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Abstract

We consider an economy where individuals face uninsurable risks to their human capital

accumulation, and analyze the optimal level of linear taxes on capital and labor income together

with the optimal path of government debt. We show that in the presence of such risks it is

beneficial to tax both labor and capital and to issue public debt. We also assess the quantitative

importance of these findings, and show that the benefits of government debt and capital taxes

both increase with the magnitude of idiosyncratic risks and the degree of relative risk aversion.
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1 Introduction

Human capital is an important component of wealth both at the individual and aggregate level,

and its role has been investigated in various fields in economics. In public finance, Jones, Manuelli

and Rossi (1997) show that the zero-capital-tax result of Chamley (1986) and Judd (1985)1 can

be strengthened if human capital accumulation is explicitly taken into account. Specifically, they

demonstrate that, in a deterministic economy with human capital accumulation, in the long run

not only capital but also labor income taxes should be zero, hence the government must accumulate

wealth - that is, public debt be negative - to finance its expenditure.

In this paper we show that the introduction of uninsurable idiosyncratic shocks to the accu-

mulation of human capital drastically changes the result of Jones, Manuelli and Rossi (1997), as

it becomes optimal for the government to tax both labor and capital income even in the long run.

Thus, our analysis shows how the interaction between market incompleteness and human capital

accumulation provides a novel justification for a positive tax rate on capital. The desirability of

taxing both capital and labor income then implies a beneficial role of government debt, and so our

theory provides also a rationale for the presence of a positive level of government debt, in line with

observed evidence.

Our model builds on that of Krebs (2003), who augmented the endogenous growth model of

Jones and Manuelli (1990) with uninsurable idiosyncratic risks to human capital accumulation. We

assume that there is a unit measure of infinitely-lived individuals, who can invest in three types of

assets: government bonds, physical capital, and human capital. The first two assets are risk-free

while human capital is risky and there are no insurance markets where this risk can be hedged. As

a result, individuals face uninsurable fluctuations in their labor income.

In this environment we study a Ramsey taxation problem, where linear taxes on labor and

capital income are chosen so as to maximize a weighted average of individuals’ lifetime utility.

The model considered turns out to be quite tractable and allows us to derive both analytic and

quantitative properties of the solution of the Ramsey problem. It also allows us to maximize the

average lifetime utility of individuals, rather than the average of their utility at the steady state (as

common in the earlier literature), and thus to take into account also the transition to the steady

1Judd and Chamley find that the optimal tax rate on capital is zero in the long run in a deterministic economy

with infinitely lived households (see however Werning (2014) for some important qualifications of their findings). The

optimality of a zero tax rate on capital in the long run has then been extended by Zhu (1992) to a representative-agent

economy with aggregate shocks, and by Karantounias (2013) to economies with more general, recursive preferences.

The result by Atkinson and Stiglitz (1976) on uniform commodity taxation theorem provides then a condition under

which the optimal tax rate on capital is always zero (not just in the steady state).
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state.

Our theoretical findings are summarized as follows. First, taxing labor income is beneficial

because it reduces the risk associated with labor income. Indeed, if the government is required to

have a balanced budget in every period, the optimal tax rate on labor income is positive and the

optimal tax rate on capital income is negative, as long as government purchases are small enough. It

is worth noting that at a competitive equilibrium of our model without taxes the ratio of physical-

to-human capital is higher than at the first-best allocation (where idiosyncratic shocks are fully

hedged), thus there is “over-accumulation” of physical capital.2 Still, our result shows this does

not necessarily mean that capital income should be taxed, on the contrary it should be subsidized

under the balanced budget requirement.

Our second result shows the benefits of capital income taxation and government debt. We show

that it is beneficial to issue debt whenever the expected rate of return earned by the private sector

on its savings, given by a weighted average between the after-tax returns on human and physical

capital, exceeds the cost of funds for the government, given by the before-tax return on physical

capital. Since human capital is risky while physical capital is safe, this condition is always satisfied

when government expenditure is small enough, thus establishing the optimality of positive debt in

this case. We also show that at a steady state solution of the Ramsey problem the expected rate

of return for the private sector must equal3 the cost of funds for the government.4 For this to be

possible, the after-tax return on physical capital must be smaller than its before-tax return, and

hence the tax rate on capital must be strictly positive in the long run, to pay for the government

expenditure and/or for the service of the public debt.

To evaluate the quantitative importance of our findings, we calibrate our model to the U.S.

economy. In particular, following Krebs (2003), we set the variance of the shock to human capital

so as to match the estimate of the variance of the permanent shock to labor income by Meghir and

Pistaferri (2004). We find that at the steady state of the solution of the Ramsey problem, when

government expenditure is set at a positive level matching U.S. data, the capital tax rate is sizable

(19.64 percent) while the government debt to output ratio is close to 0. The optimal the tax rates

turn out to be not very far from our estimate of the current U.S. fiscal policy, while the optimal

2See Gottardi, Kajii and Nakajima (2011) for a proof (see also Krebs (2003) for a similar finding). The same

over-accumulation result holds in the standard incomplete-market macroeconomic model (see Aiyagari (1994)).

3Strictly speaking, when the elasticity of intertemporal substitution is different from one a correction term is also

present, capturing the effect of public debt on the saving rate.

4It is useful to relate this result to the findings cited above, obtained in a deterministic environment. It is shown

that a similar property should hold, but since the return on consumers’ savings is not random, this implies that a

zero capital tax rate is optimal.
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debt level is lower. With the transition path explicitly taken into account, the welfare gains of

adopting the optimal policy in our model, with uninsurable shocks to human capital, are relatively

modest, and are much smaller, for instance, than the ones obtained in the related deterministic

model by Jones, Manuelli, and Rossi (1993). We also find that when instead there is no government

expenditure, the optimal level of public debt is quite large, 202 percent of GDP; if in addition

the government cannot issue (or purchase) debt, the optimal tax on capital is negative but small

(−0.34 percent). These results are in line with the theoretical findings described in the two previous

paragraphs. Also, while the benefit of issuing debt proves to be quantitatively quite sizeable, the

benefit of taxing labor income relative to capital income so as to reduce human capital risk (our

first result) is quantitatively rather small. Finally, we show that the quantitative benefits of debt

depend on the size of the risk premium earned by human capital over physical capital, and are then

quite sensitive to the agents’ degree or risk aversion and the size of the uncertainty.

The idea that uninsurable labor income risks may justify taxing capital income is not new. In the

framework of a standard incomplete markets macroeconomic model, where the labor productivity

of each individual follows an exogenously specified stochastic process, Aiyagari (1995) also finds

that the tax on capital must be positive at the steady state solution of the Ramsey problem.5

However, in the environment he considered, with no human capital accumulation and endogenous

government expenditure, the tax rate on capital must be positive for a steady state to exist. One

may then question to what extent the standard incomplete markets model provides a clear support

to the view that uninsurable labor income shocks justify capital income taxation.6 In our model in

contrast, with human capital accumulation together with uninsurable income shocks, the existence

of a steady state imposes no real restriction on the value of the tax rate on capital and the optimality

of a positive tax rate is primarily determined by the comparison of costs and benefits of the tax

and debt. A partially different line of argument is pursued by Conesa, Kitao and Krueger (2009)

who consider a quantitative overlapping-generations model with uninsurable labor income shocks,

allowing also for nonlinear labor income taxes. They find that the optimal capital income tax rate

is positive and significant, but the desirability of capital income taxation in their model is primarily

due to the effects of the life cycle on agents’ behavior and the absence of age-dependent labor income

taxes, more than to market incompleteness.

Finally, regarding the desirability of government debt, we should mention a related result ob-

tained by Aiyagari and McGrattan (1998) in a model with uninsurable labor income shocks. How-

ever, differently from us they consider an environment where borrowing constraints are binding and

5Note that Aiyagari (1995) also examines the problem of maximizing the individuals’ lifetime utility.

6See also İmrohoroğlu (1998), Domeij and Heathcote (2004) and Açikgöz (2013) for other work along these lines.
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derive the optimal policy as solution of the problem of maximizing the agents’ steady-state average

utility, restricting the labor and capital tax rates to be identical. Because in particular of the latter

restriction, the benefits of higher taxes (on labor as well as capital) cannot be separated from those

of higher debt.

The rest of the paper is organized as follows. In Section 2 the economy is described, and the

benchmark equilibrium without taxes is characterized. Section 3 considers the dynamic Ramsey

problem and derives the main theoretical results on the properties of the optimal levels of taxes and

government debt. Section 4 describes then the numerical results and discusses the extension of the

results to the case where nonlinear taxes are allowed. Section 5 concludes. Most of the proofs are

collected in the Online Appendix.

2 The Economy

We consider a competitive economy subject to idiosyncratic shocks. Time is discrete and indexed

by t = 0, 1, 2, . . . The economy consists of consumers, firms producing a homogeneous consumption

good using physical capital and human capital as inputs, and the government collecting taxes and

issuing debt.

2.1 Consumers

There is a continuum of infinitely lived consumers. In every period each individual is endowed

with one unit of raw labor, which he supplies inelastically, and can use his revenue to consume the

consumption good and invest in three kinds of assets: a risk-free bond, physical capital and human

capital. His level of human capital determines the “efficiency units” of his labor.

Each individual i ∈ [0, 1] has Epstein-Zin-Weil preferences over random sequences of consump-

tion, which are defined recursively by

ui,t =

{
(1− β)(ci,t)

1− 1
ψ + β

[
Et(ui,t+1)1−γ] 1− 1

ψ
1−γ

} ψ
ψ−1

, t = 0, 1, ... (1)

where ui,t is the intertemporal utility of individual i evaluated at date t, Et is the conditional

expectation operator at time t, ci,t is his/her consumption in period t, β ∈ (0, 1) is the discount

factor, ψ is the elasticity of intertemporal substitution, and γ is the coefficient of relative risk

aversion.

Let bi,t−1, ki,t−1 and hi,t−1 denote, respectively, the quantities of risk-free bond, physical capital,

and human capital that individual i holds at the end of period t−1. To capture the idea that labor

income is subject to uninsurable idiosyncratic shocks, we assume that, for each i and t, the human
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capital of individual i is affected by a random shock, θi,t at the beginning of period t. Hence the

actual amount of human capital available to individual i is θi,thi,t−1.

Each consumer i is initially endowed with a non negative amount bi,−1, ki,−1 and hi,−1 of riskless

bond, physical and human capital.7 Let then ιk,i,t and ιh,i,t denote the units of the consumption

good invested in, respectively, physical and human capital by individual i in period t. The amount

of the two types of capital held at the end of period t, for t = 0, 1, ..., is then equal to the amount

held at the beginning of the period, less the depreciation, plus the investment:

ki,t = ιk,i,t + (1− δk)ki,t−1 (2)

hi,t = ιh,i,t + (1− δh)θi,thi,t−1 (3)

where δk and δh are the depreciation rates of physical and human capital, respectively.

We assume that the variables θi,t, i ∈ [0, 1], t = 0, ..., are identically and independently dis-

tributed across individuals and across periods, with unit mean. We further assume that the law of

large number applies, so that the aggregate stock of human capital at the beginning of each period

t is not random, that is, the following relation holds with probability one:∫ 1

0
θi,thi,t−1 di =

∫ 1

0
hi,t−1 di = Ht−1. (4)

The idiosyncratic shocks θi,t are the only sources of uncertainty. Hence there is no aggregate

uncertainty in the economy and the rental rates of the two production factors are deterministic.

Let rt denote the rental rate of physical capital and wt the wage rate. Both labor and capital

income are subject to linear taxes at the rates τh,t and τk,t at each date t. In what follows it is

convenient to use the notation r̃t and w̃t for the after tax prices, rt(1− τk,t) and wt(1− τh,t).

The flow budget constraint of individual i is given by, for each t = 0, 1, ...,,

ci,t + ki,t + bi,t + hi,t = Rk,tki,t−1 +Rk,tbi,t−1 +Rh,tθi,thi,t−1 (5)

where Rk,t = 1 − δk + r̃t, and Rh,t = 1 − δh + w̃t. Since the (after tax) rate of return on physical

capital Rk,t is non random, in equilibrium the rate of return on risk-free bonds must be the same.

It is convenient to use xi,t to denote the term on the right hand side of (5), indicating the total

wealth of individual i at the beginning of period t after the time t shock θi,t has been realized.

Individuals may borrow, that is, bi,t can be negative, while the holdings of capital are required to

be non-negative: ki,t ≥ 0 and hi,t ≥ 0 for all i, t. The amount of borrowing is restricted by the

natural debt limit, that prevents consumers from engaging in Ponzi schemes and in this environment

7We assume the initial endowment vector (bi,−1, ki,−1, hi,−1) takes only finitely many distinct values across indi-

viduals i ∈ [0, 1].
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(where the only source of future income is the revenue from the consumers’ accumulated human

and physical capital) takes the following form:

xi,t ≥ 0, (6)

for all periods t = 1, .. and all contingencies.

To sum up, given the initial wealth xi,0 > 0 and a sequence of after tax prices {r̃t, w̃t}∞t=1, each

individual i maximizes his lifetime utility ui,0, defined by (1) subject to the flow budget constraints

(5) and the debt limit (6).

The individual’s decision depends on the history of idiosyncratic shocks affecting him. Thanks

to the specification of the utility function (1) and the assumption that shocks are i.i.d., a tractable

characterization of the utility maximizing choices is however possible.

First, it is convenient to rewrite equation (5) as follows:

xi,t+1 = (1− ηc,i,t) {Rk,t+1(1− ηh,i,t) +Rh,t+1θi,t+1ηh,i,t}xi,t (7)

where

ηc,i,t ≡
ci,t
xi,t

, ηh,i,t ≡
hi,t

bi,t + ki,t + hi,t

with initial condition xi,0 > 0. The individual optimization problem can then be equivalently

written as a problem of choosing a sequence of the rate of consumption out of his wealth, ηc,i,t,

and of the portfolio composition between human capital and riskless assets (physical capital and

risk-free bond), (ηh,i,t, 1− ηh,i,t) for every t = 0, 1, ..., given xi,0.

Define the certainty-equivalent rate of return ρ associated with the after-tax rental rate r̃ and

after-tax wage rate w̃ as follows:

ρ(r̃, w̃, ηh) ≡
{
E ((1− δk + r̃)(1− ηh) + θ(1− δh + w̃)ηh)1−γ

} 1
1−γ

. (8)

Given the specification of the agents’ utility and income, we show in the next lemma that the

optimal portfolio at any date, given the prevailing after-tax rates r̃ and w̃, is obtained as a solution

to the static problem of maximizing ρ(r̃, w̃, ηh) with respect to ηh, independently of all the other

choice variables. Given this, it is straightforward to verify that the following simple characterization

of the solutions of the individual choice problem obtains:

Lemma 1. Given {r̃t, w̃t}∞t=1 and xi,0, for any individual i a utility maximizing sequence of portfolio
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compositions and rates of consumption is characterized by the following rule: for each t = 0, 1, ...,

ρt+1 = max
η′h≥0

ρ(r̃t+1, w̃t+1, η
′
h), (9)

ηh,t = arg max
η′h≥0

ρ(r̃t+1, w̃t+1, η
′
h), (10)

ηc,t =

1 +
∞∑
s=0

s∏
j=0

(
βψρψ−1

t+1+j

)
−1

. (11)

Moreover, the time t intertemporal utility level is given by

ui,t = vtxi,t,

where xi,t satisfies (7) and vt satisfies the recursive expression:

vψ−1
t = (1− β)ψ + βψρψ−1

t+1 v
ψ−1
t+1 , (12)

whose solution is

vt = (1− β)
ψ
ψ−1

1 +

∞∑
s=0

s∏
j=0

(
βψρψ−1

t+1+j

)
1

ψ−1

. (13)

Since the expressions in (10) and (11) are independent of i, the result implies that all the

individuals in the economy choose the same rate of consumption, ηc,t, and the same portfolio, ηh,t,

in each period t. The heterogeneity among individuals appears in their level of wealth and hence

in their utility level, given by their wealth times a common constant vt.

Comparing (11) and (13) we see that the utility level per unit of wealth vt and the consumption

share ηc,t at any date t are related as follows:

ηc,t = (1− β)ψv1−ψ
t . (14)

Since ρ is a concave function of ηh, an interior solution of (9) is characterized by the first order

conditions:

Φ(r̃, w̃, ηh) ≡ E
[{

(1− δk + r̃)(1− ηh) + θ(1− δh + w̃)ηh
}−γ

(15)

×
{
θ(1− δh + w̃)− (1− δk + r̃)

}]
= 0.

We shall assume throughout the analysis that the derivatives of the function Φ : R3
+ → R, defined

in equation (15), exhibit the following properties:

Assumption 1. The derivatives of Φ(.), evaluated at Φ = 0, satisfy:

∂Φ

∂r̃
< 0, and

∂Φ

∂w̃
> 0.
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The concavity of ρ (·) then implies that ∂Φ
∂ηh

< 0. These properties ensure that the consumers’

optimal portfolio choice displays the ‘normal’ comparative statics properties: ∂ηh/∂r̃ < 0 and

∂ηh/∂w̃ > 0. As discussed in the Appendix, these properties are always satisfied when γ ≤ 1.

When γ > 1, they hold under appropriate restrictions on the distribution of θi.

2.2 Firms

All firms have identical production technology, described by a Cobb-Douglas production function, so

we can proceed as if there is a single representative firm. Letting Kt−1 and Ht−1 denote, respectively,

the aggregate stock of physical and human capital used by firms at the beginning of period t, the

aggregate amount of output produced in period t is:

Yt = F (Kt−1, Ht−1) = AKα
t−1H

1−α
t−1 , (16)

where Yt is the aggregate level of output and A is a constant. The profit maximization condition

requires that the marginal productivity of the two factors equal their before-tax rental rates

rt =
∂F (Kt−1, Ht−1)

∂Kt−1
≡ Fk,t, wt =

∂F (Kt−1, Ht−1)

∂Ht−1
≡ Fh,t. (17)

2.3 Government

The government purchases an amount of output, Gt, in each period t, financed by collecting taxes

and issuing debt. Let Bt−1 be the government debt outstanding at the beginning of period t. The

flow budget constraint of the government at any date t is

Bt + F (Kt−1, Ht−1)− r̃tKt−1 − w̃tHt−1 = Gt + (1− δk + r̃t)Bt−1, (18)

where we used r̃t, w̃t and the linear homogeneity of the production function F (K,H) to rewrite the

tax revenue τk,trtKt−1 + τh,twtHt−1 and the initial stock of debt B−1 is given: B−1 =
∫ 1

0 bi,−1 di.

For a given sequence of the aggregate stocks of physical and human capital and prices {Kt, Ht,

rt, wt}∞t=0, a fiscal policy {r̃t, w̃t, Bt}∞t=0 is said to be feasible if the flow budget constraint (18) is

satisfied for every t = 0, 1, ..., and

lim
t→∞

 t∏
j=1

(1− δk + r̃j)
−1

Bt = 0. (19)

2.4 Competitive equilibrium

Given a sequence of government purchases, {Gt}∞t=0 and a fiscal policy {r̃t, w̃t, Bt}∞t=0, a competitive

equilibrium is defined by a price system {rt, wt}∞t=0 and a collection of stochastic processes {ci,t, xi,t,
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bi,t, ki,t, hi,t}∞t=0, i ∈ [0, 1], adapted to the filtration generated by the process of idiosyncratic shocks

{θi,t}∞t=0, such that: (a) for each i, {ci,t, xi,t,bi,t, ki,t, hi,t}∞t=0 solves the utility maximization problem

of agent i, subject to (5) and (6), given prices, the fiscal policy and the initial endowment bi,−1,

ki,−1, hi,−1; (b) firms maximize profits, that is, (17) holds for all t ≥ 0, with Kt−1 =
∫ 1

0 ki,t−1 di and

Ht−1 satisfying (4); (c) all markets clear:

Ct +Gt +Kt +Ht = (1− δk)Kt−1 + (1− δh)Ht−1 + F (Kt−1, Ht−1), (20)

where Bt =
∫ 1

0 bi,t di, Ct =
∫ 1

0 ci,t di; (d) the government policy is feasible, that is (18)-(19) hold.

Let Xt denote the average amount of wealth at the beginning of period t: Xt ≡
∫ 1

0 xi,t di.

Recalling that, as shown in Lemma 1, the consumers’ optimum is characterized by the sequence

{ηc,t, ηht}
∞
t=0 , independent of i, Xt evolves as

Xt+1 = Rx,t+1(1− ηc,t)Xt, t = 0, 1, 2, ... (21)

where Rx,t+1 is the equilibrium average rate of return of individual portfolios: for t = 0, 1, 2, ...

Rx,t+1 ≡ (1− δk + r̃t+1)(1− ηh,t) + (1− δh + w̃t+1)ηh,t. (22)

Given Xt, aggregate consumption, physical and human capital are given by

Ct = ηc,tXt, (23)

Kt = (1− ηc,t)(1− ηh,t)Xt −Bt, (24)

Ht = (1− ηc,t)ηh,tXt. (25)

Hence the aggregate dynamics of a competitive equilibrium is simply determined by the sequence

{ηc,t, ηht}
∞
t=0 and the path of average wealth Xt.

It is also useful to observe that the expected after-tax return on human capital must be greater

than that on physical capital for all t:

1− δk + r̃t+1 < 1− δh + w̃t+1.

This follows from the facts that the investment in human capital is risky and, as shown in Lemma

1, individual consumption ci,t varies positively with xi,t, and thus with the idiosyncratic shocks to

human capital. Hence the return on human capital is negatively correlated with an agent’s marginal

rate of substitution.

2.5 Benchmark equilibrium with no taxes

As a benchmark, let us consider the situation where the government does not purchase goods, and

does not issue debt nor impose any taxes:

Gt = Bt = 0, rt − r̃t = 0, wt − w̃t = 0 for all t ≥ 0, bi,−1 = 0, for all i ∈ [0, 1]. (26)

10



In this case, the competitive equilibrium has a very simple structure. The aggregate economy is

always on a balanced growth path, although each individual’s consumption fluctuates stochastically

over time.

To see this, notice that, using (26), (17) and the market clearing conditions for physical and

human capital, the first order conditions for the consumers’ optimal portfolio choice (15) reduce to

Φ [Fk(1− ηh,t, ηh,t), Fh(1− ηh,t, ηh,t), ηh,t] = 0, (27)

for every t = 0, 1, 2, .... It is then immediate to verify8 that there exists a unique η̂h ∈ (0, 1) satisfying

(27), which implies that ηh,t = η̂h must hold for every t.

Set F̂k = Fk(1− η̂h, η̂h), F̂h = Fh(1− η̂h, η̂h), and

ρ̂ = ρ
(
F̂k, F̂h, η̂h

)
. (28)

The argument above together with Lemma 1 yield the following characterization of the equilibria

in this benchmark case:9

Proposition 2. Suppose that Assumption 1 holds. If

βψρ̂ψ−1 < 1,

with no government intervention - i.e., under (26) - a unique competitive equilibrium exists, char-

acterized by η̂h and η̂c ≡ 1− βψρ̂ψ−1. Thus the aggregate variables Ct, Kt, Ht, and Xt all grow at

the same rate

ĝx = (1− η̂c)R̂x

where

R̂x = (1− δk + F̂k)(1− η̂h) + (1− δh + F̂h)η̂h,

and

v̂ ≡
[

(1− β)ψ

1− βψρ̂ψ−1

] 1
ψ−1

.

In what follows we refer to this equilibrium without government purchases or taxes as the

benchmark equilibrium, and use a hat (ˆ) to denote the value of a variable at this equilibrium.

8From (16) we have Fk(1, 0) = Fh(0, 1) = 0, Fk(0, 1) = Fh(1, 0) = +∞, and limηh→0 Fh(1 − ηh, ηh)ηh =

limηh→1 Fk(1 − ηh, ηh)(1 − ηh) = 0. Furthermore, from Assumption 1 and the concavity of ρ(.) with respect to

ηh it follows that d
dηh

Φ [Fk(1− ηh, ηh), Fh(1− ηh, ηh), ηh] < 0 whenever Φ = 0. The claim then follows.

9Krebs (2003) derived analogous properties in a similar environment.
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3 Optimal taxation and debt

In this section we study the dynamic Ramsey problem where the optimal tax and debt policy in

our environment are determined. As is well known from the work of Chamley (1986) and Judd

(1985) and the various other papers which followed, when markets are complete the optimal tax

rate on capital income is zero in the steady state. Furthermore, when there is also human capital

accumulation, Jones, Manuelli, and Rossi (1997) have shown that both labor and capital income tax

should be zero in the long run and hence, with positive government purchases, public debt should be

negative. Here we demonstrate that uninsurable risks in human capital accumulation significantly

change the nature of optimal taxes. The presence of such risks makes both labor and capital

income taxation beneficial, which, in turn, implies that the the optimal amount of government debt

is positive as long as government purchases are sufficiently small.

More precisely, the Ramsey problem consists in finding the fiscal policy {r̃t, w̃t, Bt}∞t=0, satisfying

(18) and (19), that maximizes consumers’ welfare at the associated competitive equilibrium, as

defined in Section 2.4, for a given policy determining the level of government purchases {Gt}∞t=0.

The resulting equilibrium is then denoted the Ramsey equilibrium. As is standard in the literature,

we assume that the tax rates, or equivalently the after tax prices, in the initial period are exogenously

fixed:

r̃0 = r̃0, and w̃0 = w̃0. (29)

We take as social welfare function a weighted average of the lifetime utility of individuals:∫ 1
0 λiui,0 di, with λi ∈ (0, 1) for each individual i ∈ [0, 1]. By Lemma 1, we have ui,0 = v0xi,0, and

therefore∫ 1

0
λiui,0 di = v0

∫ 1

0
λixi,0 di = v0

{
(1−δk+r̃0)

∫ 1

0
λi(ki,−1+bi,−1) di+(1−δh+w̃0)

∫ 1

0
λiθi,0hi,−1 di

}
.

Given the initial tax rates (29), the terms in the curly braces are determined independently of the

fiscal policy chosen by the government. Thus the government’s objective reduces to maximizing the

utility coefficient:

v0 = (1− β)
ψ
ψ−1

1 +

∞∑
t=0

t∏
j=0

(
βψρψ−1

1+j

)
1

ψ−1

(30)

Note that (30) implies that v0 is strictly increasing in ρt for all t, regardless of the value of ψ > 0.

We should stress that in the Ramsey problem as specified above we are looking for a sequence of

tax rates and debt levels which may vary over time and are such to maximize the lifetime utility of

agents, not just their steady state utility.
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Since the economy considered features accumulation of (physical and human) capital and growth,

it is convenient to normalize aggregate variables in terms of the total wealth Xt, for each t

kt ≡
Kt

Xt
, ht ≡

Ht

Xt
, bt ≡

Bt
Xt
, gt ≡

Gt
Xt−1

.

With regard to the public expenditure policy, in what follows we shall assume that it is specified in

terms of an exogenous sequence of expenditure levels per unit of total wealth {gt}∞t=0. Given our

interest in the optimal taxes and debt in the long run, this specification ensures that the ratio of

public expenditure Gt to output Yt remains the same over time. Since the growth rate of output

is endogenously determined, such a property would not be ensured if we adopted a more standard

specification where instead {Gt}∞t=0 is exogenously given. But we want to emphasize that our main

finding on the long run tax rate on capital income does not depend on our assumption that gt

instead of Gt is exogenous. First, it holds without government purchases. Second, as shown in the

Appendix, we do obtain a similar result for the case where {Gt}∞t=0 is exogenously given.

Once restated in terms of the normalized variables {kt, ht, bt, r̃t+1, w̃t+1, ρt+1, ηh,t, ηc,t,

Rx,t+1}∞t=0, the Ramsey problem can then be formulated as a two-step maximization problem.

In the first step, we take as arbitrarily given a sequence {ηc,t, bt}∞t=0, and consider the optimal

choice of the remaining variables {r̃t+1, w̃t+1, ρt+1, ηh,t, Rx,t+1, kt, ht}∞t=0. Substituting (24) and

(25) into (18), dividing both sides by Xt and using (21), the government budget constraint becomes

gt+1 + (1− δk + r̃t+1)bt (31)

= (1− ηc,t)Rx,t+1bt+1 + F [(1− ηc,t)(1− ηh,t)− bt, (1− ηc,t)ηh,t]

− r̃t+1 [(1− ηc,t)(1− ηh,t)− bt]− w̃t+1(1− ηc,t)ηh,t

Conditions (9), (10), (22), and (31) imply that, for each t, the choice of (r̃t+1, w̃t+1, ηh,t, Rx,t+1)

only affects ρt+1, and not ρs for any s 6= t + 1. Therefore, in the first-step problem, v0 can be

maximized by maximizing ρt+1 separately for each t. Note also that among the given sequence

{ηc,t, bt}∞t=0, ρt+1 is only affected by bt, bt+1, and ηc,t. Hence the first-step problem reduces to the

following static maximization problem:

ρR(bt, bt+1, ηc,t; gt+1) ≡ max
{r̃t+1,w̃t+1,ηh,t,Rx,t+1}

ρ(r̃t+1, w̃t+1, ηh,t) (32)

subject to (10), (22) and (31).

The second-step problem consists then in the choice of the sequence {ηc,t, bt}∞t=0 which maximizes

v0. This problem can be written recursively as:

max
{vt+1,bt+1,ηc,t+1}∞t=0

v0, (33)
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subject to (12), (14), and ρt+1 = ρR(bt, bt+1, ηc,t; gt+1).

To derive some insights on the properties of the solution of the dynamic Ramsey problem and

hence of the optimal taxes and debt, it is useful to consider first the case where only a subset of

policy instruments at a time is available.

3.1 The case of balanced budget: tax labor and subsidize capital

We study first the welfare effects of taxing capital or labor, by examining the case where there are

no government purchases nor public debt, thus the budget is balanced at all times:

gt = bt = 0, for all t, (34)

with bi,−1 = 0 for all i. Under (34), the Ramsey problem reduces to:

max
{r̃,w̃,ηh}

ρ(r̃, w̃, ηh) (35)

subject to (10) and

F (1− ηh, ηh)− r̃(1− ηh)− w̃ηh = 0. (36)

The solution is time invariant and the economy is always on a balanced growth path, as in the

benchmark equilibrium of subsection 2.5. Let us denote the variables at the solution with the

superscript o, i.e., vo, ρo, Rox, ηoc , etc.

The balanced budget requirement implies that the tax revenue on one factor equals the subsidy

on the other factor. In such a case, taxing labor and subsidizing (physical) capital is welfare

improving.

Proposition 3. Under Assumption 1, at the benchmark equilibrium, social welfare increases if a

marginal subsidy on capital (and a corresponding tax on labor) is introduced for all t.

More specifically, we show in the proof of the proposition that
(
∂ρ
∂r̃ −

∂ρ
∂w̃

1−η̂h
η̂h

) ∣∣∣
r̃=F̂k,w̃=F̂h,ηh=η̂h

>

0 and, furthermore, that an increase in r̃ is equivalent to a decrease in τk.
10 As we see from (30),

social welfare increases when ρ rises.

Hence, even though taxes are distortionary and there is no need for the government to raise tax

revenue, in the incomplete markets environment considered, it is beneficial, for agents’ welfare, to

tax labor and subsidize physical capital. The intuition for this result is simple. In the benchmark

10As shown in the proof of the proposition in the Appendix, the term (1 − η̂h)/η̂h equals −dw̃/dr̃, with the

relationship between w̃ and r̃ implicitly defined by equation (36), evaluated at the benchmark equilibrium with no

taxes.
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equilibrium (with no taxes) individuals are exposed to the risk in their labor income which they are

unable to insure. By taxing risky labor income and using the total revenue of this tax to subsidize

the riskless return on capital, that is by setting r̃ > F̂k and w̃ < F̂h, the government can reduce the

individual exposure to idiosyncratic risk. Thus, a welfare improvement can be attained by reducing

the return of the risky factor and increasing that of the riskless one.11

Note that Proposition 3 only characterizes the properties of optimal taxes in a neighborhood of

zero. If, in addition, the function ρ(r̃, w̃, ηh) is such that problem (35) has a unique local maximum

(that is, the first order approach holds),12 we can also say that the globally optimal tax rate on

physical capital is indeed negative in the environment considered, when government consumption

and debt are zero.

The above result tells us that market incompleteness alone does not justify taxing capital income.

However, in what follows we show that, once the government is allowed to issue debt, it becomes

beneficial to tax capital income (in the long run).

3.2 Desirability of government debt

Next, we turn our attention to the welfare effects of issuing government debt, when markets are

incomplete. We show that, starting from a zero level of government debt, increasing the amount of

government debt is welfare improving as long as government purchases are small enough.

Consider the allocation obtained as the solution to the Ramsey problem under (34), that is,

with no government debt nor expenditure, studied in the previous subsection. We will investigate

whether allowing for an arbitrarily small (positive or negative) level of debt at only one date yields

a welfare improvement. This amounts to studying the solutions of the Ramsey problem under the

following alternative restriction to (34):

bT+1 = bT+1, bt = 0, for all t 6= T + 1, gt = 0, for all t, (37)

for some given bT+1, with bi,−1 = 0 for all i. The next proposition establishes a necessary and

sufficient condition under which a positive amount of debt, bT+1 > 0, is welfare improving.

Proposition 4. Suppose that Assumption 1 hold and consider the Ramsey equilibrium with no

public debt nor expenditure, that is, under (34). Then increasing bT+1 above zero13 for a given

11A related result has been obtained by Eaton and Rosen (1980) and Barsky, Mankiw and Zeldes (1986). Using a

two-period model where the second period labor income is subject to idiosyncratic risk, they consider the effect of a

combination of a proportional labor income tax and lump-sum transfers. Such a policy has an insurance effect similar

to the one discussed here.

12This property is satisfied in all the numerical examples considered in the rest of the paper.

13Analogously to the previous Proposition 3, this result characterizes optimal debt in a neighborhood of zero.
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period T + 1 improves the lifetime utility of all individuals if and only if

Rox > 1− δk + F ok . (38)

As argued in Subsection 2.4, since human capital is risky but physical capital is not, by the risk

aversion of consumers we have Rox > 1− δk + r̃o. Moreover, in Subsection 3.1 we have shown that

when bt = gt = 0 for all t the (locally) optimal tax is negative on capital and positive on labor;

if the globally optimal tax on capital have the same - negative - sign, we have r̃o > F ok . These

two properties imply that (38) holds, and so that increasing the amount of government debt in one

period is welfare improving.

To gain some intuition for the result in Proposition 4 note that, in the light of (30), whether

or not increasing bT+1 above zero is welfare improving depends on how this change affects the

equilibrium values of {ρt+1}∞t=0. As discussed when deriving (32), only ρT+1 and ρT+2 are affected

by the change in bT+1. First note that increasing bT+1 above zero reduces taxes in period T +1 and

this increases ρT+1. The benefit is proportional to the after-tax average rate of return of individual

portfolios, Rox, at the Ramsey equilibrium with bt = gt = 0 for all t. This is natural because Rox is

the average rate that individuals earn using the proceeds from the tax cut in T + 1. In contrast,

the increase in bT+1 has to be offset by a tax increase in period T + 2 to redeem the debt. As a

result, ρT+2 decreases. The cost is proportional to the (before-tax) rate of return on government

debt, 1− δk +F ok . Whether or not increasing bT+1 is beneficial depends on the comparison between

these two terms and we show in the proof that the benefit of increasing bT+1 dominates its cost if

and only if (38) holds.

We should also point out that the argument of the proof does not use the fact that gt = 0, hence

the claim in the proposition extends to the case where gt = g > 0, with the variables Rox, F
o
k replaced

by the corresponding terms evaluated at the Ramsey equilibrium when bt = 0 and gt = g for all t

(analogously denoted with a superscript g). Naturally, taxes must be appropriately increased so as

to satisfy the government budget constraint when g > 0 and bt = 0. If the optimal tax on capital

becomes positive (F gk > r̃g), the inequality corresponding to (38) when g > 0 holds only if the tax

on capital is small relatively to the risk premium earned after-tax by human capital over physical

capital.14

3.3 Ramsey steady state

Finally, we consider the case where the government can freely choose a fiscal policy {r̃t+1, w̃t+1,

Bt}∞t=0 satisfying (18) and (19). We focus in particular on the properties of the Ramsey equilibrium

14Note that the expression corresponding to (38) can be rewritten as F gk − r̃
g < (w̃g − δh − r̃g + δk)ηgh.
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at a steady state (balanced growth path),15 and assume so that gt = g ≥ 0 for all t.

Proposition 5. In the steady state of the Ramsey equilibrium the following condition holds:

Rx = (1− δk + Fk)
[
1− (1− ψ)βψρψ−2ρηcηc

]−1
(39)

with ρRzηc ≡
∂ρR

∂ηc
.

In the proof we show, by an analogous argument to the one in the previous subsection, that

the beneficial effect on ρt and hence also on vt of an increase in bt is proportional to Rx, while

its cost, due to a reduction of ρt+1, is proportional to (1 − δk + Fk). There is now an extra term,

(1 − βψρ̃ψ−2 (1− ψ) ρηcηc)
−1, multiplying the latter, which captures the effect on ρ of the change

in the saving rate, 1− ηc. This term arises when b takes a nonzero value.

Condition (39) says that, at a steady state, the (before tax) return on government debt and

physical capital, 1− δk +Fk, must equal the average rate of return of private consumers’ portfolios,

Rx, after adjusting for the effect of public debt on the consumers’ saving rate. It implies that the

steady state tax rate on capital income is strictly positive as long as the effect on the saving rate is

not too large.16

To see this, consider the case where the elasticity of intertemporal substitution ψ = 1, in which

case ηc,t is a constant, equal to 1 − β, so that the effect on the saving rate is zero. Therefore (39)

reduces to Rx = 1− δk +Fk. Recalling again the property Rx > 1− δk + r̃, due to the risky nature

of labor income, established in Subsection 2.4, we obtain so r̃ < Fk, that is τk > 0. By continuity,

the same property holds for ψ sufficiently close to unity. These findings are summarized in the

following result.

Corollary 6. When ψ = 1, in the steady state of the Ramsey equilibrium we have:

Rx = 1− δk + Fk (40)

and the optimal tax rate on physical capital is positive:

r̃ < Fk

15Along a balanced growth path, prices and normalized variables {r̃t, w̃t, bt, ρt+1, ηh,t, ηc,t, Rx,t+1, kt, ht} are all

constant. Note also that we use the terms “steady state” and “balanced growth path” interchangeably given the fact

that a steady state for the normalized variables corresponds to a balanced growth path of the economy. In all the

numerical results reported in the next section the solution to the Ramsey problem converges to a steady state.

16The steady-state optimal tax rate on capital is indeed strictly positive in all the numerical examples considered

in the paper.
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3.4 Discussion

The analysis in this section has identified two roles that taxes and government debt can serve

in an economy with incomplete markets. The first one is the provision of insurance, that is, it

is beneficial to tax a factor that is subject to uninsurable idiosyncratic risks. In our model, labor

income is exposed to such risks, which justifies labor income taxes as demonstrated in Proposition 3.

This type of benefits exists regardless of whether individual labor productivity is given exogenously

or determined endogenously through human capital accumulation.17

The second role is the intertemporal allocation of taxes. This corresponds to the benefits of

government debt and capital income taxes described in Propositions 4, 5 and Corollary 6. In the

presence of uninsurable risks to human capital accumulation, in equilibrium human capital yields

a higher expected rate of return than physical capital. Hence without taxes on capital income the

rate of return faced by the private sector (Rx) is necessarily greater than the rate of return faced by

the government (1− δk +Fk). As long as this is the case, it is cheaper to borrow for the government

than for the consumers and increasing government debt is beneficial. The increase in debt requires

in turn to increase taxes to pay for servicing the debt. Our findings show that when public debt

is at the optimal level the tax rate on capital should be increased until the after tax return on

consumers’ savings equals the before tax return on public debt (possibly with a correction to take

into account the effect of debt on the saving rate). This condition can be interpreted as a kind of

“no arbitrage condition” between the government and the private sector.

How robust are this type of benefits? Since the benefits of government debt and capital income

taxes we have found arise from the rate of return differential between human and physical capital,

they would survive in more general models as long as human capital accumulation is riskier than

physical capital. And empirical evidence suggests that human capital does have a higher average

rate of return than physical capital (e.g., Card (2001), and Palacios-Huerta, (2003)).

The presence of uninsurable risk clearly plays a key role for these results. If agents were able

to trade in complete markets so as to fully hedge all risk, so that human capital would also be,

effectively, a safe asset, then we would have Rk = Rh = Rx, in which case the condition Rx = 1−δk+

Fk implies that τk = 0. We should point out however that in our environment market incompleteness

alone does not justify capital income taxation, this only happens when the government is allowed to

issue debt. As discussed in the Introduction, the reasons for this result are quite different from those

of the finding of Aiyagari (1995), since the optimality of capital taxation arises from the comparison

of costs and benefits of taxes and debt, rather than from the conditions needed for a steady state

to exist. Public debt also plays no role in relaxing the agents’ borrowing constraints, since they are

17See Gottardi, Kajii, and Nakajima (2014) for the case where individual labor productivity is given exogenously.
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never binding in our set-up, hence its optimality does not depend on such role, unlike in Aiyagari

and McGrattan (1998).

4 Quantitative analysis

In this section we calibrate our model based on some empirical evidence on the U.S. economy, and

examine how market incompleteness affects the structure of optimal taxes and debt.

4.1 Baseline calibration

Suppose that θi,t ∈ {1+θ, 1−θ}, each occurring with equal probability. The values for the parameters

of our model economy, {β, ψ, γ, A, α, δk, δh, g, τk, τh, θ}, are set as follows. First, the intertemporal

elasticity of substitution ψ is set equal to one and the coefficient of relative risk aversion γ equal

to three. Second, the capital share of income α is set to 0.36, and both the depreciation rates of

physical and human capital are δk = δh = 0.06. Third, the tax rates on capital and labor income are

identical, τk = τh = τ . Then the value of the remaining parameters, {β, A, g, τ , θ}, are determined

so that the following features of the U.S. economy are replicated: (i) government purchases are 18

percent of GDP; (ii) government debt is 51 percent of GDP; (iii) the capital-output ratio is 2.7;

(iv) the growth rate of GDP is 1.6 percent; (v) the variance of the permanent shock to individual

labor earnings is 0.0313. The first four facts are based on Chari, Christiano and Kehoe (1994), and

the last one on Meghir and Pistaferri (2004).18 Here we follow Krebs (2003) in using estimates of

permanent shocks to individual labor income to calibrate the variance of the human capital shock,

θ. This is based on the fact that i.i.d. human capital shocks imply that labor income follow a

logarithmic random walk. The baseline parameter values are summarized in Table 1.

Column (1) of Table 2 reports the fiscal policy and other variables in the balanced-growth

equilibrium associated with the baseline parameter values in Table 1. The ratio of government debt

to output, the share of government purchases and the growth rate of the economy are pinned down

by our calibration assumptions. The capital and labor tax rates are identical by construction and

equal to 19.95 percent.19 We also present the primary surplus of the government and the ‘effective’

18It is also consistent with the evidence reported by Storesletten, Telmer and Yaron (2004).

19Our baseline tax rates (19.95 percent) may be smaller than the values typically used in the literature. For instance,

Trostel (1993) uses 40 percent as the benchmark tax rate. The reason for this difference lies in the fact that our model

abstracts from transfer payments of the government. As far as the nature of the Ramsey steady state is concerned, this

difference is not important, because the Ramsey steady state would not be affected by changing the baseline tax rates,

and also because, as discussed in Section 4.4.1, this steady remains unchanged if lump sum transfers independent of

the idiosyncratic risks are introduced.
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interest rate, defined as the difference between the after-tax interest on government bonds and the

growth rate of aggregate output.20 Finally, we report the human capital premium, defined as the

(before-tax) premium in the return on human capital. This variable plays an important role in

our set-up to assess the benefits of government debt and capital income taxes and to evaluate the

empirical relevance of our model. As reported in the table, this premium in the baseline calibration

is 5.28 percent. This is indeed consistent with the evidence given, for instance, by Card (2001) and

Palacios-Huerta (2003).

4.2 Results

For the economy described in Table 1 we derive the optimal tax and debt policy, obtained as the

solution of the Ramsey problem of maximizing consumers’ intertemporal welfare. The tractable

nature of the model considered allows us to study also the transitional dynamics of the Ramsey

equilibrium, with tax rates which may vary over time. The levels of the fiscal policy and other

equilibrium variables at the Ramsey steady state of the economy are reported in the second column

of Table 2. In addition, the third and fourth columns report the corresponding values at the Ramsey

steady state with no government purchases (that is, when g = 0), respectively, when the level of

public debt is optimally chosen and when it is constrained to be zero.

Comparing columns (1) and (2), we see that when taxes and public debt are optimally set to

maximize consumers’ welfare, both the tax rate on labor income and the debt-output ratio are lower

than in the baseline policy calibrated on the U.S. economy, while the tax rate on capital income is

essentially the same. The data in the last two columns allow then to gain some understanding on

the properties of optimal taxes and debt, in light of the results of the previous section.

The case where government purchases are zero is a useful benchmark because, if asset markets

were complete, in such case the optimal tax rates (and public debt) would all be zero. Therefore,

if we find that non-zero tax rates and debt levels are desirable when g = 0, this is entirely due to

the distortions caused by market incompleteness. In Proposition 3 we have seen that taxing labor

income and subsidizing capital income is beneficial because it reduces the risk faced by individuals.

Column (4) in Table 2 illustrates the quantitative significance of this finding: when the government

is not allowed to borrow or lend (b = 0), the optimal tax rate on labor income is 0.19 percent, and

the one on capital income is -0.34 percent. The signs are consistent with the proposition recalled

above, but the levels are negligible. On the other hand, column (3) shows that if the government

can issue debt the steady-state debt-output ratio is positive, in accord with Proposition 4, and

20The government budget constraint (31) implies that, on a balanced growth path, the debt-output ratio is equal

to the rate of primary surplus divided by the effective interest rate.
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quite large (202.6 percent). In this case the optimal tax rates on labor income and capital income

at the steady state are both positive, 4.99 percent and 11.56 percent, respectively, to pay the debt

service. Comparing columns (3) and (4), we see that the ability of the government to borrow and

lend can significantly affect the structure of optimal taxes. Hence assuming an exogenous amount of

government debt, which is often done in the existing literature on optimal taxation with incomplete

markets, may provide misleading results.

Finally, comparing columns (2) and (3) in Table 2 we see that the introduction of government

purchases and hence the need to pay for them increase the optimal level of both tax rates, to

τk = 19.64 percent and τh = 14.88 percent, and reduce the debt-output ratio to 0.19 percent. Note

that, when the level of public debt is optimally chosen, both in columns (2) and (3) the tax rate on

capital is positive, as predicted by Corollary 6. To understand the different optimal levels of debt

obtained in Columns (2) and (3), we report in Table 3 the value of the variable ‘benefits of debt’,

defined by Rgx − (1 − δk + F gk ), evaluated both when g = 0 and when g is positive at its baseline

level. Proposition 4 and the following discussion show that this variable captures the benefits of

issuing debt, and we see that indeed this term is positive when g = 0 while it is close to 0 when g

equals its baseline value. Furthermore, the significantly lower value of this variable in the second

case is primarily explained by the higher level of taxes (in particular on capital) needed to pay for

public expenditure: the human capital premium has in fact a similar value in these two cases, as

we see in the last row of columns (2) and (4) in Table 2.

How sizable are the benefits associated with the move from the baseline fiscal policy to the

Ramsey policy? These benefits can be measured by the rate of permanent increase in consumption

of each individual that makes him/her indifferent between the two policies. As can be seen from

Lemma 1, this rate is the same for all consumers and is given by the ratio of the values of v0 under

the two policies. Table 4 shows the result. When we only compare the steady states associated

with the baseline policy and the Ramsey policy, the welfare gain of adopting the Ramsey policy

amounts to an increase of about 8.7 percent in each individual’s consumption (in accord with the

increase in the growth rate of income reported in Table 2). But this number ignores the cost of

transition, where a significant increase in taxes takes place to reduce the debt level. When the

transition is taken into account, the gain becomes substantially smaller, 0.85 percent, nevertheless

a significant amount.21 Note that the welfare gains for adopting the Ramsey policy in our model

are much smaller than those obtained in a deterministic environment by Jones, Manuelli, and Rossi

(1993). This is because, with uninsurable risks to human capital accumulation, the Ramsey steady

state is much closer to the baseline U.S. economy.

21See the Appendix for a description of the transitional dynamics in the Ramsey equilibrium.
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4.3 Sensitivity analysis

In this subsection we examine how the debt-output ratio and the tax rates at the Ramsey steady

state vary for different values of the risk aversion coefficient γ, of θ̄, capturing the variance of

the idiosyncratic risk, and of the intertemporal elasticity of substitution ψ. For the purpose of

normalization, when the values of these parameters are changed we adjust the value of the discount

factor β so that the steady-state growth rate under the baseline policy remains equal to 1.6 percent.

Figure 1 plots the results for the changes in risk aversion. We see that the optimal debt-output

ratio is very sensitive to the choice of the degree of risk aversion. It is about −100 percent when

γ = 1, and about 70 percent when γ = 5. Correspondingly the tax rates also vary with risk aversion,

the one on capital τk much more than that on labor τh. To better understand this high sensitivity

of the optimal debt level to risk aversion, in Figure 1 we also plotted the primary surplus and the

effective interest rate: the decreasing pattern of the latter clearly contributes to amplify the effect

on the debt level of the increase in the primary surplus (starting at −4 and going up to 1 percent).

More importantly, in Figure 3(a) we plot the values of Rgx − (1− δk + F gk ), the variable benefits of

debt, evaluated at the solution of the Ramsey problem subject to the constraint b = 0. The pattern

of this variable mirrors quite closely that of the optimal level of debt: it varies significantly with γ,

increasing when γ rises, and is positive whenever debt is positive. As discussed in Subsection 3.2,

the value of this variable is primarily determined by the level of the human capital premium at b = 0,

(F gh−δh)−(F gk −δk), together with the optimal level of the tax on capital. For completeness we plot

the values of the human capital premium in Figure 3(b), showing that this variable is also increasing

in γ and is quite sensitive to the degree of risk aversion. These findings show the importance of

the size of the rate of return differential between human and physical capital in determining the

desirability of public debt when public expenditure is positive.

Figure 2 then shows that the debt-output ratio varies significantly also with the magnitude of

the variance of the idiosyncratic risk. It is negative and large (−200 percent) when there is no

idiosyncratic risk (std(θ) = 0), in accord with the findings mentioned above of the literature on

the complete market case. The debt-output ratio gets larger when risk increases, reaching a zero

level when std(θ) is near its baseline level, 0.1585, and a positive level of about 60 percent when

std(θ) = 0.2. The two tax rates are very close to each other when the idiosyncratic risk is moderate

(std(θ) < 0.1), but when std(θ) > 0.1 the labor tax rate τh proves much less sensitive to changes

in the variance of idiosyncratic risk. Most of the increase in the steady state level of debt is then

financed with an increase in τk. As shown in Figure 3(c) similar properties to the ones found for

changes in risk aversion again holds for the pattern of the variable benefits of debt, contributing to

explain the high sensitivity of the debt level also in this case.
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In contrast, we see in Figure 4 that the value of the intertemporal elasticity of substitution does

not affect much the optimal debt-ratio and tax levels. This suggests that the effect of the change

in the saving rate, captured by the extra term appearing in (39), is quantitatively small.

4.4 Non Linear tax policies

So far we have restricted our attention to tax policies consisting in proportional taxes on labor and

capital income. In this subsection we extend the analysis to allow for other forms of taxation.

4.4.1 Lump sum taxes

We examine first the case where the government can also impose lump sum taxes {Ti,t : i ∈ [0, 1]}∞t=0,

which may depend on the time period t and the identity i of an individual, but not on the realization

of idiosyncratic shocks {θi,s}ts=0. A fiscal policy is then given now by {r̃t, w̃t, {Ti,t : i ∈ [0, 1]}, Bt}∞t=0.

Let TPi,t denote the present-discounted value of the lump sum taxes that individual i has to

pay after period t:

TPi,t ≡
∞∑
j=0

j∏
s=0

(1− δk + r̃t+1+s)
−1Ti,t+1+j ,

Notice that for this policy to be feasible, it must be

Rk,0(ki,−1 + bi,−1 − TPi,−1) +Rh,0θi,0hi,−1 > 0, for all i ∈ [0, 1], (41)

to ensure the non negativity of the value of the initial endowment (and hence that the natural debt

limit is satisfied).

It is immediate to verify that a competitive equilibrium associated with such policy is also an

equilibrium without lump sum taxes where (i) the fiscal policy is given by {r̃t,w̃t, B̂t}∞t=0, with

B̂t = Bt −
∫ 1

0 TPi,t di; and (ii) the consumers’ initial endowment of bonds is:

b̂i,−1 = bi,−1 − TPi,−1.

Thus the only effect of lump sum taxes is to change the initial distribution of income among

consumers. Since the Ramsey steady state does not depend on the initial distribution of income

among consumers, the long-run equilibrium is identical with and without lump sum taxes. The

only difference is therefore the debt-output ratio, and our previous results on the tax rates at the

Ramsey steady state remain valid.
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4.4.2 Nonlinear taxes

Next we investigate the effects of allowing for nonlinear taxes on labor income so that, for instance,

we may have progressive income taxation.22 Although a complete analysis of the optimal fiscal

policy in this case is beyond the scope of this paper, we can learn something about these effects by

considering the simpler case where nonlinear taxes are only allowed in a single period, say t = 1.

For all the other periods, taxes are restricted to be linear and described as before by (r̃t, w̃t), t 6= 1.

Regarding the possible forms of these taxes, we follow Conesa, Kitao and Krueger (2009) in

assuming that labor income is taxed according to the following formula:

T (ωi,1) = τha
[
ωi,1 − (ω−τhbi,1 + τhc)

− 1
τhb

]
, (42)

where ωi,1 = w1θi,1hi,0 is the before-tax labor income of individual i in period 1, T (ωi,1) is the labor

income tax that he/she must pay, and (τha, τhb, τhc) are the parameters describing the tax schedule.

Thus a fiscal policy is now described by
{

(τha, τhb, τhc), r̃1, B1, {r̃t, w̃t, Bt}∞t=2

}
.

Suppose the economy is at the Ramsey steady state with linear taxes at the beginning of period 0.

The optimal23 policy for period 1, {τha, τhb, τhc, r̃1, B1}, is computed using a grid search algorithm,

while the optimal tax rates after period 2, {r̃t, w̃t, Bt}∞t=2, are derived just as before. Let a bar (̄ )

over a variable indicate then the value in the Ramsey steady state with linear taxes, and a variable

with an asterisk (∗) denote its value in the equilibrium where optimal nonlinear labor income taxes

are introduced in period t = 1.

Consider the case where g = 0, the initial wealth x0,i is 1.5 for i > 0.5 and 0.5 for i ≤ 0.5,

and the rest of the parameter values are as in Table 1. As shown in column (3) in Table 2, the

Ramsey steady state with linear taxes has τk = 0.1156, τh = 0.0499, and b = 0.2364.24 With

nonlinear taxes in period 1, the optimal tax policy at t = 1 is instead given by (τ∗k,1, τ∗ha, τ
∗
hb,

τ∗hc) = (0.1256, 0.0599, 0.15, 0.7659), and b∗1 = 0.2355. With the nonlinear function T (ω), both the

marginal and the average labor income tax rates can vary across individuals, which may enhance

risk sharing among them. It turns out, however, that the optimal variation of the marginal and

average tax rates across individuals is very small. The lowest and highest values of the marginal

tax rate on labor income in period 1, T ′(w1θi,1hi,0), are 5.65 percent and 5.79 percent, respectively.

22Since workers in our set-up are homogenous in terms of the productivity of their investment in human capital,

there is no reason to allow for subsidies to human capital accumulation, in addition to taxes on labor income, as in

Krueger and Ludwig (2003).

23Since non linear taxes may affect the distribution of income among consumers, the specification of the Pareto

weights may now matter. In what follows we restrict attention to the case where these weights are identical across

individuals: λi = 1 for all i.

24Note that b is the steady-state value of bt = Bt/Xt (Table 2 reports the steady-state value of Bt−1/Yt instead).
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The average value of the marginal tax rate is about 5.7 percent, that is greater than τh. Similarly,

the lowest and highest value of the average labor income tax rate, T (w1θi,1hi,0)/(w1θi,1hi,0), are 5.5

percent and 5.68 percent, respectively. Its average across individuals is 5.6 percent. The capital

income tax rate, τ∗k,1, is also greater than τk. The normalized level of debt issued in period 1, b∗1,

is lower than b, implying that the amount of taxes collected is larger when non-linear taxes are

available. We also evaluate the welfare gain of using nonlinear taxes in period 1, measured in date 0

consumption equivalent:25 the welfare gain is tiny, less than 0.0002 percent of date-0 consumption.

To assess the robustness of the previous finding, we consider various other specifications of the

initial wealth distribution x0,i, i ∈ [0, 1]. But the basic feature remains identical: introducing non-

linear taxes results in (i) small variation in both the marginal and average labor income tax rates

across individuals; (ii) higher average marginal tax rate on labor income; (iii) higher level of the

optimal capital income tax rate in period 1; (iv) small welfare gains. Hence introducing nonlinear

taxes does not modify the main qualitative findings of the previous sections, and in particular may

even strengthen the benefit of capital income taxation with uninsurable shocks to human capital

accumulation.

Our result that allowing for nonlinear labor income taxes increases the optimal capital income

tax rate in period 1, τ∗k,1 > τk, may appear surprising. To understand this, recall that, as reported

above, the optimal (average and marginal) tax on labor is higher. The fact that capital income

should be taxed more can then be viewed as a way to ensure that the desired ratio between physical

and human capital is attained26, as well as the optimal intertemporal allocation of taxes and hence

the optimal debt level.

5 Conclusion

We have studied the Ramsey taxation problem in an incomplete market model with risky human

capital accumulation. We have analytically demonstrated the benefits of labor and capital income

taxation and of government debt in such an environment. The benefit of labor income taxes emerges

for the standard reason: since labor income is subject to uninsurable idiosyncratic risks, taxing it

reduces the risks that workers are exposed to. The main contribution of this paper is the finding

25It is conventional to measure a gain/loss of a policy reform by a proportional increase/decrease of consumption for

all periods. But here, since non-linear taxes are introduced only in one period, we measure its gain by a proportional

increase in just one period (period 0).

26Note that allowing the government to have more policy instruments does not necessarily make all equilibrium

variables closer to the first-best values. In a related context, this point is emphasized in Dávila, Hong, Krusell, and

Rios-Rull (2012).
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of the benefits of government debt and capital income taxation. They arise because of the rate of

return differential between human and physical capital which is, in turn, generated by the difference

in risk between them, and implies that it is cheaper to borrow for the government than consumers.

Our quantitative results illustrate that the optimal capital-income tax rate in the long run is sizable,

while the optimal level of debt is more sensititve to the level of government expenditure and of the

risk premium.

In order to keep the model as transparent and tractable as possible, we have made a number of

simplifying assumptions. In the environment considered, even though individuals are heterogeneous,

they unanimously agree on the fiscal policy that should be implemented. As a result, the optimal

policy is determined independently of the wealth distribution and equilibrium aggregate variables

are also independent of the distribution. Furthermore, we have considered nonlinear taxes, but

only in a limited way, and we have not considered aggregate shocks. Extending the model in these

directions is left for our future research.
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Table 1: Baseline parameter values

parameter value description

ψ 1 intertemporal elasticity of substitution

γ 3 risk aversion coefficient

A 0.315 coefficient in the production function

α 0.36 share of capital

δk 0.06 depreciation rate of physical capital

δh 0.06 depreciation rate of human capital

β 0.9511 discount factor

g 0.0256 government purchases as a fraction of total wealth

τ 0.1955 tax rate in the baseline policy (τk,t = τh,t = τ)

θ 0.1585 idiosyncratic shock

Table 2: Steady states

variables (1) baseline (2) Ramsey (3) g = 0 (4) b = g = 0

capital tax rate (%) τk 19.95 19.64 11.56 -0.34

labor tax rate (%) τh 19.95 14.88 4.99 0.19

debt-output ratio (%) Bt−1

Yt
51 0.19 202.6 0

primary surplus (%) τkrtKt−1+τhwtHt−1−Gt
Yt

1.55 0.005 7.35 0

effective interest rate (%) 1− δk + (1− τk)Fk − Yt+1

Yt
3.03 2.61 3.63 2.69

share of govt purchases (%) Gt
Yt

18 16.6 0 0

growth rate (%) Yt+1

Yt
− 1 1.6 2.26 3.25 4.81

human capital premium (%) (Fh − δh)− (Fk − δk) 5.28 4.74 2.95 4.86

Table 3: Benefit of government debt (evaluated at b = 0)

notation baseline value of g g = 0

benefit of debt (%) Rgx − (1− δk + F gk ) 0.004 2.75

Table 4: Welfare gain of adopting the Ramsey policy

ignoring transition considering transition

8.7320 0.8494
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Figure 1: Different values of risk aversion.
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Figure 2: Different values of the idiosyncratic risk.
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Online Appendix

1 Proofs

1.1 Proof of Lemma 1

The proof of this lemma uses an argument similar to Epstein and Zin (1991) and Angeletos (2007).

Since the idiosyncratic shocks, θi,t, are i.i.d. across individuals and across periods, the utility

maximization problem of each individual can be expressed as:

Vt(x) = max
c,ηh

{
(1− β)c

1− 1
ψ + β

(
Et[Vt+1(x′)1−γ ]

) 1− 1
ψ

1−γ

} 1

1− 1
ψ

s.t. x′ = (x− c)
[
Rk,t+1(1− ηh) +Rh,t+1θ

′ηh
]
≥ 0,

c ∈ [0, x], ηh ∈ [0, 1].

Here, Vt(x) is the value function for the utility maximization problem of an individual whose total

wealth is x at the beginning of period t. We conjecture that there exists a (deterministic) sequence

{vt}∞t=0, with vt ∈ R+ for all t, such that

Vt(x) = vtx

Using this conjecture and the budget constraint, we obtain

(
Et[Vt+1(x′)1−γ ]

) 1
1−γ = vt+1(x− c)

{
Et

[(
Rk,t+1(1− ηh) +Rh,t+1θ

′ηh
)1−γ]} 1

1−γ

It follows that in the above maximization problem the individual chooses the portfolio ηh so as to

solve the following maximization problem:

ηh = arg max
η′h∈[0,1]

{
Et

[(
Rk,t+1(1− η′h) +Rh,t+1θ

′η′h
)1−γ]} 1

1−γ

Let ρt+1 denote the maximized value in this problem. Note that neither ηh nor ρt+1 depends on

the initial state x. That is, under the conjectured value function, all individuals would choose the

same portfolio and the same certainty-equivalent rate of return.

Given the certainty-equivalent rate of return, ρt+1, the level of consumption is chosen so as to

solve

max
c∈[0,x]

{
(1− β)c

1− 1
ψ + β [vt+1ρt+1(x− c)]1−

1
ψ

} 1

1− 1
ψ

1



The first-order condition for this problem is

(1− β)c
− 1
ψ = βv

1− 1
ψ

t+1 ρ
1− 1

ψ

t+1 (x− c)−
1
ψ

which leads to

ηc =

{
1 +

(
β

1− β

)ψ
(vt+1ρt+1)ψ−1

}−1

where ηc = c
x .

On the other hand, the Bellman equation implies

v
1− 1

ψ

t = (1− β)η
1− 1

ψ
c + β (vt+1ρt+1)

1− 1
ψ (1− ηc)1− 1

ψ

This equation and the above first-order condition for c imply that

vψ−1
t = (1− β)ψ + βψvψ−1

t+1 ρ
ψ−1
t+1

The bounded solution to this difference equation is

vt = (1− β)
ψ
ψ−1

1 +
∞∑
s=0

s∏
j=0

(
βψρψ−1

t+1+j

)
1

ψ−1

Also, the consumption rate ηc is

ηc,t = (1− β)ψv1−ψ
t

It is straightforward to verify that, constructed in this way, {Vt(x), ηc, ηh} indeed characterizes the

solution to the utility maximization problem. The rest of the lemma follows immediately.

1.2 Proof of Proposition 3

Totally differentiating constraint (36) of problem (35), we obtain

(r̃ − Fk + Fh − w̃) dηh − (1− ηh) dr̃ − ηh dw̃ = 0.

Evaluating this expression at the benchmark equilibrium, where Gt = Bt = 0, r̃t = F̂k and w̃t = F̂h,

for all t, yields

(1− η̂h) dr̃ + η̂h dw̃ = 0.

Thus, to satisfy the balanced budget, r̃ and w̃ must satisfy the following relationship around (r̃, w̃) =

(F̂k, F̂h):
dw̃

dr̃
= −1− η̂h

η̂h
.
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Hence the effect of a marginal change in r̃, taking into account the induced change in w̃ via the

government budget constraint, is given by ∂
∂r̃−

1−η̂h
η̂h

∂
∂w̃ and will be denoted by d

dr̃ . Since the lifetime

utility is increasing in ρt for each t, it suffices to show that dρ
dr̃ > 0.

The envelope theorem implies that ∂ρ
∂ηh

= 0 at the benchmark equilibrium. It follows that

dρ

dr̃
= ρ̂γE

[
R̂x(θ)−γ

{
(1− η̂h) + θη̂h

dw̃

dr̃

}]
,

= ρ̂γE
[
R̂x(θ)−γ(1− θ)

]
(1− η̂h),

where R̂x(θ) ≡ (1− δk + F̂k)(1− η̂h) + (1− δh + F̂h)θη̂h. Since E(θ) = 1, we have

E
[
R̂x(θ)−γ(1− θ)

]
= Cov(R̂x(θ)−γ , 1− θ) > 0,

where the inequality follows from the fact that both R̂x(θ)−γ and 1− θ are decreasing functions of

θ. Given that η̂h < 1, this proves that dρ
dr̃ > 0.

It remains to show that the after-tax rental rate of capital, r̃, and the tax rate on capital income,

τk, move in the opposite directions around the benchmark equilibrium. Since τk = 1− r̃
Fk

, we have

dτk
dr̃

=
−F̂k + (−F̂kk + F̂kh)dηhdr̃

F̂ 2
k

. (43)

Differentiating the individual first order conditions (15) yields{
Φr̃ −

1− η̂h
η̂h

Φw̃

}
dr̃ + Φηhdηh = 0,

so that

dηh
dr̃

=

1−η̂h
η̂h

Φw̃ − Φr̃

Φηh

. (44)

Thus we obtain

dτk
dr̃

=
1

F̂ 2
k

−F̂kΦηh + (−F̂kk + F̂kh)
(

1−η̂h
η̂h

Φw̃ − Φr̃

)
Φηh

< 0,

since by Assumption 1 we have Φw̃ > 0, Φr̃ < 0, while Φηh < 0 follows from the strict concavity of

ρ(r̃, w̃, ηh) and Fkh = (1− α)αkα−1h−α > 0. This completes the proof.

1.3 Proof of Proposition 4

We are interested in the welfare effect of a marginal variation of bT+1 evaluated at bT+1 = 0, that

is the sign of dv0/dbT+1

∣∣
bT+1=0

. Denote the variables solving the Ramsey problem under (37) as

vt(bT+1), ρt(bT+1), etc.. It is immediate to see that its solution is the same as under (34) for all

periods except two,

ρt(bT+1) = ρo, ∀t 6= T + 1, T + 2 (45)
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Hence from (12) we get vt(bT+1) = vo, ∀t ≥ T + 2, and dv0/dvT > 0, so that

dv0

dbT+1

∣∣∣∣
bT+1=0

R 0 ⇐⇒ dvT
dbT+1

∣∣∣∣
bT+1=0

R 0.

We have so27 ρT+2(bT+1) = ρR(bT+1, 0, ηc,T+1(bT+1)). Recalling again (12), we obtain

vT+1(bT+1) =
{

(1− β)ψ + βψρT+2(bT+1)ψ−1vT+2(bT+1)ψ−1
} 1
ψ−1

. (46)

Here, note that (45) implies ∂vT+2/∂bT+1 = 0. In addition, ∂ρR(0, 0, ηc)/∂ηc = 0.28 Differentiating

then vT+1(bT+1) with respect to bT+1 and evaluating it at bT+1 = 0 yields

dvT+1

dbT+1

∣∣∣∣
bT+1=0

= βψ(ρRo)ψ−2ρo1v
o, (47)

where ρRo1 ≡ ∂ρR(b, b′, ηoc )/∂b, evaluated at b = b′ = 0.29

Next, consider the expression analogous to (46) for date T :

vT (bT+1) =
{

(1− β)ψ + βψ
(
ρT+1(bT+1)

)ψ−1
vT+1(bT+1)ψ−1

} 1
ψ−1

. (48)

Its derivative with respect to bT+1, evaluated at bT+1 = 0, using (47) and again the fact that

∂ρR/∂ηc,T
∣∣
bT+1=bT=0

= 0, equals

dvT

dbT+1

∣∣∣∣
bT+1=0

= βψ(ρo)ψ−2vo
[
ρRo2 + βψ(ρo)ψ−1ρRo1

]
,

where ρRo2 ≡ ∂ρR(b, b′, ηoc )/∂b
′ evaluated at b = b′ = 0.

Let us denote then by λ(b, b′, ηc) the Lagrange multiplier on the flow budget constraint for the

government in problem (32) and by ηh(b, b′, ηc), r̃(b, b
′, ηc), w̃(b, b′, ηc), and Rx(b, b′, ηc) its solution.

Using the envelope property and the fact that b, b′ only appear in constraint (31) of the problem,

27Here and in what follows we omit the dependence of ρR on g whenever gt is constant across periods.

28To see this, recall from the definition of ρR(b, b′, ηc) in (32) that ηc affects ρR only through the government budget

constraint (31). Consider the associated function:

f(b, b′, ηc, ηh, r̃, w̃, Rx)

≡ g + (1− δk + r̃)b− (1− ηc)Rxb′ − F [(1− ηc)(1− ηh)− b, (1− ηc)ηh]

+ r̃ [(1− ηc)(1− ηh)− b] + w̃(1− ηc)ηh

We have ∂f
∂ηc

∣∣∣
b=b′=0

= 0 and so, by the envelope theorem we get the claimed property.

29The superscript o indicates, as in the main text, variables evaluated at a solution of the Ramsey problem under

the constraint bt = gt = 0 for all t.
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we obtain, when bt = gt = 0 for all t:30

ρRo1 = −λo(1− δk + F ok ),

ρRo2 = λoβψ(ρo)ψ−1Rox,

since

ηoc = 1− βψ(ρo)ψ−1.

Therefore,
dvT

dbT+1

= ξ [Rox − (1− δk + F ok )] , (49)

where

ξ ≡ β2ψ(ρo)2ψ−3λovo

and ξ > 0 since λo > 0, as we show next. As argued in Section 3.1, when bt = gt = 0 for all t,

problem (32) reduces to (35).

Let us write the solution to (10) as ηh(r̃, w̃). Then the first order conditions for r̃ and w̃ in

problem (35) are given by

0 =
∂ρ

∂r̃
− (1− ηoh)λo +

[
∂ρ

∂ηh
+ λo(−F ok + F oh + r̃o − w̃o)

]
∂ηh
∂r̃

,

0 =
∂ρ

∂w̃
− ηohλo +

[
∂ρ

∂ηh
+ λo(−F ok + F oh + r̃o − w̃o)

]
∂ηh
∂w̃

.

From the second equation, recalling that under Assumption 1 we have ∂ηh
∂w̃ > 0 and ∂ηh

∂r̃ < 0, we

obtain

λo(−F ok + F oh + r̃o − w̃o) =
− ∂ρ
∂w̃ + ηohλ

o

∂ηh
∂w̃

.

Substituting then this equation into the first equation above, and solving for λo, we get

λo =

(
1− ηoh −

ηoh
∂ηh
∂r̃

∂ηh
∂w̃

)−1(
∂ρ

∂r̃
−

∂ρ
∂w̃

∂ηh
∂r̃

∂ηh
∂w̃

)
> 0,

where the sign of the inequality follows from the fact that ηoh ∈ (0, 1), ∂ρ
∂r̃ > 0 and ∂ρ

∂w̃ > 0.

30To better understand the form of these expressions, notice that, as we see from (31), a marginal increase of bT+1

relaxes this constraint at T + 1 yielding a gain of λo (1− ηoc )Rox, while tightening this constraint at T + 2 with a loss

of λoβψ(ρo)ψ−1(1 − δk + F ok ) (recall that ρRo1 is multiplied by βψ(ρo)ψ−1 in the expression of dvT /dbT+1). Since

(1− ηoc ) = βψ(ρo)ψ−1, the comparison of these two reduce to the comparison between Rox and (1− δk + F ok ).
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1.4 Proof of Proposition 5

The Lagrangean for problem (33), using (12) and (14) to substitute for ρt+1 and ηc,t, is

v0 +
∞∑
t=0

λvt

{
(1− β)ψ + βψρR(bt, bt+1, (1− β)ψv1−ψ

t )ψ−1vψ−1
t+1 − v

ψ−1
t

}
.

The first-order condition with respect to bt+1 is then

λvtβ
ψρψ−2

t+1 ρ
R
2,t+1v

ψ−1
t+1 + λvt+1β

ψρψ−2
t+2 ρ

R
1,t+2v

ψ−1
t+2 = 0, (50)

where ρt+1 ≡ ρR(bt, bt+1, ηc,t), ρ
R
2,t+1 ≡ ∂ρR(bt, bt+1, ηc,t)/∂bt+1, and ρR1,t+2 ≡ ∂ρR(bt+1, bt+2, ηc,t+1)/∂bt+1.

The first-order condition for vt+1 is

λvtβ
ψρψ−1

t+1 v
ψ−2
t+1 + λvt+1β

ψρψ−2
t+2 ρ

R
ηc,t+2(1− β)ψ (1− ψ) v−ψt+1v

ψ−1
t+2 − λ

v
t+1v

ψ−2
t+1 = 0, (51)

where ρRηc,t+2 ≡ ∂ρR(bt+1, bt+2, ηc,t+1)/∂ηc,t+1.

In a steady-state equilibrium, equation (50) reduces to

ρR2 +
λvt+1

λvt
ρR1 = 0 (52)

and equation (51) to

λvt+1

λvt
= βψρψ−1

(
1− βψρψ−1(1− β)ψ (1− ψ)

ρRηcv
1−ψ

ρ

)−1

, (53)

where the term in parenthesis captures the effect on ρ of the change in the savings rate, given by

the second term in (51), which only arises (as we saw in foonote 30) when debt is nonzero.

By a similar argument to the one in the proof of Proposition 4 above, at a steady state equilib-

rium the derivative of ρR with respect to b and b′ satisfies

−ρ
R
1

ρR2
=

1− δk + Fk
(1− ηc)Rx

=
1− δk + Fk
βψρ̃ψ−1Rx

, (54)

where, for the second equality, we used again (14), ηc = (1− β)ψ v1−ψ, and constraint (12), vψ−1 =

(1− β)ψ + βψρψ−1vψ−1, of problem (33).

Combining (52)-(54) and using again (14), yields the claimed result:

Rx = (1− δk + Fk)
[
1− (1− ψ)βψρψ−2ρRηcηc

]−1
.
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2 Sufficient conditions for Assumption 1

Let us rewrite problem (9) more compactly as

max
ηh≥0

E [u (r (1− ηh) + θwηh)] ,

where, with a slight abuse of notation, r denotes 1− δk + r̃, w denotes 1− δh + w̃, and the function

u(.) is increasing, concave and with a constant coefficient of relative risk aversion γ. Letting η∗h be

an interior solution of (9), the properties stated in Assumption 1 are equivalent to
∂η∗h
∂r < 0 and

∂η∗h
∂w > 0, as already noticed in the main text. Setting R ≡ θw−α, problem (9) may also be written

as

max
ηh≥0

E [u (r +Rηh)] , (55)

when α = r. Problem (55) is often referred to as the standard portfolio choice problem. Hereafter,

we shall use some results on such problem reported in Gollier (2004).31

From Proposition 9 in Gollier (2004) it follows that, when the coefficient of relative risk aversion

γ is not larger than one, any first order stochastic improvement in R increases the optimal value of

ηh. Since an increase in w induces such an improvement, we conclude that
∂η∗h
∂w > 0 if γ ≤ 1.

Note that an increase in r, keeping R (that is, α) constant, constitutes an increase in wealth

and so from Proposition 8 in Gollier (2004) it follows that this change induces a decrease in η∗h if

u exhibits decreasing absolute risk aversion. With constant relative risk aversion, u indeed exhibits

decreasing absolute risk aversion. There is then a second effect of the increase in r, given by the

change in R : an increase in α induces a first order worsening on R and so reduces η∗h if γ ≤ 1.

Hence we conclude that
∂η∗h
∂r < 0 if γ ≤ 1.

Having established that the stated properties always hold when γ ≤ 1, we show next that,

when γ > 1, they hold for some family of distributions of θ. Assuming that θ is a continuous

random variable with density function g(t) differentiable almost everywhere, we shall show below

that the stated comparative statics properties hold if both tg
′(t)
t and g′(t)

t are non-increasing in t.

The condition hold for example when θ is a uniform distribution over some interval, or a Pareto

distribution (i.e., the density function is a power function).

To establish the result we build on Proposition 17 in Gollier (2004), stating that, if u(.) is strictly

increasing, then any improvement in R in monotone likelihood ratio (MLR) increases the optimal

value η∗h of problem (55). That is, if R and R′ are distinct continuous random variables with density

fR and fR′ respectively, the optimal value η∗h under R′ is larger than that under R if fR′ (t) /fR (t)

is non decreasing in t.

31Gollier, C. (2004), “The Economics of Risk and Time,” MIT Press.
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Since R = θw − α, Pr [R ≤ z] = Pr [θ ≤ (z + r) /w] and so the density function f(z) of R is

given by

f (z) =
d

dz

∫ (z+r)/w

0
g (t) dt =

1

w
g

(
z + r

w

)
. (56)

So in order to use the above proposition to establish the property
∂η∗h
∂w > 0, it suffices to show

that for any ŵ > w 1
ŵg
(
z+r
ŵ

)
/ 1
wg
(
z+r
w

)
is non decreasing in z. Taking a monotone (logarithmic)

transformation and differentiating with respect to z, this condition obtains when

1

ŵ

g′
(
z+r
ŵ

)
g
(
z+r
ŵ

) − 1

w

g′
(
z+r
w

)
g
(
z+r
w

) ≥ 0,

that is, when
1

w

g′
(
z+r
w

)
g
(
z+r
w

) is non-decreasing in w,

at any w > 0, for given z and r. Since the map w 7→ (z + r) /w is monotonic and decreasing, setting

t = (r + z) /w, the condition above can be equivalently stated as

t
g′ (t)

g (t)
is non-increasing in t.

Next, we use the same proposition to derive a condition guaranteeing that
∂η∗h
∂r < 0. Recalling

the argument above regarding the effect of increasing r keeping R constant, when u(.) exhibits

decreasing absolute risk aversion, it suffices to show that the optimal value of η∗h decreases as α

in R = wθ − α increases, keeping r fixed. Hence we derive next a condition on g(t) such that a

decrease in α induces a MLR improvement: that is, for any α̂ < α 1
wg
(
z+α̂
w

)
/ 1
wg
(
z+α
w

)
is non

decreasing in z. Arguing analogously as in the previous case, we can show that this property holds

if g′
(
z+α
w

)
/g
(
z+α
w

)
is non increasing in α at any α > 0, where z and w are fixed. So changing

variables we conclude that
∂η∗h
∂r < 0 holds if

g′ (t)

g (t)
is non-increasing in t.

3 Exogenous government purchases

Here we extend our analysis to the case where the public expenditure policy is specified in terms

of an exogenous sequence of absolute levels of expenditure {Gt}∞t=0 (rather than per unit of total

wealth). We will obtain conditions characterizing the Ramsey steady state which are analogous

to those obtained in Proposition 5 and Corollary 6. Hence, also in the case of exogenous Gt, the

capital income tax rate must be positive in the long run, as long as the effect on the saving rate is

small enough.
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When the sequence {Gt}∞t=0 is exogenously given, we can no longer use the recursive approach

followed in the paper to solve the Ramsey problem in the case where {gt}∞t=0 is exogenously given.

We solve instead the problem in a more direct way. Given X0 and b0, the Ramsey problem consists

in the maximization of v0 with respect to {bt+1, Xt+1, vt+1, r̃t+1, w̃t+1}∞t=0 subject to

vψ−1
t = (1− β)ψ + βψρψ−1

t+1 v
ψ−1
t+1

Gt+1

Xt
+ (1− δk + r̃t+1)bt = (1− ηc,t)Rx,t+1bt+1 + F (kt, ht)− r̃t+1kt − w̃t+1ht

Xt+1

Xt
= (1− ηc,t)Rx,t+1,

where ηh,t, ηc,t, ρt+1, Rx,t+1, kt, and ht are the following functions of r̃t+1, w̃t+1, bt, and vt:

ηh,t = ηh(r̃t+1, w̃t+1) ≡ arg max
ηh

ρ(r̃t+1, w̃t+1, ηh),

ρt+1 = ρ(r̃t+1, w̃t+1) ≡ max
ηh

ρ(r̃t+1, w̃t+1, ηh),

Rx,t+1 = Rx(r̃t+1, w̃t+1) ≡ (1− δk + r̃t+1)(1− ηh(r̃t+1, w̃t+1)) + (1− δh + w̃t+1)ηh(r̃t+1, w̃t+1),

ηc,t = ηc(vt) ≡ (1− β)ψ(vt)
1−ψ,

kt = k(r̃t+1, w̃t+1, bt, vt) ≡ (1− ηc(vt))(1− ηh(r̃t+1, w̃t+1))− bt,

ht = h(r̃t+1, w̃t+1, vt) ≡ (1− ηc(vt))ηh(r̃t+1, w̃t+1),

The Lagrangean for this problem is then:

v0 +
∞∑
t=0

[
λv,t

{
(1− β)ψ + βψρ(r̃t+1, w̃t+1)ψ−1vψ−1

t+1 − v
ψ−1
t

}
+ λb,t

{
[1− ηc(vt)]Rx(r̃t+1, w̃t+1)bt+1 + F [k(r̃t+1, w̃t+1, bt, vt), h(r̃t+1, w̃t+1, vt)]

− r̃t+1k(r̃t+1, w̃t+1, bt, vt)− w̃t+1h(r̃t+1, w̃t+1, vt)−
Gt+1

Xt
− (1− δk + r̃t+1)bt

}
+ λx,t

{
[1− ηc(vt)]Rx(r̃t+1, w̃t+1)− Xt+1

Xt

}]
.
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The first order conditions for vt, bt, and r̃t+1 are so, respectively,32

0 = −λv,t
vψ−2
t

ψ − 1
+ λv,t−1

βψ

ψ − 1
ρψ−1
t+1 v

ψ−2
t+1 (57)

+ λb,tη
′
c(vt)

{
−Rx,t+1bt+1 − Fk,t(1− ηh,t)− Fh,tηh,t + r̃t+1(1− ηh,t) + w̃t+1ηh,t

}
− λx,tη′c(vt)Rx,t+1,

0 = λb,t−1(1− ηc,t−1)Rx,t − λb,t(1− δk + Fk,t), (58)

0 = (ψ − 1)λv,tβ
ψρψ−2

t+1 ρr,t+1v
ψ−2
t+1

+ λb,t

{
(1− ηc,t)Rx,r,t+1bt+1 + Fk,tkr,t + Fh,thr,t − kt − r̃t+1kr,t − w̃t+1hr,t − bt

}
+ λx,t(1− ηc,t)Rx,r,t+1, (59)

where η′c(vt) ≡ dηc(vt)/dvt, Fk,t ≡ ∂F (kt, ht)/∂kt, Fh,t ≡ ∂F (kt, ht)/∂ht, ρr,t+1 ≡ ∂ρ(r̃t+1, w̃t+1)/∂r̃t+1,

Rx,r,t+1 ≡ ∂Rx(r̃t+1, w̃t+1)/∂r̃t+1, kr,t ≡ ∂k(r̃t+1, w̃t+1, bt, vt)/∂r̃t+1, and hr,t ≡ ∂h(r̃t+1, w̃t+1, vt)/∂r̃t+1.

Assuming that Gt grows at an exogenous, constant rate γG > 0, we focus again our attention

on a steady state (balanced growth path) where all the variables in equations (57)-(59) remain

constant, except for the Lagrange multipliers, λv,t, λb,t, and λx,t that grow at the same rate:

λv,t
λv,t−1

=
λb,t
λb,t−1

=
λx,t
λx,t−1

≡ γλ.

Since ρ is constant we have v = (1− β)ψ/(1− βψρψ−1). Also, ηc = (1− β)ψv1−ψ, and so

βψρψ−1 = 1− ηc.

It then follows from equation (57) that, along a balanced growth path,

λv,t
λv,t−1

= (1− ηc) + Λη′c(v),

where Λ is the term

Λ ≡ ψ − 1

vψ−2

[
λb,t
λv,t−1

{
−Rxb− Fk(1− ηh)− Fhηh + r̃(1− ηh) + w̃ηh

}
− λx,t
λv,t−1

Rx

]
,

a constant given the fact that all Lagrange multipliers grow at the same rate.

We can then use equation (58) to derive the following steady-state condition which is the coun-

terpart of the one in Proposition 5:

Rx = (1− δk + Fk)

[
1 +

Λη′c(v)

1− ηc

]
. (60)

32To derive the steady state condition determining the tax rate on capital we do not have to use the first-order

conditions with respect to w̃t+1 or Xt+1. But, of course, we would need those conditions to derive all the steady state

equilibrium variables.
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Just as in the case of a constant, exogenously given level of g, this condition implies that at a

Ramsey steady state the average rate of return on consumers’ portfolios, Rx, is equal to the before

tax return on physical capital (or equivalently the cost of government debt), 1−δk+Fk, augmented

with the effect of public debt on the saving rate, Λη′c/(1− ηc). As long as the latter effect is small,

we get again Rx ≈ 1 − δk + Fk, which implies that the optimal capital tax rate is positive in the

long run: τk > 0.

When ψ = 1, again the effect on the saving rate valishes, so that condition (60) reduces to

Rx = 1− δk + Fk,

which is identical to the condition derived in Corollary 6.

4 Algorithm to solve the model numerically

The Ramsey equilibrium for our model can be computed in a straightforward way. The function

ρR(b, b′, ηc) is computed as the solution to the maximization problem defined in (32). Then the

steady state value of b is obtained by solving equation (39).

The transitional dynamics is computed for the calibrated economy where ψ = 1. In this case ηc

is constant, so the function above can be written simply as ρR(b, b′) and (30) simplifies to

ln(v0) =
∞∑
t=0

βt+1 ln(ρt+1).

In the dynamic programming formulation, the Ramsey problem (33) can be written as

ln v(b) = max
b′

β ln ρR(b, b′) + β ln v(b′).

This problem is solved by discretizing the state space and by the value function iteration.

5 Transitional dynamics

The Ramsey equilibrium converges to the steady state only in one period. Figure 1 in this ap-

pendix illustrates the transitional dynamics of the Ramsey equilibrium, starting from the “baseline

equilibrium” in Table 2 in the main text.
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Figure 1: Transitional dynamics of the Ramsey equilibrium starting from the baseline equilibrium.
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