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Abstract

This paper investigates how a buyer and a seller exchanging two goods should write
the contract, where the seller makes sequences of unobservable relation-specific invest-
ments and the buyer privately learns valuations for goods which are stochastically in-
fluenced by the investments and these two types of asymmetric information cause in-
efficiency in trading. Three types of contract structures are possible. In a dynamic
contract, the goods are traded sequentially and the order for the second good can be
canceled to restore efficiency for the first good. In separate contracts, two goods are
treated independently, whereas the two goods are bundled as a single good in bun-
dled contracts. It will be shown that the dynamic contract is suboptimal and that the
second-best contract is either a separate or a bundle contract, depending on the costs
of investments.

Keywords: bilateral trading, cooperative investment, dynamic contract, hidden ac-
tion, hidden information.
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1 Introduction

It is efficient for a buyer (him) to procure goods from a seller (her), because the seller usually
has a technical advantage over the buyer in production. This efficiency is improved by a spe-
cific investment that creates value inside the relationship. Often, the seller’s relation-specific
∗I have benefited from the comments of Yasunari Tamada, Hideshi Itoh, and seminar participants at

Hitotsubashi University, Ngagoya University, the Contract Theory Workshop, the Institute of Economics
Research, Kyoto University, the Asian Meetings of the Econometric Society 2013, and the Autumn Meeting
of Japan Economic Association 2013. I am solely responsible for any remaining errors. This research is
partially supported by the International Joint Research Center of Advanced Economic Theory, the Institute
of Economics Research, Kyoto University.
†College of Economics, Ritsumeikan University, 1-1-1 Noji Higashi, Kusatsu, Shiga 525-8577, Japan,

e-mail: kazhori@fc.ritsumei.ac.jp

1



investment directly benefits the buyer, in which case the investment is called cooperative.1

However, a hold-up problem arises with cooperative investment.2

Consider the situation of a buyer ordering a custom-built dining table set (one table
and one chair) from a seller. The quality of the set depends on the quality of the materials
and the seller’s effort. These are components of the seller’s cooperative investment, which
stochastically improve the buyer’s valuation of the dining set. However, it is difficult for
the buyer to tell the quality of the materials used to create the dining set or how carefully
the seller built it. Thus, the level of the investment is the seller’s private information. Also,
even if the set looks beautiful, it not might be what the buyer was looking for. Thus, the
valuation of the dining set is the buyer’s private information.

Efficiency is achieved when the seller invests and the buyer reports his valuation of the
dinning set truthfully so that only a valuable dining set is delivered to him. However, when
both the seller’s investment and the buyer’s valuation are their private information, there is
a hold-up problem even when the buyer and the seller can sign an enforceable contract. This
hold-up problem under asymmetric information arises because there is a conflict between
the incentive motivating the seller to invest and that motivating the buyer to tell the truth.
To induce the buyer’s truth-telling, the payment amount made by the buyer to the seller
when the dining set is traded between them should be constant, whereas payment should
be made only when the value of the dining set is high to provide sufficient investment
incentive. Because the parties cannot satisfy the efficiency and the incentive requirements
simultaneously, they must give up trading low-value dining set to provide the investment
incentive, even at the cost of the surplus it would have created. Thus, there is a trade-off
between trade efficiency and the investment.

Schmitz (2002a), Hori (2006), and Zhao (2008a) have studied this hold-up problem
in a simple situation.3 In their analysis, the parties can invest and trade only in single
goods. It remains unclear whether the hold-up problem is still inevitable in a more general
environment. The current paper extends their analysis to a multiple goods situation, for
example, handling the chair (good 1) and the table (good 2) separately. In the separate case,
the seller and buyer can invest and trade in the table after investing and trading in the chair.
This sequential setting may create additional incentives from their mutual monitoring, as
canceling the order for the table when one party suspects the other of wrongdoing during
dealing the chair becomes possible. This paper begins by considering whether dynamic
contracts, which utilize this sequential setting, can solve the hold-up problem.

It will be shown that dynamic contracts cannot improve the efficiency of the transaction.
In order to motivate investment in the chair (good 1), the parties have to give up trading the
chair, burn some money which the seller could have received in return for the chair, or cancel
the order for the table (good 2) when the value of the chair is low. When the order for the

1Cooperative investment is unrelated to cooperative behavior. Although this wording may be inappro-
priate, it has already become common in this literature.

2It is often noted that this problem occurs when contracts are incomplete (Klein et al., 1978 and Che
and Hausch, 1999), but the problem may also exist even when contracts are complete.

3Under a selfish investment model, where the seller’s investment stochastically determines the seller’s
cost, an efficient mechanism exists, as in Konakayama et al. (1986), Rogerson (1992), and Schmitz (2002b).
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table (good 2) is cancelled, the total surplus from the table is sacrificed and the buyer cannot
receive the benefit from trading the table. In the buyer’s truth-telling condition for the chair
(good 1), his expected benefit from the table (good 2) substitutes for his monetary payment
for the chair. In order to maintain the buyer’s incentive compatibility for the chair (good
1), his monetary payment for the chair must be reduced by his benefit from the table (good
2). Also, cancellation of the order for the table removes the seller’s benefit from trading the
table. The seller, consequently, has to give up both the buyer and seller’s benefit from the
table, and retains the investment incentive compatibility for the chair (good 1) in order that
the seller cannot receive a benefit equal to the total surplus from trading. Burning one unit
of money creates one unit of incentive and destroys one unit of total welfare. The marginal
ratio of the incentive to the welfare loss from the cancellation of the order for the table and
that from the burning of money are the same. On the other hand, the investment incentive
for the chair (good 1) created by giving up the chance to trade a low-value chair is affected
by the nature of information rent. The removal of the chance to trade a low-value chair
creates an incentive of magnitude equal to the value of a high-value chair while decreasing
total welfare by an amount equal to the value of the low-value chair, which is more efficient
than canceling the order for the table or burning money. Since parties always choose not to
cancel the order for the table, the distinction of the contract being dynamic is not utilized
in the solving of the hold-up problem.

Fuchs (2007) and Chan and Zheng (2011) have considered similar problems. They con-
sidered models in which a principal hires an agent for multiple periods. In each period, the
agent makes a hidden investment which stochastically affects output, which the principal
privately observes. They showed the inefficiency of the result and the optimality of the con-
tracts in which the agent is never fired. Nevertheless, their optimal contract is not unique:
the contract which fires the agent can be equivalently optimal.4 In the model that consid-
ered herein, the optimal contract is unique. This difference arises because the principal can
utilize the output without trade in their model. The principal and the agent consequently
cannot be motivated by giving up the chance to trade the goods instead of burning money or
by being fired. The current analysis shows that the inefficiency resulting from asymmetric
information cannot be mitigated even by contracts that can control more variables, such as
the chance to trade.

However, there are dynamic solutions that solve the contractual incompleteness hold-up
problem.5 Che and Sákovics (2004) have considered an alternative bargaining situation.
They showed that first-best outcomes can be achieved when additional bargaining and in-
vestment allows the parties to reach agreement. Neher (1999) showed that hold-up can be
overcome when the investor can build up collateral by sequential investment. Pitchford and

4Fuchs (2007) showed the optimality of review contracts in which the agent is fired if his performance is
not satisfactory after reviewing several periods in the infinite periods case. Its uniqueness is not discussed.

5The results that will be presented herein are different from folk theorems, which are that efficiency results
when a same stage game is played infinitely many times. Telser (1980) and Klein and Leffler (1981) showed
that the contractual incompleteness hold-up problem can be solved in the case of repeated interaction. When
the same stage game with a hidden action and hidden information is repeated infinitely, the existence of
contracts induces efficient action and trade, as has been proved by Fuchs (2007).
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Snyder (2004) showed that sequential investment creates a dynamic threat and solves the
hold-up problem.

Also of interest are the properties of second-best contracts. Contracts that do not utilize
a sequential setting are either separate or bundled contracts. Separate contracts treat the
chair and the table separately, whereas bundled contracts treat the table and the chair as
a dining table set. It will be shown that the optimal bundled contract is superior to the
optimal separate contract when the investment cost is small. In such a case, the bundled
contract utilizes two effects. The first is the spillover effect, that when two goods are bundled
together, the incentive for the seller to make a hidden investment in one good also creates
an incentive for the other good. This spillover effect is similar to what Laux (2001) and
Zhao (2008b) have considered in multi-task moral hazard problems,6 although the agent is
rewarded only if he demonstrates good performance in every task in their optimal contract,
while the seller is punished only if all goods have poor quality in the current task because
their objective is to minimize the reward to the agent whereas the goal in the problem
examined in the current study is to minimize the loss of total welfare. The second effect
utilized in the bundled contract is the information rent effect, that the investment incentive
created by reducing trade is more effective than burning money, due to information rent.

When the investment cost is small, the bundled contract is the optimal one because the
seller can be motivated to invest by reducing trade, and this involves both the spillover
and information rent effects. When the investment cost is large, a reduction of trade is
not enough to motivate the seller to invest in the bundled contract and some money has to
be burnt. The bundled contract consequently involves only the spillover effect, while the
separate contract involves only the information rent effect. The separate contract is superior
to the bundled contract when its information rent effect sufficiently overwhelms the bundled
contract’s spillover effect.

Dana (1993) and Mookherjee and Tsumagari (2004) have also argued the superiority of
bundled contracts over separate contracts when goods are substitutes and private informa-
tion is distributed independently, which is the case considered herein.7 Their analyses are,
however, different from the one conducted herein in that their analyses include no hidden
investment and it is the conflict between the incentive compatibility and the participation
constraints that creates a problem. Consequently, they focused on the effects of information
rent on monetary transfers between a seller and a buyer. The analysis performed herein, on
the other hand, focuses on the effects of information rent on the marginal monetary transfers
which affect the seller’s investment incentive.

In the remainder of the paper, first Section 2 lays out the model and analyzes dynamic
contracts, bundled contracts, and separate contracts, and then Section 3 concludes.

6The other notable examples in the literature that focus on this problem are Holström and Milgram
(1991), Itoh (1992), and Che and Yoo (2001), which considered the case when signals from multiple tasks
are stochastically correlated, and Schmitz (2005), which considered the case when tasks are performed
sequentially.

7Dana (1993) also showed the superiority of the separate contract when the private information is posi-
tively correlated. Baron and Besanko (1992), Gilbert and Riordan (1995), and Mookherjee and Tsumagari
(2004) studied the optimal contract when goods are compliments.
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2 Model and Analysis

Consider a buyer contracting for two goods, i = {1, 2}, supplied by a seller. When they sign
the contract, the buyer’s valuation of each good, θi, is uncertain and both parties only know
that it will be either θi or θ̄i (> θi > 0), distributed independently. Assume for simplicity
that the seller’s valuation of each good is zero and that the seller’s investment stochastically
determines θi. When the seller invests in good i, θ̄i is realized with probability phi , while it
is realized with lower probability pli

(
< phi

)
when she does not invest. Although investment

increases the value of goods, the seller privately incurs cost ei > 0.
Both parties are risk neutral. The buyer has a linear preference over the value of goods

and monetary transfer. The seller has a linear preference over monetary transfer and the
investment cost. For simplicity, there is no time discounting.

Total surplus is the sum of the buyer’s surplus and the seller’s surplus. When total
surplus is maximized, the solution is most efficient. There are two kinds of efficiency. First,
the goods should always be produced and sold to the buyer because this produces an ex
post surplus. Also, when θ̄i − θi ≥ ei

phi −pli
, the seller should invest to increase the ex ante

total surplus. The first-best outcome is realized when both efficiencies are achieved.
The efficiency attainable is unknown, when there are the following two kinds of infor-

mation asymmetry. First, investment is the seller’s private information. Second, only the
buyer can know the realized value of each good. Thus, the contract cannot be contingent
on such private information, but only on messages between the seller and the buyer.

Contracts

When there are multiple goods, the contract can be either dynamic or bundled. In dynamic
contracts, the first and second goods are traded sequentially and the parties can cancel the
order for the second good after trading the first good. This class of contracts includes one
such that the order for the second good is never cancelled and contractual provisions for
the two goods are independent of each other. Such a contract is equivalent to a separate
contract in which two goods are traded separately. In bundled contracts, multiple goods are
treated as one bundled good.

2.1 Dynamic Contracts

In dynamic contracts, the parties trade goods sequentially. The buyer and the seller sign
a contract at time 0. The buyer pays a non-contingent (fixed) payment to the buyer at
that time.8 Because this non-contingent payment does not have any effect on incentive
constraints at subsequent times, it is not explicitly considered in the present analysis. At
time 1, the seller chooses to invest in good 1 or not and the buyer learns its value, θ1. After
this sequence (say, at time 1.5, i.e., between time 1 and time 2), the buyer sends message

8Participation constraints are not considered. However, the parties can appropriately choose non-
contingent payment to satisfy their participation constraints whenever a contract creates a net total surplus
because they have symmetric information at time 0; cf. Myerson and Satterthwaite (1983).
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The buyer learns realized ✓1

The buyer sends message µ1

The buyer receives goods 1 w.p. q1 (µ1)
and pays t1 (µ1) to the seller
Money z1 (µ1) burnt

The seller chooses e1

e

ph � pl

Welfare loss

�
1 � ph

�
✓M

2
�
1 � ph

�
✓

✓̄

�
1 � ph

�
✓L

✓M

�
1 � ph

�
Separate

Bundled

Time 1 Time 2

�
1 � ph

�
✓̄
�
✓̄ � ✓

�

✓̄ � 2✓

Move on to time 2 w.p. � (µ1)

Figure 1: Timeline.

µ1. A contract describes the probability that good 1 is sold to the buyer, q1 (µ1) ∈ [0, 1],
with payment to the seller, t1 (µ1) ∈ R, contingent on the message.9 Part of the payment is
burned before the seller receives it, z1 (µ1) ∈ R. A contract also specifies whether to cancel
the order for goods 2, δ (µ1) ∈ [0, 1]. When the order for goods 2 is canceled, δ (µ1) = 0,
the contract is terminated after time 1.5. When they do not cancel, δ (µ1) = 1, they move
on to time 2, and the seller chooses to invest in good 2 and the buyer learns its value, θ2.
At time 2.5, the buyer sends message µ2. Contingent on µ1 and µ2, good 2 is traded with
probability q2 (µ1, µ2) ∈ [0, 1], and the buyer pays t2 (µ1, µ2) ∈ R to the seller and part of it
is burned, z2 (µ1, µ2) ∈ R, as specified in the contract.

The contract can also be contingent on a message from the seller, but this message
cannot be utilized, because the seller’s utility does not satisfy the single-crossing property
on investment level. Without loss of generality, the current analysis is restricted to truth-
telling contracts from a version of the revelation principle.

When the investment cost is high, it is optimal not to induce investment. Throughout
this paper, investment cost is assumed to be sufficiently small,

Assumption 1. (
phi − pli

) (
θ̄i − θi

)
θ̄i(

phi − pli
)
θ̄i +

(
1− phi

)
θi
>

ei

phi − pli
.

This assumption guarantees that the following separate contract induces investment.
A contract such that δ (µ1) = 1 for all µ1 and q2 (µ1, µ2), t2 (µ1, µ2), and z2 (µ1, µ2) are
constant with respect to µ1 is equivalent to a separate contract, in which good i is traded to
the buyer with probability q̂i (µi) ∈ [0, 1], with payment to the seller, t̂i (µi) ∈ R, and money
ẑi (µi) ∈ R burnt, contingent on the message. The optimal separate contract is duplication

9When q1 and t1 are contingent on µ2, this is equivalent to a bundled contract. See footnote 11.
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of the optimal contract in the single good case which has been analyzed by Schmitz (2002a),
Hori (2006), and Zhao (2008).

Lemma 1. (Proposition 2 of Schmitz (2002a)) The optimal separate contract is

q̂i
(
θ̄i
)

= 1,

q̂i (θi) = 1− ei(
phi − pli

)
θ̄i
,

ẑi
(
θ̄i
)

= ẑi (θi) = 0,

and it induces each investment.10

Dynamic contracts are now analyzed. First, consider the problem of maximizing total
welfare from time 2 onward.

V (µ1) ≡ ph2
{
θ̄2q2

(
µ1, θ̄2

)
− z2

(
µ1, θ̄2

)}
+
(

1− ph2
)
{θ2q2 (µ1, θ2)− z2 (µ1, θ2)} − e2.

At time 2.5, the buyer reports truthfully when

θ2q2 (µ1, θ2)− t2 (µ1, θ2) ≥ θ2q2

(
µ1, θ̄2

)
− t2

(
µ1, θ̄2

)
,

θ̄2q2

(
µ1, θ̄2

)
− t2

(
µ1, θ̄2

)
≥ θ̄2q2 (µ1, θ2)− t2 (µ1, θ2) .

These conditions are equivalent to

θ̄2

{
q2

(
µ1, θ̄2

)
− q2 (µ1, θ2)

}
≥ t2

(
µ1, θ̄2

)
− t2 (µ1, θ2) ≥ θ2

{
q2

(
µ1, θ̄2

)
− q2 (µ1, θ2)

}
, (1)

and imply q2

(
µ1, θ̄2

)
≥ q2 (µ1, θ2).

At time 2, the seller invests e2 when

ph2
{
t2
(
µ1, θ̄2

)
− z2

(
µ1, θ̄2

)}
+
(

1− ph2
)
{t2 (µ1, θ2)− z2 (µ1, θ2)} − e2

≥ pl2
{
t2
(
µ1, θ̄2

)
− z2

(
µ1, θ̄2

)}
+
(

1− pl2
)
{t2 (µ1, θ2)− z2 (µ1, θ2)}

⇔ t2
(
µ1, θ̄2

)
− t2 (µ1, θ2)− z2

(
µ1, θ̄2

)
+ z2 (µ1, θ2) ≥ e2

ph2 − pl2
.

The left-hand side of this condition is the investment incentive induced by this contract.
From (1), the upper bound of the investment incentive is

θ̄2

{
q2

(
µ1, θ̄2

)
− q2 (µ1, θ2)

}
− z2

(
µ1, θ̄2

)
+ z2 (µ1, θ2) ≥ e2

ph2 − pl2
. (2)

This condition implies that investment cannot be induced when trade is efficient, q2

(
µ1, θ̄2

)
=

q2 (µ1, θ2) = 1 and z2

(
µ1, θ̄2

)
= z2 (µ1, θ2) = 0. The trade-off between investment and ex

post efficiency exists at time 2 and the first-best outcome cannot be achieved.

10Note that θ̄i − θi >
(phi −p

l
i)(θ̄i−θi)θ̄i

(phi −pli)θ̄i+(1−phi )θi
.
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Lemma 2. The contract maximizing V (µ1) chooses q2

(
µ1, θ̄2

)
= 1, q2 (θ2) = 1− e2

(ph2−pl2)θ̄2
,

and z2

(
µ1, θ̄2

)
= z2 (µ1, θ2) = 0.

Lemma 2 follows straightforwardly from Lemma 1. This analysis shows that total welfare
in this case is bounded from above. Let V be the set of V (µ1), which is implementable.
Note that this set is independent of θ1 because θ1 and θ2 are independent and supV ≥ 0.

Next, consider the problem at time 1. Let

V B (µ1) ≡ ph2
{
θ̄2q2

(
µ1, θ̄2

)
− t2

(
µ1, θ̄2

)}
+
(

1− ph2
)
{θ2q2 (µ1, θ2)− t2 (µ1, θ2)} ,

and

V S (µ1) ≡ ph2
{
t2
(
µ1, θ̄2

)
− z2

(
µ1, θ̄2

)}
+
(

1− ph2
)
{t2 (µ1, θ2)− z2 (µ1, θ2)} − e2,

be the buyer’s and the seller’s expected utilities from time 2 onwards, after the buyer reports
µ1 at time 1.5, so that V (µ1) = V B (µ1) + V S (µ1).

The buyer reports truthfully at time 1.5 when

θ1q1 (θ1)− t1 (θ1) + δ (θ1)V B (θ1) ≥ θ1q1

(
θ̄1

)
− t1

(
θ̄1

)
+ δ

(
θ̄1

)
V B

(
θ̄1

)
,

θ̄1q1

(
θ̄1

)
− t1

(
θ̄1

)
+ δ

(
θ̄1

)
V B

(
θ̄1

)
≥ θ̄1q1 (θ1)− t1 (θ1) + δ (θ1)V B (θ1) ,

which can be rewritten as

θ̄1

{
q1

(
θ̄1

)
− q1 (θ1)

}

≥
{
t1
(
θ̄1

)
− δ

(
θ̄1

)
V B

(
θ̄1

)}
−
{
t1 (θ1)− δ (θ1)V B (θ1)

}

≥ θ1

{
q1

(
θ̄1

)
− q1 (θ1)

}
. (3)

This condition implies that q1

(
θ̄1

)
≥ q1 (θ1).

The seller invests at time 1 when

ph1
{
t1
(
θ̄1

)
− z1

(
θ̄1

)
+ δ

(
θ̄1

)
V S
(
θ̄1

)}
+
(

1− ph1
){

t1 (θ1)− z1 (θ1) + δ (θ1)V S (θ1)
}
− e1

≥ pl1
{
t1
(
θ̄1

)
− z1

(
θ̄1

)
+ δ

(
θ̄1

)
V S
(
θ̄1

)}
+
(

1− pl1
){

t1 (θ1)− z1 (θ1) + δ (θ1)V S (θ1)
}
.

Rewrite this condition as
{
t1
(
θ̄1

)
− z1

(
θ̄1

)
+ δ

(
θ̄1

)
V S
(
θ̄1

)}
−
{
t1 (θ1)− z1 (θ1) + δ (θ1)V S (θ1)

}
≥ e1

ph1 − pl1
.

From this condition and (3), the upper bound on this investment incentive is

θ̄1

{
q1

(
θ̄1

)
− q1 (θ1)

}
− z1

(
θ̄1

)
+ z1 (θ1) + δ

(
θ̄1

)
V
(
θ̄1

)
− δ (θ1)V (θ1) ≥ e1

ph1 − pl1
. (4)

Under constraint (4) and V (·) ∈ V, consider the optimal contract that maximizes total
welfare. Here the analysis is restricted to that of the investment induced at time 1. If
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investment cannot be induced at time 1, then dynamic contracts are dominated by the
optimal separate contract under Assumption 1.

The problem considered here is

max
q1(·),δ(·),V (·)

ph1
{
θ̄1q1

(
θ̄1

)
− z1

(
θ̄1

)
+ δ

(
θ̄1

)
V
(
θ̄1

)}

+
(

1− ph1
)
{θ1q1 (θ1)− z1 (θ1) + δ (θ1)V (θ1)} − e1,

subject to (4) and V (·) ∈ V.
Proposition 1. The optimal dynamic contract is

q1

(
θ̄1

)
= q2

(
µ1, θ̄2

)
= δ

(
θ̄1

)
= δ (θ1) = 1,

q1 (θ1) = 1− e1(
ph1 − pl1

)
θ̄1
,

q2 (µ1, θ2) = 1− e2(
ph2 − pl2

)
θ̄2
,

z1

(
θ̄1

)
= z1 (θ1) = z2

(
µ1, θ̄2

)
= z2 (µ1, θ2) = 0,

for all µ1 ∈
{
θ1, θ̄1

}
, which is equivalent to the optimal separate contract.

Proof. If q1

(
θ̄1

)
and δ

(
θ̄1

)
V
(
θ̄1

)
are large and z1

(
θ̄1

)
is small, then constraint (4) is satis-

fied and the outcome is an increase in total welfare. It is optimal to set q1

(
θ̄1

)
= δ

(
θ̄1

)
= 1

and z1

(
θ̄1

)
= 0 and to set δ

(
θ̄1

)
V
(
θ̄1

)
as large as possible. On the other hand, the con-

straint is met when q1 (θ1) and δ (θ1)V (θ1) are small or z1 (θ1) is large, which results in a
decrease in total welfare. The marginal effects on (4) and total welfare change due to reduc-
ing q1 (θ1) are θ̄1 and −

(
1− ph1

)
θ1. Those from reducing δ (θ1)V (θ1) are 1 and −

(
1− ph1

)
,

which are identical to those from increasing z1 (θ1). Because the rate of decrease of total
welfare with respect to increases in the investment incentive is lower when reducing q1 (θ1)
than when reducing δ (θ1)V (θ1) and/or increasing z1 (θ1), the optimal dynamic contract
should reduce q1 (θ1) before reducing δ (θ1)V (θ1) and/or increasing z1 (θ1).

Note that, when q1 (θ1) = z1 (θ1) = z1

(
θ̄1

)
= 0, q1

(
θ̄1

)
= δ

(
θ̄1

)
= δ (θ1) = 1, and

V
(
θ̄1

)
= V (θ1) = supV, the left-hand side of (4) is θ̄1. Because

θ̄1 > θ̄1 − θ1 >
e1

ph1 − pl1
,

where the last inequality follows from Assumption 1, investment at time 1 can be induced
by reducing solely q1 (θ1).

To make δ
(
θ̄1

)
V
(
θ̄1

)
and δ (θ1)V (θ1) as large as possible, either V

(
θ̄1

)
and V (θ1)

should be positive and δ
(
θ̄1

)
= δ (θ1) = 1, or 0 ≥ δ

(
θ̄1

)
V
(
θ̄1

)
and 0 ≥ δ (θ1)V (θ1) should

hold. The second-best contract is q1

(
θ̄1

)
= δ

(
θ̄1

)
= δ (θ1) = 1, q1 (θ1) = 1 − e1

(ph1−pl1)θ̄1
,

z1

(
θ̄1

)
= z1 (θ1) = 0, and V

(
θ̄1

)
and V (θ1) as large as possible. Lemma 1 gives the optimal

contract at time 2.
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Incentive Total welfare Marginal ratio
q1 (θ1) −θ̄1

(
1− ph1

)
θ1

(
1− ph1

)
θ̄1
θ1

δ (θ1)V (θ1) −1
(
1− ph1

) (
1− ph1

)

z1 (θ1) 1 −
(
1− ph1

) (
1− ph1

)

Table 1: Marginal effects on the investment incentive and total welfare.

From the preceding analysis, it is clear that the investment incentive at time 1 is provided
only by reducing trade for good 1, rather than by canceling the order for good 2 or burning
money. When good 1 valued at θ1 is not traded, payment is θ̄1 less than if traded and
an investment incentive of size θ̄1 is induced by sacrificing trade efficiency by θ1; in this
case, the losses in the investment incentive and total welfare created by canceling the order
for good 2 or burning money are equal. The marginal ratio of the incentive to the welfare
loss is

(
1− ph1

)
θ̄1
θ1

for q1 (θ1), while that for δ (θ1)V (θ1) and z1 (θ1) are
(
1− ph1

)
. Inducing

the investment incentive by canceling the order for good 2 or burning money is inefficient
because of information rent.

The optimal dynamic contract is equivalent to separate contracts in which each good is
traded separately. A dynamic contracts arrangement cannot improve efficiency.

2.2 Bundled Contracts

This subsection describes bundled contracts in which two goods are bundled as one. A
bundled contract specifies the probability, q̃ (·), that the bundle of the goods will be traded,
with payment by the buyer to the seller of t̃ (·) and money burnt z̃ (·). The buyer can send
multiple messages at different times; however, it is without loss of generality to consider only
contracts where the buyer sends no more than one message evaluating the bundle because
the buyer cares only about the value of the bundle, θ1 + θ2, and his payment.11

For simplicity, it is assumed that θ̄1 = θ̄2 ≡ θ̄ and θ1 = θ2 ≡ θ. The bundle value is
either θH , θM , or θL, where θH ≡ 2θ̄, θM ≡ θ̄ + θ, and θL ≡ 2θ. It is also assumed that
ph ≡ ph1 = ph2 , pl ≡ pl1 = pl2, and e ≡ e1 = e2.

An optimal bundled contract that induces both investments is considered.12 The optimal
11A version of separate contract q1 (µ1, µ2) , t1 (µ1, µ2) , q2 (µ1, µ2) , t2 (µ1, µ2) is equivalent to a bundled

contract such that

(θ1 + θ2) q̃ (µ1, µ2) ≡ θ1q1 (µ1, µ2) + θ2q2 (µ1, µ2) ,

t̃ (µ1, µ2) ≡ t1 (µ1, µ2) + t2 (µ1, µ2) .

In this contract, δ (·) = 1.
12Bundled contracts inducing only one investment are discussed in Appendix.
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bundled contract maximizes total welfare,
(
ph
)2
{θH q̃ (θH)− z̃ (θH)}+ 2ph

(
1− ph

)
{θM q̃ (θM )− z̃ (θM )}

+
(

1− ph
)2
{θLq̃ (θL)− z̃ (θL)} − 2e,

given the following constraints.
First, the buyer’s incentive compatibility constraints are the local downward constraints,

θH q̃ (θH)− t̃ (θH) ≥ θH q̃ (θM )− t̃ (θM ) ,

θM q̃ (θM )− t̃ (θM ) ≥ θM q̃ (θL)− t̃ (θL) ,
(5)

and the local upward constraints,

θM q̃ (θM )− t̃ (θM ) ≥ θM q̃ (θH)− t̃ (θH) ,

θLq̃ (θL)− t̃ (θL) ≥ θLq̃ (θM )− t̃ (θM ) .
(6)

It is well known that the local downward constraints are necessary and sufficient for global
incentive compatibility.13

Next, the seller makes a second investment given that she has made the first investment
if
(
ph
)2 {

t̃ (θH)− z̃ (θH)
}

+2ph
(

1− ph
){

t̃ (θM )− z̃ (θM )
}

+
(

1− ph
)2 {

t̃ (θL)− z̃ (θL)
}
−e

≥ phpl
{
t̃ (θH)− z̃ (θH)

}
+
{
ph
(

1− pl
)

+ pl
(

1− ph
)}{

t̃ (θM )− z̃ (θM )
}

+
(

1− pl
)(

1− ph
){

t̃ (θL)− z̃ (θL)
}
,

and she makes the first investment if

phpl
{
t̃ (θH)− z̃ (θH)

}
+
{
ph
(

1− pl
)

+ pl
(

1− ph
)}{

t̃ (θM )− z̃ (θM )
}

+
(

1− pl
)(

1− ph
){

t̃ (θL)− z̃ (θL)
}
− e

≥
(
pl
)2 {

t̃ (θH)− z̃ (θH)
}

+2pl
(

1− pl
){

t̃ (θM )− z̃ (θM )
}

+
(

1− pl
)2 {

t̃ (θL)− z̃ (θL)
}
.

Rearranging, these constraints can be written as

ph
{
t̃ (θH)− t̃ (θM )− z̃ (θH) + z̃ (θM )

}
+
(

1− ph
){

t̃ (θM )− t̃ (θL)− z̃ (θM ) + z̃ (θL)
}

≥ e

ph − pl ,

pl
{
t̃ (θH)− t̃ (θM )− z̃ (θH) + z̃ (θM )

}
+
(

1− pl
){

t̃ (θM )− t̃ (θL)− z̃ (θM ) + z̃ (θL)
}

≥ e

ph − pl .

(7)

13See, for example, Theorem 23 of Stole (1999).
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To maximize total welfare, the constraints of (5) should bind. If the second constraint
is not binding, a larger q̃ (θL) yields a higher efficiency. If the first constraint is not bind-
ing, increasing q̃ (θM ) and q̃ (θL) improves total welfare. These constraints also imply that
q̃ (θH) ≥ q̃ (θM ) ≥ q̃ (θL) and (6) is not binding. Binding constraints (7) with (5) can be
rewritten as

ph [θH {q̃ (θH)− q̃ (θM )} − z̃ (θH) + z̃ (θM )]

+
(

1− ph
)

[θM {q̃ (θM )− q̃ (θL)} − z̃ (θM ) + z̃ (θL)] ≥ e

ph − pl , (8)

and

pl [θH {q̃ (θH)− q̃ (θM )} − z̃ (θH) + z̃ (θM )]

+
(

1− pl
)

[θM {q̃ (θM )− q̃ (θL)} − z̃ (θM ) + z̃ (θL)] ≥ e

ph − pl . (9)

The investment incentive, the left-hand side of the constraints, increases when q̃ (θL) or
q̃ (θM ) is reduced, or z̃ (θL) or z̃ (θM ) is increased. Now the problem is that of maximizing
total welfare subject to (8), (9), and q̃ (θH) ≥ q̃ (θM ) ≥ q̃ (θL).

Proposition 2. The optimal bundled contract which induces both investments is,

• when
(
1− ph

)
θM ≥ e

ph−pl ,

q̃ (θH) = q̃ (θM ) = 1,

q̃ (θL) = 1− e

(1− ph) (ph − pl) θM
,

z̃ (θH) = z̃ (θM ) = z̃ (θL) = 0,

• when e
ph−pl >

(
1− ph

)
θM ,

q̃ (θH) = q̃ (θM ) = 1,

q̃ (θL) = 0,

z̃ (θH) = z̃ (θM ) = 0,

z̃ (θL) =
e

(1− ph) (ph − pl) − θM .

Proof. The following analysis proceeds without constraint (9) for the moment. To maximize
total welfare under constraint (8), the optimal contract should set q̃ (θH) = 1 and z̃ (θH) = 0.
Then, the question is whether to decrease q̃ (θM ) or q̃ (θL), or to increase z̃ (θM ) or z̃ (θL).
The marginal effects of q̃ (θM ) , q̃ (θL) , z̃ (θM ) and z̃ (θL) on the left-hand side of (8) are
−phθH+

(
1− ph

)
θM , −

(
1− ph

)
θM , ph−

(
1− ph

)
, and 1−ph. The marginal effects on total

welfare are 2ph
(
1− ph

)
θM , −

(
1− ph

)
θL, −2ph

(
1− ph

)
, and −

(
1− ph

)2, respectively.
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The marginal ratio of the investment incentive to the loss of total welfare from decreasing
q̃ (θL) is θM

(1−ph)θL
, which is higher than that from increasing z̃ (θL), 1

(1−ph)
, decreasing q̃ (θM ),

phθH−(1−ph)θM
2ph(1−ph)θM

, and increasing z̃ (θM ), ph−(1−ph)
2ph(1−ph)

. Note that 1

(1−ph)
>

phθH−(1−ph)θM
2ph(1−ph)θM

>

ph−(1−ph)
2ph(1−ph)

. From these marginal ratios, the optimal contract minimizes q̃ (θL) and then

increases z̃ (θL) if necessary.
When the investment cost is moderate,

(
1− ph

)
θM ≥ e

ph−pl , the seller is motivated to
invest by only sacrificing q̃ (θL). Therefore, the optimal contract is

q̃ (θH) = q̃ (θM ) = 1,

q̃ (θL) = 1− e

(1− ph) (ph − pl) θM
,

z̃ (θH) = z̃ (θM ) = z̃ (θL) = 0.

When e
ph−pl >

(
1− ph

)
θM , because solely a reduction of q̃ (θL) is not enough to motivate

the seller to invest and it is necessary to increase z̃ (θL), the optimal contract is

q̃ (θH) = q̃ (θM ) = 1,

q̃ (θL) = 0,

z̃ (θH) = z̃ (θM ) = 0,

z̃ (θL) =
e

(1− ph) (ph − pl) − θM .

These contracts satisfy (9).

The intuition can be well understood by considering the method of punishing the seller
rather than rewarding her to motivate investment. The seller is punished by not trading
the bundle or burning money, and the punishment is always associated with an efficiency
loss. In order to minimize this efficiency loss, two effects are considered. The first effect
is the marginal investment incentive of the seller’s utility. Because the seller’s marginal
utility of burning money is −1, the marginal investment incentive of the seller’s utility is the
opposite of the marginal investment incentive of burning money. Comparison of the marginal
investment incentive of z̃ (θL), z̃ (θM ), and z̃ (θH) shows that the investment incentive can
be provided the most effectively by reducing the utility when θL is realized. The second
effect considered is the seller’s marginal utility of the probability of trading the bundle or
burning money. While the seller’s marginal utility of burning money is −1, that of the
probability of trading the bundle is determined by information rent. Combining the two
effects, reduction of q̃ (θL) creates the investment incentive the most efficiently: an incentive
of size

(
1− ph

)
θM is created by sacrificing

(
1− ph

)2
θL total surplus. But there is a limit to

how much incentive can be provided by reducing q̃ (θL). An increase of z̃ (θL) is the second
most efficient solution. When a large incentive is needed, it is created by reducing q̃ (θL) as
much as possible and increasing z̃ (θL).
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In this subsection, we consider only the case of bundled contracts that induce both
investments. Bundled contracts inducing one or no investment can be the optimal bundled
contract when the investment cost is high. However, these contracts are not considered here,
because they are inferior to the optimal separate contract and cannot be the second-best
contract, which is considered in the next subsection.

2.3 Second-best contract

Because neither the separate contract nor the bundled contract can achieve the first-best
outcome, it follows that the first-best outcome must be impossible. This subsection charac-
terizes the second-best contract. First, note that contracts inducing a single investment are
inferior to the optimal separate contract. If a single investment is induced, the upper bound
on total welfare which bundled contracts can implement is less than that which separate
contracts can implement.14 Because separate contracts that induce only one investment
cannot be the optimal separate contract under Assumption 1, bundled contracts that in-
duce a single investment are also inferior to the optimal separate contract. Next, bundled
and separate contracts which induce no investment are also inferior to the optimal separate
contract under Assumption 1. Consequently, the optimal separate and bundled contracts
inducing both investments are compared.

Proposition 3. When e
ph−pl >

(1−ph)θ̄(θ̄−θ)
θ̄−2θ

and θ̄−2θ > 0, the separate contract is second-
best. Otherwise, the second-best contract is the bundled contract.

Proof. Let

WFB ≡ 2phθ̄ + 2
(

1− ph
)
θ − 2e =

(
ph
)2
θH + 2ph

(
1− ph

)
θM +

(
1− ph

)2
θL − 2e.

Total welfare induced by the optimal separate contract is

2phθ̄ + 2
(

1− ph
)
θq̂ (θ)− 2e = WFB − 2

(
1− ph

)
θ

e

(ph − pl) θ̄ . (10)

When
(
1− ph

)
θM ≥ e

ph−pl , the optimal bundled contract yields total welfare

(
ph
)2
θH + 2ph

(
1− ph

)
θM +

(
1− ph

)2
θLq̃ (θL)− 2e

= WFB −
(

1− ph
)2
θL

e

(1− ph) (ph − pl) θM
. (11)

Some calculation shows that (11) is larger than (10). The optimal bundled contract can
therefore induce investment more efficiently than the optimal separate contract.

14See Appendix.
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When e
ph−pl >

(
1− ph

)
θM , total welfare induced by the optimal bundled contract is

(
ph
)2
θH + 2ph

(
1− ph

)
θM +

(
1− ph

)2
z̃ (θL)− 2e

= WFB −
(

1− ph
)2
{
θL +

e

(1− ph) (ph − pl) − θM
}
. (12)

Because (10) minus (12) is

(
1− ph

)[ (θ̄ − 2θ
)
e

θ̄ (ph − pl) −
(

1− ph
) (
θ̄ − θ

)
]
,

the optimal separate contract is superior to the optimal bundled contract when e
ph−pl >

(1−ph)θ̄(θ̄−θ)
θ̄−2θ

and θ̄ − 2θ > 0.

To provide intuition for Proposition 3, consider a unit increase in the investment cost
e

ph−pl for both goods. First, suppose contracts can be adjusted only in terms of the amount
of money burnt. In bundled contracts, z̃ (θL) is increased by the amount e

(1−ph)
≡ ∆z̃ (θL)

from(8) and the total welfare loss is
(
1− ph

)2
∆z̃ (θL) =

(
1− ph

)
e. In separate (dynamic)

contracts, from (2) and (4), both z1 (θ1) and z2 (θ2) are increased by the amount e
ph−pl ≡

∆z1 (θ1) = ∆z2 (θ2) and the welfare loss is
(
1− ph

)
{∆z1 (θ1) + ∆z2 (θ2)} = 2

(
1− ph

)
e.

The welfare loss in bundled contracts is half of that in separate contracts due to the spillover
effect ; therefore, an increase of punishment creates an incentive for both investments.

Next, consider reducing the probability of trading goods. Due to the information rent
effect, reduction of the probability of trading goods creates the investment incentive more
efficiently than burning money.

Reduction of q̃ (θL) in bundled contracts is the most efficient because it creates incentive
through both the information rent effect, which is θM

θL
times more efficient than burning

money, and the spillover effect. However, reduction of q̃ (θL) can create enough incentive
only if the investment cost is moderate,

(
1− ph

)
θM ≥ e

ph−pl . When e
ph−pl >

(
1− ph

)
θM ,

with bundled contracts, it is necessary to increase z̃ (θL), besides minimizing q̃ (θL), to create
further incentive, and there is only the spillover effect, while in the case of separate contracts,
incentive is created through reduction of q̂ (θ) and there is only the information rent effect.
Because the information rent effect in the latter case creates θ̄

θ times more efficiency than
burning money in separate contracts, while the former spillover effect creates twice as much
efficiency, the marginal loss of total welfare through the investment cost is larger in bundled
contracts than in separate contracts when θ̄−2θ > 0. If this condition holds, the gross total
welfare loss is larger in the optimal bundled contract than in the optimal separate contract

when e

(ph−pl)
>

(1−ph)θ̄(θ̄−θ)
θ̄−2θ

.
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The buyer learns realized ✓1

The buyer sends message µ1

Move on to date 2 w.p. � (µ1)

The buyer receives goods 1 w.p. q1 (µ1)
and pays t1 (µ1) to the seller
Money z1 (µ1) burnt

The seller chooses e1

e

ph � pl

Welfare loss

�
1 � ph

�
✓M

2
�
1 � ph

�
✓

✓̄

�
1 � ph

�
✓L

✓M

�
1 � ph

�
Separate

Bundled

Time 1 Time 2

�
1 � ph

�
✓̄
�
✓̄ � ✓

�

✓̄ � 2✓

Figure 2: The total welfare loss
(
θ̄ − 2θ > 0

)
.

3 Conclusion

This paper has analyzed the optimal contracting problem for multiple goods where asymmet-
ric information causes a hold-up problem. The second-best contract has been shown to be a
bundled contract when the investment cost is sufficiently small. Where this condition does
not hold, either a separate or a bundled contract is second-best. Dynamic contracts cannot
be second-best under any conditions. The first contribution of our paper is to corroborate
previous research. Although Schmitz (2002a), Hori (2006), and Zhao (2008a) investigated
only the single good case, the optimality of the bundled contract proves that their results
hold in more general environments. The hold-up problem cannot easily be mitigated.

The second contribution is providing new insight into problems resulting from asym-
metric information. It is often argued that problems can be partially solved by mandatory
information disclosure. The superiority of the bundled contract suggests that too much
information disclosure, as in dynamic or separate contracts, leads to antagonism. Although
information disclosure may have an advantage when the parties want to implement a compli-
cated outcome, in the simple situation discussed in this paper, information disclosure harms
the relationship between the buyer and seller. An arm’s length relationship is justified.

The current analysis does not yet solve the following problem. Consider a seller who
offers a finite amount of divisible goods to a buyer. They can divide the goods into some
set of infinite and converging sequences. Although Fuchs (2007) showed that the first-best
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contract is asymptotically possible when there are infinitely many identical goods, it is not
yet clear whether this result still holds for converging sequences. This analysis is left for
future investigations.
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A Appendix

Contracts that induce only one investment are considered here. It is assumed that θ̄1 = θ̄2 ≡
θ̄, θ1 = θ2 ≡ θ, ph ≡ ph1 = ph2 , pl ≡ pl1 = pl2, and e ≡ e1 = e2. Define θH ≡ 2θ̄, θM ≡ θ̄ + θ,
and θL ≡ 2θ.
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Without loss of generality, consider contracts that induce investment only in good 1.
From the above analysis, dynamic contracts are of no use. The optimal contract that
induces only one investment is either separate or bundled. The optimal separate contract
inducing only one investment is

q̂1

(
θ̄
)

= q̂2

(
θ̄
)

= q̂2 (θ) = 1,

q̂1 (θ) = 1− e

(ph − pl) θ̄ .

This contract attains total welfare

W o −
(

1− ph
)
θ

e

(ph − pl) θ̄ , (13)

whereW o ≡ phθ̄+
(
1− ph

)
θ+plθ̄+

(
1− pl

)
θ−e = phplθH+

{
ph
(
1− pl

)
+ pl

(
1− ph

)}
θM+(

1− ph
) (

1− pl
)
θL − e.

Next, bundled contracts that maximize total welfare W o under constraints (5), (6), and
the two constraints

ph
{
t̃ (θH)− t̃ (θM )− z̃ (θH) + z̃ (θM )

}
+
(

1− ph
){

t̃ (θM )− t̃ (θL)− z̃ (θM ) + z̃ (θL)
}

≤ e

ph − pl ,

pl
{
t̃ (θH)− t̃ (θM )− z̃ (θH) + z̃ (θM )

}
+
(

1− pl
){

t̃ (θM )− t̃ (θL)− z̃ (θM ) + z̃ (θL)
}

≥ e

ph − pl ,

are considered. The final new constraints allows only one investment to be made. When
total welfare is maximized, constraint (5) is binding, while constraint (6) is not, as in Section
2.1, and these constraints can be rewritten as

ph [θH {q̃ (θH)− q̃ (θM )} − z̃ (θH) + z̃ (θM )]

+
(

1− ph
)

[θM {q̃ (θM )− q̃ (θL)} − z̃ (θM ) + z̃ (θL)] ≤ e

ph − pl , (14)

and

pl [θH {q̃ (θH)− q̃ (θM )} − z̃ (θH) + z̃ (θM )]

+
(

1− pl
)

[θM {q̃ (θM )− q̃ (θL)} − z̃ (θM ) + z̃ (θL)] ≥ e

ph − pl . (15)

Under these constraints and q̃ (θH) ≥ q̃ (θM ) ≥ q̃ (θL), the welfare maximizer is, if
(
1− pl

)
θM ≥

e
ph−pl ,

q̃ (θL) = 1− e

(1− pl) (ph − pl) θM
,

q̃ (θH) = q̃ (θM ) = 1,

z̃ (θH) = z̃ (θM ) = z̃ (θL) = 0,
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and, if e
ph−pl >

(
1− pl

)
θM ,

q̃ (θH) = q̃ (θM ) = 1,

q̃ (θL) = 0,

z̃ (θH) = z̃ (θM ) = 0,

z̃ (θL) =
e

(1− pl) (ph − pl) − θM .

Total welfare under these contracts is, if
(
1− pl

) (
ph − pl

)
θM ≥ e,

W o −
(

1− ph
)(

1− pl
)
θL

e

(1− pl) (ph − pl) θM
, (16)

and if pl
(
ph − pl

)
θH ≥ e >

(
1− pl

) (
ph − pl

)
θM ,

W o −
(

1− ph
)(

1− pl
){

θL +
e

(1− pl) (ph − pl) − θM
}
. (17)

Because (13) is larger than both (16) and (17), the separate contract is superior to the
bundled contract when one investment is induced.
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