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BÜHLMANN’S ECONOMIC PREMIUM PRINCIPLE IN THE PRESENCE OF
TRANSACTION COSTS

MASAAKI KIJIMA AND AKIHISA TAMURA

ABSTRACT. This paper examines the Bühlmann’s equilibrium pricing model (1980) in the pres-
ence of transaction cost and derives the (multivariate) Esscher transform within the framework
under some assumptions. The result reveals that the Esscher transform is an appropriate proba-
bility transform for the pricing of insurance risks even in the market with transaction costs.

Keywords: Equilibrium pricing, Equilibrium allocation, Incomplete market, Esscher trans-
form, Transaction cost

1. INTRODUCTION

In the finance literature, the theory of asset pricing has been studied for the long time; the
theory is well-developed for the so-calledcompletemarket while there are still many blanks
for incompletemarkets. When there are transaction costs for trading assets in the market, some
asset may not be duplicated by other assets and so the market is incomplete. The insurance mar-
ket is presumably incomplete; new attempts are necessary for the development of economically
sound pricing methods.

In the actuarial literature, there have been developed many probability transforms for the
pricing of insurance risks. Such methods include the variance loading, the standard deviation
loading, and the exponential principle. Among them, one of the popular pricing methods for
actuaries is theEsscher transformgiven by

(1.1) π(Y ) =
E[Y e−θY ]

E[e−θY ]

for random variableY that represents risk, whereθ is a positive constant1 andE is an expec-
tation operator under the physical probability measureP. As pointed out by B̈uhlmann (1980),
however, the premiums calculated by these methods depend only on the risk, while in econom-
ics premiums are not only depending on the risk but also on market conditions.

Bühlmann (1980) considers a pure risk exchange market in which there areN agents. Each
agent is characterized by his/her utility function, initial wealth and potential loss, and is willing
to buy/sell a risk exchange so as to maximize the expected utility. An equilibrium price of the
risk is obtained under the market clearing condition. Following Bühlmann (1980), equilibrium
models of insurance risks have been considered by many authors, including Aase (1993, 2002),
Malamud, Trubowitz and Ẅuthrich (2008), and Tsanakas and Christofides (2006).
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Bühlmann (1980) demonstrates that the Esscher transform (1.1) can be derived from the
equilibrium price, when exponential utilities are assumed and the riskY is sufficiently small
compared to the whole aggregated risk. Hence, the Esscher transform is not just an exponential
tilting (or exponential change of measure), but has a sound economic interpretation. See also
Wang (2002) and Kijima (2006) for further discussions on the Esscher transform and its eco-
nomic interpretations. In particular, Kijima (2006) extends the Esscher transform (1.1) to the
multivariate setting as

(1.2) π(Y ) =
E[Y e−θZ ]

E[e−θZ ]
, Z =

N∑
j=1

Yj,

whereY = h(Y1, . . . , YN) for some functionh, called themultivariateEsscher transform, and
shows that the transform (1.2) possesses many desirable properties as a pricing method.2

Although not mentioned explicitly, the risk exchange market considered in Bühlmann (1980)
is complete, while actual insurance markets are presumablyincomplete. In particular, there
are transaction costs for trading risks (and/or assets) in the market. Recall that a market is
complete if and only if any asset is duplicated by other existing assets in the market (see, e.g.,
Kijima [2013]). In other words, agents can use any asset in order to maximize their expected
utilities in the case of complete markets. The market in the presence of transaction costs is a
typical example of incomplete markets. The aim of this paper is to extend the Bühlmann’s result
(1980) to the market with transaction cost, thereby giving a further justification to the Esscher
transform (1.1) and its variants.

In the finance literature, many papers have considered the pricing of derivatives in the pres-
ence of transaction costs for trading the underlying assets. When the market is complete and
there are no transaction costs, any derivative can be duplicated by trading underlying assets
continuously (i.e., the perfect hedge) and the price of derivative is given by the initial cost of
the duplication. When there are transaction costs, this paradigm no longer holds and elaborated
mathematical arguments are required to determine a super-hedging portfolio. See Kabanov and
Safarian (2009) and references therein for detailed discussions on this topic. However, in these
studies, the underlying asset prices are givenexogenouslyand the asset demand to duplicate
the derivative has no impact on the prices of both the derivative and the underlying assets. In
other words, no attention has been paid to the equilibrium of asset prices in the market with
transaction costs.

In the economics literature, on the other hand, there are many papers that investigate the equi-
librium of asset prices. Recently, Buss, Uppal and Vilkov (2011) and Hara (2013) consider the
problem of asset prices in the general equilibrium with proportional transaction costs . In partic-
ular, Hara (2013) studies a single-period model in which there are multiple agents with general
utility functions and two assets, one riskfree and one risky, and determines the equilibrium asset
prices for each level of transaction costs to show, among others, that an increase in transaction
costs will increase buying prices and decrease selling prices under some conditions. Buss, Up-
pal and Vilkov (2011) investigate a multi-period model in which there are only two agents with
recursive utilities. See these papers and references therein for the general equilibrium of asset
prices with and without transaction costs.

Finally, in the actuarial literature, there are also many papers that consider the effect of trans-
action costs. For example, among others, He and Liang (2009) consider an optimal financing
and dividend control of the insurance company with transaction costs. Højgaard and Taksar

2Another popular pricing method for actuaries is the Wang transform developed by Wang (2002), which is
further extended by Kijima (2006) to the multivariate setting, based on the Bühlmann’s premium principle (1980).
In particular, Kijima (2006) shows that, when risks are normally distributed, the (multivariate) Esscher transform
is the same as the (multivariate) Wang transform. See Kijima and Muromachi (2008) for further discussions on the
relationship between the Bühlmann’s result and the Wang transform.
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(1998) study a similar problem for reinsurance policies with transaction costs. However, as in
the finance literature, the underlying processes are given exogenously and no aspect of equilib-
rium is investigated. In this paper, following Hara (2013), we consider a single-period equilib-
rium model with multiple agents and multiple risky assets. However, because our main goal is
to extend the multivariate Esscher transform (1.2) to the market with transaction costs, we focus
on the case of exponential utilities.

The present paper is organized as follows. In the next section, we setup the model of asset
prices in the general equilibrium with proportional transaction costs. In Section 3, we first re-
view the B̈uhlmann’s result (1980) by solving the equilibrium model for the case of complete
market, and then examine the case of incomplete market without transaction costs. It is shown
that the problem can be solved under some conditions and the multivariate Esscher transform
(1.2) is derived. Section 4 is devoted to the existence of the general equilibrium for the general
problem. Some special case of exponential utilities and normally distributed assets (i.e., the
CARA-normal case) is also considered. In section 5, we investigate the case that the transaction
costs are so small. In particular, when the rates of return of all the assets are normally dis-
tributed, it is shown that the asset prices are given by the multivariate Esscher transform (1.2)
with the mean rates of return being adjusted by transaction costs. Finally, Section 6 concludes
this paper.

2. MODEL SETUP

Consider an agenti with initial risk Xi and utility functionui(x). The riskXi may be a
portfolio of assets traded in the market or other types of nontradable assets. As usual, we
consider a standard probability space(Ω,F ,P) and assume thatu′

i > 0 andu′′
i < 0. Let us

denote byM the class of traded assets in the market under consideration.
Suppose that there areI agents characterized by the pair(Xi, ui), i = 1, 2, . . . , I, in the

market. We want to derive an equilibrium priceπ(Y ), Y ∈ M, satisfying

(2.1)


Ỹi = argmax

Yi∈M
E[ui(Xi + Yi)], i = 1, 2, . . . , I,

subject to π(Yi) + tc(Yi) = 0, i = 1, 2, . . . , I, (budget constraint)∑I
i=1 Yi = 0, (market clearing)

where tc(Y ) denotes the transaction cost associated with exchangeY . The optimalỸ =

(Ỹ1, Ỹ2, . . . , ỸI) is called anequilibrium risk exchangeandX + Ỹ an equilibrium risk allo-
cation, whereX = (X1, X2, . . . , XI). In this paper, for the sake of simplicity, the riskfree
interest rate is assumed to be zero.3

In order to formulate transaction costs explicitly, we assume that only(N + 1) assets are
traded in the market. The time-1 (future) value of assetj, j = 0, 1, . . . , N , is denoted bySj

and its time-0 (present) value byπj = π(Sj). In this setting, any traded portfolio for agenti is
written as

(2.2) Yi =
N∑
j=0

yijSj, i = 1, 2, . . . , I,

where the quantityyij represents the number of assetj traded by agenti at time0. Of course,
yij > 0 implies that agenti purchases assetj, whereasyij = 0 and yij < 0 mean no trade
and a sell of assetj, respectively. Throughout this paper, we assume that the holdings are real
numbers.

3Alternatively, we assume that the risks are enumerated by the riskfree money-market account.
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The initial risksXi consist of traded assets and nontradable risks. More specifically, we
assume that the initial risk of agenti is given by

(2.3) Xi =
N∑
j=0

xi
jSj + εi, i = 1, 2, . . . , I,

where the quantityxi
j represents the number of assetj held by agenti at time0 andεi ̸∈ M

denotes the residual risk. The total number of assetj issued in the market is denoted by

(2.4) Aj ≡
I∑

i=1

xi
j, j = 0, 1, . . . , N,

which are assumed to be positive constants.
Asset 0 is the riskfree discount bond (so thatS0 = 1), while the other assets are risky (so

thatSj, j > 0, are random variables). Denote bycj the transaction cost of buying and selling
one unit of assetj. Then, ifyij > 0 (yij < 0, respectively), agenti must pay the proportional
costcjyijπj > 0 (cj(−yij)πj > 0). It is assumed that the transaction costs disappear from the
economy. Throughout this paper, we shall denote

γj(y) = cj sgn(y) ≡

 +cj if y > 0,
−cj if y < 0,
0 if y = 0.

Then, the total trading cost (including the transaction cost) is given by

(2.5) π(Y ) + tc(Y ) =
N∑
j=0

yjπj(1 + γj(yj)),

whereY =
∑N

j=0 yjSj. Note that, in the case of no transaction costs, we haveγj(y) = 0 so that

π(Y ) + tc(Y ) =
∑N

j=0 yjπj.
We deal with allocation variablesθij = xi

j + yij instead of exchange variablesyij for all i and
j. Then, from (2.2)–(2.5), the problem (2.1) can be restated as follows: For given transaction
costscj > 0, we want to derive equilibrium pricesπj = π(Sj) satisfying

(2.6)


θ̃ij = argmax

θj∈R
E
[
ui

(
εi +

∑N
j=0 θjSj

)]
, i = 1, 2, . . . , I,

subject to
∑N

j=0(θ
i
j − xi

j)πj(1 + γj(θ
i
j − xi

j)) ≤ 0, i = 1, 2, . . . , I,
(budget constraint)∑I

i=1 θ
i
j = Aj, j = 1, 2, . . . , N, (market clearing)

whereR denotes the set of real numbers. Note that we relax the budget constraints so as to have
inequality. Also, the market clearing condition does not apply for the riskfree assetS0.

3. THE CASE OFNO TRANSACTION COST

Before proceeding, we consider the case of no transaction costs in order to make clear how
the transaction costs affect the results in equilibrium. In this section, we first examine the case
of complete market and then the incomplete case follows. As we shall see soon, even in the
incomplete case, we can obtain similar results to the complete case under some conditions.
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3.1. Complete market. If the market is complete, then it is well know that there exists a state
price densityη > 0 such thatπ(Y ) = E[ηY ] andE[η] = 1. Thus, in order to solve the problem
(2.1), we consider the Lagurange equations defined by

(3.1) Li = E[ui(Xi + Y )]− ℓiE[ηY ], i = 1, 2, . . . , I.

The first order condition (FOC for short) of (3.1) with respect toY (ω), ω ∈ Ω, is given by

(3.2) u′
i(Xi(ω) + Ỹi(ω))− ℓiη(ω) = 0.

Let us denote the inverse function ofu′
i by Ii = (u′

i)
−1. Then, from the FOC (3.2), we have

(3.3) Xi + Ỹi = Ii(ℓiη), i = 1, 2, . . . , I.

Summing overi and utilizing the market clearing condition in (2.1), we obtain

(3.4)
I∑

i=1

Xi =
I∑

i=1

Ii(ℓiη).

DefineZ andI(x) by

(3.5) Z ≡
I∑

i=1

Xi, I(ηC) ≡
I∑

i=1

Ii(ℓiη)

for someC. Also, denote the inverse function ofI(x) by u′(x).4 It follows from (3.3) and (3.4)
that η = u′(Z)/C. SinceE[η] = 1 so thatC = E[u′(Z)], we finally obtain the equilibrium
price as

(3.6) π(Y ) =
E[Y u′(Z)]

E[u′(Z)]
; Z =

I∑
i=1

Xi, ∀Y ∈ M.

The equilibrium risk allocation is given by (3.3). Note that the expressions (3.6) and (3.3) are
not explicit, because they involve the unknown Lagurange multipliersℓi, i = 1, 2, . . . , I.

3.1.1. Special case: Exponential utility.When all the agents have exponential utility functions,
the above problem can be solved explicitly. Suppose that

(3.7) ui(x) = − 1

λi

e−λix; λi > 0, i = 1, 2, . . . , I.

Then, sinceu′
i(x) = e−λix, the FOC (3.3) can be written as

(3.8) Xi + Ỹi =
−1

λi

(log η + log ℓi), i = 1, 2, . . . , I.

Summing overi and utilizing the market clearing condition, we have

(3.9) Z = −1

λ
(log η + logC)

for someC, where we put

(3.10)
1

λ
=

I∑
i=1

1

λi

.

4The inverse function exists under the conditionu′′
i < 0 for all i. The functionu′(x) can be seen as the marginal

utility function of arepresentative agentin the market.
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It is readily checked from (3.9) that we haveC = E[e−λZ ] sinceE[η] = 1. Therefore, the
equilibrium price (3.6) is given by

(3.11) π(Y ) =
E[Y e−λZ ]

E[e−λZ ]
; Z =

I∑
i=1

Xi, ∀Y ∈ M,

whereλ is defined by (3.10). The equilibrium pricing formula (3.11) is explicit, becauseZ and
λ are defined only through the given quantitiesXi andλi, respectively.

The equilibrium risk allocation (3.3) can be also obtained explicitly. Namely, we have

(3.12) Xi + Ỹi =
λ

λi

Z, i = 1, 2, . . . , I.

Note that the allocationXi + Ỹi is proportional to the aggregated riskZ with weightλ/λi > 0,
where

∑I
i=1 λ/λi = 1, for the exponential utility case.

Finally, note that, whenZ = Y +ξ with Y andξ being mutually independent, the equilibrium
price (3.11) coincides with the Esscher transform (1.1) for riskY , as claimed by B̈uhlmann
(1980).

3.2. Incomplete market. In this subsection, we consider the problem (2.6) without transaction
costs. Because some assetY ∈ M may not be duplicated by tradable assetsSj, j = 0, 1, . . . , N ,
the market isincomplete.

Suppose that the budget constraint in (2.6) is given by

(3.13)
N∑
j=0

(θij − xi
j)πj = 0, i = 1, 2, . . . , I.

Then, we can assumeπ0 = 1 without loss of generality. Consider the Lagurange equations

(3.14) Li = E

[
ui

(
εi +

N∑
j=0

θijSj

)]
− ℓi

N∑
j=0

(θij − xi
j)πj, i = 1, 2, . . . , I.

The FOC of (3.14) with respect toθij is given by

E

[
Sju

′
i

(
εi +

N∑
k=0

θ̃ikSk

)]
− ℓiπj = 0, ∀i, j.

In particular, forj = 0, we have

ℓi = E

[
u′
i

(
εi +

N∑
k=0

θ̃ikSk

)]
,

sinceπ0 = S0 = 1. It follows that

(3.15) πj =
E
[
Sju

′
i

(
εi +

∑N
k=0 θ̃

i
kSk

)]
E
[
u′
i

(
εi +

∑N
k=0 θ̃

i
kSk

)] , ∀i, j.

In other words, the equilibrium pricesπj are determined by the system of equations (3.15) by
choosing the optimal allocations̃θij so that the right-hand side of (3.15) becomes independent of
i. Note that the pricesπj depend on the joint distribution of(S1, . . . , SN , ε1, . . . , εN). Therefore,
the problem (3.15) is much more difficult to solve than the complete case.
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3.2.1. Special case: Exponential utility.Suppose that all the agents have exponential utilities
(3.7). Then, from (3.15), we derive the following system of simultaneous equations:

(3.16) πj =
E
[
Sje

−λi(εi+
∑N

k=1 θ̃
i
kSk)

]
E
[
e−λi(εi+

∑N
k=1 θ̃

i
kSk)

] , ∀i, j > 0.

Note that the constant termλiθ̃
i
0S0 is canceled out on both numerator and denominator. This

system of equations hasIN + N = N(I + 1) unknowns (i.e.,̃θij andπj) andIN equations in
(3.16). Together with the market clearing condition, we haveIN + N = N(I + 1) equations.
Hence, we can solve the simultaneous equation (3.16), although the solution may not be unique.
Since the constant termλiθ̃

i
0S0 does not matter in (3.16), the budget constraint is adjusted byθ̃i0

so as to satisfy (3.13). The equilibrium risk exchanges are determined byỹij = θ̃ij − xi
j.

In order to solve the problem, define the moment generating functions (MGFs)

mi(θ1, θ2, . . . , θN) = E
[
e−λi(εi+

∑N
j=1 θjSj)

]
, i = 1, 2, . . . , I,

for which the MGFsmi exist.5 The equilibrium pricesπj and the solutions̃θij are determined
by the following simultaneous equations:

πj =
∂

∂θj
logmi(θ̃

i
1, θ̃

i
2, . . . , θ̃

i
N), ∀i, j > 0.

If in particular there are no residual risksεi, then we can solve the problem explicitly. Namely,
let

(3.17) m(ρ1, ρ2, . . . , ρN) = E
[
e−

∑N
j=1 ρjSj

]
, i = 1, 2, . . . , I,

and consider the system of simultaneous equations

(3.18) πj = − ∂

∂ρj
logm(ρi1, ρ

i
2, . . . , ρ

i
N), ∀i, j > 0,

where we putρij = λiθ̃
i
j.

But, since the MGFm does not depend oni, the solutionsρij = λi(x
i
j + ỹij) are also indepen-

dent ofi. That is, we haveλi(x
i
j + ỹij) = ρj for someρj. It follows that

xi
j + ỹij =

ρj
λi

, ∀i, j > 0,

and the market clearing condition together with (2.4) implies that

Aj =
∑
i

xi
j =

ρj
λ
;

1

λ
=
∑
i

1

λi

, ∀i, j > 0.

Therefore, we obtainρj = λAj so that(xi
j+ ỹij)Sj =

λ
λi
AjSj. Hence, the equilibrium allocation

is given by

(3.19) Xi + Ỹi =
N∑
j=1

(
xi
j + ỹij

)
Sj =

λ

λi

Z; Z =
N∑
j=1

AjSj, i = 1, 2, . . . , I.

The equilibrium prices are then expressed from (3.16) as

(3.20) πj =
E[Sje

−λZ ]

E[e−λZ ]
; Z =

N∑
j=1

AjSj, j = 1, 2, . . . N,

5We need to assume that the MGFs exist in order for the equilibrium prices to exist in the exponential utility
case. Note that this excludes the log-normally distributed assets.
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the multivariate Esscher transform ofSj; see (1.2). Note the resemblance of the solutions (3.11)
and (3.20). However, this does not mean the existence of the state price densityη. That is, we
cannot price any asset other thanSj, j = 1, 2, . . . , N . Also, the risk allocations (3.12) and
(3.19) are similar, because

∑N
j=1AjSj =

∑I
i=1Xi if xi

0 = 0 for all i.
It should be noted that the equilibrium price (3.20) as well as the equilibrium allocation (3.19)

depends on the initial risksXi only through the aggregated riskZ. However, when there are
transaction costs, the allocation (3.19) is no longer optimal and the equilibrium price certainly
depends on the initial risksXi even in the exponential utility case, as we shall see later.

4. EXISTENCE OFEQUILIBRIUM

In this section, we prove that there exists an equilibrium to the problem (2.6) even in the
presence of proportional transaction costs.

To this end, we first assume that only asset1 is traded with proportional transaction costs, for
the sake of simplicity. The other assets are traded with no transaction costs (or may be negligi-
bly small). The treatment of general case is similar with exponential growth of combinations.
Throughout this section, we shall denotec = c1 andγ(y) = c sgn(y).

According to Remark 1 in Hara (2013), we can assume without any loss of generality that
π0 = 1 andc0 = 0 for the riskfree bond. Hence, the budget constraint in (2.6) is rewritten as

(4.1)
N∑
j=1

(θij − xi
j)πj + (θi1 − xi

1)π1γ(θ
i
1 − xi

1) + (θi0 − xi
0) ≤ 0, i = 1, 2, . . . , I,

in this setting.
First, we fix the pricesπj and, in order to solve the optimization problem, we ignore the

market clearing condition, which enables us to divide the problem into the following individual
optimization problem:

(4.2) max
θij

E

[
ui

(
εi +

N∑
j=0

θijSj

)]
subject to (4.1) for each agenti.

The problem (4.2) satisfies the Slater constraint qualification. That is, the budget constraint is
convex onθij for fixed pricesπj, and there exists(θ0, θ1, . . . , θJ) satisfying

N∑
j=1

(θj − xi
j)πj + (θ1 − xi

1)π1γ(θ1 − xi
1) + (θi0 − xi

0) < 0,

where inequality in (4.1) is replaced by strict inequality. Thus, a feasible solution(θ̃0, θ̃1, . . . , θ̃N)
of (4.2) is optimal if and only if there exists a Lagrange multiplierℓi such that

ℓi ≥ 0, ℓi

(
N∑
j=1

(θ̃j − xi
j)πj + (θ̃1 − xi

1)π1γ(θ̃1 − xi
1) + (θ̃0 − xi

0)

)
= 0,(4.3)

E

[
Sju

′
i

(
εi +

N∑
j=0

θ̃jSj

)]
− ℓiπj = 0, j ̸= 1,(4.4) 

E
[
S1u

′
i

(
εi +

∑N
j=0 θ̃jSj

)]
− ℓi(1 + c)π1 = 0, if θ̃1 > xi

1,

E
[
S1u

′
i

(
εi +

∑N
j=0 θ̃jSj

)]
− ℓi(1− c)π1 = 0, if θ̃1 < xi

1,

ℓi(1− c)π1 ≤ E
[
S1u

′
i

(
εi +

∑N
j=0 θ̃jSj

)]
≤ ℓi(1 + c)π1, if θ̃1 = xi

1.

(4.5)

See Borwein and Levis (2000) for detailed discussions.
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Next, sinceπ0 = S0 = 1, we have from (4.4) forj = 0 that

ℓi = E

[
u′
i

(
N∑
k=0

θ̃kSk

)]
> 0, i = 1, 2, . . . , I,

where the strict inequality follows from the assumptionu′
i > 0. Thus, (4.3) implies that the

budget constraint (4.1) must hold with equality.
Let us define

(4.6) ϕi
j(θ0, θ1, . . . , θN) =

E[Sju
′
i(εi + θ0 +

∑N
k=1 θkSk)]

E[u′
i(εi + θ0 +

∑N
k=1 θkSk)]

, ∀i, j

for which the functionsϕi
j exist. Note that, sinceS0 = 1, we haveϕi

0 = 1 for all i.
Given a transaction costc ≥ 0, we divideI agents into three groups:

Bc = {i : θ̃i1 > xi
1}, Sc = {i : θ̃i1 < xi

1}, Nc = {i : θ̃i1 = xi
1},

whereθ̃i1 is the component for asset 1 of an optimal solution of (4.2) for agenti in the presence
of transaction costc.

In this setting, the necessary and sufficient condition (4.3)–(4.5) is written as follows: For
i ∈ Bc, solve

(4.7)


ϕi
j(θ0, θ1, . . . , θN) = πj, j = 2, . . . N,

ϕi
1(θ0, θ1, . . . , θN) = (1 + c)π1,∑N
j=1(θj − xi

j)πj + cπ1(θ1 − xi
1) + (θ0 − xi

0) = 0,

to obtain(θ̃i0, θ̃
i
1, . . . , θ̃

i
N). Similarly, for i ∈ Sc, solve

(4.8)


ϕi
j(θ0, θ1, . . . , θN) = πj, j = 2, . . . N,

ϕi
1(θ0, θ1, . . . , θN) = (1− c)π1,∑N
j=1(θj − xi

j)πj − cπ1(θ1 − xi
1) + (θ0 − xi

0) = 0,

to obtain(θ̃i0, θ̃
i
1, . . . , θ̃

i
N). Finally, for i ∈ Nc, solve

(4.9)


ϕi
j(θ0, x

i
1, θ2, . . . , θN) = πj, j = 2, . . . N,

(1− c)π1 ≤ ϕi
1(θ0, x

i
1, θ2, . . . , θN) ≤ (1 + c)π1,∑

j ̸=1(θj − xi
j)πj = 0,

to obtain(θ̃i0, x
i
1, θ̃

i
2, . . . , θ̃

i
N). The equilibrium pricesπj are obtained by the market clearing

condition in (2.6).
So far, we have shown that the equilibrium pricesπj as well as equilibrium allocations̃θij

in the problem (2.6) with the budget constraint being replaced by (4.1) are obtained by solving
(4.7)–(4.9), if the types of agents are known. Hence, we need to solve the problem (4.7)–(4.9)
for all possible combinations of agent types in order to find the feasible and optimal solution.
The general case can be proved similarly by considering all the possible combinations, although
the number of possible combinations grows exponentially fast. We thus have proved the fol-
lowing.

Theorem 4.1. In the problem (2.6), there exists an equilibrium.

In the general setup, this is a very difficult problem to solve because of the exponentially
growing combinations, and it seems impossible to investigate the effect of the transaction cost
on the equilibrium allocations and prices. Hence, in the rest of this paper, we shall impose some
additional assumptions either on the utility function or on the joint distribution of risky assets.
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4.1. Exponential Utilities. As in Subsection 3.2.1, suppose thatεi = 0 andu′
i(x) = e−λix for

all i. In this case, the functionϕi
j defined in (4.6) is given by

(4.10) ϕi
j(θ1, . . . , θN) =

E[Sje
−λiP ]

E[e−λiP ]
, P =

N∑
j=1

θjSj.

Letρij = λiθj, as before, and denote the MGF (moment generating function) of(S1, S2, . . . , SN)
by (3.17), i.e.,

m(ρ1, ρ2, . . . , ρN) = E
[
e−

∑N
j=1 ρjSj

]
for which the MGF exists. It is easy to verify that

ϕi
j(θ0, θ1, . . . , θN) = − ∂

∂ρj
logm(ρi1, . . . , ρ

i
N).

Hence, it is enough to define the function

ϕj(ρ1, ρ2, . . . , ρN) = − ∂

∂ρj
logm(ρ1, ρ2, . . . , ρN),

which makes the exponential case simpler.
Now, the problem (4.7)–(4.9) is reduced to the following: Fori ∈ Bc, solve

(4.11)

{
ϕj(ρ1, ρ2, . . . , ρN) = πj, j = 2, . . . N,

ϕ1(ρ1, ρ2, . . . , ρN) = (1 + c)π1.

The solution is denoted bỹρ+j (c), j = 1, 2, . . . , N . Similarly, for i ∈ Sc, solve

(4.12)

{
ϕj(ρ1, ρ2, . . . , ρN) = πj, j = 2, . . . N,

ϕ1(ρ1, ρ2, . . . , ρN) = (1− c)π1.

The solution is denoted bỹρ−j (c), j = 1, 2, . . . , N . Finally, for i ∈ Nc, solve

(4.13)

{
ϕj(λix

i
1, ρ2, . . . , ρN) = πj, j = 2, . . . , N,

(1− c)π1 ≤ ϕ1(λix
i
1, ρ2, . . . , ρN) ≤ (1 + c)π1.

The solution is denoted bỹρ0ij (c), j = 2, . . . , N , which may be dependent oni. In either cases,
ρ̃0 is obtained by the budget constraint.

Given these solutions, the equilibrium allocation of agenti is obtained as follows: For asset
1, we have

θ̃i1 =


ρ̃+1 (c)/λi, i ∈ Bc,

ρ̃−1 (c)/λi, i ∈ Sc,

xi
1, i ∈ Nc.

Summing overi, the market clearing condition is obtained as

(4.14) A1 = ρ̃+1 (c)
∑
i∈Bc

1

λi

+ ρ̃−1 (c)
∑
i∈Sc

1

λi

+
∑
i∈Nc

xi
1.

Similarly, for the other assetj, j ≥ 2, we have

θ̃ij =


ρ̃+j (c)/λi, i ∈ Bc,

ρ̃−j (c)/λi, i ∈ Sc,

ρ̃0ij (c)/λi, i ∈ Nc.

Summing overi, the market clearing condition is obtained as

(4.15) Aj = ρ̃+j (c)
∑
i∈Bc

1

λi

+ ρ̃−j (c)
∑
i∈Sc

1

λi

+
∑
i∈Nc

ρ̃0ij (c)

λi

, j ≥ 2.
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Note that we have3N + N0(N − 1) unknowns (̃ρ+j (c), ρ̃
−
j (c) andπj for j ≥ 1, andρ̃0ij (c) for

i ∈ Nc andj ≥ 2) and the same number of equations (N in (4.11) and (4.12),N0(N − 1)
in (4.13), andN in total in (4.14) and (4.15) together), whereN0 = |Nc| denotes the number
of agents in the classNc. Hence, in principle, we can solve the simultaneous equations, if the
division of agents were known.

The allocations̃θi0 are determined by the budget constraint as follows. Fori ∈ Bc, we have

(4.16) θ̃i0 = xi
0 −

N∑
j=1

(
ρ̃+j (c)

λi

− xi
j

)
πj − cπ1

(
ρ̃+1 (c)

λi

− xi
1

)
.

Similarly, for i ∈ Sc,

(4.17) θ̃i0 = xi
0 −

N∑
j=1

(
ρ̃−j (c)

λi

− xi
j

)
πj + cπ1

(
ρ̃−1 (c)

λi

− xi
1

)
,

and fori ∈ Nc,

(4.18) θ̃i0 = xi
0 −

N∑
j=2

(
ρ̃0ij (c)

λi

− xi
j

)
πj.

From (4.16)–(4.18) together with (4.14) and (4.15), we obtain the market clearing condition for
asset0 as

I∑
i=1

θ̃i0 = A0 − 2cπ1

∑
i∈Bc

(
ρ̃+1 (c)

λi

− xi
1

)
≤ A0,

which means that the riskfree asset may be left in the market.6

Example 4.1.Suppose that the transaction costc is sufficiently large, so that no agents want to
trade asset 1, i.e.,Bc = Sc = ∅. In this case, the problem (4.13) is only relevant, and we have
θ̃ij = ρ̃0ij (1)/λi, i = 1, 2, . . . , I, for every assetj. Recall that, in general, the quantitỹρ0ij (1)
depends oni. The equilibrium price is given from (4.10) as

(4.19) πj =
E[Sje

−λZi ]

E[e−λZi ]
, Zi =

1

λ

(
λix

i
1S1 +

N∑
j=2

ρ̃0ij (1)Sj

)
; j ≥ 2,

for all i, where the market clearing condition is given by

Aj =
I∑

i=1

ρ̃0ij (1)

λi

, j ≥ 2.

Note that the prices in (4.19) are affected by the non-traded asset1. WhenS1 is independent of
the other assets, it is readily shown that the prices are given by (3.20) withA1 = 0.

4.2. Risks Are Normally Distributed. Next, we consider the case that(S1, S2, . . . , SN) is
normally distributed. In this subsection, we assume that0 ≤ c ≤ 1. The mean vector and
covariance matrix are denoted byµ = (µj) andΣ = (σij), respectively. It is readily obtained
that

logm(ρ1, . . . , ρN) = −
N∑
j=1

ρjµj +
1

2

∑
j,k

σjkρjρk.

6This does not cause any problem, since the riskfree bond is traded with no transaction costs and does not
contribute to the functionϕj for the exponential case.
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Thus, we have

(4.20) ϕj(ρ1, . . . , ρN) = µj −
N∑
k=1

σjkρk.

For the convenience of description, we use the vectorsπ = (πj), a = (Aj) andρi = (ρij),
and divide the covariance matrixΣ as

Σ =

(
σ11 σ̂⊤

σ̂ Σ̂

)
, σ̂ =

σ21
...

σN1

 , Σ̂ =

σ22 · · · σ2N
...

.. .
...

σN2 · · · σNN

 ,

whereσ̂⊤ denotes the transpose ofσ̂. For anN -dimensional vectorz = (z1, z2, . . . , zN)
⊤, we

denote the(N − 1)-dimensional vector(z2, . . . , zN)⊤ by ẑ. For example,̂π = (π2, . . . , πN)
⊤

for π.
From (4.20), the equations forj = 2, . . . , N of (4.11)−(4.13) are written in matrix form as

µ̂− ρi1σ̂ − Σ̂ρ̂i = π̂, i = 1, 2, . . . , I,

whereρi1 = λix
i
1 if i ∈ Nc. SinceΣ̂ is positive definite (i.e., nonsingular), we have

(4.21) ρ̂i = Σ̂
−1 (

µ̂− ρi1σ̂ − π̂
)
, i = 1, 2, . . . , I.

The market clearing conditions (4.14) and (4.15) are rewritten as

(4.22) A1 =
I∑

i=1

ρi1
λi

and

(4.23) â =
I∑

i=1

1

λi

ρ̂i = Σ̂
−1

(
1

λ
µ̂− σ̂

I∑
i=1

ρi1
λi

− 1

λ
π̂

)
,

respectively, where1
λ
=
∑I

i=1
1
λi

as in (3.10). It follows from (4.22) and (4.23) that

(4.24) π̂ = µ̂− λ
(
A1σ̂ + Σ̂â

)
.

Hence, when risks are normally distributed, the pricesπj, j ≥ 2, are not affected from the
transaction costc of asset1. Moreover, the pricesπj, j ≥ 2, are given as the multivariate Esscher
transform (3.20). To see this, we need the following lemma. See Kijima and Muromachi (2001)
for the proof.

Lemma 4.1. Suppose that(X,Z) is normally distributed. Then,

E[f(X)e−λZ ] = E[f(X − λcov(X,Z))]E[e−λZ ]

for anyf(x) for which the expectations exist, wherecovdenotes the covariance operator.

Theorem 4.2. When risks are normally distributed, the pricesπj, j ≥ 2, are given by the
multivariate Esscher transform

πj =
E[Sje

−λZ ]

E[e−λZ ]
; Z =

N∑
k=1

AkSk, j ≥ 2,

that are independent of the transaction costc of asset1.
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Proof. From (4.24), we have

πj = µj − λ
N∑
k=1

σjkAk, j = 2, 3, . . . , N,

which is just the multivariate Esscher transform (3.20) from Lemma 4.1. �
In contrast, the equilibrium allocation depends on the cost, as we show next. From (4.21) and

(4.24),ρ̂i can be represented as a function ofρi1 and given by

(4.25) ρ̂i(ρi1) = λ
(
A1Σ̂

−1
σ̂ + â

)
− ρi1Σ̂

−1
σ̂.

Under the condition (4.25),ϕ1(ρ
i) is also a function ofρi1 and given by

ϕ1(ρ
i
1, ρ̂

i(ρi1)) = µ1 −B − ρi1r,

where we define

B = λ
(
A1σ̂

⊤Σ̂
−1
σ̂ + σ̂⊤â

)
, r = σ11 − σ̂⊤Σ̂

−1
σ̂.

Here, note that, sincer > 0,

Σ−1 =

 1
r

−1
r

(
Σ̂

−1
σ̂
)⊤

−1
r

(
Σ̂

−1
σ̂
)

Σ̂
−1

+ 1
r

(
Σ̂

−1
σ̂
)(

Σ̂
−1
σ̂
)⊤


must be positive definite.

Recalling thatρij = λi(x
i
j + yij), we define

vi(y) = si − λiry, si = µ1 −B − λirx
i
1,

for eachi = 1, . . . , I. In order to find equilibrium prices and equilibrium allocations, it is
enough to determiney11, y

2
1, . . . , y

I
1 andπ1 satisfying

(4.26)


vi(y

i
1) = (1 + c)π1, yi1 > 0,

vi(y
i
1) = (1− c)π1, yi1 < 0,

(1− c)π1 ≤ si ≤ (1 + c)π1, yi1 = 0,

under the market clearing condition for asset1, i.e.,

(4.27)
I∑

i=1

yi1 = 0.

Condition (4.26) can be reformulated as

(4.28) yi1 =


(si − (1 + c)π1)/rλi, si > (1 + c)π1,

(si − (1− c)π1)/rλi, si < (1− c)π1,

0, otherwise,

and the partition(Bc,Sc,Nc) of agents is rewritten as
Bc = {i : si > (1 + c)π1},
Sc = {i : si < (1− c)π1},
Nc = {i : (1− c)π1 ≤ si ≤ (1 + c)π1}.

From (4.28), equation (4.27) is restated as

(4.29)
∑
i∈Bc

1

λi

(si − (1 + c)π1) +
∑
i∈Sc

1

λi

(si − (1− c)π1) = 0.
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We first consider the casec = 0. From (4.28), we have

yi1 =
si − π1

λir
, i = 1, . . . , I.

This together with (4.27) implies

π1

λ
=

I∑
i=1

π1

λi

=
I∑

i=1

si
λi

=
µ1 −B

λ
− rA1.

Hence, we obtain the equilibrium priceπ0
1 for c = 0 as

π0
1 = µ1 −B − λrA1 = µ1 − λ

(
σ11A1 + σ̂⊤â

)
,

which is given by the multivariate Esscher transform by the proof of Theorem 4.2.
We assume thatπ0

1 > 0 in the sequel. We will show that i) an equilibrium priceπc
1 for

c ∈ [0, 1] exists and it is uniquely determined by (4.29) ifBc,Sc ̸= ∅, ii) πc
1 > 0, and iii)

the buying price(1 + c)πc
1 is increasing inc and the selling price(1 − c)πc

1 is decreasing inc.
Then, from (4.28), the trading volumes|yi1| are decreasing as the costc gets large and, from the
definition ofBc andSc, once some agent stops trading, he/she will never return for trading.

Suppose thatc with πc
1 > 0 (e.g.,c = 0) is given. Ify11 = y21 = · · · = yI1 = 0 for thec, then,

for all c′ ∈ [c, 1], πc′
1 = πc

1 satisfies (4.26) and (4.27), and the results i), ii) and iii) hold. Hence,
we assume that

(4.30) there existsyi1 ̸= 0 for c.

Equation (4.29) implies thatπc
1 is uniquely determined by

(4.31) πc
1 =

∑
i∈Bc∪Sc

si
λi

1
λB

+ 1
λS

+ c
(

1
λB

− 1
λS

) , 1

λB

=
∑
i∈Bc

1

λi

,
1

λS

=
∑
i∈Sc

1

λi

.

We note that (4.29) and (4.30) guarantee the existence ofλB andλS, and thatc ∈ [0, 1] together

with λB, λS > 0 also guarantees1
λB

+ 1
λS

+ c
(

1
λB

− 1
λS

)
̸= 0. In a range includingc for which

Bc andSc are unchanged,πc
1 is a continuous function ofc, and hence,(1 + c)πc

1 and(1− c)πc
1

are also continuous functions ofc.
For simplicity, we assume that(1 − c)πc

1 < si < (1 + c)πc
1 for all i ∈ Nc. In this case,

conversely, we can slightly changec preserving the partition(Bc,Sc,Nc). Now, we slightly
increasec to c′. Then, (4.29) forc′ andπc′

1 holds for the sameBc andSc. That is,

(4.32)
1

λB

(1 + c)πc
1 +

1

λS

(1− c)πc
1 =

1

λB

(1 + c′)πc′

1 +
1

λS

(1− c′)πc′

1 =
∑

i∈Bc∪Sc

si
λi

.

Suppose to the contrary that(1 + c)πc
1 ≥ (1 + c′)πc′

1 , which impliesπc
1 > πc′

1 , becausec < c′

andπc
1 > 0. From (4.32), we have0 ≤ (1 − c)πc

1 ≤ (1 − c′)πc′
1 . This is, however, impossible

because(1− c) > (1− c′) ≥ 0 andπc
1 > πc′

1 . Hence, we obtain(1 + c)πc
1 < (1 + c′)πc′

1 , which
implies that(1− c)πc

1 > (1− c′)πc′
1 andπc′

1 > 0.
If there isi ∈ Nc such that(1 − c)πc

1 = si or si = (1 + c)πc
1, then we can show the same

results by redefining the partition(Bc,Sc,Nc) by
Bc = {i : si ≥ (1 + c)πc

1},
Sc = {i : si ≤ (1− c)πc

1},
Nc = {i : (1− c)πc

1 < si < (1 + c)πc
1}.

By repeating the same argument and modifying the partition(Bc,Sc,Nc) until c = 1 or (4.30)
is violated, we can show i), ii) and iii), as desired. We thus have the following results.
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Theorem 4.3.Suppose that all the risky assets are normally distributed. Then, for any costc ∈
[0, 1], an equilibrium priceπc

1 of asset1 exists, and is a unique solution of(4.29)if Bc,Sc ̸= ∅.
The equilibrium allocation isxi

1+ỹi1, whereỹi1 is given by(4.28), for asset1 andxi
j+ỹij = ρ̃ij/λi,

whereρ̃ij are given by(4.25), for assetj, j ≥ 2.

The next seemingly plausible results have been proved in Hara (2013) for the single risky-
asset case with general distribution.

Corollary 4.1. When all the risks are normally distributed, the buying price(1 + c)πc
1 is in-

creasing inc, the selling price(1 − c)πc
1 is decreasing inc, and the trading volumes|yi1| are

decreasing inc in equilibrium. Once some agent stops trading, he/she will never return for
trading.

5. THE EQUILIBRIUM WHEN TRANSACTION COSTS AREVERY SMALL

Suppose that the transaction costscj are so small that all the assets in the market are traded
by all the agents, i.e.,̃yij ̸= 0 or θ̃ij − xi

j ̸= 0. Then, as in the case of no transaction costs, we
can define the Lagurange equations

Li = E

[
ui

(
εi +

N∑
j=0

θijSj

)]
− ℓi

N∑
j=0

(θij − xi
j)πj(1 + cjsgn(θ

i
j − xi

j))

for all i = 1, 2, . . . , I, and the FOC with respect toθij is given by

(5.1) E

[
Sju

′
i

(
εi +

N∑
k=0

θ̃ikSk

)]
− ℓiπj(1 + cjsgn(θ̃

i
j − xi

j)) = 0, ∀i, j.

This is possible, because we assume thatθ̃ij − xi
j ̸= 0 and the sign functionsgn(y) is differen-

tiable excepty = 0.

5.1. CARA-Normal Case. In this subsection, we consider exponential utilities, i.e.,u′
i(x) =

e−λix, i = 1, 2, . . . , I. Then, from (5.1), we derive the following system of simultaneous equa-
tions:

(5.2) E
[
Sje

−λi(εi+
∑N

k=1 θ̃
i
kSk)

]
= πj(1 + cjsgn(θ̃

i
j − xi

j))E
[
e−λi(εi+

∑N
k=1 θ̃

i
kSk)

]
, ∀i, j,

because as beforeℓi = E[e−λi(εi+
∑N

k=1 θ̃
i
kSk)]. Recall thatsgn(y) = 1 if y > 0 andsgn(y) = −1

if y < 0.
In the following, we assume that the pricesπj are strictly positive and denote

Rj =
Sj − πj

πj

, j = 1, 2, . . . , N ; Ri
ε =

εi − πi(εi)

πi(εi)
, i = 1, 2, . . . , I,

whereπi(εi) represents the (unobservable) pricing functional ofεi. In this section, we assume
that the random vector(R1, . . . , RN , R

ε
1, . . . , R

ε
I) defined above is normally distributed.

Following the ordinary arguments, we obtain

εi +
N∑
j=1

θ̃ijSj =
N∑
j=1

πj θ̃
i
jRj + πi(εi)R

ε
i + πi(εi) +

N∑
j=1

θ̃ijπj.

It follows that the FOC (5.2) can be written as

(5.3) E
[
(1 +Rj)e

−λiΓ
i
]
= (1 + cjsgn(ỹ

i
j))E

[
e−λiΓ

i
]
, ∀i, j,
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where

(5.4) Γi ≡
N∑
j=1

πj(x
i
j + ỹij)Rj + πi(εi)R

ε
i ,

becausẽθij = xi
j + ỹij. A direct application of Lemma 4.1 to (5.3) yields

µj − λicov(Rj,Γ
i) = cjsgn(ỹ

i
j), ỹij ̸= 0,

whereµj = E[Rj] denotes the mean rate of return of assetj. It follows from the definition (5.4)
of Γi that

(5.5)
1

λi

(µj − cjsgn(ỹ
i
j)) = πi(εi)σ

ε
ij +

N∑
k=1

πk(x
i
k + ỹik)σkj, ∀i, j,

whereσε
ij = cov(Rj, R

i
ε) andσij = cov(Ri, Rj).

Because we have assumed that the equilibrium exchangesỹij are all nonzero, Equation (5.5)
holds for all i andj. Summing overi in (5.5) and utilizing the market clearing condition in
(2.6), we obtain

(5.6)
1

λ
(µj − cjΓj(ỹj)) = ξj +

N∑
k=1

πkAkσkj, j = 1, 2, . . . , N,

whereξj =
∑

i πi(εi)σ
ε
ij, λ is given in (3.10), andΓj(yj) is defined by

(5.7) Γj(yj) =
I∑

i=1

λ

λi

sgn(yij), j = 1, 2, . . . , N,

with yj = (y1j , y
2
j , . . . , y

I
j ). The quantitycjΓj(ỹj) is interpreted as the weighted sum of the

(signed) trading costs of assetj in equilibrium. Note that, since−1 ≤ sgn(y) ≤ 1, we obtain

(5.8) −1 < Γj(yj) < 1, j = 1, 2, . . . , N,

for anyyj. The inequalities in (5.8) are strict, because the market clearing condition cannot
hold otherwise.

Whenỹij are all nonzero, equations in (5.6) can be written in matrix form as

1

λ
(µ− Γ)− ξ = Σ diag(Aj)π,

whereµ = (µj), Γ = (cjΓj(ỹj)), ξ = (ξj) andπ = (πj) areN -dimensional vectors, where
Σ = (σij) is anN ×N symmetric matrix, and wherediag(Aj) denotes the diagonal matrix of
orderN with diagonal elementsAj. Assuming that the covariance matrixΣ is positive definite
(hence, it is invertible), the above equation is solved as

(5.9) π =
1

λ
diag(A−1

j )Σ−1(µ̃− λξ), µ̃ = µ− Γ,

whereµ̃ = (µ̃j), µ̃j = µj − cjΓj(ỹj), denotes the vector ofcost-adjustedmean rates of return
in equilibrium. Hence, the equilibrium prices are written formally as

(5.10) πj =
1

λAj

Σ−1
j (µ̃− λξ), j = 1, 2, . . . , N,

whereΣ−1
j denotes thejth row vector of the inverse matrixΣ−1.
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In the following, we denote the equilibrium price without transaction costs (i.e.,cj = 0 for
all j) by πNT

j for assetj. In this setting, it is readily proved that, even in the presence of residual
risksεi, the equilibrium prices are given by

(5.11) πNT
j =

1

λAj

Σ−1
j (µ− λξ) =

E[Sje
−λZ ]

E[e−λZ ]
, j = 1, 2, . . . , N,

the multivariate Esscher transform ofSj, where

(5.12) Z =
I∑

i=1

Xi =
N∑
j=1

AjSj +
I∑

i=1

εi

stands for the aggregated risk.
Note that, in the presence of transaction costs, while the mean rates of return are adjusted,

the covariance matrix is unchanged. Hence, comparing (5.10) with (5.11), we conclude the
following.

Theorem 5.1.Suppose that the transaction costscj are so small that the optimal exchangesỹij
are all nonzero. Then, the equilibrium price of assetj in the presence of transaction costs is
given by the multivariate Esscher transform ofS̃j, i.e.,

(5.13) πj =
E[S̃je

−λZ̃ ]

E[e−λZ̃ ]
, Z̃ =

N∑
j=1

AjS̃j +
I∑

i=1

εi,

whereS̃j denotes the asset price with the cost-adjusted mean rate of return,µ̃j = µj−cjΓj(ỹj).

Note that (5.10) can be written alternatively as

πj =
1

λAj

Σ−1
j (µ− λξ)− 1

λAj

Σ−1
j Γ = πNT

j − 1

λAj

Σ−1
j Γ, j = 1, 2, . . . , N.

Here, the quantitiesΓj(ỹj) can be positive or negative, depending on the optimal risk exchanges
ỹij, which are assumed to be nonzero in Theorem 5.1. Hence, the equilibrium prices in the
presence of transaction costs can be higher or lower than those without transaction costs.

Next, the equations in (5.5) can be written in matrix form as

1

λi

(µ− γi)− ξi = Σ diag(xi
j + ỹij)π,

whereγi = (cjsgn(ỹ
i
j)) andξi = (πi(εi)σ

ε
ij) areN -dimensional vectors. Substitution of the

equilibrium price (5.9) into the above equation yields

1

λi

Σ−1(µ− γi − λiξ
i) = diag(xi

j + ỹij)
1

λ
diag(A−1

j )Σ−1(µ− Γ− λξ).

It follows that the equilibrium allocation is formally given as

(5.14) (xi
j + ỹij)Sj =

λ

λi

AjSj

Σ−1
j (µ− γi − λiξ

i)

Σ−1
j (µ− Γ− λξ)

, j = 1, 2, . . . , N.

Recall from (3.19) that the partλ
λi
AjSj corresponds to the equilibrium allocation when there

are no transaction costs and residual risks.
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5.2. Pricing of derivative securities. Suppose that there are derivative securities (written on
some traded assets) in the market and that the equilibrium pricing formula (5.13) is valid. In this
subsection, we show that the risk-neutral pricing method holds true for the pricing of derivative
securities under some conditions.

Consider, as an example, a call optionY with strike priceK written on assetSj. That is, we
denote the payoff by

Y = (Sj −K)+ = f(Rj), f(x) = (πj(1 + x)−K)+,

where(x)+ = max{x, 0} andRj = (Sj−πj)/πj. According to the equilibrium pricing formula
(5.13), the price of the call option is given by

(5.15) π(Y ) =
E[Ỹ e−λZ̃ ]

E[e−λZ̃ ]
,

whereỸ denotes thecost-adjustedpayoff of the call option.
Suppose that̃Y = f(R̃j) and, instead of (5.15), the call option price is given by

(5.16) π(Y ) =
E[f(R̃j)e

−λZ̃ ]

E[e−λZ̃ ]
,

whereR̃j denotes the cost-adjusted rate of return ofSj. Note that the transaction costs to
trade derivative securities are usually negligible, because agents must pay the option premiums.
However, since the transaction costs of other assets affect the option price in equilibrium, the
formulaỸ = f(R̃j) is merely an assumption in our framework. This assumption states that the
transaction costs of other assets do not affect the price of the derivative.

Suppose further that there are so many assets traded in the market, and so the aggregated risk
Z can be approximated by a normally distributed random variable.7 Since thecost-adjustedrate
of returnR̃j is normally distributed by our early assumption, i.e.,

R̃j = µ̃j + σjwj,

wherewj denotes a standard normal variate, it then follows from (5.16) and Lemma 4.1 that

(5.17) π(Y ) = E [f(µ̃j + σjwj − λcov(Rj, Z))] .

However, in this setting, the price ofSj must be given by

πj = E [πj(1 + µ̃j + σjwj − λcov(Rj, Z))] ;

hence, we havẽµj = λcov(Rj, Z). It follows that the call option price is given by

(5.18) π(Y ) = E [(πj(1 + σjwj)−K)+] .

This is so, because the risk premiumλcov(Rj, RZ) in (5.16) is already reflected in the priceπj

of the underlying assetSj in equilibrium. This result is important for practice, because we do
not need to estimate the unknown (unobservable) parametersλ andcov(Rj, RZ) for the pricing
of derivative securities, provided that the above assumptions hold.

Now, recall thatex ≈ 1 + x for x small in the magnitude. Hence, if the volatilityσj is small
enough, the following approximation is justified:

(5.19) 1 + σjwj ≈ eσjwj−σ2
j /2,

where the termσ2
j/2 is subtracted to have the same mean in both sides. In this case, from (5.18),

we have
π(Y ) = E[(πje

σjwj−σ2
j /2 −K)+].

7See Wang (2003) for the justification of this assumption.
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Finally, it is readily shown that the call option price is given by

π(Y ) = πjΦ(d)−KΦ(d− σj), d =
log(πj/K)

σj

+
σj

2
,

the famous Black–Scholes formula (1973) withrf = 0 andT = 1.

6. COCLUDING REMARKS

In this paper, we examine the Bühlmann’s equilibrium pricing model (1980) in the presence
of proportional transaction cost. It is shown that an equilibrium exists under some mild con-
ditions and the multivariate Esscher transform (1.2) is an appropriate probability transform for
the pricing of insurance risks even in the market with transaction costs.

In the simplest case that only asset 1 is traded with transaction cost (the other assets are
traded with no transaction costs), we derive an explicit form of equations to be solved for the
equilibrium. In particular, for the CARA-normal case, it is shown that an equilibrium priceπc

1

of asset1 with transaction costc is a unique solution of a linear equation (4.29) and the prices
of the other assets are given by the multivariate Esscher transform. In this case, as the costc
increases, the buying price(1+ c)πc

1 is increasing, the selling price(1− c)πc
1 is decreasing, and

the trading volumes|yi1| are decreasing in equilibrium.
When the transaction costs are so small, we show that the equilibrium asset prices are given

by the multivariate Esscher transform for the CARA-normal case. In this case, while the mean
rates of return of the assets are adjusted by the transaction costs, the volatilities of the assets are
not affected by them in equilibrium.

When there is a derivative security in the market, we show that the risk-neutral pricing method
is possible under the assumption that the transaction costs of other assets do not affect the price
of the derivative. However, in our framework, the transaction costs of other assetsdo affect
the option price in equilibrium and, hence, the risk-neutral method may not be applicable in the
presence of transaction costs. It is of great interest to investigate this problem within the general
equilibrium framework as a future research.
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