �w = ��z((1 � �)�z=(�r + �))(1��)=� with the

target steady-state rental rate of capital �r = 0:01 and the steady-state aggregate

TFP �z = 1:0.

(b) Set a guess for the beginning-of-period value function V0(k; x).

(c) Solve the consumption-saving problem for each employment choice:

V E1 (k; x) = max
k
0��k
fu(w�hx+ (1 + r)k � k0 ; �h) + �

X
x
0

�x(x
0jx)V0(k

0
; x

0
)g

and

V N1 (k; x) = max
k
0��k
fu((1 + r)k � k0 ; 0) + �

X
x
0

�x(x
0jx)V0(k

0
; x

0
)g;

where �x(x
0jx) is the transition probability from x to x

0
. Use cubic spline inter-

polation to approximate the conditional expectation at k
0
o¤ the grid points. If

3



V E1 (k; x) � V N1 (k; x), then individuals with k and x choose to work. Otherwise,

they do not work. Set V1(k; x) = max
�
V E1 (k; x); V

N
1 (k; x)

	
.

(d) If V1(k; x) is su¢ ciently close to V0(k; x), then set V (k; x) = V1(k; x) and proceed

to the next step. Otherwise, update the value function as V0(k; x) = V1(k; x) and

return to (c).

4. Compute the steady-state individual distribution over wealth and productivity ��(k; x).

(a) Choose points used for approximating the distribution. Use 2,000 log-spaced

points over [�2; 250] for k and the points chosen in Step 1 for x.

(b) Replace V0(k; x) in Step 3 (c) with V (k; x) obtained in Step 3 (d). Solve the

problems this time for 2; 000 � 17 pairs of (k; x) and �nd their optimal wealth

holding k
0
(k; x) and employment h(k; x).

(c) Suppose km � k
0
(k; x) < km+1, where km and km+1 are two sequential wealth

points. Starting from an initial guess, keep updating the distribution until the

distribution converges as follows: Individuals with (k; x) move to (km; x
0
) with

probability !�x(x
0jx) and to (km+1; x

0
) with probability (1 � !)�x(x

0jx), where

! = (km+1 � k
0
)=(km+1 � km). The result is the steady-state distribution ��(k; x).

5. Compute the steady-state aggregate capital �K =

Z
k��([dk � dx]) and aggregate

e¢ ciency-weighted labor �L =
Z
xh(k; x)��([dk � dx]). Calculate the implied steady-

state rental rate of capital �r = (1 � �)�z �K�� �L� � �. If �r is su¢ ciently close to the

target rate, then stop. Otherwise, set a di¤erent value for � and repeat Steps 3�5.

B2: Business Cycles

I analyze the model�s business cycle generalizing the Krusell and Smith (1997, 1998) algo-

rithm. The method is similar to that used in Takahashi (2014). I show here the method for

the independent risk model as an example.
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1. Discretize the aggregate state (z; �; ��x): For aggregate TFP z, set nine evenly spaced

points over [�3��"z=
p
1� �2z, 3��"z=

p
1� �2z]; and compute the transition matrix using

the method of Tauchen (1986). Replace the individual distribution � with aggregate

capital K. Use seven evenly spaced points over [0:80 �K; 1:20 �K], where �K is the steady-

state aggregate capital. For ��x, use the three risk states.

2. Discretize the individual state (k; x): For k, use the 100 points chosen in the steady-

state solution. For x, use 17 evenly spaced points over [�3��"x=
p
1� �2x, 3��"x=

p
1� �2x]

for all of the risk states. The transition probabilities vary with the risk states. Compute

these probabilities using the method of Tauchen (1986).

3. Individuals forecast K
0
and w using the following rules:

ln K̂
0
= a0;i + a1;i lnK + a2;i ln z (1)

and

ln ŵ = b0;i + b1;i lnK + b2;i ln z; (2)

for each risk state (i = H;M;L): Individuals compute r̂ = z(1� �)(ŵ=(�z))��=(1��):

4. Solve the individual optimization problem and obtain the beginning-of-period value

function V (k; x; z;K; ��x).

(a) Set a guess for the beginning-of-period value function V0(k; x; z;K; ��x):

(b) Solve the consumption-saving problem for each employment choice:

V E1 (k; x; z;K; ��x) = max
k
0��k
fu(ŵ�hx+ (1 + r̂)k � k0 ; �h)

+ �
X
x
0

X
z
0

X
�
0
�x

�x(x
0jx; ��x)�z(z

0jz)���x (�
0

�xj��x)V0(k
0
; x

0
; z

0
; K̂

0
; �

0

�x)
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and

V N1 (k; x; z;K; ��x) = max
k
0��k
fu((1 + r̂)k � k0 ; 0)

+ �
X
x
0

X
z
0

X
�
0
�x

�x(x
0jx; ��x)�z(z

0jz)���x (�
0

�xj��x)V0(k
0
; x

0
; z

0
; K̂

0
; �

0

�x);

where �x(x
0jx; ��x) is the transition probability from x to x

0
under ��x, �z(z

0jz)

is the transition probability from z to z
0
, and ���x (�

0
�xj��x) is the transition

probability from ��x to �
0
�x. Use bivariate cubic spline interpolation in (K; k)

to approximate the conditional expectation at (K̂
0
; k

0
) o¤ their grid points. If

V E1 (k; x; z;K; ��x) � V N1 (k; x; z;K; ��x), then individuals with k and x work. Oth-

erwise, they do not. Set V1(k; x; z;K; ��x) = maxfV E1 (k; x; z;K; ��x); V N1 (k; x; z;K; ��x)g:

(c) If V1(k; x; z;K; ��x) is su¢ ciently close to V0(k; x; z;K; ��x), then proceed to the

next step, setting V (k; x; z;K; ��x) = V1(k; x; z;K; ��x). Otherwise, update the

value function as V0(k; x; z;K; ��x) = V1(k; x; z;K; ��x) and return to (b).

5. Generate 3,500-period data using the beginning-of-period value function V (k; x; z;K; ��x).

(a) Set the initial conditions: z1 = �z; ��x1 = ��x;M ; �1(k; x) = ��(k; x); and K1 =R
k�1([dk � dx]):

(b) Set ~w1, as a guess for w1. Then, ~r1 = (1 � �)z1( ~w1=�z1)��=(1��) � �. The

forecasting rule gives the individuals� forecast of the next period approximate

aggregate capital K̂2: Replacing V0(k; x; z;K; ��x) with V (k; x; z;K; ��x), solve

the individual problems shown in Step 4 (b) under w = ~w1, r = ~r1, and K
0
= K̂2,

this time for 2; 000�17 pairs of (k; x). Record the optimal wealth holding k2(k; x)

and employment h1(k; x).

(c) Check labor market clearing: ~L1 � (�z1= ~w1)1=(1��)K1 =
R
xh1(k; x)�1([dk� dx]).

If the labor market clears, then proceed to the next step. Otherwise, reset ~w1 and
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return to (b).6

(d) Compute aggregate variables: L1 =
R
xh1(k; x)�1([dk�dx]); K2 =

R
k2(k; x)�1([dk�

dx]); H1 =
R
h1(k; x)�1([dk � dx]); Y1 = z1K1��

1 L�1 ;

I1 = K2 � (1� �)K1; C1 = Y1 � I1; and r1 = (1� �)z1K��
1 L�1 � �:

(e) Obtain the next period distribution �2(k; x) using the method described in Step

4 (c) of the steady-state solution.

(f) Repeat (b)�(e) for 3,500 periods.

6. Using the simulated data (disregarding the �rst 500 periods), update the coe¢ cients

of the forecasting rules by ordinary least squares. If these coe¢ cients converge, then

proceed to the next step. Otherwise, repeat Steps 4 and 5 using the new forecasting

rules.

7. Check whether the converged forecasting rules are su¢ ciently accurate. If not, assume

di¤erent functional forms and repeat Steps 3�6. The forecasting rules of (11) and (12)

are quite accurate, as reported in Appendix C.

Appendix C: Forecasting Rules

Table A1 lists the coe¢ cients of the forecasting rules (ln K̂
0
= a0 + a1 lnK + a2 ln z and

ln ŵ = b0 + b1 lnK + b2 ln z) and the accuracy of the rules for the constant, benchmark

independent, and countercyclical risk models.7 Two accuracy measures are the coe¢ cient of

determination R2 and the standard deviation of the forecasting error �̂. Separate rules are

used for each of the risk states.

6Ensuring market clearing is an essential step of the Krusell and Smith (1998) algorithm and included for
the bond market by Krusell and Smith (1997) and Pijoan-Mas (2007), for the goods market by Khan and
Thomas (2003, 2007, 2008), and for the labor market by Takahashi (2014).

7The results for other models are available upon request.
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Appendix D: Procyclical Skewness in Idiosyncratic Pro-

ductivity Shocks

The main text describes the countercyclical risk model with the procyclical skewness of idio-

syncratic productivity shocks, where the standard deviation of idiosyncratic productivity

shocks is negatively and the skewness is positively correlated with aggregate TFP growth.

This section describes the independent risk model with the procyclical skewness of idiosyn-

cratic shocks, where the standard deviation moves independently of aggregate TFP and the

skewness is positively correlated with aggregate TFP growth. There are 3� 3 = 9 states.

1. High standard deviation of idiosyncratic productivity shocks

(a) If aggregate TFP increased from the previous to current periods by more than

1.67%, then the skewness of idiosyncratic productivity shocks is positive:

"
0

x s N(�1;P ; (1 + �H)
2�21) with probability p

N(�2;P ; (1 + �H)
2�22) with probability 1� p:

(b) If aggregate TFP changed by less than �1.67%, then the skewness is zero:

"
0

x s N(0; (1 + �)2�2�x).

(c) If aggregate TFP decreased by more than 1.67%, then the skewness is negative:

"
0

x s N(�1;N ; (1 + �H)
2�21) with probability p

N(�2;N ; (1 + �H)
2�22) with probability 1� p:

2. Middle standard deviation of idiosyncratic productivity shocks
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(a) If aggregate TFP increased from the previous to current periods by more than

1.67%, then the skewness of idiosyncratic productivity shocks is positive:

"
0

x s N(�1;P ; �
2
1) with probability p

N(�2;P ; �
2
2) with probability 1� p:

(b) If aggregate TFP changed by less than �1.67%, then the skewness is zero:

"
0

x s N(0; �2�x).

(c) If aggregate TFP decreased by more than 1.67%, then the skewness is negative:

"
0

x s N(�1;N ; �
2
1) with probability p

N(�2;N ; �
2
2) with probability 1� p:

3. Low standard deviation of idiosyncratic productivity shocks

(a) If aggregate TFP increased from the previous to current periods by more than

1.67%, then the skewness of idiosyncratic productivity shocks is positive:

"
0

x s N(�1;P ; (1� �L)2�21) with probability p

N(�2;P ; (1� �L)2�22) with probability 1� p:

(b) If aggregate TFP changed by less than �1.67%, then the skewness is zero:

"
0

x s N(0; (1� �)2�2�x).
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(c) If aggregate TFP decreased by more than 1.67%, then the skewness is negative:

"
0

x s N(�1;N ; (1� �L)2�21) with probability p

N(�2;N ; (1� �L)2�22) with probability 1� p:

I set � = 0:067 and �2�x = 0:223 and the standard deviation of idiosyncratic productivity

shocks changes as in the original independent risk model. Other parameters are the same as

those of the countercyclical risk model with the procyclical skewness described in the main

text: p = 0:5; �1 = 0:239; �2 = 0:150; �1;H = �0:1; �1;L = 0:1; �2;H = 0:1; �2;L = �0:1: This

implies �H = 0:084 and �L = 0:084: The implied moments are listed in Table A2. As in the

original independent risk model, the standard deviation of idiosyncratic productivity shocks

varies by 6.7% independently of aggregate TFP. In addition, the skewness of idiosyncratic

productivity shocks is positively correlated with aggregate TFP growth. The magnitude is

similar to that of the countercyclical risk model with the procyclical skewness of idiosyncratic

productivity shocks.

Appendix E: Model Implied Labor Wedge

I feed the estimated idiosyncratic wage risk into the independent risk model and compare

the model implied labor wedge with the U.S. wedge. Since the model is quarterly and the

estimated risk is annual, I obtain the approximated quarterly series for idiosyncratic wage

risk as follows. If the detrended annual risk is above 2.0% in a year, then idiosyncratic wage

risk is in the high state for all the quarters in that year. If the detrended annual risk is

below 2.0% in the year, then idiosyncratic wage risk is in the low state for all the quarters

in that year. In other years, idiosyncratic wage risk is in the middle state throughout the

year. The upper panel of Figure A1 shows the result. While not perfect, the approximated

series tracks the original series reasonably well. I then choose the aggregate TFP series so

that the (detrended) model output matches the (detrended) U.S. output. As shown in the
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lower panel, the model output successfully keeps track of the U.S. output.8 The correlation

between the two is 0.94.

Figure A2 presents the labor wedge. With only changes in aggregate TFP, the model

cannot generate the substantial volatility in the labor wedge seen in the U.S. Adding changes

in idiosyncratic wage uncertainty greatly improves the model�s ability in generating the

volatile labor wedge. While not perfect, the correlation between the U.S. and model wedges

is 0.45.9 The result supports the present paper�s argument that introducing uncertainty

shocks improves the model�s ability in accounting for the movement in the labor wedge.

Appendix F: Impulse Responses to Aggregate TFP Shocks

This section shows the response of the independent risk model to an exogenous decline in

aggregate TFP z. The simulation starts from the steady state. For initialization, z is at the

steady state for 150 periods and then it declines by 1.67% (i.e., one grid point). I normalize

the period to period 0, as in the upper-left panel of Figure A3. Idiosyncratic wage risk �"x

is �xed at its steady-state level throughout.

The green dotted lines in the other panels show the responses of other variables. As

shown, output, total hours worked, and average labor productivity all decrease following the

decrease in aggregate TFP. As in the prototype equilibrium business cycle model, a decline in

aggregate TFP reduces labor demand, without signi�cantly a¤ecting labor supply. In equi-

librium, the wage rate falls, and employment decreases across all productivity groups largely

uniformly. Since aggregate TFP decreases, output decreases more substantially than hours,

lowering average labor productivity. Furthermore, since the wealth-productivity distribution

hardly shifts, output, hours, and productivity recover quickly.

I also analyze the model�s response when idiosyncratic wage risk �"x rises simultaneously

8The simulation starts from the steady state and runs for 150 periods for initialization. The U.S. uncer-
tainty and aggregate TFP series are then fed into the model.

9The results do not change substantially from that of the 2.0% cuto¤. The correlation between the U.S.
and model wedges is 0.41 for the 2.5% cuto¤ and 0.45 for the 1.5% cuto¤.
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with a fall in aggregate TFP z . After being in the middle state (i.e., at the steady state)

for 150 periods, �"x moves into the high state, increasing by 6.7% for one period in period 0,

as shown in the upper-left panel of Figure A3. The blue lines in the other panels show the

responses of other variables to these two shocks. The recovery shows a feature of a jobless

recovery in that output recovers much more quickly than total hours worked. In contrast,

output and hours recover together when only aggregate TFP falls. Hence, an increase in

idiosyncratic wage risk during a recession generates a jobless recovery.
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Constant Independent (H / M / L) Countercyclical (H / M / L)

K̂
0
a0 0.115 0.087 / 0.091 / 0.091 0.092 / 0.095 / 0.096

a1 0.953 0.965 / 0.963 / 0.963 0.962 / 0.961 / 0.961

a2 0.101 0.089 / 0.090 / 0.096 0.085 / 0.087 / 0.088

R2 1.000 1.000 / 1.000 / 1.000 1.000 / 1.000 / 1.000

�̂ 0.0079% 0.0880% / 0.0737% / 0.0752% 0.0151% / 0.0142% / 0.0135%

ŵ b0 �0.209 �0.050 / �0.082 / �0.081 �0.084 / �0.086 / �0.081

b1 0.438 0.372 / 0.387 / 0.388 0.388 / 0.388 / 0.386

b2 0.818 0.890 / 0.872 / 0.842 0.906 / 0.907 / 0.908

R2 1.000 0.983 / 0.988 / 0.983 1.000 / 1.000 / 1.000

�̂ 0.0407% 0.4810% / 0.3915% / 0.4214% 0.0500% / 0.0555% / 0.0690%

Table A1: Forecasting rules.
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standard High Middle Low

deviation

skewness Positive Zero Negative Positive Zero Negative Positive Zero Negative

standard 0.238 0.238 0.238 0.223 0.223 0.223 0.208 0.208 0.208

deviation

skewness 0.450 0.0 �0.450 0.466 0.0 �0.466 0.480 0.0 �0.480

Table A2: Standard deviation and skewness (i.e., the third central moment) of idiosyn-

cratic productivity shocks for the independent risk model with the procyclical skewness in

idiosyncratic productivity shocks.
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Figure A1: Upper panel: actual and approximated idiosyncratic wage risk. Lower panel:

U.S. and model output. Horizontal axis: year. Vertical axis: percent deviation from trend.
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Figure A2: U.S. and model labor wedges. Horizontal axis: year. Vertical axis: percent

deviation from trend.
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Figure A3: Impulse response to a fall in aggregate TFP and an increase in idiosyncratic

wage risk. Horizontal axis: period. Vertical axis: percent deviation from the pre-shock level.
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