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Abstract

This paper proposes the analysis of panel data whose dynamic structure is heterogeneous
across individuals. Our aim is to estimate the cross-sectional distributions and/or some
distributional features of the heterogeneous mean and autocovariances. We do not assume
any specific model for the dynamics. Our proposed method is easy to implement. We
first compute the sample mean and autocovariances for each individual and then estimate
the parameter of interest based on the empirical distributions of the estimated mean and
autocovariances. The asymptotic properties of the proposed estimators are investigated
using double asymptotics under which both the cross-sectional sample size (N) and the
length of the time series (T ) tend to infinity. We prove the functional central limit theorem
for the empirical process of the proposed distribution estimator. By using the functional
delta method, we also derive the asymptotic distributions of the estimators for various
parameters of interest. We show that the distribution estimator exhibits a bias whose order
is proportional to 1/

√
T . Conversely, when the parameter of interest can be written as the

expectation of a smooth function of the heterogeneous mean and/or autocovariances, the
bias is of order 1/T and can be corrected by the jackknife method. The results of Monte
Carlo simulations show that our asymptotic results are informative regarding the finite-
sample properties of the estimators. They also demonstrate that the proposed jackknife
bias correction is successful.
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1 Introduction

This paper considers the analysis of panel data whose dynamic structure is stationary across

time but heterogeneous across individuals. We propose methods for estimating the distribu-

tional features of the mean and autocovariances that are heterogeneous across individuals using

panel data. Our estimation procedure is simple to implement. We first estimate the mean or

autocovariances for each individual. We then estimate the distribution and other distributional

quantities using the empirical distribution of the estimated mean or autocovariances. When

the parameter of interest can be written as the expected value of a smooth function of the

heterogeneous mean or autocovariances, the jackknife method reduces the bias of the estimator.

Understanding the dynamic nature of an economic variable that is potentially heterogeneous

when using panel data is an important research consideration in economics. For example,

there is considerable study using panel data on income dynamics (see, e.g., Lillard and Willis,

1978, Meghir and Pistaferri, 2004, Guvenen, 2007, and Browning, Ejrnæs, and Alvarez, 2010,

among many others). In particular, Browning et al. (2010) show that income dynamics exhibit

considerable heterogeneity in that an income shock may have a persistent effect on the future

income profiles of some individuals, whereas for others, the effect may disappear quite quickly.

The contribution of this paper is to propose easy-to-implement methods to analyze panel

data whose dynamics are heterogeneous without assuming any specific model. To study the

heterogeneous dynamic structure, we investigate the cross-sectional distributions of the mean

and autocovariances that are heterogeneous across individuals. Investigating these quantities

does not depend on a particular model structure. While the literature on dynamic panel data

analysis is already voluminous, many studies assume some specific model for the dynamics (such

as the autoregressive (AR) model) and the homogeneity in the dynamics, allowing heterogeneity

only in the mean of the process.1 While several analyses consider either heterogeneous dynamics

or model-free analysis (see the section “Related literature” below), we are unaware of any specific

study that proposes methods to analyze heterogeneous dynamics using panel data without

specifying some particular model. This paper builds on the literature by proposing model-free

analysis for a heterogeneous dynamic structure.

The distributions of the heterogeneous mean and autocovariances are informative in various

ways. First, the mean and the autocovariances are perhaps the most basic descriptive statis-

tics for dynamics. Indeed, a typical first step in analyzing time-series data is to examine the

mean and the autocovariance (or autocorrelation) properties of the data. We believe that the

distributions of the heterogeneous mean and autocovariances would also be useful descriptive

statistics for understanding the dynamics in panel data analysis. Second, we can use the mean

and autocovariances to investigate whether different groups possess dissimilar dynamic struc-

tures without relying on some particular model. For example, consider the situation in which

we would like to investigate whether males and females face different income dynamics, but we

1 See, e.g., Baltagi (2008) and Arellano (2003) for excellent reviews of the more important existing contribu-
tions on dynamic panel data analysis.
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are also aware of the fact that income dynamics are heterogeneous across individuals. In such a

case, we can estimate the distributions of the autocovariances for males and females separately

and compare them to see if they indeed differ.

Our approach is to estimate the mean and autocovariances for each individual and use

the empirical distributions of the estimated mean and autocovariances to estimate the cross-

sectional distributions of the heterogeneous mean and autocovariances and other quantities of

interest, such as the quantile function. The asymptotic properties of the empirical distributions

are derived based on double asymptotics under which both the number of cross-sectional ob-

servations, N , and the length of the time series, T , tend to infinity. By using empirical process

theory (see, e.g., van der Vaart and Wellner, 1996), we show that the empirical distributions

converge weakly to Gaussian processes. However, the condition N/T → 0 is required for this

weak convergence because of the bias caused by the estimation error in the estimated mean

and autocovariances for each individual. We also derive the asymptotic distributions of the es-

timators for other distributional characteristics, including quantiles, using the functional delta

method.

When the parameter of interest can be written as the expected value of a smooth function

of the heterogeneous mean or autocovariances, the condition on the relative magnitudes of N

and T can be relaxed. This class of parameters includes the mean, the variance, and other

moments of the heterogeneous mean and autocovariances. In this case, the bias becomes of

order O(1/T ), and the condition N/T 2 → 0 is sufficient for asymptotically unbiased estimation.

Moreover, we can analytically evaluate the bias, and jackknife bias correction is available. This

bias has two sources. The first is the incidental parameter problem originally discussed in

Neyman and Scott (1948) and now well known in the econometrics literature. This type of bias

does not affect the estimated mean, but does influence the estimated autocovariances. When

we estimate the autocovariance for each individual, we also need to estimate the mean for

each individual. Because there are N individual-specific mean parameters to be estimated, this

creates incidental parameter bias. The second source of bias arises when the smooth function

is nonlinear. This bias affects both the mean and the autocovariances. However, this source of

bias does not appear when the parameter of interest is the mean of the heterogeneous mean or

autocovariances because the corresponding function is linear. We propose using the half-panel

jackknife in Dhaene and Jochmans (2014) to correct the bias.

We also conduct Monte Carlo simulations to investigate the finite-sample properties of the

proposed procedures. The results of the Monte Carlo simulations show that the asymptotic

analyses in this paper are informative regarding the finite-sample properties of the proposed

estimators. They show that the estimators based on the estimated autocovariances have severe

bias when T is small compared with N , but the bias decreases as T increases. They also show

that the proposed jackknife bias correction decreases this bias. The half-panel jackknife also

reduces the bias allocated with the incidental parameter problem and the nonlinearity of the

smooth function, even when T is relatively small.
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Related literature: This paper most closely relates to the literature on heterogeneous panel

AR models. In these models, we capture the heterogeneity in the dynamics by allowing the

AR coefficients to be individual specific. The panel AR(1) models with individual-specific

AR coefficients are analyzed by, for example, Pesaran and Smith (1995), Hsiao, Pesaran, and

Tahmiscioglu (1999), and Pesaran, Shin, and Smith (1999). These analyses are extended to

nonstationary panel data by Phillips and Moon (1999), while Pesaran (2006) considers models

with a multifactor error structure. The present analysis differs in two ways from these ear-

lier studies. First, we do not assume any specific model to describe the dynamics, while the

abovementioned studies consider an AR or linear-process specification. Second, our aim is to

estimate the entire distribution of the mean or autocovariances, which are heterogeneous across

individuals. In contrast, Pesaran and Smith (1995) and others focus on the estimation of the

means of the AR coefficients.

Elsewhere, Mavroeidis, Sasaki, and Welch (2014) consider the identification and estimation

of the distribution of the AR coefficients in heterogeneous panel AR models. The advantage

of their approach is that T can be fixed, and thus it is applicable to short panels. While we

consider the case in which T → ∞, our method is much simpler to implement. We simply

need to estimate the mean and autocovariances for each individual and compute the empirical

distributions of the estimated mean and autocovariances. By contrast, the estimation method

in Mavroeidis et al. (2014) requires the maximization of a kernel-weighting function that is

written as an integration over multiple variables. We also emphasize that our method does

not depend on model specification. In addition, we note that identification of the distributions

of the heterogeneous mean and autocovariances is trivial in our setting because we consider

the setting T → ∞. Alternatively, the identification analysis in Mavroeidis et al. (2014) is

mathematically involved because they consider fixed T .

Several studies propose model-free methods to investigate the dynamic structure using panel

data. For example, Okui (2010, 2011, 2014) considers the estimation of autocovariances using

long panel data and assumes that the autocovariance structure is homogeneous across individ-

uals. By contrast, our paper considers a heterogeneous structure. However, we note that it is

easy to show that Okui’s autocovariance estimator is equivalent to the estimator of the mean

of the heterogeneous autocovariances. In other work, Lee, Okui, and Shintani (2013) consider

infinite-order panel AR models. Given we can represent a stationary time series by an infinite-

order AR process under mild conditions, their approach is essentially model-free. However, they

assume that the dynamics are homogeneous.

A different line of research investigates the properties of the estimators for model-based

analysis when the assumed model is possibly misspecified. For instance, Okui (2008) examines

the probability limits of various estimators for panel AR(1) models when the true dynamics

do not follow an AR(1) process and assumes homogeneity in the dynamics, while the mean

is allowed to be heterogeneous. Lee (2012) discusses the fixed effects estimator for panel AR

models when the lag order is misspecified and also considers the case where the dynamics are
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homogeneous. Lastly, Galvao and Kato (2014) investigate the asymptotic properties of the

fixed effects estimator in general regression models and allow the data-generating process to be

generally heterogeneous. However, the purpose of the current study is to propose new methods

to analyze panel data with heterogeneous dynamics, not to examine the properties of existing

estimators.

The literature on deconvolution techniques examines the identification and estimation of

the distribution of individual effects (see, e.g., Horowitz and Markatou, 1996, Székely and Rao,

2000, and Bonhomme and Robin, 2010). In the context of the present analysis, we may employ

these deconvolution techniques to identify and estimate the distribution of the individual-specific

mean with fixed T . That T can be fixed is an advantage of these techniques. However, our

focus is on the distribution of not only the mean, but also the heterogeneous autocovariance.

Moreover, we propose methods that are easily implemented under the requirement that T → ∞.

On the other hand, the deconvolution techniques involve the computation of the characteristic

function, and the rate of convergence is remarkably slow.

While not directly connected, this paper is also somewhat related to the recent literature

on random coefficient models. For example, Arellano and Bonhomme (2012) consider linear

regression models with random coefficients in panel data analysis and discuss the identification

and estimation of the distribution of random coefficients using deconvolution techniques. Note

that Chamberlain (1992) and Graham and Powell (2012) consider a model similar to that of

Arellano and Bonhomme (2012), but their focus is on the means of the random coefficients.

Fernández-Val and Lee (2013) study moment restriction models with random coefficients and

their generalized methods of moment estimation. Their analysis on the smooth function of

individual effects is closely related to our analysis on the smooth function of means and auto-

covariances in terms of technique. Finally, Evdokimov (2009) considers a nonparametric panel

regression model with individual effects entering the unspecified structural function, but also

relies on deconvolution techniques.

Organization of the paper: The remainder of the paper is organized as follows. Section

2 explains the setting. Section 3 introduces the proposed procedures. In Section 4, we derive

the asymptotic properties of the distribution estimators. Section 5 considers the estimation

of the expected value of a smooth function of the heterogeneous mean or autocovariances, the

inference methods, and the jackknife bias correction. Section 6 presents some extensions based

on the proposed procedures. Section 7 presents the results of the Monte Carlo simulations.

Section 8 concludes the paper. All technical proofs are presented in the Technical appendix.

2 Settings

We observe panel data {{yit}Tt=1}Ni=1, where yit is a scalar random variable, i represents a cross-

sectional unit, and t indicates a time period. The number of cross-sectional observations is N
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and the length of the time series is T . We consider situations in which both N and T are large.

We assume that {yit}Tt=1 is independent across individuals.

The law of {yit}Tt=1 is assumed to be stationary, but its dynamic structure may be het-

erogeneous. To be specific, we consider the following data-generating process to model the

heterogeneous dynamic structure. The unobserved individual effect, αi, is independently drawn

from a distribution common to all individuals. The time series {yit}Tt=1 for individual i is then

drawn from some distribution L({yit}Tt=1;αi). The dynamic structure of yit is heterogeneous

because αi varies across individuals. However, note that introducing the parameter αi is a

somewhat abstract way to represent heterogeneity in the dynamics across individuals. We do

not directly assume anything about the distribution of αi, because αi does not explicitly appear

in our analysis. For notational simplicity, we denote “·|αi” by “·|i”; that is, “conditional on αi”

becomes “conditional on i” below.

Our aim is to develop statistical tools to analyze the cross-sectional distributions of the

heterogeneous mean and autocovariances of yit. The mean for unit i is µi := E(yit|i). Note that

µi is a random variable whose realization differs across individuals. This is because µi depends

on αi, which differs among individuals. As we assume stationarity, µi is constant over time.

The distribution of µi represents heterogeneity in the mean of yit across individuals. Let γk,i

be the k-th conditional autocovariance of yit given αi:

γk,i := E ((yit − µi)(yi,t−k − µi)|i) .

In other words, γk,i represents the k-th autocovariance of yit for individual i. Note that γ0,i is the

variance for individual i. Similarly to the case of µi, γk,i is a random variable and its realization

may be different among individuals. To understand the possibly heterogeneous dynamics of yit,

we aim to estimate quantities that characterize the distributions of µi and/or γk,i, such as the

distribution function, the quantile function, and the moments.

Our setting is very general and includes many situations.

Example 1. The panel AR(1) model with heterogeneous coefficients considered by Pesaran

and Smith (1995) and others is a special case of our setting. This model is

yit = ci + ϕiyi,t−1 + ϵit,

where ci and ϕi are the individual-specific intercept and slope coefficients, respectively, and ϵit

follows a strong white noise process with variance σ2. In this case, αi = (ci, ϕi), µi = ci/(1−ϕi),

and γk,i = σ2ϕk
i /(1− ϕ2

i ).

Example 2. Another example is the case in which yit is generated by a linear process with

heterogeneous coefficients:

yit = ci +

∞∑
j=0

θj,iϵi,t−j ,

where ci and {θj,i}∞j=0 are heterogeneous coefficients and ϵit follows a strong white noise process

with variance σ2. In this example, αi = (ci, {θj,i}∞j=0), µi = ci, and γk,i = σ2
∑∞

j=k θj,iθj−k,i.
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Example 3. Our setting also includes cases in which the true data-generating process follows

some nonlinear process. Suppose that yit is generated by

yit = m(αi, ϵit),

where m(·, ·) is some function and ϵit is stationary over time and independent across individuals.

In this case, µi = E(m(αi, ϵit)|αi) and γk,i is the k-th order autocovariance of wit = yit − µi

given αi.

Our focus is on estimating the heterogeneous mean and autocovariance structure; we do not

aim to recover the underlying structural form of the data-generating process. For example, even

when yit is generated by yit = m(αi, ϵit) as in the third example, we estimate not the function

m(·, ·) but rather the heterogeneous mean and autocovariance structure only. We understand

that addressing several important economic questions requires knowledge of the structural func-

tion of the dynamics. Nonetheless, we can estimate relatively easily the distribution of the

heterogeneous mean and autocovariance without imposing strong assumptions. Moreover, the

heterogeneous mean and autocovariance structure can provide valuable information, even if our

ultimate goal is to identify the structural function.

3 Procedures

In this section, we present the statistical procedures used to estimate the distribution functions

and other distributional characteristics of the heterogeneous mean and autocovariances of yit.

The proposed procedures are simple: we estimate the mean and autocovariances for each in-

dividual and then use their empirical distributions to estimate our parameter of interest. The

following sections provide the theoretical justification for the proposed statistical procedures.

We first estimate the mean and autocovariances for each individual: µi and γk,i. We estimate

these using the sample average and sample autocovariances:

µ̂i := ȳi :=
1

T

T∑
t=1

yit,

and

γ̂k,i :=
1

T − k

T∑
t=k+1

(yit − ȳi)(yi,t−k − ȳi).

We then compute the empirical distributions of {µ̂i}Ni=1 and {γ̂k,i}Ni=1:

Fµ̂
N (a) :=

1

N

N∑
i=1

1(µ̂i ≤ a), (1)

and

Fγ̂k
N (a) :=

1

N

N∑
i=1

1(γ̂k,i ≤ a), (2)
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where 1(·) is the indicator function and a ∈ R. These empirical distributions are interesting in

their own right because they are estimators of the cross-sectional distribution functions of µi and

γk,i, respectively. Let F
µ
0 and F γk

0 denote the distribution functions of µi and γk,i, respectively,

so that Fµ
0 (a) := Pr(µi ≤ a) and F γk

0 (a) := Pr(γk,i ≤ a). In Section 4, we show the consistency

of Fµ̂
N and Fγ̂k

N for Fµ
0 and F γk

0 , respectively, and derive the asymptotic distributions of Fµ̂
N and

Fγ̂k
N under the condition N/T → 0.

Remark 1. The condition N/T → 0 implies that the length of the time series T is large

relative to the number of cross-sectional observations N . Accordingly, the analysis based on the

distribution function would be more suitable for macroeconomic data than for microeconomic

data. Macroeconomic panel data, such as multi-country panels or state-level panels, may include

a sufficiently long period compared with the cross-sectional sample size.

We can estimate other distributional quantities based on the empirical distributions of γ̂k,i

or µ̂i. For example, consider the estimation of quantiles of γk,i. Let qτ be the τ -th quantile

of γk,i: qτ := inf{a : F γk
0 (a) ≥ τ}. This is estimated by the τ -th quantile of γ̂k,i so that

q̂τ := inf{a : Fγ̂k
N (a) ≥ τ}. Using the functional delta method, we derive the asymptotic

distribution of the quantile estimator when N,T → ∞ with N/T → 0.

We can also test parametric specifications of the distribution of the heterogeneous mean

or autocovariances based on the empirical distribution. Moreover, we can examine the differ-

ence of the heterogeneous dynamic structures across distinct groups based on the empirical

distributions. The tests are based on Kolmogorov–Smirnov statistics based on the empirical

distributions. We develop these tests in Section 6.

When the parameter of interest is the expectation of a smooth function of µi or γk,i, the

condition on the relative magnitudes of N and T can be relaxed. Suppose that we are interested

in Gµ := E(g(µi)), where g(·) is a known function. We estimate Gµ by

Ĝµ :=
1

N

N∑
i=1

g(µ̂i). (3)

When our parameter of interest is Gγk := E(g(γk,i)), it is estimated by

Ĝγk :=
1

N

N∑
i=1

g(γ̂k,i). (4)

Suppose that g(·) is twice continuously differentiable with a bounded second derivative. For

example, the mean of γk,i satisfies this condition because, for the mean, g is the identity function.

The theoretical results in Section 5 show that this estimator is consistent as N,T → ∞ and

that
√
N(Ĝa −Ga) for a = µ or γk is asymptotically normal with mean zero when N/T 2 → 0.

Remark 2. This result is important because the condition N/T 2 → 0 may be justified, even

in the case of microeconomic data, as long as T is moderately large. By contrast, condition

N/T → 0 is quite strong in the analysis of microeconomic data because the number of cross-

sectional units N is typically larger than the length of the time series T .
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The estimation of the variance can also be justified under the weaker condition N/T 2 → 0.

Suppose that the parameter of interest is var(γk,i) = E(γ2k,i)− (E(γk,i))
2. Thus, it is estimated

by

1

N

N∑
i=1

γ̂2k,i −

(
1

N

N∑
i=1

γ̂k,i

)2

.

Neither of the estimators of E(γ2k,i) and E(γk,i) suffer asymptotic bias when N/T 2 → 0. Because

the variance is a continuous function of these two moments, it can also be estimated without

asymptotic bias when N/T 2 → 0.

We can also estimate the expected value of a smooth function of a vector of the mean and

autocovariances. Suppose that we would like to estimate H := E(h(θi)), where h : Rl 7→ R is

some known smooth function and θi is an l-dimensional vector of µi and/or γk,is. Let θ̂i be the

vector of estimators corresponding to the elements of θi. This parameter is estimated by

Ĥ :=
1

N

N∑
i=1

h(θ̂i). (5)

For example, if we are interested in estimating H = E(µiγ0,i), it can be estimated by

Ĥ =
1

N

N∑
i=1

µ̂iγ̂0,i.

The covariance between µi and γ0,i is thus estimated by

1

N

N∑
i=1

µ̂iγ̂0,i −

(
1

N

N∑
i=1

µ̂i

)(
1

N

N∑
i=1

γ̂0,i

)
.

The half-panel jackknife (HPJ) proposed by Dhaene and Jochmans (2014) can further reduce

the bias in Ĝµ or Ĝγk . The estimator exhibits the bias of order O(1/T ) and the HPJ bias

correction can delete the bias of this order. It thus allows us to relax the condition on the ratio

of N and T . The bias correction is easy to implement. Suppose that T is even.2 We divide

the panel data into two subpanels: {{yit}T/2t=1}Ni=1 and {{yit}Tt=T/2+1}
N
i=1. The first subpanel,

{{yit}T/2t=1}Ni=1, consists of observations from the first half of the overall time period, and the

second subpanel, {{yit}Tt=T/2+1}
N
i=1, consists of those from the second half. Let G = Gµ or

Gγk and Ĝ be the estimator of G. Let Ĝ(1) and Ĝ(2) be the estimators of G computed using

{{yit}T/2t=1}Ni=1 and {{yit}Tt=T/2+1}
N
i=1, respectively. Let Ḡ := (Ĝ(1)+Ĝ(2))/2. The HPJ estimator

of G is:

ĜH := Ĝ− (Ḡ− Ĝ) = 2Ĝ− Ḡ. (6)

2If T is odd, we define Ḡ = (Ĝ(1,1)+ Ĝ(2,1)+ Ĝ(1,2)+ Ĝ(2,2))/4 as in Dhaene and Jochmans (2014, p. 9), where

Ĝ(1,1), Ĝ(2,1), Ĝ(1,2), and Ĝ(2,2) are the estimators of G computed using {{yit}⌈T/2⌉
t=1 }Ni=1, {{yit}Tt=⌈T/2⌉+1}Ni=1,

{{yit}⌊T/2⌋
t=1 }Ni=1, and {{yit}Tt=⌊T/2⌋+1}Ni=1, respectively. Here, ⌈·⌉ and ⌊·⌋ are the ceiling and floor functions,

respectively. We note that the asymptotic properties of the half-panel jackknife estimator for odd T are the same
as those for even T . We thus focus on even T in this paper without loss of generality.

9



The HPJ estimates the bias in Ĝ by Ḡ− Ĝ, and ĜH corrects the bias in Ĝ by subtracting the

HPJ bias estimate. The bias-corrected estimator ĜH does not exhibit the bias of order O(1/T )

and is asymptotically unbiased even when N/T 2 does not converge to zero. The jackknife bias

correction may also be applied to alleviate the bias Ĥ.

When correcting the bias of the variance or covariance estimator, we recommend that the

jackknife bias correction is applied for estimation of each expected value, not the variance or

covariance estimator itself. For example, to correct the bias for the estimator of cov(µi, γ0,i),

our recommendation is to correct the biases in the estimators of E(µiγ0,i) and E(γ0,i) (note

that E(µi) can be estimated without bias) and then combine the bias-corrected estimators.

For statistical inferences on parameter Gµ, Gγk , or H, we suggest the cross-sectional boot-

strap. The cross-sectional bootstrap is used to approximate the distribution of the HPJ es-

timator (or Ĝµ, Ĝγk , or Ĥ when T is sufficiently large). In the cross-sectional bootstrap, we

regard the time series from an individual as the unit of observation and approximate the dis-

tribution of statistics by that under the empirical distribution of zi, where zi := (yi1, . . . , yiT ).

The algorithm is as follows:

1. Randomly draw z∗1 , . . . , z
∗
N from {z1, . . . , zN} with replacement.

2. Compute the statistics of interest, say S, using z∗1 , . . . , z
∗
N .

3. Repeat 1 and 2 B times. Let S∗(b) be the statistics computed with the b-th bootstrap

sample.

4. Compute the distributional quantities of interest for S based on the empirical distribution

of S∗(b).

For example, suppose that we are interested in constructing a 95% confidence interval for

parameter Gµ = E(g(µi)). We obtain the bootstrap approximation of the distribution of

S = ĜH
µ −Gµ. Let Ĝ

H∗
µ (b) be the HPJ estimate of Gµ obtained with the b-th bootstrap sample.

We then compute the 2.5% and 97.5% quantiles, denoted as q∗0.025 and q∗0.975, of the empirical

distribution of S∗(b) = ĜH∗
µ (b)− ĜH

µ . The cross-sectional bootstrap 95% confidence interval for

Gµ is

[ĜH
µ − q∗0.975, Ĝ

H
µ − q∗0.025].

4 Asymptotic analysis for the distribution estimators

This section presents the asymptotic properties of the distribution estimators (1) and (2). We

first show the uniform consistency of the empirical distribution of the estimated mean or auto-

covariance. We then derive the functional central limit theorem for the empirical distributions.

We also show that the functional delta method can be applied in this case. All the asymptotic

analyses presented in the following sections are under double asymptotics (N,T → ∞). The
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asymptotic analyses are based on empirical process techniques (see, e.g., van der Vaart and

Wellner, 1996).

The following representation is useful for our theoretical analysis. Let wit := yit−E(yit|i) =
yit − µi. By construction, yit is decomposed as

yit = µi + wit.

The random variable wit is the unobservable idiosyncratic component that varies over both i

and t. Note that, by definition, E(wit|i) = 0 for any i and t. Note also that γk,i = E(witwi,t−k|i).

4.1 Uniform consistency

In this section, we show that the empirical distributions of µ̂i and γ̂k,i are uniformly consistent

for the true distributions of µi and γk,i,

Because we use empirical process techniques, it is convenient to rewrite the empirical distri-

butions as empirical processes indexed by a class of indicator functions. Let Pµ̂
N be the empirical

measure of µ̂i:

Pµ̂
N :=

1

N

N∑
i=1

δµ̂i
,

where δµ̂i
is the probability distribution degenerated at µ̂i. Let F be the following class of

indicator functions:

F := {1(−∞,a] : a ∈ R},

where 1(−∞,a](x) := 1(x ≤ a). We define the probability measure of µi as P
µ
0 . In this notation,

the empirical distribution function, Fµ̂
N , is an empirical process indexed by F . For example,

Pµ̂
Nf = Fµ̂

N (a) for f = 1(−∞,a]. Similarly, for f = 1(−∞,a], P
µ
0 f = Fµ

0 (a) = Pr(µi ≤ a). The

empirical measure of γ̂k,i, Pγ̂k
N and the probability measure of γk,i, P

γk
0 are analogously defined.

Our objective in this section is to show that the class F is P0-Glivenko–Cantelli for P0 = Pµ
0

or P γk
0 , in the sense that

sup
f∈F

|PNf − P0f |
as−→ 0, (7)

where PN is the empirical distribution corresponding to P0, and
as−→ is the almost sure con-

vergence. This is equivalent to the uniform consistency of the empirical distribution function.

Note that (7) cannot be directly shown by the usual Glivenko–Cantelli theorem, e.g., Theorem

19.1 in van der Vaart (1998). This is because the true distributions of µ̂i and γ̂k,i change as

T increases. Nonetheless, our proof of (7) follows similar steps to those of the usual Glivenko–

Cantelli theorem.

We use the following assumption throughout the paper, which summarizes the conditions

imposed in Section 2.

11



Assumption 1. The sample space of αi is some Polish space and yit is a scalar real random

variable. {({yit}Tt=1, αi)}Ni=1 is i.i.d. across i. {yi}Tt=1 is strictly stationary given αi.

The following conditions are used to show the consistency of Pµ̂
N .

Assumption 2.
∑∞

k=−∞E|γk,i| < ∞.

Assumption 3. The random vector (µi, ȳi) is continuously distributed and its joint density is

bounded.

Assumption 2 indicates that the dynamics of wit is a short memory process. We do not here

consider the case in which the process has a long memory property. Assumption 3 states that

µi and ȳi are continuous random variables. This assumption is restrictive in the sense that it

does not allow the case in which the distribution of µi is discrete or there is no heterogeneity in

the mean (i.e., µi is homogeneous so that µi = µ for some constant µ for any i). It should not

be very difficult to relax this assumption, but then we would need to employ a different proof

technique.

For the consistency of Pγ̂k
N , we need a different set of assumptions.

Assumption 4. For each i, {yit}∞t=1 is strictly stationary and α-mixing given αi with mixing

coefficients {α(m|i)}∞m=0. There exists a sequence {α(m)}∞m=0 such that for any i and m,

α(m|i) ≤ α(m) and
∑∞

m=0(m+ 1)3α(m)δ/(4+δ) < ∞ for some δ > 0.

Assumption 5. E|wit|4+δ < ∞ for some δ > 0.

Assumption 6. The random vector (γk,i, γ̂k,i) is continuously distributed and its joint density

is bounded.

Assumption 4 is a mixing condition and restricts the degree of persistency of yit. Assumption

5 requires that wit exhibits some moment higher than 4th order. Assumptions 4 and 5 are

satisfied, for example, when yit follows a heterogeneous stationary panel AR(1) model with

Gaussian innovations. Assumption 6 is similar to Assumption 3 and is restrictive in the sense

that γk,i must be continuously distributed.

The following theorem establishes the uniform consistency of our distribution estimators.

Theorem 1. Suppose that Assumptions 1, 2, and 3 hold. When N,T → ∞, the class F is

Pµ
0 -Glivenko–Cantelli in the sense that

sup
f∈F

∣∣∣Pµ̂
Nf − Pµ

0 f
∣∣∣ as−→ 0.

Suppose that Assumptions 1, 4, 5, and 6 hold. When N,T → ∞, the class F is P γk
0 -

Glivenko–Cantelli in the sense that

sup
f∈F

∣∣∣Pγ̂k
N f − P γk

0 f
∣∣∣ as−→ 0.
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4.2 Functional central limit theorem

We present the functional central limit theorems for the empirical distributions of µ̂i and γ̂k,i.

Our objective is to derive the asymptotic properties of

√
N(Pµ̂

Nf − Pµ
0 f), and

√
N(Pγ̂k

N f − P γk
0 f),

where f ∈ F . This is equivalent to investigating the limiting distributions of
√
N(Fµ̂

N (a)−Fµ
0 (a))

and
√
N(Fγ̂k

N (a)− F γk
0 (a)) for every a ∈ R. This result is interesting in its own right because it

provides the asymptotic distributions of the empirical distributions. It is also important because

the asymptotic distribution of other quantities of interest can be obtained by the functional delta

method based on this result.

The functional central limit theorems for Pµ̂
N and Pγ̂k

N hold under the same set of assumptions

for the uniform consistency. However, it requires a stronger condition on the relative magnitude

of N and T . Let ℓ∞(F) be the collection of all bounded real functions on F .

Theorem 2. Suppose that Assumptions 1, 2, and 3 hold. When N,T → ∞ with N/T → 0, we

have

√
N(Pµ̂

N − Pµ
0 )⇝ GPµ

0
in ℓ∞(F),

where GPµ
0
is a Gaussian process with zero mean and covariance function

E(GPµ
0
(fi)GPµ

0
(fj)) = Fµ

0 (ai ∧ aj)− Fµ
0 (ai)F

µ
0 (aj),

for fi = 1(−∞,ai] and fj = 1(−∞,aj ].

Suppose that Assumptions 1, 4, 5, and 6 hold. When N,T → ∞ with N/T → 0, we have

√
N(Pγ̂k

N − P γk
0 )⇝ GP

γk
0

in ℓ∞(F),

where Gγk
P0

is a Gaussian process with zero mean and covariance function

E(GP
γk
0
(fi)GP

γk
0
(fj)) = F γk

0 (ai ∧ aj)− F γk
0 (ai)F

γk
0 (aj),

for fi = 1(−∞,ai] and fj = 1(−∞,aj ].

This theorem shows that the asymptotic laws of the empirical processes are Gaussian. This

limiting process is then the same as that for the empirical process constructed using the true

µi or γk,i. However, this result requires that N/T → 0. Put differently, the condition N/T → 0

allows us to ignore the estimation error in µ̂i or γ̂k,i asymptotically.

Here, we provide a brief summary of the proof and explain the reason why the condition

N/T → 0 is required. The same discussion can be applied to both Pµ̂
N and Pγ̂k

N . In the following

discussion, we let PN be either Pµ̂
N or Pγ̂k

N and P0 be the corresponding true distribution.

The key to understanding the mechanism behind the requirement that N/T → 0 is to

recognize that E(PNf) ̸= P0f . That is, PNf is not an unbiased estimator for P0f . For
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this reason, the existing results for the empirical process cannot be directly applied to derive

the asymptotic distribution. Let PT be the (true) probability measure of µ̂i or γ̂k,i so that

PT f = Pr(µ̂i ≤ a) or PT f = Pr(γ̂k,i ≤ a), which depends on T . Note that E(PNf) = PT f . Let

GN,PT
:=

√
N(PN − PT ).

We decompose the process in the following way:

√
N(PNf − P0f) = GN,PT

f (8)

+
√
N(PT f − P0f). (9)

We analyze the asymptotic behavior of the terms in (8) and (9) separately.

For GN,PT
in (8), we can directly apply the uniform central limit theorem for the empirical

process based on triangular arrays (van der Vaart and Wellner, 1996, Lemma 2.8.7). Note that

E(GN,PT
f) = 0. Using Lemma 2.8.7 in van der Vaart and Wellner (1996), we show that

GN,PT
⇝ GP0 in ℓ∞(F).

This part of the proof is standard.

The condition N/T → 0 is needed to eliminate the effect of the bias term in the empirical

process:
√
N(PT − P0) in (9). In the proof of the theorem, we show that

sup
f∈F

∣∣∣√N(PT f − P0f)
∣∣∣ = O

(√
N√
T

)
.

This term converges to zero when T is of a higher order than N . This result arises from the fact

that the rate of convergence of µ̂i to µi or γ̂k,i to γk,i is 1/
√
T . Hence, the difference between

the distributions of µ̂i and µi or γ̂k,i and γk,i is of order 1/
√
T . This is the reason why the

difference between PT and P0 is also of order O(1/
√
T ).

4.3 Functional delta method

The asymptotic distribution of an estimator that is a function of the empirical distribution may

be derived using the functional delta method. Suppose that we are interested in the asymptotics

of ϕ(PN ) for ϕ : D(F) 7→ R, where PN = Pµ̂
N or Pγ̂k

N and D(F) is the collection of all cadlag real

functions on F . For example, the quantile function of γk,i, ϕ(P
γk
0 ) = qτ = inf{t : F γk

0 (t) ≥ τ}
for τ ∈ (0, 1), may be estimated by:

ϕ(Pγ̂k
N ) = q̂τ = (Fγ̂k

N )−1(τ) = inf{t : Fγ̂k
N (t) ≥ τ}.

The derivation of the asymptotic distribution of ϕ(PN ) is an application of the functional delta

method (see, e.g., van der Vaart and Wellner, 1996, Theorem 3.9.4) and Theorem 2. We

summarize this result in the following corollary.
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Corollary 1. Let E be a normed linear space. Let ϕ : D(F) ⊂ ℓ∞(F) 7→ E be Hadamard

differentiable at Pµ
0 . Denote its derivative by ϕ′

Pµ
0
. Under Assumptions 1, 2, and 3, when

N,T → ∞ with N/T → 0, we have

√
N(ϕ(Pµ̂

N )− ϕ(Pµ
0 ))⇝ ϕ′

Pµ
0
(GPµ

0
).

Similarly, suppose that ϕ has the Hadamard derivative, ϕ′
P

γk
0

, at P γk
0 . Under Assumptions 1, 4,

5, and 6, when N,T → ∞ and N/T → 0, we have

√
N(ϕ(Pγ̂k

N )− ϕ(P γk
0 ))⇝ ϕ′

P
γk
0
(GP

γk
0
).

Proof. This is immediate by the functional delta method and Theorem 2.

This result can be used, for example, to derive the asymptotic distribution of q̂τ . The form of

ϕ′
P

γk
0

for q̂τ is available in Example 20.5 in van der Vaart (1998) and indicates that as N,T → ∞
with N/T → 0,

√
N(q̂τ − qτ )⇝ N

(
0,

τ(1− τ)

(fγk
0 (qτ ))2

)
,

where fγk
0 is the density function of γk,i.

5 Expected value of a smooth function of the heterogeneous
mean and/or autocovariances

In this section, we consider the estimation of the expected value of a smooth function of the

heterogeneous mean and/or autocovariances. A close inspection of the asymptotic expansion of

the estimator reveals that a milder condition on the relative magnitude of N and T is sufficient

for the asymptotically unbiased estimation in this case. Furthermore, half-panel jackknife bias

correction can reduce the asymptotic bias in the estimator and further relax the condition on

the ratio of N to T .

5.1 Function of the mean

We first analyze the asymptotic property of Ĝµ = N−1
∑N

i=1 g(µ̂i) in (3). Recall that the

parameter of interest is Gµ = E(g(µi)). We consider the case in which g(·) is sufficiently

smooth. We derive the asymptotic distribution of Ĝµ under the condition N/T 2 → 0.

We make the following assumption on g(·).

Assumption 7. The function g(·) is twice differentiable. E(g(µi)
2) < ∞ and E(g′(µi)

4) < ∞.

supa |g′′(a)| < M for some M < ∞.

Assumption 7 states that the function g(·) is sufficiently smooth. This assumption is sat-

isfied, for example, when the parameter of interest is the mean (i.e., g(a) = a) or when it is

the p-th order moment (i.e., g(a) = ap). However, this assumption is not satisfied when the
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distribution function is estimated (i.e., g(a) = 1(a ≤ c) for some c ∈ R) or when a quantile is

estimated. The existence of the first derivative is crucial for relaxing the condition N/T → 0.

The existence of the second derivative is useful for evaluating the order of the asymptotic bias.

The asymptotic property of Ĝµ is given in the following theorem.

Theorem 3. Suppose that Assumptions 1, 4, 5, and 7 hold. When N,T → ∞, we have

Ĝµ −Gµ
p−→ 0,

and

√
N

(
Ĝµ −Gµ − 1

2
E
(
w̄2
i g

′′(µ̃i)
))
⇝ N(0, var(g(µi))),

where µ̃i is between µi and ȳi. In addition, when N/T 2 → 0, we have

√
N
(
Ĝµ −Gµ

)
⇝ N(0, var(g(µi))).

This theorem states that Ĝµ is consistent for Gµ and that the asymptotic distribution of

Ĝµ is normal and centered at zero when N/T 2 → 0. Note that we use the mixing and moment

conditions that have been used for Pγ̂k
N here. The remarkable result is that the asymptotically

unbiased estimation holds under N/T 2 → 0, which is a markedly weaker condition than N/T →
0. This result is because of the smoothness of g(·) and the fact that µ̂i is unbiased for µi. In fact,

when we are interested in E(µi) (i.e., when g(a) = a), no conditions on the relative magnitude

of N and T are needed to achieve an asymptotically unbiased estimation (indeed T can be fixed

for the estimation of E(µi)). However, if g(·) is nonlinear, N/T 2 → 0 is needed to remove the

asymptotic bias.

In order to obtain a better understanding of the results in the theorem, we observe the

following expansion:

√
N
(
Ĝµ −Gµ

)
=

1√
N

N∑
i=1

(g(µi)− E(g(µi))) +
1√
N

N∑
i=1

(µ̂i − µi)g
′(µi) +

1√
N

N∑
i=1

(µ̂i − µi)
2g′′(µ̃i)

=
1√
N

N∑
i=1

(g(µi)− E(g(µi))) +
1√
N

N∑
i=1

w̄ig
′(µi) +

1√
N

N∑
i=1

(w̄i)
2g′′(µ̃i). (10)

The second term in (10) has a mean of zero and is of order Op(1/
√
T ). The fact that the second

term has a mean of zero is the key reason that a milder condition, N/T 2 → 0, is sufficient for

the asymptotically unbiased estimation of Gµ. This result relies on the assumption that g(·) is
smooth. When g(·) is not smooth, this expansion cannot be executed and we cannot exploit the

fact that µ̂i is unbiased for µi. The third term corresponds to the bias caused by the nonlinearity

of g(·). When g(·) is linear, this term does not appear and the parameter can be estimated

without any restriction on the relative magnitude between N and T . The nonlinearity bias is

of order Op(
√
N/T ). The condition N/T 2 → 0 is used to eliminate the effect of this bias.
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We also note that the joint asymptotic distribution of the estimators of E(g1(µi)) and

E(g2(µi)) for different g1(·) and g2(·) can be easily derived. This is because the estimator is

asymptotically linear. This observation is important, for example, when we are interested in the

variance of µi. The variance of µi is a function of E(µ2
i ) and E(µi). To derive the asymptotic

distribution of the variance estimator, we need the joint asymptotic distribution of N−1
∑N

i=1 µ̂
2
i

and N−1
∑N

i=1 µ̂i. The fact that the estimator is asymptotically linear enables us to derive it

easily.

5.2 Function of the autocovariances

We next consider the asymptotic properties of Ĝγk = N−1
∑N

i=1 g(γ̂k,i) in (4), which is the

estimator for Gγk = E(g(γk,i)), and obtain results similar to those for Ĝµ. However, Ĝγk suffers

from an additional source of bias, namely incidental parameter bias.

We make the following additional assumptions to study the asymptotic properties of Ĝγk .

Assumption 8. For each i, {yit}∞t=1 is strictly stationary and α-mixing given αi with mixing

coefficients {α(m|i)}∞m=0. There exists a sequence {α(m)}∞m=0 such that for any i and m,

α(m|i) ≤ α(m) and
∑∞

m=0(m+ 1)3α(m)δ/(8+δ) < ∞ for some δ > 0.

Assumption 9. E|wit|8+δ < ∞ for some δ > 0.

Assumption 10. The function g(·) is twice differentiable. E(g(γk,i)
2) < ∞, E((g′(γk,i))

4) <

∞. supa |g′′(a)| < M for some M < ∞.

Assumption 8 is a stronger version of Assumption 4 and imposes restrictions on the per-

sistency of wit. Assumption 9 is a stronger version of Assumption 5 and states that wit has

some moment of higher order than 8. Assumption 10 is similar to Assumption 7 and states that

function g(·) is sufficiently smooth.

The asymptotic property of Ĝγk is given in the following theorem.

Theorem 4. Suppose that Assumptions 1, 8, 9, and 10 are satisfied. When N,T → ∞, it holds

that

Ĝγk −Gγk
p−→ 0.

Moreover, when additionally N/T 2 → 0 holds, we have

√
N(Ĝγk −Gγk)⇝ N(0, var(g(γk,i)).

This theorem states that Ĝγk is consistent for Gγk and that the asymptotic distribution of

Ĝγk is normal and is centered at zero when N/T 2 → 0. Similarly to Theorem 3, this theorem

merely requires that N/T 2 → 0 because of the smoothness of g(·) and the fact that the leading

term in the expansion of γ̂k,i has a mean of zero. However, contrary to Theorem 3, even if our

parameter of interest is E(γk,i) so that g(·) is linear, we cannot relax the condition N/T 2 → 0.

This is because γ̂k,i is not unbiased for γk,i.
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The results of the theorem can be better understood by examining the asymptotic expansion

of γ̂k,i and Ĝγk . The autocovariance estimator, γ̂k,i, is expanded as follows:

γ̂k,i =
1

T − k

T∑
t=k+1

(yit − ȳi)(yi,t−k − ȳi)

= γk,i +
1

T − k

T∑
t=k+1

(witwi,t−k − γk,i)− (w̄i)
2 +Op

(
1

T 2

)
.

It is important to observe that the second term in the second line has a mean of zero although

it is of order T−1/2. The third term, (w̄i)
2, is the estimation error in ȳi (= µ̂i). This term is

of order O(1/T ) and is the cause of the incidental parameter bias (Neyman and Scott, 1948;

Nickell, 1981). By the Taylor expansion of Ĝγk , we have

√
N(Ĝγk −Gγk) =

1√
N

N∑
i=1

(g(γk,i)− E(g(γk,i)))

+
1√
N

N∑
i=1

(γ̂k,i − γk,i)g
′(γk,i) +

1√
N

N∑
i=1

(γ̂k,i − γk,i)
2g′′(γ̃k,i)

=
1√
N

N∑
i=1

(g(γk,i)− E(g(γk,i))) (11)

+
1√
N

N∑
i=1

(
1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)
g′(γk,i) (12)

− 1√
N

N∑
i=1

(w̄i)
2g′(γk,i) +

1√
N

N∑
i=1

(γ̂k,i − γk,i)
2g′′(γ̃k,i) +Op

(√
N

T 2

)
, (13)

where the second equality is obtained by plugging the expansion for γ̂k,i, and γ̃k,i is between

γ̂k,i and γk,i.

Contrary to Ĝµ, Ĝγk exhibits the incidental parameter bias that corresponds to the first

term in (13). This bias is caused by the estimation of µi by ȳi and is of order Op(
√
N/T ),

but does not appear in the expansion of Ĝµ. Because of this term, the condition N/T 2 → 0

is needed even when g(·) is linear. The other terms are similar to those in the expansion of

Ĝµ. The term on the right-hand side of (11) yields the asymptotic normality of Ĝ. The term

in (12) has a mean of zero and is of order Op(1/
√
T ). That this term has a mean of zero is

crucial for the condition N/T 2 → 0 to be sufficient for the asymptotic unbiasedness of Ĝγk . The

second term in (13) is the nonlinearity bias term that also appears in Ĝµ. This is also of order

Op(
√
N/T ).

As in the case of Ĝµ, as the estimator is asymptotically linear, it is easy to derive the joint

asymptotic distribution of the estimators of, say, E(g1(γk,i)) and E(g2(γk,i)) for different g1(·)
and g2(·). Similarly, it is also easy to derive the joint asymptotic distribution of Ĝγk and Ĝµ.

5.3 Function of a vector of the mean and autocovariances

We now discuss the asymptotic properties of Ĥ = N−1
∑N

i=1 h(θ̂i) in (5), which is the estimator

of H = E(h(θi)). Recall that h : Rl 7→ R is some known smooth function, θi is an l-dimensional
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random vector of µi and/or γk,is, and θ̂i is the estimator of θi with µ̂i for µi and γ̂k,i for γk,i.

The asymptotic results and the mechanism behind them are similar to those of Ĝγk , and the

asymptotically unbiased estimation is achieved when N/T 2 → 0.

We make the following assumptions to develop the asymptotic properties of Ĥ. They impose

conditions on the smoothness of h(·) and the existence of the moments, and are similar to

Assumptions 7 and 10.

Assumption 11. The function h(·) is twice differentiable and supa

∣∣∣ ∂2

∂zj1∂zj2
h(z)|z=a

∣∣∣ < M for

some M < ∞ and any j1, j2 = 1, . . . , l.

Assumption 12. E(h2(θi)) < ∞ and E(( ∂
∂zj

h(z)|z=θi)
4) < ∞ for any j = 1, . . . , l.

The following theorem demonstrates the asymptotic properties of Ĥ.

Theorem 5. Suppose that Assumptions 1, 8, 9, 11, and 12 hold. When N,T → ∞, it holds

that

Ĥ −H
p−→ 0.

Moreover, when N/T 2 → 0 holds additionally, we have

√
N(Ĥ −H)⇝ N(0, var(h(θi))).

The theorem states that Ĥ is consistent when both N and T tend to infinity, and is asymp-

totically normal with mean zero when N/T 2 → 0. The condition N/T 2 → 0 is needed because

of the incidental parameter bias in γ̂k,i and the nonlinearity bias. The proof is very similar to

that of Theorem 4.

We remark that it is easy to derive the joint asymptotic distribution for the case in which

h(·) is multivalued because the estimator is asymptotically linear. Similarly, deriving the joint

asymptotic distribution of Ĥ, Ĝγk , and Ĝµ is also possible. For example, when we are interested

in the asymptotic distribution of the estimator of cov(µi, γ0,i), we need to derive the joint

asymptotic distribution of Ĥ = N−1
∑N

i=1 µ̂iγ̂0,i, Ĝµ = N−1
∑N

i=1 µ̂i, and Ĝγk = N−1
∑N

i=1 γ̂0,i.

This is possible because of the asymptotic linearity.

5.4 Jackknife bias correction

Here, we provide a theoretical justification of the half-panel jackknife (HPJ) bias-corrected

estimator (6), which is based on the bias-correction method proposed by Dhaene and Jochmans

(2014). It results that the bias of order O(1/T ) in Ĝµ and Ĝγk is eliminated by the HPJ

procedure. Recall the definitions: G = Gµ or Gγk and Ĝ is the corresponding estimator of

G; Ĝ(1) and Ĝ(2) are the estimators of G computed using {{yit}T/2t=1}Ni=1 and {{yit}Tt=T/2+1}
N
i=1,

respectively, with even T ; the HPJ estimator of G is ĜH = 2Ĝ− Ḡ, where Ḡ = (Ĝ(1)+ Ĝ(2))/2.

We make the following additional assumptions to study the asymptotic property of the HPJ

estimator of Gµ.
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Assumption 13. The function g(·) is thrice differentiable. E(g(µi)
2) < ∞, E((g′(µi))

4) < ∞,

E((g′′(µi))
4) < ∞. supa |g′′′(a)| < M for some M < ∞.

For the HPJ estimator of Gγk , we use the following assumptions.

Assumption 14. E|wit|16+δ < ∞ for some δ > 0.

Assumption 15. The function g(·) is thrice differentiable. E(g(γk,i)
2) < ∞, E((g′(γk,i))

4) <

∞, E((g′′(γk,i))
4) < ∞. supa |g′′′(a)| < M for some M < ∞. limT→∞ T−1(

∑T
t=k+1(witwi,t−k −

γk,i))
2g′′(γk,i) exists almost surely.

Assumption 14 provides a condition on the existence of moments of wit. It is stronger than

Assumption 9. A stronger moment condition is called for because the asymptotic expansion

needs to be executed for a higher order to derive the asymptotic properties of ĜH . Assumptions

13 and 15 require that g(·) is thrice differentiable, contrary to Assumptions 7 and 10. This

condition is also needed to conduct a higher-order asymptotic expansion.

The following theorem shows the asymptotic normality of the HPJ estimator.

Theorem 6. Suppose that Assumptions 1, 8, 9, and 13 are satisfied. Then, as N,T → ∞ with

N/T 2 → r for some r ∈ [0,∞), it holds that

√
N(ĜH

µ −Gµ)⇝ N(0, var(g(µi))).

Suppose that Assumptions 1, 8, 14, and 15 are satisfied. Then, as N,T → ∞ with N/T 2 → r

for some r ∈ [0,∞), it holds that

√
N(ĜH

γk
−Gγk)⇝ N(0, var(g(γki))).

The remarkable result is that the HPJ estimator is asymptotically unbiased even when

N/T 2 → 0 is violated. Moreover, this bias correction does not inflate the asymptotic variance.

To see how the HPJ works, we observe that

Ĝ = G+Op

(
1√
N

)
+Op

(
1√
NT

)
+

B

T
+Op

(
1

T 2

)
,

where B is a constant. Similarly, we have

Ĝ(j) = G+Op

(
1√
N

)
+Op

(
1√
NT

)
+

2B

T
+Op

(
1

T 2

)
,

for j = 1, 2. Therefore, it holds that

ĜH = G+Op

(
1√
N

)
+Op

(
1√
NT

)
+Op

(
1

T 2

)
.

Thus, the HPJ reduces the order of the bias from O(1/T ) to O(1/T 2).

The HPJ bias correction for Ĥ can also be similarly developed and reduces the bias of order

O(1/T ). The theoretical justification of the HPJ estimator can be done along the same lines as

the proof of Theorem 6 under a similar set of assumptions.
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Remark 3. One may also consider applying the half-series jackknife (Quenouille, 1949, 1956) to

each γ̂k,i, but we argue that this jackknife is not suitable in the current context. In the method

based on the half-series jackknife, we bias-correct each γ̂k,i using the jackknife. Suppose T is

even. Let γ̂
(1)
k,i be the estimator of γk,i using {yit}T/2t=1 , and γ̂

(2)
k,i be that based on {yit}Tt=T/2+1.

Let γ̄k,i = (γ̂
(1)
k,i + γ̂

(2)
k,i )/2. The half-series jackknife bias-corrected estimator of γk,i is γ̂Hk,i =

γ̂k,i − (γ̄k,i − γ̂k,i) = 2γ̂k,i − γ̄k,i. We then estimate G using {γ̂Hk,i}Ni=1. The half-series jackknife

method can reduce the bias of order 1/T in γ̂k,i and, therefore, the incidental parameter bias in

Ĝ. However, it does not reduce the bias caused by the nonlinearity of g(·). Indeed, our Monte

Carlo simulations show that the half-series jackknife may not work as well as the half-panel

jackknife. Therefore, we do not pursue theoretical investigation of the half-series jackknife in

this paper. We note that when g(·) is linear, the half-panel jackknife and the half-series jackknife

are numerically equivalent.

Remark 4. We may also consider a higher-order jackknife bias correction. This is discussed in

Dhaene and Jochmans (2014). The HPJ bias correction can eliminate bias up to the order of

O(1/T ). The higher-order jackknife bias correction is expected to eliminate bias of higher order.

Here, we consider the third-order jackknife. Suppose that T is a multiple of six.3 The panel

data are divided into three subpanels: {{yit}Ni=1}
T/3
t=1 , {{yit}Ni=1}

2T/3
t=T/3+1, and {{yit}Ni=1}Tt=2T/3+1.

Let Ĝ(3,1), Ĝ(3,2), and Ĝ(3,3) be the estimates of G computed from each of these three subpanels.

The third-order jackknife estimator is

ĜJ3 = 3Ĝ− 3

2

(
Ĝ(1) + Ĝ(2)

)
+

1

3

(
Ĝ(3,1) + Ĝ(3,2) + Ĝ(3,3)

)
.

However, we do not examine its theoretical property in this paper. Our Monte Carlo results

indicate that the higher-order jackknife can eliminate the bias effectively in some cases, but in

other cases, we observe that it inflates the bias substantially. This result may be related to the

caution noted by Dhaene and Jochmans (2014): a higher-order jackknife may inflate the bias

by an order higher than that to be corrected. We also find that the variance inflation may be

substantial in certain cases.

5.5 Cross-sectional bootstrap

In this section, we present the theorems that justify the use of the cross-sectional bootstrap.

The first theorem is concerned with Ĝµ and Ĝγk , and the second theorem discusses the case of

ĜH
µ and ĜH

γk
.

We require the following additional assumptions. The following assumption is used to satisfy

Lyapunov’s conditions for Ĝ∗
µ that is the estimator of Gµ obtained with the bootstrap sample.

Assumption 16. E(g6(µi)) < ∞ and E((g2(µi)g
′(µi))

4) < ∞.

3 See Dhaene and Jochmans (2014) for the treatment of the case in which T is not a multiple of 6. Note that
the asymptotic properties of the third-order jackknife estimator do not depend on whether or not T is a multiple
of 6.
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The following assumption is for Ĝ∗
γk

Assumption 17. E(g6(γk,i)) < ∞ and E((g2(γk,i)g
′(γk,i))

4) < ∞.

The following theorem states that the bootstrap distribution converges to the asymptotic

distribution of Ĝµ or Ĝγk when T is sufficiently large, but it fails to capture the bias term.

Theorem 7. Suppose that Assumptions 1, 4, 5, 7, and 16 are satisfied. As N,T → ∞, we

have

sup
x∈R

∣∣∣Pr(√N(Ĝ∗
µ − Ĝµ) ≤ x

∣∣{{yit}Tt=1}Ni=1

)
− Pr (Zµ ≤ x)

∣∣∣ p−→ 0, (14)

where Zµ ∼ N(0, var(g(µi))).

Suppose that Assumptions 1, 8, 9, 10, and 17 are satisfied. As N,T → ∞, we have

sup
x∈R

∣∣∣Pr(√N(Ĝ∗
γk

− Ĝγk) ≤ x
∣∣{{yit}Tt=1}Ni=1

)
− Pr (Zγk ≤ x)

∣∣∣ p−→ 0, (15)

where Zγk ∼ N(0, var(g(γk,i))).

It is important to note that the bootstrap does not capture the bias properties of Ĝµ and

Ĝγk . The bootstrap distribution is asymptotically centered at zero. Thus, even if Ĝµ or Ĝγk

suffers from the bias as seen in Section 5.2, the bootstrap distribution cannot capture the bias.

This implies that when T is small, we must be cautious about the use of the bootstrap to make

statistical inferences. Galvao and Kato (2014), Gonçalves and Kaffo (2014), and Kaffo (2014)

also observe that the bootstrap fails to approximate the bias in dynamic panel data settings for

different estimators.

We can also show that the bootstrap can approximate the asymptotic distribution of the

HPJ estimator.

Theorem 8. Suppose that Assumptions 1, 8, 9, 13, and 16 are satisfied. As N,T → ∞, we

have

sup
x∈R

∣∣∣Pr(√N(ĜH∗
µ − ĜH

µ ) ≤ x
∣∣{{yit}Tt=1}Ni=1

)
− Pr (Zµ ≤ x)

∣∣∣ p−→ 0.

Suppose that Assumptions 1, 8, 14, 15, and 17 are satisfied. As N,T → ∞, we have

sup
x∈R

∣∣∣Pr(√N(ĜH∗
γk

− ĜH
γk
) ≤ x

∣∣{{yit}Tt=1}Ni=1

)
− Pr (Zγk ≤ x)

∣∣∣ p−→ 0.

The proof is analogous to the proof of Theorem 7, and is thus omitted.

The theorem indicates that the cross-sectional bootstrap can approximate the asymptotic

distribution of the HPJ estimator correctly under the condition that N/T 2 does not diverge.

Because the HPJ estimator does not suffer from bias as long as N/T 2 does not diverge, the

bootstrap approximation would be more comfortably used for the HPJ estimator.
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6 Extensions

In this section, we present two extensions based on the proposed procedure. The first is a test

for parametric specifications on the distribution of the heterogeneous mean or autocovariance.

The second is a test for whether the distributions of the mean or autocovariance are the same

across different groups.

6.1 Testing parametric specifications

This subsection develops a testing procedure for hypotheses on parametric specifications of the

distribution of the heterogeneous mean or autocovariance. The test is based on one-sample

Kolmogorov–Smirnov (KS) statistics based on the empirical distributions of µ̂i and γ̂k,i. We

derive their asymptotic null distributions. The results indicate that they are equivalent to those

of the usual one-sample KS statistics and thus the critical values can be computed easily.

It is not uncommon to impose a parametric specification to model heterogeneous dynamics,

and it is important to have a test for such a parametric specification. For example, Browning

et al. (2010) develops a parametric model of heterogeneous income dynamics. Hsiao et al.

(1999) consider random coefficients panel AR(1) models and impose parametric assumptions

to implement a Bayesian procedure. Our test may be used to examine the validity of these

parametric specifications.

We consider the following hypotheses:

Hµ
0 : Pµ

0 = Qµ v.s. Hµ
1 : Pµ

0 ̸= Qµ,

and

Hγk
0 : P γk

0 = Qγk v.s. Hγk
1 : P γk

0 ̸= Qγk ,

where Qµ and Qγk are known continuous probability distributions. The hypotheses are con-

cerned with whether the distributions Pµ
0 or P γk

0 are the same as Qµ or Qγk , respectively.

We note that Qµ and Qγk cannot be discrete probability distributions. This is because our

asymptotic analyses are based on Assumptions 3 and 6.

We consider tests based on one-sample KS statistics (Kolmogorov, 1933; Smirnov, 1944):

KSµ
1 :=

√
N
∥∥∥Pµ̂

N −Qµ
∥∥∥
∞

=
√
N sup

f∈F

∣∣∣Pµ̂
Nf −Qµf

∣∣∣ ,
KSγk

1 :=
√
N
∥∥∥Pγ̂k

N −Qγk
∥∥∥
∞

=
√
N sup

f∈F

∣∣∣Pγ̂k
N f −Qγkf

∣∣∣ ,
where ∥·∥∞ is the uniform norm. The test statistics measure the distances between the empirical

distributions and the null distributions. We note that KSµ
1 and KSγk

1 are different from the

usual one-sample KS statistics in the sense that they are based on the empirical distributions

of the estimates µ̂i and γ̂k,i, respectively.

We derive the asymptotic distributions of KSµ
1 and KSγk

1 under Hµ
0 and Hγk

0 , respectively,

utilizing Theorem 2. The following theorem presents the asymptotic null distributions.
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Theorem 9. Suppose that Assumptions 1, 2, and 3 hold for the case of KSµ
1 , and Assumptions

1, 4, 5, and 6 hold for the case of KSγk
1 . When N,T → ∞ with N/T → 0, it holds that KSµ

1

converges in distribution to ∥GQµ∥∞ under Hµ
0 . Similarly, when N,T → ∞ with N/T → 0, it

holds that KSγk
1 converges in distribution to ∥GQγk∥∞ under Hγk

0 .

This theorem shows that the asymptotic null distributions ofKSµ
1 andKSγk

1 are the uniform

norms of the Gaussian processes. The asymptotic null distributions in the theorem are identical

to those of the usual one-sample KS statistics developed in Kolmogorov (1933) and Smirnov

(1944) so that they are equivalent to those of the one-sample KS statistics based on the true

µi and γk,i. This is because the estimation errors in µ̂i or γ̂k,i can be ignored asymptotically

under the condition N/T → 0.

Note that the asymptotic distributions do not depend on Qµ or Qγk , and critical values can

be computed readily. As shown by Kolmogorov (1933) and Smirnov (1944) (for easy reference,

see, e.g., Theorem 6.10 in Shao, 2003 or Section 2.1.5 in Serfling, 2002),

Pr(∥GQµ∥∞ ≤ a) = Pr(∥GQγk∥∞ ≤ a) = 1− 2

∞∑
j=1

(−1)j−1 exp
(
−2j2a2

)
, (16)

for any continuous distributions Qµ and Qγk , with a > 0. The far right-hand side of (16) does

not depend on Qµ or Qγk . Moreover, the critical values are readily available in many statistical

software packages and the implementation of our tests is easy.

6.2 Testing the difference in degrees of heterogeneity

Next, we develop tests to examine whether the distributions of the heterogeneous mean or

autocovariances differ across distinct groups. The test statistics are two-sample KS statistics

based on our empirical distribution estimators. We develop the asymptotic null distributions

of the test statistics.

In many applications, it would be interesting to see whether distinct groups possess different

heterogeneous dynamic structures. For example, when studying income dynamics, one would

be interested in whether the distribution of individual average incomes differs between males

and females. One may also be interested in whether the degrees of heterogeneity of income

dynamics depend on racial group. We develop test procedures for such hypotheses without any

parametric specification. Suppose that we have two panel data sets for two different groups:

{{yit,(1)}T1
t=1}

N1
i=1 and {{yit,(2)}T2

t=1}
N2
i=1. We allow the situation in which T1 ̸= T2 and/or N1 ̸= N2.

We define yi,(1) := {yit,(1)}T1
t=1 for i = 1, . . . , N1 and yi,(2) := {yit,(2)}T2

t=1 for i = 1, . . . , N2.

We introduce the following assumption on the data sets.

Assumption 18. Each of {{yit,(1)}T1
t=1}

N1
i=1 and {{yit,(2)}T2

t=1}
N2
i=1 satisfies Assumptions 1, 2, and

3 for the case of the mean, and Assumptions 1, 4, 5, and 6 for the case of the autocovariances.

(y1,(1), . . . , yN1,(1)) and (y1,(2), . . . , yN2,(2)) are independent.

We need the assumptions introduced in the previous sections and require the independence

assumption. This assumption implies that our test cannot be used to test the equivalence of
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the distributions of two variables from the same individuals. Our test is intended to be used to

compare the distributions of the same variable from different groups.

We estimate the distribution of the mean or autocovariances for each group. Let µi,(a) be

the heterogeneous mean of yi,(a) for group a = 1, 2. We estimate µi,(a) by the sample mean

µ̂i,(a) := ȳi,(a) := T−1
a

∑Ta
t=1 yit,(a) for a = 1, 2. We denote the probability distribution of µi,(a)

by Pµ
0,(a) and the empirical distribution of µ̂i,(a) by Pµ̂

Na,(a)
for a = 1, 2. Similarly, let γk,i,(a) be

the k-th individual autocovariance of yi,(a) for a = 1, 2. We estimate γk,i,(a) by the sample k-th

autocovariance γ̂k,i,(a) := T−1
a

∑Ta
t=k+1(yit,(a)− ȳi,(a))(yi,t−k,(a)− ȳi,(a)) for a = 1, 2. We write the

distribution of γk,i,(a) by P γk
0,(a) and the empirical distribution of γ̂k,i,(a) by Pγ̂k

Na,(a)
for a = 1, 2.

We focus on the following hypotheses to examine the difference in the degrees of heterogene-

ity between the two groups:

Hµ
0 : Pµ

0,(1) = Pµ
0,(2) v.s. Hµ

1 : Pµ
0,(1) ̸= Pµ

0,(2),

and

Hγk
0 : P γk

0,(1) = P γk
0,(2) v.s. Hγk

1 : P γk
0,(1) ̸= P γk

0,(2).

Under the null hypothesis Hµ
0 (Hγk

0 ), the distribution of the heterogeneous mean (autocovari-

ances) is identical across the two groups.

We investigate the hypotheses using the following two-sample KS statistics based on our

empirical distribution estimators:

KSµ
2 :=

√
N1N2

N1 +N2

∥∥∥Pµ̂
N1,(1)

− Pµ̂
N2,(2)

∥∥∥
∞

=

√
N1N2

N1 +N2
sup
f∈F

∣∣∣Pµ̂
N1,(1)

f − Pµ̂
N2,(2)

f
∣∣∣ ,

KSγk
2 :=

√
N1N2

N1 +N2

∥∥∥Pγ̂k
N1,(1)

− Pγ̂k
N2,(2)

∥∥∥
∞

=

√
N1N2

N1 +N2
sup
f∈F

∣∣∣Pγ̂k
N1,(1)

f − Pγ̂k
N2,(2)

f
∣∣∣ .

The test statistics measure the distances between the empirical distributions of the two groups.

KSµ
2 and KSγk

2 are different from the usual two-sample KS statistics in the sense that KSµ
2 and

KSγk
2 are based on the empirical distributions of the estimates µ̂i,(a) and γ̂k,i,(a), respectively,

for a = 1, 2.

The asymptotic null distributions of KSµ
2 and KSγk

2 are derived using Theorem 2.

Theorem 10. Suppose that Assumption 18 is satisfied. When N1, T1 → ∞ with N1/T1 → 0

and N2, T2 → ∞ with N2/T2 → 0, and N1/(N1 + N2) → λ for some λ ∈ (0, 1), it holds that

KSµ
2 converges in distribution to ∥GPµ

0,(1)
∥∞ under Hµ

0 and that KSγk
2 converges in distribution

to ∥GP
γk
0,(1)

∥∞ under Hγk
0 .

This theorem shows that the asymptotic null distributions ofKSµ
2 andKSγk

2 are the uniform

norms of the Gaussian processes. The conditions N1/T1 → 0 and N2/T2 → 0 are required in

order to use the result of Theorem 2. The condition N1/(N1 +N2) → λ implies that N1 is not

much greater or less than N2 and guarantees the existence of the asymptotic null distributions.
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The asymptotic null distributions in the theorem are the same as those in Theorem 9 when

we set Qµ = Pµ
0,(1) or Qγk = P γk

0,(1). Hence, the asymptotic null distributions can be evaluated

easily by (16) and the critical values of our test are readily available.

Remark 5. When the true distributions of µ̂i,(1) and µ̂i,(2) (or γ̂k,i,(1) and γ̂k,i,(2)) are the

same, i.e., when P µ̂
T1,(1)

= P µ̂
T2,(2)

(or P γ̂k
T1,(1)

= P γ̂k
T2,(2)

), neither the condition N1/T1 → 0 nor

the condition N2/T2 → 0 is needed to establish Theorem 10. This is clear from the proof of

Theorem 10. In particular, when T1 = T2 and the mean and dynamic structures across the two

groups are completely identical under the null hypothesis, we can test the null hypotheses Hµ
0

or Hγk
0 without restricting the relative order of Na and Ta for a = 1, 2. Note that we still need

the condition N1/(N1 +N2) → λ ∈ (0, 1).

7 Monte Carlo simulations

This section presents the results of the Monte Carlo simulations. We investigate the finite-sample

performance of the proposed methods in the simulations. We also evaluate the performance of

the proposed bias-correction method. The simulations are conducted with R 3.1.1 for Mac OS

X 10.9.5. The number of replications in the simulations is 5000.

7.1 Designs

The data-generating process is the following random coefficients panel ARMA(1,1) process:

yit = ηi + ϕiyi,t−1 + ϵit + θiϵi,t−1,

for i = 1, . . . , N and t = 1, . . . , T , where ϵit ∼ i.i.d.N(0, 1). We consider two specifications of

the distribution of the random coefficients (ηi, ϕi, θi). In the first specification (design A), ηi ∼
i.i.d.N(0, 1), ϕi ∼ i.i.d.U [−0.9, 0.9], and θi = 0 and ηi, ϕi, and θi are independent. In the second

specification (design B), ηi = ϕi + ξi where ϕi ∼ 0.4 + 0.5 i.i.d.Beta(5, 2), ξi ∼ i.i.d.N(0, 0.25),

and θi ∼ i.i.d.U [−0.2, 0.3] and ϕi, ξi, and θi are independent. The second specification is

motivated by the empirical results of Browning et al. (2010). However, our specification is

simpler and the process here is less persistent. Moreover, the mean part is different. We

note that the specification for individual-specific means (ηi) does not affect the estimation of

the autocovariances because individual-specific means are eliminated when we estimate these

autocovariances. We generate the initial observations from the stationary distribution given

(ηi, ϕi, θi): (
yi0
ϵi0

)
∼ N

 ηi
1− ϕi

,

1 + θ2i + ϕiθi
1− ϕ2

i

1

1 1

 .

We set N = 100 and 1000, and T = 24 and 48.

We estimate the distributions of the mean (µi = ηi/(1 − ϕi)), the variance (γ0,i), and the

first-order autocovariance (γ1,i). In particular, we consider the estimation of the mean (Mean),
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Figure 1: The density function of γ1,i

variance (Var), and 25%, 50%, and 75% quantiles (25%Q, 50%Q, 75%Q) of the distributions

of these quantities. We also estimate the covariances between these quantities. By way of

illustration, the densities of γ1,i for designs A and B are plotted in Figure 1, parts (a) and (b),

respectively.

We consider the following four estimators. The first estimator is a naive estimator based

on the empirical distribution of the estimated means or autocovariances. We denote this “NE”.

The second estimator is the half-panel jackknife estimator (HPJ). Note that for the quantiles,

the HPJ estimator is not theoretically justified because they are not expected values of smooth

functions. The third estimator is the third-order jackknife estimator (TOJ) discussed in Remark

4. The fourth estimator is based on the half-series jackknife autocovariance estimator (HSJ)

considered in Remark 3.

Importantly, as noted in Section 3, the estimation of the variance is done by separately es-

timating the uncentered second and first moments. Likewise, for the HPJ and TOJ estimators,

we do not bias-correct the variance estimator directly. Rather, we separately bias-correct the

estimators of the uncentered second and first moments and then compute the variance esti-

mate by combining these bias-corrected estimates. Similarly, when we estimate the covariances

with the split-panel bias correction, we bias-correct the cross-moment estimate and the mean

estimates separately. We then combine these bias-corrected estimates to form the covariance

estimates.

7.2 Results

Tables 1–4 and 5–8 summarize the results of the Monte Carlo simulations with designs A and

B, respectively. They present the bias and the standard deviation (std) of each estimator. In
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µi NE HPJ TOJ HSJ
N T true bias std bias std bias std bias std

Mean 100 24 -0.001 0.002 0.232 0.002 0.232 0.002 0.232 0.002 0.232
100 48 -0.001 -0.003 0.234 -0.003 0.234 -0.003 0.234 -0.003 0.234
1000 24 -0.001 0.002 0.074 0.002 0.074 0.002 0.074 0.002 0.074
1000 48 -0.001 0.001 0.073 0.001 0.073 0.001 0.073 0.001 0.073

Var 100 24 5.280 0.230 2.433 0.056 2.400 0.025 2.397 0.230 2.433
100 48 5.280 0.116 2.343 -0.017 2.313 -0.033 2.311 0.116 2.343
1000 24 5.280 0.154 0.750 0.031 0.747 -0.000 0.746 0.154 0.750
1000 48 5.280 0.087 0.738 0.002 0.735 -0.013 0.734 0.087 0.738

25%Q 100 24 -0.723 -0.009 0.168 0.006 0.191 0.007 0.231 -0.009 0.168
100 48 -0.723 -0.006 0.170 0.001 0.187 -0.001 0.218 -0.006 0.170
1000 24 -0.723 -0.014 0.054 0.002 0.061 0.001 0.076 -0.014 0.054
1000 48 -0.723 -0.005 0.053 0.003 0.059 0.003 0.070 -0.005 0.053

50%Q 100 24 0.000 0.002 0.128 0.001 0.146 0.000 0.178 0.002 0.128
100 48 0.000 0.001 0.125 0.002 0.137 0.003 0.160 0.001 0.125
1000 24 0.000 0.001 0.040 0.001 0.046 0.001 0.057 0.001 0.040
1000 48 0.000 0.001 0.040 0.001 0.044 0.001 0.053 0.001 0.040

75%Q 100 24 0.722 0.013 0.174 -0.003 0.197 -0.003 0.239 0.013 0.174
100 48 0.722 0.007 0.171 -0.001 0.187 -0.001 0.216 0.007 0.171
1000 24 0.722 0.016 0.054 0.001 0.062 0.001 0.076 0.016 0.054
1000 48 0.722 0.008 0.054 0.000 0.061 0.001 0.072 0.008 0.054

Table 1: Monte Carlo simulation results: distribution of µi with design A

γ0,i NE HPJ TOJ HSJ
N T true bias std bias std bias std bias std

Mean 100 24 1.636 -0.180 0.116 -0.062 0.131 -0.030 0.149 -0.062 0.131
100 48 1.636 -0.102 0.102 -0.022 0.116 -0.007 0.130 -0.022 0.116
1000 24 1.636 -0.179 0.036 -0.061 0.041 -0.030 0.047 -0.061 0.041
1000 48 1.636 -0.100 0.033 -0.021 0.037 -0.006 0.042 -0.021 0.037

Var 100 24 0.775 0.516 0.972 0.075 0.793 0.001 0.944 0.882 1.099
100 48 0.775 0.289 0.570 0.039 0.542 0.024 0.731 0.598 0.811
1000 24 0.775 0.517 0.306 0.096 0.261 0.033 0.314 0.893 0.355
1000 48 0.775 0.288 0.182 0.047 0.175 0.029 0.237 0.591 0.256

25%Q 100 24 1.053 -0.170 0.047 -0.002 0.075 1.770 0.155 -0.129 0.050
100 48 1.053 -0.070 0.040 0.029 0.060 1.936 0.128 -0.048 0.041
1000 24 1.053 -0.173 0.015 -0.004 0.024 1.762 0.049 -0.133 0.016
1000 48 1.053 -0.073 0.012 0.027 0.019 1.932 0.040 -0.050 0.013

50%Q 100 24 1.254 -0.094 0.063 0.034 0.097 1.562 0.166 -0.032 0.069
100 48 1.254 -0.030 0.058 0.034 0.085 1.460 0.145 0.004 0.062
1000 24 1.254 -0.096 0.020 0.032 0.030 1.557 0.052 -0.034 0.021
1000 48 1.254 -0.032 0.018 0.032 0.026 1.457 0.047 0.002 0.019

75%Q 100 24 1.838 -0.224 0.128 -0.126 0.194 1.009 0.313 -0.104 0.148
100 48 1.838 -0.153 0.137 -0.077 0.201 0.928 0.323 -0.080 0.151
1000 24 1.838 -0.226 0.041 -0.132 0.062 1.002 0.100 -0.109 0.047
1000 48 1.838 -0.151 0.044 -0.075 0.065 0.932 0.104 -0.079 0.048

Table 2: Monte Carlo simulation results: distribution of γ0,i with design A

28



γ1,i NE HPJ TOJ HSJ
N T true bias std bias std bias std bias std

Mean 100 24 -0.001 -0.183 0.138 -0.062 0.158 -0.029 0.177 -0.062 0.158
100 48 -0.001 -0.098 0.134 -0.016 0.150 -0.001 0.164 -0.016 0.150
1000 24 -0.001 -0.181 0.044 -0.060 0.050 -0.027 0.056 -0.060 0.050
1000 48 -0.001 -0.100 0.043 -0.019 0.048 -0.003 0.052 -0.019 0.048

Var 100 24 1.816 0.114 1.130 -0.094 1.007 -0.081 1.248 0.726 1.347
100 48 1.816 0.061 0.726 -0.024 0.732 0.001 0.956 0.539 1.018
1000 24 1.816 0.115 0.354 -0.065 0.326 -0.043 0.410 0.737 0.430
1000 48 1.816 0.061 0.233 -0.006 0.239 0.016 0.314 0.534 0.325

25%Q 100 24 -0.565 0.053 0.132 0.033 0.178 -0.797 0.382 0.071 0.133
100 48 -0.565 0.035 0.137 0.014 0.173 -0.985 0.399 0.044 0.137
1000 24 -0.565 0.054 0.041 0.031 0.055 -0.794 0.118 0.071 0.041
1000 48 -0.565 0.031 0.043 0.009 0.055 -0.992 0.124 0.041 0.043

50%Q 100 24 0.000 -0.041 0.069 -0.005 0.099 -0.787 0.214 -0.009 0.074
100 48 0.000 -0.020 0.080 0.000 0.103 -1.018 0.248 -0.002 0.082
1000 24 0.000 -0.040 0.021 -0.005 0.031 -0.783 0.067 -0.009 0.023
1000 48 0.000 -0.020 0.025 -0.001 0.033 -1.016 0.079 -0.003 0.026

75%Q 100 24 0.564 -0.209 0.096 -0.070 0.149 -1.493 0.287 -0.120 0.117
100 48 0.564 -0.111 0.116 -0.015 0.161 -1.494 0.322 -0.056 0.130
1000 24 0.564 -0.207 0.030 -0.068 0.047 -1.488 0.090 -0.118 0.037
1000 48 0.564 -0.110 0.037 -0.013 0.053 -1.491 0.103 -0.056 0.042

Table 3: Monte Carlo simulation results: distribution of γ1,i with design A

Cov NE HPJ TOJ HSJ
N T true bias std bias std bias std bias std

µi&γ0,i 100 24 -0.001 0.003 0.311 0.003 0.505 0.002 0.685 0.003 0.508
100 48 -0.001 0.004 0.377 0.005 0.540 0.007 0.686 0.005 0.545
1000 24 -0.001 0.004 0.101 0.005 0.164 0.006 0.222 0.005 0.164
1000 48 -0.001 0.000 0.118 -0.000 0.172 -0.000 0.218 0.000 0.172

µi&γ1,i 100 24 -0.002 0.003 0.445 0.003 0.638 0.003 0.806 0.003 0.643
100 48 -0.002 -0.000 0.540 0.002 0.697 0.004 0.828 0.001 0.704
1000 24 -0.002 0.005 0.141 0.007 0.205 0.008 0.260 0.007 0.205
1000 48 -0.002 0.000 0.169 -0.000 0.221 -0.000 0.263 0.000 0.222

γ0,i&γ1,i 100 24 -0.001 -0.814 1.051 -0.277 0.894 -0.104 1.072 -0.350 1.227
100 48 -0.001 -0.416 0.652 -0.043 0.641 0.033 0.842 -0.029 0.925
1000 24 -0.001 -0.802 0.331 -0.263 0.295 -0.082 0.361 -0.327 0.397
1000 48 -0.001 -0.418 0.204 -0.047 0.200 0.030 0.266 -0.037 0.284

Table 4: Monte Carlo simulation results: covariances with design A
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µi NE HPJ TOJ HSJ
N T true bias std bias std bias std bias std

Mean 100 24 3.592 0.006 0.300 0.006 0.300 0.006 0.300 0.006 0.300
100 48 3.592 0.007 0.295 0.007 0.295 0.007 0.295 0.007 0.295
1000 24 3.592 0.014 0.095 0.014 0.095 0.014 0.095 0.014 0.095
1000 48 3.592 0.006 0.094 0.006 0.094 0.006 0.094 0.006 0.094

Var 100 24 8.275 0.948 1.709 0.337 1.685 0.139 1.687 0.948 1.709
100 48 8.275 0.544 1.657 0.075 1.633 -0.016 1.637 0.544 1.657
1000 24 8.275 0.965 0.542 0.438 0.540 0.240 0.540 0.965 0.542
1000 48 8.275 0.516 0.527 0.125 0.524 0.034 0.525 0.516 0.527

25%Q 100 24 1.620 -0.064 0.302 -0.013 0.361 0.005 0.464 -0.064 0.302
100 48 1.620 -0.027 0.287 0.010 0.335 0.018 0.421 -0.027 0.287
1000 24 1.620 -0.083 0.096 -0.031 0.117 -0.011 0.153 -0.083 0.096
1000 48 1.620 -0.045 0.093 -0.007 0.111 0.001 0.142 -0.045 0.093

50%Q 100 24 3.165 0.007 0.333 0.003 0.391 0.008 0.490 0.007 0.333
100 48 3.165 0.010 0.325 0.009 0.375 0.012 0.462 0.010 0.325
1000 24 3.165 0.010 0.106 0.003 0.126 0.004 0.159 0.010 0.106
1000 48 3.165 0.005 0.105 0.004 0.123 0.005 0.153 0.005 0.105

75%Q 100 24 5.130 0.077 0.467 0.018 0.547 -0.003 0.679 0.077 0.467
100 48 5.130 0.037 0.461 -0.003 0.525 -0.014 0.636 0.037 0.461
1000 24 5.130 0.106 0.149 0.047 0.176 0.028 0.222 0.106 0.149
1000 48 5.130 0.053 0.145 0.013 0.168 0.006 0.208 0.053 0.145

Table 5: Monte Carlo simulation results: distribution of µi with design B

γ0,i NE HPJ TOJ HSJ
N T true bias std bias std bias std bias std

Mean 100 24 2.843 -0.852 0.130 -0.334 0.204 -0.135 0.278 -0.334 0.204
100 48 2.843 -0.480 0.134 -0.100 0.186 -0.009 0.240 -0.100 0.186
1000 24 2.843 -0.852 0.042 -0.335 0.065 -0.137 0.088 -0.335 0.065
1000 48 2.843 -0.480 0.042 -0.098 0.058 -0.007 0.075 -0.098 0.058

Var 100 24 1.179 0.549 0.675 0.449 1.076 0.464 1.496 3.042 2.006
100 48 1.179 0.602 0.643 0.368 0.938 0.281 1.326 2.270 1.619
1000 24 1.179 0.549 0.214 0.486 0.346 0.534 0.488 3.034 0.642
1000 48 1.179 0.607 0.204 0.410 0.309 0.353 0.442 2.287 0.521

25%Q 100 24 2.033 -0.885 0.081 -0.493 0.143 0.898 0.216 -0.752 0.101
100 48 2.033 -0.543 0.088 -0.200 0.147 1.101 0.213 -0.430 0.102
1000 24 2.033 -0.893 0.026 -0.503 0.046 0.880 0.070 -0.764 0.032
1000 48 2.033 -0.552 0.028 -0.210 0.047 1.083 0.067 -0.440 0.032

50%Q 100 24 2.608 -0.963 0.115 -0.487 0.199 0.798 0.290 -0.693 0.152
100 48 2.608 -0.585 0.122 -0.201 0.197 0.954 0.281 -0.371 0.148
1000 24 2.608 -0.968 0.036 -0.493 0.062 0.788 0.092 -0.699 0.048
1000 48 2.608 -0.589 0.039 -0.206 0.064 0.946 0.092 -0.376 0.047

75%Q 100 24 3.411 -0.985 0.198 -0.391 0.342 0.937 0.501 -0.396 0.290
100 48 3.411 -0.570 0.204 -0.144 0.331 0.976 0.473 -0.141 0.262
1000 24 3.411 -0.983 0.063 -0.390 0.110 0.946 0.159 -0.396 0.093
1000 48 3.411 -0.567 0.065 -0.141 0.105 0.988 0.150 -0.138 0.084

Table 6: Monte Carlo simulation results: distribution of γ0,i with design B
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γ1,i NE HPJ TOJ HSJ
N T true bias std bias std bias std bias std

Mean 100 24 2.266 -0.879 0.125 -0.333 0.203 -0.124 0.280 -0.333 0.203
100 48 2.266 -0.491 0.133 -0.095 0.188 -0.003 0.242 -0.095 0.188
1000 24 2.266 -0.879 0.040 -0.335 0.065 -0.126 0.089 -0.335 0.065
1000 48 2.266 -0.490 0.041 -0.094 0.059 -0.003 0.076 -0.094 0.059

Var 100 24 1.229 0.369 0.640 0.353 1.031 0.425 1.433 2.965 2.001
100 48 1.229 0.515 0.633 0.345 0.937 0.282 1.326 2.265 1.646
1000 24 1.229 0.368 0.204 0.388 0.334 0.494 0.470 2.954 0.641
1000 48 1.229 0.520 0.201 0.388 0.310 0.356 0.444 2.282 0.531

25%Q 100 24 1.444 -0.864 0.074 -0.504 0.133 -0.216 0.193 -0.735 0.094
100 48 1.444 -0.533 0.087 -0.200 0.146 -0.046 0.207 -0.419 0.102
1000 24 1.444 -0.872 0.023 -0.516 0.041 -0.236 0.060 -0.746 0.029
1000 48 1.444 -0.542 0.027 -0.210 0.046 -0.064 0.066 -0.430 0.032

50%Q 100 24 2.040 -1.000 0.109 -0.509 0.191 -0.449 0.272 -0.719 0.150
100 48 2.040 -0.603 0.119 -0.203 0.195 -0.239 0.276 -0.383 0.146
1000 24 2.040 -1.004 0.034 -0.514 0.060 -0.458 0.086 -0.724 0.048
1000 48 2.040 -0.607 0.039 -0.207 0.064 -0.246 0.090 -0.388 0.047

75%Q 100 24 2.857 -1.068 0.191 -0.404 0.337 -0.422 0.487 -0.440 0.290
100 48 2.857 -0.611 0.201 -0.144 0.328 -0.258 0.464 -0.162 0.267
1000 24 2.857 -1.067 0.061 -0.403 0.107 -0.414 0.152 -0.437 0.093
1000 48 2.857 -0.608 0.064 -0.142 0.105 -0.245 0.149 -0.159 0.085

Table 7: Monte Carlo simulation results: distribution of γ1,i with design B

Cov NE HPJ TOJ HSJ
N T true bias std bias std bias std bias std

µi&γ0,i 100 24 1.331 -0.731 0.489 -0.403 0.787 -0.205 1.093 -0.389 0.790
100 48 1.331 -0.446 0.509 -0.135 0.727 -0.008 0.956 -0.121 0.732
1000 24 1.331 -0.731 0.156 -0.397 0.251 -0.201 0.348 -0.392 0.251
1000 48 1.331 -0.440 0.162 -0.118 0.236 0.007 0.310 -0.116 0.235

µi&γ1,i 100 24 1.365 -0.753 0.472 -0.418 0.782 -0.211 1.094 -0.404 0.786
100 48 1.365 -0.456 0.504 -0.136 0.731 -0.004 0.963 -0.122 0.736
1000 24 1.365 -0.754 0.149 -0.413 0.249 -0.208 0.347 -0.409 0.248
1000 48 1.365 -0.451 0.161 -0.119 0.237 0.010 0.313 -0.117 0.237

γ0,i&γ1,i 100 24 1.203 0.439 0.656 0.405 1.052 0.448 1.462 2.974 2.000
100 48 1.203 0.549 0.637 0.358 0.937 0.283 1.324 2.254 1.631
1000 24 1.203 0.438 0.208 0.441 0.340 0.517 0.478 2.964 0.640
1000 48 1.203 0.555 0.202 0.401 0.310 0.355 0.442 2.272 0.525

Table 8: Monte Carlo simulation results: covariances with design B
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the column labeled “true,” the true value of the corresponding quantity is presented. We note

that all estimates of the mean of µi are numerically equivalent by construction, and that the

estimates of the mean of each quantity by HPJ and HSJ are numerically equivalent.

The simulation results demonstrate that our asymptotic analyses are informative regarding

the finite-sample behavior of the estimators and the importance of bias correction. When bothN

and T are small, NE exhibits severe biases for many parameters of interest. In particular, large

biases are observed in the estimation of var(µi), all quantities of γ0,i and γ1,i, cov(µi, γ0,i), and

cov(µi, γ1,i) with design B. With design A, the magnitudes of the biases are relatively moderate.

However, the estimation of var(µi), var(γ0,i), and cov(γ0,i, γ1,i) with design A involves large

biases. As T increases while holding N fixed, the biases of NE decrease, which is expected

from our asymptotic analyses. Nonetheless, a significant portion of the bias remains even with

large T with design B. Worse, the biases are often large compared with the standard deviations.

This result suggests the importance of developing the bias-correction method. The standard

deviations of NE do not decrease as T becomes large with N fixed. However, the standard

deviations decrease as N becomes large. This result can also be expected, as our asymptotic

results show that the variances are of order O(1/N).

HPJ successfully reduces the bias in most cases, and works especially well when the biases

of NE are large. In particular, HPJ succeeds markedly in correcting the biases of the estimation

of var(γ0,i) and cov(γ0,i, γ1,i) with design A and those of var(µi) and E(γ0,i) with design B,

even when both N and T are small. Interestingly, HPJ also eliminates the biases in the quantile

estimates in many cases, despite our theoretical justification that HPJ does not apply to the

estimation of the distribution function or quantiles. This result indicates that HPJ may in fact

be useful, even when the parameter of interest is not the expected value of a smooth function.

However, we need to develop alternative asymptotic analyses to show this formally. As expected

by our asymptotic results, the biases in HPJ tend to decrease as T increases. When both N

and T are large, the biases in HPJ are satisfactorily small in many cases.

While HPJ slightly increases the finite-sample standard deviations in some cases, the in-

flation of the standard deviations would be acceptable. The biases are more serious than the

standard deviations in many cases. Although expected, when NE is almost unbiased (e.g., in

the estimation of cov(µi, γ0,i) in design A), HPJ slightly increases the mean squared errors of

estimates in some cases. Otherwise, the bias reduction of HPJ sufficiently compensates for the

inflation of the standard deviations except for var(γ0,i) and var(γ1,i) in design B. When both N

and T are large, the standard deviations of NE and HPJ are similar. This is expected given our

asymptotic result that NE and HPJ possess the same asymptotic variance. For these reasons,

we stress that HPJ is more reliable than NE.

In some cases, TOJ reduces the bias more successfully than HPJ, but in other cases, TOJ

inflates the bias substantially. We observe the large bias of TOJ in estimating the quantiles of

γ0,i and γ1,i with design A and var(γ0,i), the quantiles of γ0,i, var(γ1,i), and cov(γ0,i, γ1,i) with

design B. In addition, TOJ often increases the standard deviation considerably. The examples
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include the estimation of var(γ0,i), var(γ1,i), and cov(γ0,i, γ1,i) with design A and var(γ0,i) with

design B. This result corresponds with the note in Remark 4: the higher-order jackknife may

inflate the higher-order bias and the small-sample standard deviation. The inflation of the bias

or the standard deviation is critical, especially when the biases of NE and HPJ are not large.

We thus recommend HPJ rather than the higher-order jackknife as a precaution.

HSJ does not reduce the bias except in the case of the mean. This is because HSJ fails to

eliminate the bias caused by the nonlinearity of smooth functions, as discussed in Remark 3.

Worse, HSJ substantially increases the biases in some cases. For example, they are observed

for the estimation of var(γ1,i) in design A and for the estimation of var(γ0,i), var(γ1,i), and

cov(γ0,i, γ1,i) in design B. Because of these Monte Carlo results, we do not pursue a theoretical

investigation of HSJ in this paper.

Our preferred procedure is HPJ, given the results of these Monte Carlo experiments. NE

is often considerably biased, whereas HPJ can alleviate the bias problem without significant

variance inflation. TOJ may be used for the estimation of the mean of a quantity, but in other

cases it may inflate both the bias and the variance. The performance of TOJ appears to be

highly situation dependent, and we hesitate to recommend its use for the moment. HSJ is not

recommended.

8 Conclusion

This paper proposes methods to analyze the heterogeneous dynamic structure using panel data.

Our proposed methods do not require model specification and are easy to implement. We first

compute the sample mean or the sample autocovariances of each individual. We then use these

to estimate the parameters of interest, such as the distribution function, the quantile function,

and the other moments of the heterogeneous mean and/or autocovariances. We show that the

estimator for the distribution function of the heterogeneous mean or autocovariances exhibits a

bias of order O(1/
√
T ). When the parameter of interest can be written as the expected value

of a smooth function of the heterogeneous mean or autocovariances, the bias of the estimator

becomes of order O(1/T ) and can be reduced by the half-panel jackknife bias-correction method.

We also present extensions based on the proposed procedures to test parametric specifications on

the distribution of the heterogeneous mean or autocovariances and to test the difference of the

heterogeneous dynamic structures across distinct groups. The results of Monte Carlo simulations

show that our asymptotic analyses are informative regarding the finite-sample properties of the

proposed estimators. Based on the simulation results, we recommend the half-panel jackknife

estimator. We believe that our proposed methods can be used to address several important

questions regarding the dynamics of economic variables.

Future work: Several future research topics are possible. First, methods for prediction could

be considered based on the proposed analysis. Given that our proposed analysis estimates the
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distributions of the heterogeneous mean and autocovariances we could, in principle, use them

to construct a best linear predictor of future values of yit.

Second, while this paper develops the analysis for stationary panel data, it could be used to

extend our analysis to cover nonstationary panel data. Two types of nonstationarity are relevant

to our analysis. The first is the effect of initial distributions. In this paper, we assume that the

initial values are drawn from the stationary distributions for simplicity. As we consider the case

in which T is large, the effect of initial values would be negligible in large samples. However, the

effect in a finite sample remains untested. The second type of nonstationarity is a stochastic

trend. For example, in the literature on income dynamics, there is debate over whether the

income process exhibits a unit root (see, e.g., Browning et al., 2010). As autocovariances are

not well defined in the presence of a unit root, we require a different procedure to handle unit

root cases.

Third, whereas this paper focuses only on balanced panel data, an analysis based on unbal-

anced panel data would be useful. We believe that, at least in terms of implementation, this

extension is not too difficult. This is because there is no difficulty in estimating the mean and

autocovariances for each individual, even when the panel is unbalanced, and there is no change

in the procedure after obtaining the individual mean and autocovariance estimates. However,

theoretical investigation of the properties of the procedure using an unbalanced panel may not

be straightforward.

A Technical appendix

This appendix presents the proofs of the theorems and technical lemmas used to prove the

theorems. Section A.1 contains the proofs of the theorems in the main text. The technical

lemmas are given in Section A.2.

A.1 Proofs of the theorems

This section contains the proofs of the theorems in the main text. We repeatedly cite the results

in van der Vaart and Wellner (1996), subsequently abbreviated as VW.

A.1.1 Proof of Theorem 1

The proof for Pµ̂
N and that for Pγ̂k

N are basically the same, so we present that for Pγ̂k
N only. Let

PN = Pγ̂k
N , PT = P γ̂k

T , and P0 = P γk
0 .

By the triangle inequality,

sup
f∈F

|PNf − P0f | ≤ sup
f∈F

|PNf − PT f |+ sup
f∈F

|PT f − P0f | .

For the second term on the right-hand side, Lemma 7 (for the case of Pµ̂
N , Lemma 6) implies

that γ̂k,i converges to γk,i in mean square convergence and thus also implies that γ̂k,i converges
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to γk,i in distribution. By Lemma 2.11 in van der Vaart (1998), it holds that

sup
f∈F

|PT f − P0f | → 0,

since γk,i is continuously distributed by Assumption 6 (for the case of Pµ̂
N , Assumption 3).

We then show that the first term converges to 0 almost surely. Note that, for f = 1(−∞,a],

PNf = Fγ̂k,i
N (a) and E(Fγ̂k,i

N (a)) = Pr(γ̂k,i ≤ a) = PT f . We first fix a monotone sequence

T = T (N) such that T → ∞ as N → ∞, which makes our sample triangular arrays. We use

the strong law of large numbers for triangular arrays (see, e.g., Hu, Móricz, and Taylor, 1989,

Theorem 2). This is possible because under Assumption 1, 1(γ̂k,i ≤ a) for any a is i.i.d. across

individuals, the condition (1.5) in Hu et al. (1989) is clearly satisfied, and the condition (1.6)

in Hu et al. (1989) is also satisfied when we set X = 2 in the condition (1.6). Thus, we have

Fγ̂k,i
N (a)− Pr(γ̂k,i ≤ a)

as−→ 0 and Fγ̂k,i
N (a−)− Pr(γ̂k,i < a)

as−→ 0 for every a ∈ R, as N,T → ∞.

Given a fixed ε > 0, there exists a partition −∞ = a0 < a1 < · · · < ak = ∞ such that

Pr(γk,i < ai)−Pr(γk,i ≤ ai−1) < ε/3 for every i. We have shown that supf∈F |PT f − P0f | → 0,

and this implies that for sufficiently large N,T , supf∈F |PT f − P0f | < ε/3. Therefore, we have

Pr(γ̂k,i < ai)−Pr(γ̂k,i ≤ ai−1) < ε for every i. The rest of the proof is the same as the proof of

Theorem 19.1 in van der Vaart (1998). For ai−1 ≤ a < ai,

Fγ̂k,i
N (a)− Pr(γ̂k,i ≤ a) ≤ Fγ̂k,i

N (ai−)− Pr(γ̂k,i < ai) + ε,

Fγ̂k,i
N (a)− Pr(γ̂k,i ≤ a) ≥ Fγ̂k,i

N (ai−1−)− Pr(γ̂k,i < ai−1)− ε.

Accordingly, we have lim supN,T→∞(supf∈F |PNf − PT f |) ≤ ε almost surely. This is true for

every ε > 0, and thus we get

sup
f∈F

|PNf − PT f |
as−→ 0. (17)

We note that (17) holds for all monotonic diagonal paths N → ∞, T (N) → ∞. As stated

in REMARKS (a) in Phillips and Moon (1999), (17) thus holds under doubly asymptotics

N,T → ∞. Consequently, we obtain the desired result by the continuous mapping theorem.

□

A.1.2 Proof of Theorem 2

The proof for Pµ̂
N and that for Pγ̂k

N are basically the same, so we present that for Pγ̂k
N only. Let

PN = Pγ̂k
N , PT = P γ̂k

T , and P0 = P γk
0 . The proof is based on the decomposition in (8) and (9).

To study the asymptotic behavior of (8), we use Lemma 2.8.7 in VW. We first fix a monotone

sequence T = T (N) such that T → ∞ as N → ∞, which makes our sample triangular arrays.

By Theorem 2.8.3, Example 2.5.4, and Example 2.3.4 in VW, the class F is Donsker and pre-

Gaussian uniformly in {PT }. Thus, we need to check the conditions (2.8.5) and (2.8.6) in VW.

The condition (2.8.6) in VW is immediately satisfied by setting the envelope function F = 1

(constant).
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We check the condition (2.8.5) in VW. Let ρPT
and ρP0 be the variance semimetrics with

respect to PT and P0, respectively. Then,

sup
f,g∈F

|ρPT
(f, g)− ρP0(f, g)|

= sup
f,g∈F

|
√

PT ((f − g)− PT (f − g))2 −
√

P0((f − g)− P0(f − g))2|

= sup
a,a′∈R

|
√

PT (1(−∞,a] − 1(−∞,a′] − PT (1(−∞,a] − 1(−∞,a′]))2

−
√
P0(1(−∞,a] − 1(−∞,a′] − P0(1(−∞,a] − 1(−∞,a′]))2|

≤ sup
a,a′∈R

|PT (1(−∞,a] − 1(−∞,a′] − PT (1(−∞,a] − 1(−∞,a′]))
2

−P0(1(−∞,a] − 1(−∞,a′] − P0(1(−∞,a] − 1(−∞,a′]))
2|1/2,

where the first inequality follows from the triangle inequality. Without loss of generality, we

assume a > a′. Then, by simple algebra,

sup
f,g∈F

|ρPT
(f, g)− ρP0(f, g)|

≤ sup
a,a′∈R

∣∣(PT1(−∞,a] − P01(−∞,a])− (PT1(−∞,a]1(−∞,a′] − P01(−∞,a]1(−∞,a′])

+ (PT1(−∞,a′] − P01(−∞,a′])− ((PT1(−∞,a])
2 − (P01(−∞,a])

2)

− ((PT1(−∞,a′])
2 − (P01(−∞,a]′)

2) + 2(PT1(−∞,a]PT1(−∞,a′] − PT1(−∞,a]P01(−∞,a′])

+2(PT1(−∞,a]P01(−∞,a′] − P01(−∞,a]P01(−∞,a′])
∣∣1/2

≤11 sup
a∈R

∣∣PT1(−∞,a] − P01(−∞,a]

∣∣1/2
→0,

where the last conclusion follows from Lemma 2.11 in van der Vaart (1998), and γ̂k,i
p−→ γk,i,

which follows from Lemma 7 (for the case of µ̂i, Lemma 6). Therefore, condition (2.8.5) in VW

is satisfied.

Therefore, by Lemma 2.8.7 in VW, we have shown that

GN,PT
⇝ GP0 in ℓ∞(F). (18)

We note that (18) holds for all monotonic diagonal paths N → ∞, T (N) → ∞. As stated in

REMARKS (a) in Phillips and Moon (1999), (18) thus holds under doubly asymptotic N,T →
∞.

Next, we study the asymptotic behavior of (9):

√
N(PT f − P0f).

Because the nonstochastic function sequence PT f − P0f is uniformly bounded in f ∈ F , we

should consider the convergence rate of

sup
f∈F

∣∣∣PT f − P0f
∣∣∣.
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Lemmas 7 and 8 (for the case of Pµ̂
N , Lemmas 6 and 8) imply that

sup
f∈F

∣∣∣PT f − P0f
∣∣∣ = O

(
1√
T

)
.

Therefore, given N/T → 0, the desired result holds by Slutsky’s theorem.

□

A.1.3 Proof of Theorem 3

By Taylor’s theorem, we have the decomposition:

√
N(Ĝµ −Gµ) =

1√
N

N∑
i=1

(g(µi)− E(g(µi))) +
1√
N

N∑
i=1

(
(ȳi − µi)g

′(µi)
)

+
1

2
√
N

N∑
i=1

(
(ȳi − µi)

2g′′(µ̃i)
)
.

The first term on the right-hand side converges in distribution to N(0, var(g(µi))) by As-

sumptions 1 and 7.

The second term on the right-hand side is

1√
N

N∑
i=1

(
(ȳi − µi)g

′(µi)
)
=

1√
N

N∑
i=1

w̄ig
′(µi),

and the expectation is

E

(
1√
N

N∑
i=1

w̄ig
′(µi)

)
= 0,

by the law of iterated expectations. The variance is

var

(
1√
N

N∑
i=1

w̄ig
′(µi)

)
= E

((
w̄ig

′(µi)
)2) ≤

√
E(w̄4

i )
√

E(g′(µi)4) = O(T−1),

where the first inequality follows from the Cauchy–Schwarz inequality and the last equality

follows from Lemma 4 and Assumption 7.

For the third term on the right-hand side,

E

(
1

2
√
N

N∑
i=1

(
(ȳi − µi)

2g′′(µ̃i)− E(w̄2
i g

′′(µ̃i))
))

= 0,

and

var

(
1

2
√
N

N∑
i=1

(
(ȳi − µi)

2g′′(µ̃i)− E(w̄2
i g

′′(µ̃i))
))

≤ var(w̄2
i g

′′(µ̃i)) ≤ M · var(w̄2
i ) = O(T−2),

where the first inequality follows from the i.i.d. assumption, the second inequality follows from

Assumption 7, and the last equality follows from Lemma 4.

Therefore, the first claim of the theorem is obtained by Markov’s inequality and Slutsky’s

theorem. We also have the second claim of the theorem because |E(w̄2
i g

′′(µ̃i))| = O(T−1), which

follows from Lemma 1 and Assumption 7.
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□

A.1.4 Proof of Theorem 4

We concentrate on proving the asymptotic normality of
√
N(Ĝγk − Gγk), because it is clear

that Ĝγk is consistent for Gγk by the following proof and the law of large numbers. By Taylor’s

theorem, we have

√
N(Ĝγk −Gγk) =

1√
N

N∑
i=1

(g(γ̂k,i)− E(g(γk,i)))

=
1√
N

N∑
i=1

(g(γk,i)− E(g(γk,i))) (19)

+
1√
N

N∑
i=1

(γ̂k,i − γk,i)g
′(γk,i) (20)

+
1

2
√
N

N∑
i=1

(γ̂k,i − γk,i)
2g

′′
(γ̃k,i), (21)

where γ̃k,i is located between γk,i and γ̂k,i. We examine each term in this expansion.

For (19), under Assumptions 1 and 10,

1√
N

N∑
i=1

(g(γk,i)−E(g(γk,i)))⇝ N(0, var(g(γk,i))),

by the central limit theorem.

For (20), we use the expansion for γ̂k,i. We have the following:

1√
N

N∑
i=1

(γ̂k,i − γk,i)g
′(γk,i) =

1√
N

N∑
i=1

(
1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)
g′(γk,i) (22)

− 1√
N

T + k

T − k

N∑
i=1

(w̄i)
2g′(γk,i) (23)

+
1√
N

N∑
i=1

1

T − k

k∑
t=1

witw̄ig
′(γk,i) (24)

+
1√
N

N∑
i=1

1

T − k

T∑
t=T−k+1

witw̄ig
′(γk,i). (25)

For (22), its expectation is

E

(
1√
N

N∑
i=1

(
1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)
g′(γk,i)

)
= 0,
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by the law of iterated expectations. The variance of (22) is

var

(
1√
N

N∑
i=1

(
1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)
g′(γk,i)

)

= E

(( 1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)
g′(γk,i)

)2


≤

√√√√√E

( 1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)4
√E(g′(γk,i)4),

where the first equality follows from the i.i.d. assumption and the first inequality follows from

the Cauchy–Schwarz inequality. We have

E

( 1

T − k

T∑
t=k+1

(witwi,t−k − γk,i)

)4
 = O

(
1

T 2

)
,

by Lemma 5. This result and Assumption 10 imply that

var

(
1√
N

N∑
i=1

(
1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)
g′(γk,i)

)
= O(T−1).

Therefore, by Markov’s inequality, term (22) is of order Op(T
−1/2).

We next examine (23). We observe that:

E

∣∣∣∣∣ 1√
N

T + k

T − k

N∑
i=1

(w̄i)
2g′(γk,i)

∣∣∣∣∣ ≤
√
N

T + k

T − k
E
∣∣(w̄i)

2g′(γk,i)
∣∣

≤
√
N

T + k

T − k

√
E((w̄i)4)

√
E((g′(γk,i))2)

= O

(√
N

T

)
,

where the second inequality is the Cauchy–Schwarz inequality and the equality follows from

Lemma 4 and Assumption 10. Thus, the term in (23) is Op(
√
N/T ) by Markov’s inequality.

For (24), we have by the Cauchy–Schwarz inequality that

E

∣∣∣∣∣ 1√
N

N∑
i=1

1

T − k

k∑
t=1

witw̄ig
′(γk,i)

∣∣∣∣∣ ≤
√
N

T − k
E

∣∣∣∣∣
k∑

t=1

witw̄ig
′(γk,i)

∣∣∣∣∣
≤

√
N

T − k

√√√√√E

( k∑
t=1

witw̄i

)2
√E[(g′(γk,i))2].

It holds that

E

( k∑
t=1

witw̄i

)2
 ≤

E

( k∑
t=1

wit

)4
1/2 (

E
(
(w̄i)

4
))1/2

,
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by the Cauchy–Schwarz inequality. Lemma 4 implies that E
(
(w̄i)

4
)
= O(T−2) under Assump-

tions 8 and 9. It is easy to see that E((
∑k

t=1wit)
4) = O(k4) by Assumption 9. Thus, it follows

that

E

∣∣∣∣∣ 1√
N

N∑
i=1

1

T − k

k∑
t=1

witw̄ig
′(γk,i)

∣∣∣∣∣ = O

( √
kN√

T (T − k)

)
,

and the fourth term (24) is of order Op

(√
kN/(

√
T (T − k))

)
by Markov’s inequality. The same

argument can be applied to (25), and gives

1√
N

N∑
i=1

1

T − k

T∑
t=T−k+1

witw̄ig
′(γk,i) = Op

( √
kN√

T (T − k)

)
.

For (21),

E

∣∣∣∣∣ 1

2
√
N

N∑
i=1

(γ̂k,i − γk,i)
2g

′′
(γ̃k,i)

∣∣∣∣∣ ≤
√
N

2
E
∣∣∣(γ̂k,i − γk,i)

2g
′′
(γ̃k,i)

∣∣∣
≤

√
N

2
M · E

(
(γ̂k,i − γk,i)

2
)

= O

(√
N

T

)
,

where the second inequality follows from Assumption 10 and the last equality follows from

Lemma 7. By Markov’s inequality, (21) is of order Op(
√
N/T ).

Consequently, we obtain the desired result using Slutsky’s theorem.

□

A.1.5 Proof of Theorem 5

We show only the asymptotic normality of
√
N(Ĥ−H), because the consistency of Ĥ is clear by

the following proof and the law of large numbers. Let θ̂i = (θ̂i,1, . . . , θ̂i,l) and θi = (θi,1, . . . , θi,l).

By Taylor’s theorem, we have

√
N(Ĥ −H)

=
1√
N

N∑
i=1

(
h(θ̂i)− E (h(θi))

)
=

1√
N

N∑
i=1

(h(θi)− E (h(θi))) (26)

+
1√
N

N∑
i=1

l∑
j=1

(θ̂i,j − θi,j)
∂

∂zj
h(z)

∣∣∣
z=θi

(27)

+
1

2
√
N

N∑
i=1

∑
∑l

s=1 js=2

(θ̂i,1 − θi,1)
j1 · · · (θ̂i,l − θi,l)

jl
∂2

∂zj11 · · · ∂zjll
h(z)

∣∣∣
z=θ̃i

, (28)

where θ̃i is located between θi and θ̂i.
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For (26), under Assumption 12, it holds that

1√
N

N∑
i=1

(h(θi)− E (h(θi)))⇝ N(0, var(h(θi))),

by the central limit theorem.

For (27), we have that for any j = 1, . . . , l

1√
N

N∑
i=1

(θ̂i,j − θi,j)
∂

∂zj
h(z)

∣∣∣
z=θi

= Op

(√
N

T

)
,

which follows from the proof similar to that for Theorems 3 and 4 under Assumptions 1, 8, 9,

11, and 12.

For (28), we observe that

E

∣∣∣∣∣∣ 1

2
√
N

N∑
i=1

∑
∑l

s=1 js=2

(θ̂i,1 − θi,1)
j1 · · · (θ̂i,l − θi,l)

jl
∂2

∂zj11 · · · ∂zjll
h(z)

∣∣∣
z=θ̃i

∣∣∣∣∣∣
≤

√
N

2
M

∑
∑l

s=1 js=2

E
∣∣∣(θ̂i,1 − θi,1)

j1 · · · (θ̂i,l − θi,l)
jl
∣∣∣ ,

by Assumption 11 and the triangular inequality. Note that for any k1, k2 = 1, . . . , l,

E|(θ̂i,k1 − θi,k1)(θ̂i,k2 − θi,k2)| ≤
√

E
(
(θ̂i,k1 − θi,k1)

2
)√

E
(
(θ̂i,k2 − θi,k2)

2
)

= O(T−1),

where the inequality follows from the Cauchy–Schwarz inequality and the equality follows from

Lemmas 6 and 7 under Assumptions 1, 8, and 9. Hence, it holds that

E

∣∣∣∣∣∣ 1

2
√
N

N∑
i=1

∑
∑l

s=1 js=2

(θ̂i,1 − θi,1)
j1 · · · (θ̂i,l − θi,l)

jl
∂2

∂zj11 · · · ∂zjll
h(z)

∣∣∣
z=θ̃i

∣∣∣∣∣∣ = O

(√
N

T

)
.

Therefore, (28) is Op(
√
N/T ) by Markov’s inequality.

Consequently, we obtain the desired result using Slutsky’s theorem.

□

A.1.6 Proof of Theorem 6

We first consider Ĝµ. The Taylor expansion gives

√
N(Ĝµ −Gµ) =

1√
N

N∑
i=1

(g(µi)− E(g(µi))) +
1√
N

N∑
i=1

w̄ig
′(µi)

+
1

2
√
N

N∑
i=1

(w̄i)
2g′′(µi) +

1

6
√
N

N∑
i=1

(w̄i)
3g′′′(µ̃i),
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where µ̃i is between µi and ȳi. As in the proof of Theorem 3, we have
∑N

i=1 w̄ig
′(µi)/

√
N is

Op(1/
√
T ). We show that

1

2
√
N

N∑
i=1

(w̄i)
2g′′(µi) =

√
N

T
B + op

(√
N

T

)
, (29)

1

6
√
N

N∑
i=1

(w̄i)
3g′′′(µ̃i) = op

(√
N

T

)
, (30)

for some constant B. When (29) and (30) hold, the asymptotic normality of the HPJ estimator

is established following the argument in Dhaene and Jochmans (2014) when N/T 2 → r, where

r ∈ [0,∞) is some constant. By (29), (30), and simple algebra, we have

√
N(Ĝµ −Gµ) =

1√
N

N∑
i=1

(g(µi)− E(g(µi))) +

√
N

T
B + op

(√
N

T

)
,

√
N(Ḡµ −Gµ) =

1√
N

N∑
i=1

(g(µi)− E(g(µi)))− 2

√
N

T
B + op

(√
N

T

)
.

That is, the bias of order 1/T of Ḡµ is twice as large as that of Ĝµ. By the central limit theorem,

we have

√
N

(
Ĝµ −Gµ − T−1B
Ḡµ −Gµ − 2T−1B1

)
⇝ N

( (
0
0

)
,

(
var(g(µi)) var(g(µi))
var(g(µi)) var(g(µi))

) )
,

as N,T → ∞ and N/T 2 → r. Consequently, when N,T → ∞ and N/T 2 → r, we have

√
N(ĜH

µ −Gµ)⇝ N(0, var(g(µi))),

by the continuous mapping theorem.

We first prove (29). We note that

E

(
1√
N

N∑
i=1

(
(w̄i)

2g′′(µi)
))

=

√
N

T
E(VT,ig

′′(µi)),

where VT,i := TE((w̄i)
2|i) =

∑T
j=−T γj,i(T − |j|)/T . The variance is

var

(
1√
N

N∑
i=1

(
(w̄i)

2g′′(µi)
))

= var((w̄i)
2g′′(µi)).

We have

var((w̄i)
2g′′(µi)) ≤ E((w̄i)

4(g′′(µi))
2)

≤
√
E((w̄i)8)

√
E((g′′(µi))4)

≤ 1

T 2
C
√

E((g′′(µi))4) = O

(
1

T 2

)
,

where the second inequality is the Cauchy–Schwarz inequality, the third inequality follows from

Assumptions 8 and 9 and Lemma 4, and the last equality follows from Assumption 13. Therefore,

(29) holds with B = limT→∞E(VT,ig
′′(µi))/2.
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Next, we prove (30). We have

E

∣∣∣∣∣ 1√
N

N∑
i=1

(w̄i)
3g′′′(µ̃i)

∣∣∣∣∣ ≤ME

(
1√
N

N∑
i=1

∣∣∣∣∣(w̄i)
3

∣∣∣∣∣
)

≤M
√
NE(|w̄i|3)

≤M
√
N
(
E
(
(w̄i)

4
)) 3

4 ,

where the first inequality follows from Assumption 13 and the triangle inequality, the second in-

equality follows from the i.i.d. assumption, and the third inequality is the Lyapunov’s inequality.

Thus, we only need to evaluate the order of E((w̄i)
4). Lemma 4 implies E((w̄i)

4) = O(1/T 2).

(30) therefore holds because

1√
N

N∑
i=1

(w̄i)
3g′′′(µ̃i) = Op

( √
N

T
√
T

)
= op

(√
N

T

)
,

by the Markov inequality. Thus, the asymptotic normality of ĜH
µ is proved.

Next, we consider Ĝγk . The Taylor expansion gives

√
N(Ĝγk −Gγk) =

1√
N

N∑
i=1

(g(γk,i)−E(g(γk,i)))

− 1√
N

N∑
i=1

(w̄i)
2g′(γk,i) +

1

2
√
N

N∑
i=1

(γ̂k,i − γk,i)
2g′′(γk,i)

+
1

3!
√
N

N∑
i=1

(γ̂k,i − γk,i)
3g′′′(γ̃k,i) +Op

(√
N

T 2

)
.

(31)

The second and third terms on the right-hand side of (31) are of order Op(
√
N/T ). To establish

the asymptotic normality of the HPJ estimator, we focus on showing the following results:

1√
N

N∑
i=1

(w̄i)
2g′(γk,i) =

√
N

T
B1 + op

(√
N

T

)
, (32)

1

2
√
N

N∑
i=1

(γ̂k,i − γk,i)
2g′′(γk,i) =

√
N

T
B2 + op

(√
N

T

)
, (33)

1

3!
√
N

N∑
i=1

(γ̂k,i − γk,i)
3g′′′(γ̃k,i) = op

(√
N

T

)
, (34)

where B1 and B2 are constants. When (32), (33), and (34) hold, we can show the asymptotic

normality of the HPJ estimator following an argument similar to that for Gµ that is based on

Dhaene and Jochmans (2014).

Therefore, we focus on showing (32), (33), and (34) separately.

The incidental parameter bias; Term (32) We first note by the proof of Theorem 4 that

E

(
1√
N

N∑
i=1

(
(w̄i)

2g′(γk,i)
))

=

√
N

T
E(VT,ig

′(γk,i)) = O

(√
N

T

)
,
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where VT,i := TE((w̄i)
2|i) =

∑T
j=−T γj,i(T − |j|)/T . The variance is

var

(
1√
N

N∑
i=1

(
(w̄i)

2g′(γk,i)
))

= var((w̄i)
2g′(γk,i)),

by the i.i.d. assumption. We have

var((w̄i)
2g′(γk,i)) ≤ E((w̄i)

4(g′(γk,i))
2)

≤
√
E((w̄i)8)

√
E((g′(γk,i))4)

≤ 1

T 2
C
√

E((g′(γk,i))4) = O

(
1

T 2

)
,

where the second inequality is the Cauchy–Schwarz inequality, the third inequality follows from

Assumptions 8 and 14 and Lemma 4, and the last equality follows from Assumption 15. We

have thus shown that (32) holds with B1 = limT→∞E(VT,ig
′(γk,i)).

The bias caused by the nonlinearity of g; Term (33) We shall compute the expectation

of

A :=
1√
N

N∑
i=1

(
1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)2

g′′(γk,i),

and will show that

E
(
(A− E(A))2

)
= var(A) = o(N/T 2).

Under this condition, (33) is established by Loéve’s cr inequality and the proof of Theorem 4.

We examine the order of E(A). We observe that

E(A) =

√
N

(T − k)2
E

( T∑
t=k+1

(witwi,t−k − γk,i)

)2

g′′(γk,i)

 .

By the Cauchy–Schwarz inequality, we have

E

( T∑
t=k+1

(witwi,t−k − γk,i)

)2

g′′(γk,i)


≤

√√√√√E

( T∑
t=k+1

(witwi,t−k − γk,i)

)4
√E((g′′(γk,i))2).

Thus, Assumption 15 and Lemma 5 imply that

|E(A)| = O

(√
N

T

)
.

Further, (T/
√
N)E(A) converges by the dominated convergence theorem under Assumption 15.

We set B2 = limT→∞(T/
√
N)E(A) (note that (T/

√
N)E(A) does not depend on N).
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We next examine E((A−E(A))2) = var(A) and show that it is of order O(1/T 2). We first

note that

var(A) = var

( 1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)2

g′′(γk,i)

 ,

by the i.i.d. assumption. It then holds that

var

( 1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)2

g′′(γk,i)


≤ E

( 1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)4

(g′′(γk,i))
2


≤

√√√√√E

( 1

T − k

T∑
t=k+1

witwi,t−k − γk,i

)8
√E((g′′(γk,i))4)

= O

(
1

T 2

)
= o

(
N

T 2

)
,

where the second inequality is the Cauchy–Schwarz inequality and the third equality follows

from Assumption 15 and Lemma 5.

It is therefore shown that (33) holds with B2 = limT→∞(T/
√
N)E(A) by Markov’s inequal-

ity.

The third-order term; Term (34) We have

E

∣∣∣∣∣ 1√
N

N∑
i=1

(γ̂k,i − γk,i)
3g′′′(γ̃k,i)

∣∣∣∣∣ ≤ME

(
1√
N

N∑
i=1

∣∣∣∣∣(γ̂k,i − γk,i)
3

∣∣∣∣∣
)

≤M
√
NE(|γ̂k,i − γk,i|3)

≤M
√
N
(
E
(
(γ̂k,i − γk,i)

4
)) 3

4 ,

(35)

where the first inequality follows from Assumption 15 and the triangle inequality, the second in-

equality follows from the i.i.d. assumption, and the third inequality is the Lyapunov’s inequality.

Thus, we only need to evaluate the order of E((γ̂k,i − γk,i)
4). We can write:

E((γ̂k,i − γk,i)
4) =E

((
1

T − k

T∑
t=k+1

(witwi,t−k − γk,i)−
T + k

T − k
(w̄i)

2

+
1

T − k

k∑
t=1

witw̄i +
1

T − k

T∑
t=T−k+1

witw̄i

)4)
.

(36)

Thanks to Loéve’s cr inequality, we only need to examine the fourth-order moment of each term

in parentheses on the right-hand side of (36).

For the first term, we have

E

( 1

T − k

T∑
t=k+1

(witwi,t−k − γk,i)

)4
 = O

(
1

T 2

)
,
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by Lemma 5.

For the second term in (36), we first note that (T + k)/(T − k) = O(1). We observe that

E(((w̄i)
2)4) = E((w̄i)

8) = O

(
1

T 4

)
,

by Lemma 4. We thus have that

E

((
T + k

T − k
(w̄i)

2

)4
)

= O

(
1

T 4

)
.

For the third term, we first observe that by the Cauchy–Schwarz inequality,

E

( 1

T − k

k∑
t=1

witw̄i

)4
 = E

(w̄i)
4

(
1

T − k

k∑
t=1

wit

)4


≤
(
E
(
(w̄i)

8
))1/2E

( 1

T − k

k∑
t=1

wit

)8
1/2

.

It is shown in the discussion on the second term that E
(
(w̄i)

8
)
is of order 1/T 4. Moreover,

because k is fixed, it is easy to see that

E

( 1

T − k

k∑
t=1

wit

)8
 = O

(
1

T 8

)
.

Therefore, it holds that

E

( 1

T − k

k∑
t=1

witw̄i

)4
 = O

(
1

T 6

)
.

The same argument can be used to show that

E

( 1

T − k

T∑
t=T−k+1

witw̄i

)4
 = O

(
1

T 6

)
.

Thus, we have shown that

E((γ̂k,i − γk,i)
4) = O

(
1

T 2

)
. (37)

Consequently, we have

E

∣∣∣∣∣ 1√
N

N∑
i=1

(γ̂k,i − γk,i)
3g′′′(γ̃k,i)

∣∣∣∣∣ = O

( √
N

T
√
T

)
= o

(√
N

T

)
. (38)

Therefore, we get the desired result (34) by Markov’s inequality.

□
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A.1.7 Proof of Theorem 7

As the proofs for Ĝ∗
µ and Ĝ∗

γk
are identical, we discuss the case for Ĝ∗

γk
only. We first show that

the moments of Ĝ∗
γk

under the bootstrap distribution satisfy Lyapunov’s conditions. It is then

proved that
√
N(Ĝ∗

γk
− Ĝγk) converges in distribution to Zγk almost surely under a subsequence

of any subsequences of the original sequence. This implies that the bootstrap distribution of
√
N(Ĝ∗

γk
− Ĝγk) converges almost surely under a subsequence of any subsequences. It then

implies that it converges in probability in the original sequence.

We first examine the moments of Ĝ∗
γk
. By definition, Ĝ∗

γk
is the sample average of g(γ̂∗k,i),

where γ̂∗k,i is the sample autocovariance of the time series z∗i . It is easy to see that conditionally

on the data, the mean and the variance of g(γ̂∗k,i) are

E(g(γ̂∗k,i)|{{yit}Tt=1}Ni=1) =
1

N

N∑
i=1

g(γ̂k,i) = Ĝγk ,

var(g(γ̂∗k,i)|{{yit}Tt=1}Ni=1) =
1

N

N∑
i=1

(g(γ̂k,i)− Ĝγk)
2 =

1

N

N∑
i=1

g(γ̂k,i)
2 − (Ĝγk)

2.

The conditional variance converges to

E(g(γk,i)
2)− (Gγk)

2 = var(g(γk,i)),

in probability by Theorem 4 and the continuous mapping theorem. We then consider the

third-order moment. We note that

E

(
1√
N

|g(γ̂∗k,i)− Ĝγk |
3|{{yit}Tt=1}Ni=1

)
=

1

N3/2

N∑
i=1

|g(γ̂k,i)− Ĝγk |
3.

We note that

|g(γ̂k,i)− Ĝγk |
3 ≤ 4|g(γ̂k,i)|3 + 4|Ĝγk |

3.

As Ĝγk converges, we have

1

N1/2
|Ĝγk |

3 p−→ 0.

Let h(·) be a twice-differentiable function such that h(a) ≥ 0, h(a) = |a|3 for |a| ≥ 1, and

|h(a)− |a|3| < 1 for |a| < 1. It follows that

1

N3/2

N∑
i=1

|g(γ̂k,i)|3 ≤
1

N3/2

N∑
i=1

h(g(γ̂k,i)) +
1

N3/2

N∑
i=1

|h(g(γ̂k,i))− |g(γ̂k,i)|3|
p−→ 0,

as N−1
∑N

i=1 h(g(γ̂k,i)) = Op(1) by Theorem 4 under the condition of this theorem and the

definition of h(·) implies that
∑N

i=1 |h(g(γ̂k,i))− |g(γ̂k,i)|3|/N3/2 ≤ 1/N1/2. Thus, we have

1

N3/2

N∑
i=1

|g(γ̂k,i)− Ĝγk |
3 p−→ 0.

47



We argue that for any subsequence of the original sequence, there exists a further subse-

quence under which
√
N(Ĝ∗

γk
− Ĝγk) converges in distribution conditionally on {{yit}Tt=1}Ni=1

almost surely. We have shown that the first, second, and third moments of g(γ̂∗k,i) satisfy Lya-

punov’s conditions in probability. For any subsequence of the original sequence, there thus

exists a further subsequence under which these moment conditions are satisfied almost surely.

Thus, under a subsequence of any subsequences,
√
N(Ĝ∗

γk
− Ĝγk) converges in distribution to

Z conditionally almost surely. This implies that for any subsequence, there exists a further

subsequence under which

sup
x∈R

∣∣∣Pr(√N(Ĝ∗
γk

− Ĝγk) ≤ x
∣∣{{yit}Tt=1}Ni=1

)
− Pr (Z ≤ x)

∣∣∣ ,
converges to 0 almost surely. It thus holds that, for the original sequence,

sup
x∈R

∣∣∣Pr(√N(Ĝ∗
γk

− Ĝγk) ≤ x
∣∣{{yit}Tt=1}Ni=1

)
− Pr (Z ≤ x)

∣∣∣ p−→ 0.

□

A.1.8 Proof of Theorem 9

We give only the proof for KSγk
1 because that for KSµ

1 is the same. The proof is almost

identical to the proof of Corollary 19.21 in van der Vaart (1998). We first note that, under Hγk
0 ,

√
N(Pγ̂k

N −Qγk) ⇝ GQγk in ℓ∞(F) given N,T → ∞ with N/T → 0 by Theorem 2. Therefore,

because the norm ∥·∥∞ on D[−∞,∞], where D[−∞,∞] is the class of all cadlag functions from

[−∞,∞] into R, is continuous with respect to the uniform norm, we have KSγk
1 ⇝ ∥GQγk∥∞

under Hγk
0 by the continuous mapping theorem.

□

A.1.9 Proof of Theorem 10

We present only the proof for KSγk
2 because that for KSµ

2 is the same. We first observe that

KSγk
2 =

∥∥∥∥∥
√

N1N2

N1 +N2
(Pγ̂k

N1,(1)
− P γk

0,(1))−
√

N1N2

N1 +N2
(Pγ̂k

N2,(2)
− P γk

0,(2)) +

√
N1N2

N1 +N2
(P γk

0,(1) − P γk
0,(2))

∥∥∥∥∥
∞

.

We note that, under Assumption 18,
√
N1(Pγ̂k

N1,(1)
− P γk

0,(1)) and
√
N2(Pγ̂k

N2,(2)
− P γk

0,(2)) jointly

converge in distribution to independent Brownian processes GP
γk
0,(1)

and GP
γk
0,(2)

given N1, T1 →
∞ with N1/T1 → 0 and N2, T2 → ∞ with N2/T2 → 0 by Theorem 2. Therefore, under

Hγk
0 : P γk

0,(1) = P γk
0,(2), KSγk

2 converges in distribution to∥∥∥∥√1− λGP
γk
0,(1)

−
√
λGP

γk
0,(2)

∥∥∥∥
∞
,

by the continuous mapping theorem given N1/(N1 + N2) → λ ∈ (0, 1). It is easy to see that

the distribution of the limit random variable
√
1− λGP

γk
0,(1)

−
√
λGP

γk
0,(2)

is identical to that of

GP
γk
0,(1)

under Hγk
0 . Thus, we have the desired result.

□
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A.2 Technical lemmas

Lemma 1 (Galvao and Kato (2014) based on Davydov (1968)). Let {ξt}∞t=1 denote a stationary

process taking values in R and let α(m) denote its α-mixing coefficients. Suppose that E(|ξ1|q) <
∞ and

∑∞
m=1 α(m)1−2/q < ∞ for some q > 2. Then, we have

var

(
T∑
t=1

ξt

)
≤ CT

with C = 12(E(|ξ1|q))2/q
∑∞

m=0 α(m)1−2/q.

Proof. The proof is available in Galvao and Kato (2014) (the discussion after Theorem C.1).

Lemma 2 (Yokoyama (1980)). Let {ξt}∞t=1 denote a strictly stationary α-mixing process taking

values in R, and let α(m) denote its α-mixing coefficients. Suppose that E(ξt) = 0 and for some

constants δ > 0 and r > 2, E(|ξ1|r+δ) < ∞. If
∑∞

m=0(m+ 1)r/2−1α(m)δ/(r+δ) < ∞, then there

exists a constant C independent of T such that

E

(∣∣∣∣∣
T∑
t=1

ξt

∣∣∣∣∣
r)

≤ CT r/2.

Lemma 3. Suppose that Assumptions 1 and 4 hold. Then, {witwi,t−k}∞t=k+1 for a fixed k given

αi is strictly stationary and α-mixing and its mixing coefficients {αk(m|i)}∞m=0 possess the

following properties: there exists a sequence {αk(m)}∞m=0 such that for any i and m, αk(m|i) ≤
αk(m) and

∑∞
m=0(m + 1)3αk(m)δ/(r+δ) < ∞ for some δ > 0 and r = 4. The result holds with

r = 8 if Assumption 4 is replaced by Assumption 8.

Proof. The proof is similar to the proof of Theorem 14.1 in Davidson (1994). It is easy to see

that for any i and any 0 ≤ m < k, αk(m|i) ≤ 1, and that for any i and any m ≥ k, αk(m|i) ≤
α(m− k|i) ≤ α(m− k) by the definition of α-mixing coefficients and Assumption 4 or 8. Thus,

we have
∑∞

m=0(m + 1)3αk(m)δ/(r+δ) ≤
∑k−1

m=0(m + 1)3 +
∑∞

m=k(m + 1)3α(m − k)δ/(r+δ) < ∞
for r = 4 and 8 under Assumptions 4 and 8, respectively. Thus, the lemma holds.

Lemma 4. Suppose that Assumptions 1, 4, and 5 hold. Then, it holds that E((w̄i)
r) ≤ CT−r/2

for r = 2, 4 and some constant C < ∞. If Assumptions 8 and 9 hold additionally, E((w̄i)
8) ≤

CT−4 holds as well.

Proof. We first consider the case with r = 2. Given E(w̄i|i) = 0, Lemma 1 states that

E
(
(w̄i)

2|i
)
≤ Ci/T,

where Ci = 12(E(|wit|(4+δ)/2|i))4/(4+δ)
∑∞

m=0 α(m|i)δ/(4+δ). Assumption 4 implies that

Ci ≤ 12(E(|wit|(4+δ)/2|i))4/(4+δ)
∞∑

m=0

α(m)δ/(4+δ).
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Thus, we have

E
(
(w̄i)

2
)
= E

(
E
(
(w̄i)

2|i
))

≤ 12E
(
(E(|wit|(4+δ)/2|i))4/(4+δ)

) ∞∑
m=0

α(m)δ/(4+δ)/T

≤ 12
(
E
(
E(|wit|(4+δ)/2|i)

))4/(4+δ)
∞∑

m=0

α(m)δ/(4+δ)/T

= 12
(
E
(
|wit|(4+δ)/2

))4/(4+δ)
∞∑

m=0

α(m)δ/(4+δ)/T

= O

(
1

T

)
,

where the second inequality is Jensen’s inequality and the last equality follows from Assumptions

4 and 5. Hence, the desired result holds for r = 2.

Next, we consider the case with r = 4, 8. We use Lemma 2. From the proof of Lemma 2

available in Yokoyama (1980), we have

E

(∣∣∣∣∣
T∑
t=1

wit

∣∣∣∣∣
r ∣∣∣i) ≤ Kr,i

(
E
(
|wit|r+δ|i

))r/(r+δ)
T r/2

for some δ > 0, where Kr,i is a polynomial of Aq(α|i) for q ≤ r and Aq(α|i) :=
∑∞

m=0(m +

1)q/2−1α(m|i)δ/(q+δ). Note that Aq(α|i) < ∞ for q ≤ r if Ar(α|i) < ∞. By Assumption 4 or 8,

there exists a constant Kr < ∞ such that Kr,i < Kr for all i. Thus, we have

E ((w̄i)
r) = E (E ((w̄i)

r|i)) ≤ KrE

((
E
(
|wit|r+δ|i

))r/(r+δ)
)
T−r/2

≤ Kr

(
E
(
E
(
|wit|r+δ|i

)))r/(r+δ)
T−r/2

= Kr

(
E
(
|wit|r+δ

))r/(r+δ)
T−r/2

= O(T−r/2),

where the second inequality is Jensen’s inequality and the last equality follows from Assumption

5 or 9. The proof for r = 4, 8 is complete.

Lemma 5. Suppose that Assumptions 1, 4, and 5 hold. Then, it holds that E((
∑T

t=k+1(witwi,t−k−
γk,i))

r) ≤ CT r/2 for some constant C and r = 2. The result holds for r = 4 if Assumptions 4

and 5 are replaced by Assumptions 8 and 9. Furthermore, if Assumption 14 holds additionally,

the result holds for r = 8 as well.

Proof. In view of Lemma 3, the lemma follows along the same line as that of Lemma 4.

Lemma 6. Under Assumptions 1 and 2, we have

E
(
(ȳi − µi)

2
)
= O(T−1).
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Proof. Note that ȳi = µi + w̄i where w̄i := T−1
∑T

t=1wit. Therefore, we have

E
(
(ȳi − µi)

2
)
= E

(
w̄2
i

)
=

1

T
E(VT,i) = O(T−1),

where VT,i := TE((w̄i)
2|i) =

∑T
j=−T γj,i(T−|j|)/T , the second equality follows from Assumption

1, and the last equality follows from Assumption 2.

Lemma 7. Under Assumptions 1, 4, and 5, we have

E((γ̂k,i − γk,i)
2) = O(T−1).

Proof. Given the estimator γ̂k,i has the following decomposition:

γ̂k,i =
1

T − k

T∑
t=k+1

witwi,t−k −
T + k

T − k
(w̄i)

2

+
1

T − k

k∑
t=1

witw̄i +
1

T − k

T∑
t=T−k+1

witw̄i,

we can write:

E((γ̂k,i − γk,i)
2) =E

((
1

T − k

T∑
t=k+1

(witwi,t−k − γk,i)−
T + k

T − k
(w̄i)

2

+
1

T − k

k∑
t=1

witw̄i +
1

T − k

T∑
t=T−k+1

witw̄i

)2)
.

(39)

Owing to Loéve’s cr inequality, we just need to examine the second-order moment of each term

in parentheses on the right-hand side of (39).

For the first term, we have

E

( 1

T − k

T∑
t=k+1

(witwi,t−k − γk,i)

)2
 = O

(
1

T

)
,

by Lemma 5.

For the second term in (39), we first note that (T + k)/(T − k) = O(1). We observe that

E(((w̄i)
2)2) = E((w̄i)

4) = O

(
1

T 2

)
,

by Lemma 4. We thus have that

E

((
T + k

T − k
(w̄i)

2

)2
)

= O

(
1

T 2

)
.

For the third term, we first observe that by the Cauchy–Schwarz inequality,

E

( 1

T − k

k∑
t=1

witw̄i

)2
 = E

(w̄i)
2

(
1

T − k

k∑
t=1

wit

)2


≤
(
E
(
(w̄i)

4
))1/2E

( 1

T − k

k∑
t=1

wit

)4
1/2

.
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It is shown in the discussion on the second term that E
(
(w̄i)

4
)
is of order 1/T 2. Moreover,

because k is fixed, it is easy to see that

E

( 1

T − k

k∑
t=1

wit

)4
 = O

(
1

T 4

)
.

Therefore, it holds that

E

( 1

T − k

k∑
t=1

witw̄i

)2
 = O

(
1

T 3

)
.

The same argument can be used to show that

E

( 1

T − k

T∑
t=T−k+1

witw̄i

)2
 = O

(
1

T 3

)
.

We have thus shown that all of the terms are O(T−1) and the statement of the lemma holds.

Lemma 8. Let aT and bT be continuous random variables indexed by T with bounded joint

density. Suppose that as T → ∞,

E(|aT − bT |p) = O(T c), (40)

for some integer p and real number c < 0. It then holds that

sup
x

|Pr (aT < x)− Pr (bT < x)| = O(T 2c/(2+p)). (41)

In particular, if c = −1 and p = 2, then 2c/(2+p) = −1/2 and supx |Pr (aT < x)− Pr (bT < x)| =
O(T−1/2).

Proof. We have

Pr (aT < x) = Pr (aT < x, bT < x) + Pr (aT < x, bT ≥ x) .

We take some ϵ > 0. Then, we have

Pr (aT < x, bT ≥ x)

=Pr (aT < x, bT ≥ x, |aT − bT | > ϵ) + Pr (aT < x, bT ≥ x, |aT − bT | ≤ ϵ) .

For the first probability on the right-hand side, we have

sup
x

Pr (aT < x, bT ≥ x, |aT − bT | > ϵ) ≤ Pr (|aT − bT | > ϵ) ≤ E(|aT − bT |p)
ϵp

,

by Markov’s inequality. For the second probability, we have

sup
x

Pr (aT < x, bT ≥ x, |aT − bT | ≤ ϵ) ≤ sup
x

Pr (x− ϵ ≤ aT < x, x ≤ bT ≤ x+ ϵ)

≤ϵ2 sup
x

sup
x−ϵ≤a<x,x≤b≤x+ϵ

faT ,bT (a, b)

≤ϵ2C,
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for some C > 0, where faT ,bT is the joint density of aT and bT . Therefore, we have

sup
x

|Pr (aT < x)− Pr (aT < x, bT < x)| ≤ E(|aT − bT |p)
ϵp

+ ϵ2C.

We now take ϵ = T d. Then, we have

sup
x

|Pr (aT < x)− Pr (aT < x, bT < x)| = O

(
T c

T dp
+ T 2d

)
.

We note that the above order is minimized by setting d = c/(2 + p). Thus, we have

sup
x

|Pr (aT < x)− Pr (aT < x, bT < x)| = O
(
T 2c/(2+p)

)
.

Similarly, we have

sup
x

|Pr (bT < x)− Pr (aT < x, bT < x)| = O
(
T 2c/(2+p)

)
.

Therefore, we have

sup
x

|Pr (aT < x)− Pr (bT < x)|

=sup
x

|(Pr (aT < x)− Pr (aT < x, bT < x))− (Pr (bT < x)− Pr (aT < x, bT < x))|

≤ sup
x

|Pr (aT < x)− Pr (aT < x, bT < x)|+ sup
x

|Pr (bT < x)− Pr (aT < x, bT < x)|

=O
(
T 2c/(2+p)

)
.
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