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Abstract

This paper studies the asymptotic efficiency of estimates in nonlinear panel data models with

fixed effects when both the cross-sectional sample size and the length of time series tend to infinity.

The efficiency bounds for regular estimators are derived using the infinite-dimensional convolution

theorem by van der Varrt and Wellner (1996). It should be noted that the number of fixed effects

increases with the sample size, so they constitute an infinite-dimensional nuisance parameter. The

presence of fixed effects makes our derivation of the efficiency bounds non-trivial, and the techniques

to overcome the difficulties caused by fixed effects will be discussed in detail. Our results include the

efficiency bounds for models containing unknown functions (for instance, a distribution function of

error terms). We apply our results to show that the bias-corrected fixed effects estimator of Hahn

and Newey (2004) is asymptotically efficient.

Keywords: asymptotic efficiency; convolution theorem; double asymptotics; nonlinear panel data

model; fixed effects; interactive effects; factor structure; incidental parameters.

JEL classification: C13; C23.

1 introduction

Some of a recent literature on nonlinear panel data analysis focuses on the so-called large N and large

T asymptotics (N is a cross-sectional dimension and T is a time dimension). For example, Hahn and

Newey (2004) study the asymptotic properties of the fixed effect estimator in a general nonlinear panel

data model with individual effects. They show that the fixed effects estimator has a limiting normal

distribution with a bias in the mean when N and T grow at the same rate. The non-central mean

captures an incidental parameter bias of order 1/T and their proposed bias correction methods are

shown to substantially reduce the bias without increasing a variance, even when T is only moderately

large. Hahn and Kuersteiner (2011) extend the results of Hahn and Newey to a dynamic case and show

that their bias-corrected estimators are asymptotically normal with mean zero. For other studies in this

line of research, see Woutersen (2002), Carro (2007), Fernandez-Val (2009), Bester and Hansen (2009),
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and Fernandez-Val and Vella (2011), among others. The large N and large T asymptotic framework is

also employed in a recent literature on panel quantile regression models. See Koenker (2004), Canay

(2008) and Kato et al. (2012), among others. When we consider estimation, efficiency is an important

issue. The efficiency bound for estimation is useful when we quantify the efficiency loss of particular

estimators we use in applications. Moreover, the bound can give us a valuable guidance for constructing

efficient estimators and calculating the limiting distributions (see, e.g., Newey (1990) and Bickel et al.

(1993)). However, to our knowledge, there are no efficiency results available that can be applied to

general nonlinear panel data models under large N and large T asymptotics. Hahn and Kuersteiner

(2002) and Bai (2012) analyze the efficiency of panel data estimators but only in the context of linear

panel autoregressive models.

The objective of the present paper is to establish asymptotic optimality theory of estimation in

a general nonlinear panel data model with fixed effects when both N and T tend to infinity. We

consider a general semiparametric model where the law of the data is characterized by a finite-dimensional

parameter of interest, individual specific effects and an unknown nuisance function. Our specification is

general enough to accommodate many important nonlinear panel data models. The simplest case is a

parametric conditional density model such as logit, probit and Tobit models. Our model also includes

many important semiparamtric models as special cases. Semiparametric binary choice and censored

regression models are a few of the examples.

In this general setting, the present paper contributes to the panel data literature by providing a

general formula of the information bound for the model parameters. Furthermore, to illustrate the

usefulness of our bound, we apply our efficiency results to assess the efficiency of estimators existing in

the literature. In particular, we consider the setting of Hahn and Newey (2004) and show that their

bias-corrected fixed effect estimators are asymptotically efficient.

In order to derive the efficiency bound, we use the infinite-dimensional convolution theorem by van

der Vaart and Wellner (1996). Notice that since there are as many individual effects as the cross-sctional

sample size, the number of the fixed effects tend to infinity. Thus our model has two infinite-dimensional

nuisance parameters: the first one is a sequence of individual fixed effects and the second one is an

unknown function. The second component can be dealt with by similar arguments to semiprametric

efficiency for models with i.i.d. observations. On the other hand, the presence of the fixed effects makes

the derivation nontrivial and somewhat non-standard, in particular, in the verification of local asymptotic

normality (LAN).

Showing the LAN property is an inevitable step in obtaining the efficiency bound. The main difficulty

is how to perturb the sequence of the fixed effects. Hahn and Kuersteiner (2002) examine efficiency of

estimates in panel autoregressive models with fixed effects. They perturb the fixed effects by another

sequence and establish the local asymptotic normality under their perturbation scheme. However, their

method cannot be easily applied to a general nonlinear model, as we will discuss in detail in Section 4.

In order to overcome the technical difficulties caused by the presence of fixed effects, we take a different

approach. We use the idea originated in the statistical literature on “functional model” (see, e.g.,
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Phanzagl (1993)).1 More specifically, we adapt the approach by Strasser (1998) to our nonlinear panel

data setting. Strasser’s idea is to perturb individual specific parameters using a continuous function,

rather than a real sequence. We extend his method and establish the local asymptotic normality of our

nonlinear panel data model with fixed effects. The difference from Strasser (1996) is that we consider a

model with a nuisance function, while Strasser (1996) only considers a model without a nuisance function.

Another important difference is that Strasser’ (1998) considers the fixed T asymptotics, whereas we

consider the large N and large T asymptotics.

The rest of the paper is organized as follows. The next section formally introduces the model we

examine in this paper. Section 3 presents the general formula of the efficiency bound, which is the main

result of the present paper. This section also provides an application of our efficiency results. In partic-

ular, we show that the bias-corrected fixed effect estimator of Hahn and Newey (2004) is asymptotically

efficient. In Section 4, we give a detailed explanation of the derivation of the bounds. Section 5 concludes

the paper. Most of the mathematical proofs are given in the Appendix.

2 The Ste-up

This section introduces the set-up that we examine in this paper and presents some of the examples our

model accommodates.

Suppose that we have available a panel data set {{zit}Tt=1}Ni=1 where zit is a random vector with

support Z ⊆ Rdz . Let θ ∈ Θ ⊆ Rdθ be an unknown finite-dimensional parameter of interest and let

ηi ∈ Λ ⊆ R be an unobserved individual effect.2 We assume that θ and ηi are interior points of Θ

and Λ. Let q(·) be an unknown measurable function with values in Rdq We denote the space for q by

Q. Each observation zit of individual i at period t is distributed according to a probability measure

Pθ,ηi,q. The family of probability measures {Pθ,η,q : θ ∈ Θ, η ∈ Λ, q ∈ Q} is assumed to be dominated

by a σ-finite measure µ with densities f(z|θ, η, q). As in Hahn and Newey (2004), we assume that the

observations are independently distributed across both i and t. The goal of this paper is to present the

information bound for estimating θ when both N and T are large. Deriving the efficiency bound for a

more general parameter such as a functional of laws {Pθ,ηi,q : i ∈ N} is also possible. However, such an

extension requires more complicated notation and additional technical terminology, which may blur the

main theme of the present paper.

As is common in the large N and large T panel data literature, we will treat the unobserved individual

effects ηi’s as fixed constants, rather than random variables (see, e.g., Hahn and Newey (2004, p.1297),

Fernandez-Val (2009) and Hahn and Kuersteiner (2012)). This situation can be interpreted as we conduct

an inference conditional on the realization for random ηi’s. In other words, we consider the situation in

which the data is generated in the following scheme. First, the individual effects η1, η2, · · · are generated

according to some distribution and, then, conditional on the realization for ηi’s (i.e., treating ηi’s as

fixed), the observations zit are sampled from the densities f(zit|θ, ηi, q). Under this interpretation, the

1Roughly speaking, a functional model is a model that contains non-random individual specific parameters. This class

of model is similar to a mixture model, but a mixture model treats heterogeneous components as random variables.
2An extension to the case where ηi is vector-valued is straightforward.
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density f(zit|θ, ηi, q) should be interpreted as the conditional density of zit given ηi.

When the individual effects are treated as fixed constants, they become individual specific parameters.

Note that since the number of the individual effects increases with the cross sectional sample size, there

are infinitely many individual specific parameters η1, η2, · · · . We denote the space for a sequence {ηi}∞i=1

of individual effects by W (Λ) and define ξ := (θ, {ηi}∞i=1, q) and Ξ := Θ ×W (Λ) × Q. Notice that our

model has two infinite-dimensional nuisance parameters: the first one is the function q and the second one

is the sequence of the fixed effects, {ηi}∞i=1. When deriving the efficiency bounds, the first nuisance can

be perturbed by constructing parametric submodels as in the usual semiparametric efficiency arguments

(see, e.g., Bickel et al. (1990) and van der Vaart (1998)). On the other hand, it will turn out that

perturbation of the incidental parameters η1, η2, · · · is technically delicate and makes the derivation

somewhat nonstandard, in particular, in the verification of local asymptotic normality. We will discuss

the details in Section 4.

The model above includes many important panel data models as special cases. The simplest case

may be the following conditional density model.

Example 1. Let zit = (yit, x
′
it)

′ where yit is a response variable and xit is a vector of covariates. Suppose

that f(zit|θ, ηi, q)dµ(zit) is factored into the conditional density fY |X(yit|xit, θ, ηi)dµY (yit) of yit given

xit and the marginal density fX(xit|ηi)dµX(xit) of xit (µ = µY ⊗µX). Here the conditional density fY |X

is known up to parameters (θ, ηi), whereas the form of fX is completely unknown except that it may

depend on ηi. In this case, fX corresponds to q in a general model. It is obvious that this specification

includes panel probit, logit and Tobit models as special cases. In the econometric analysis, allowing the

marginal fX(xit|ηi) to depend on ηiis important. If the individual effect ηi were treated as random,

it would be desirable to allow the covariate xit to be correlated with ηi. In the fixed effects situation

where ηi’s are treated as fixed constants, such a ‘correlation’ should be modeled as the dependence of

the marginal density fX(xit|ηi) on the individual specific parameter ηi.

Our model also includes many important semiparametric models. The following illustrates a few of

the examples

Example 2. Let zit = (yit, x
′
it)

′where yit is a response variable and xit is a vector of covariates. Let

yit = m(ηi+θ
′xit+uit) wherem is a known real function and uit is a disturbance term whose distribution

is unknown. Assume that uit is i.i.d. across i and t and is independent of {xit}. Obviously, this

specification fits into our present framework with the joiny density of (uit, xit) playing the role of q in a

general setting. The case where m(x) = 1{x > 0} corresponds to a semiparamtric binary choice model,

while the case where m(x) = max{x, 0} corresponds to a semiparamtric censored regression model.

3 The Main Results

The objective of this section is to present the efficiency bound for estimating θ. Since the derivation

of the information bound requires the LAN theory and is somewhat technical, we defer the details of

the derivation to the next section. This section consists of three subsections. The first subsection gives
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the assumptions we need. The second subsection provides the general formula for the efficiency bound,

which is the main result of the present paper. In the last subsection, to illustrate the usefulness of our

formula, we apply it to the setting of Hahn and Newey (2004) and show that their bias-corrected fixed

effects estimator is asymptotically efficient.

3.1 Assumptions

In this subsection, we give the assumptions that are needed for the theoretical derivation of the efficiency

bounds. We begin by summarizing the set-up described in the preceding section.

Assumption 1. (i) zit is observed for i = 1, 2, · · · , N and t = 1, 2, · · · , T . (ii) The observations

are independent across both i and t. (iii) Each observation zit is distributed according to the density

f(zit|θ, ηi, q) for θ ∈ intΘ, ηi ∈ intΛ and q ∈ Q.

Next, we impose the following mild condition on the density f(z|θ, η, q).

Assumption 2. Suppose that Λ is a bounded closed interval in R. Fix q ∈ Q. The mapping (θ, η) 7→√
f(z|θ, η, q) is continuously Frechet differentiable on intΘ× Λ in L2(µ).3

Assumption 2 is standard in the efficiency literature and is also called a quadratic mean differentia-

bility assumption. To see the implications of this assumption, now fix θ ∈ intΘ and q ∈ Q. The Frechet

differentiability implies that, for every η ∈ Λ, there exists a dθ + 1-dimensional vector of measurable

functions, ℓ̇(z|η) := (ℓ̇1(z|η)′, ℓ̇2(z|η))′, such that∫ [√
f(z|θ + u1, η + u2, q)−

√
f(z|θ, η, q)

− 1

2
u′ℓ̇(z|η)

√
f(z|θ, η, q)

]2
dµ(z) = o(∥u∥2E)

(3.1)

as u → 0 where u := (u′1, u2)
′ ∈ Rdθ+1 and ∥ · ∥E is the Euclidean norm. The functions ℓ̇1 and ℓ̇2 are

considered to be the score functions for θ and η, respectively, when q is regarded to be known. The

function ℓ̇(z|η) may depend on θ and q ∈ Q, but we suppress such dependence for simplicity of notation.

The continuity of the Frechet derivative implies, in particular, that the mapping η 7→ Eη ℓ̇(z|η)ℓ̇(z|η)′ is

continuous and bounded on Λ where Eη denotes the expectation under f(z|θ, η, q).4 Assumption 2 is a

very mild smoothness condition on the density f(z|θ, η, q). A simple sufficient condition for Assumption

2 is that the density f(z|θ, η, q) is continuously differentiable (in the usual sense) with respect to (θ, η)

for µ-almost every z and the Fisher information (when q is considered to be known) is continuous with

respect to (θ, η) (see, e.g., Proposition 2.1.1 in Bickel et al. (1993)).

Based on this assumption, we now introduce the tangent set for the nuisance function q, a notion

needed for the formulation of the efficiency bounds. To this end, let l̇(z|η) be any measurable function

such that there exits a one dimensional parametrization {qs : s ∈ (−ϵ, ϵ)} in Q with the following

properties: (i) qs passes through q at s = 0, (ii) for every η ∈ Λ, the mapping
√
f(·|θ, η, qs(·, η)) from

3When η is on the boundary of Λ, the convergence u = (u′
1, u2)′ to 0 in (3.1) should be read as u → 0 with u2 > 0 for

the left end-point case or with u2 < 0 for the right-end point case.
4We again suppress the dependence on θ and q for notational convenience.
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intΘ×Λ× (−ϵ, ϵ) to L2(µ) is continuously Frechet differentiable at (θ, η, 0) with (ℓ̇′, l̇)′ being its Frechet

derivative. The requirements (i) and (ii) implies that∫ [√
f(z|θ + u1, η + u2, qs)−

√
f(z|θ, η, q)

− 1

2
(u′ℓ̇(z|η) + sl̇(z|η))

√
f(z|θ, η, q)

]2
dµ(z) = o(∥u∥2 + s2)

(3.2)

as u → 0 and s → 0, and that the mapping η 7→ Eη l̇(z|η)2 is continuous and bounded on Λ. The

function l̇ is interpreted as a score function for the ‘parameter’ s when the density is parametrized as

f(z|θ, η, qs(·, η)). We denote the set of all possible functions l̇ by Tq. We assume the following mild

assumption on Tq.

Assumption 3. Tq is linear.

The second assumption that we will need is concerned with the behavior of the sequence of individual

effects, {ηi}∞i=1. As we shall see, the following assumption on individual effects is both mathematically

convenient and econometrically interpretable.

Assumption 4. A real sequence of individual effects {ηi}∞i=1 is weakly convergent5 in the following sense:

there exists a probability measure Γ on Λ such that, as N → ∞,

1

N

N∑
i=1

ψ(ηi) →
∫
ψ(s)dΓ(s) for all ψ ∈ Cb(R) (3.3)

where Cb(Λ) denotes a set of bounded and continuous real-valued functions on Λ. Consequently, the set

W (Λ) is the collection of weakly convergent sequences.

This type of assumption on individual effects is occasionally used in the statistics literature on func-

tional models (see, e.g., Bickel and Klassen (1986), Phanzagl (1993), Strasser (1996) and Strasser (1998)).

Assumption 4 is a key assumption of this paper and plays an important role in overcoming the mathe-

matical difficulties caused by the presence of individual effects. In particular, the assumption is useful

and crucial in our verification of local asymptotic normality, as we will discuss in detail in the next

section. To get a glimpse of how well this assumption works in our efficiency analysis, notice that the

assumption implies that

lim
N→∞

1

N

N∑
i=1

Eηi ℓ̇1(z|ηi)ℓ1(z|ηi)′ =
∫

Eη ℓ̇1(z|η)ℓ1(z|η)′dΓ (3.4)

(recall that the mapping η 7→ Eη ℓ̇1(z|η)ℓ1(z|η)′ is continuous on Λ by Assumption 2). As we shall see,

this limit in (3.4) appears as part of the the efficiency bound for θ. The point here is that under Assump-

tion 2, the Cesaro limit on the left can be written as the integral with respect to Γ. In efficiency analysis

for models with an infinite-dimensional parameter, functional analysis is an essential tool. Notice that

integrals are much more tractable in functional analysis than Cesaro limits. This is one of the mathe-

matical advantages of Assumption 4. However, the assumption is not only mathematically convenient

but also econometrically interpretable, as the following argument shows.

5Let ΓN = 1
N

∑N
i=1 δηi where δx is a Dirac measure on Λ. Noting that ΓN defines a probability measure on Λ, we can

easily see that the ‘weak convergence’ of {ηi}∞i=1 in the above assumption is equivalent to a weak convergence of probability

measures {ΓN}∞N=1 in the usual sense.
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A trivial example of weakly convergent sequences is a constant sequence, while a well-known nontrivial

example may be the Wyle sequence. However, examples of weakly convergent sequences are not restricted

to them. One general method to construct a weakly convergent sequence is to use the following result

from the number-theoretic ergodic theory.

Lemma 3.1. (A version of Theorem in Furstenberg (1981)) Let (Ω,F ,P) be a probability space. Let

{Xi}∞i=1 be an ergodic stationary sequence of random elements taking values in a metric space (E, ρ)

eondowed with its Borel σ-field. Suppose that the function space Cb(E) is separable under the sup

metric. Then, for P-almost every ω ∈ Ω, we have, as N → ∞,

1

N

N∑
i=1

ψ(Xi(ω)) → Eψ(Xi) for all ψ ∈ Cb(E). (3.5)

Note that Lemma 3.1 is slightly different from Birkhoff’s ergodic theorem. For details, see Remark

3.1 below. Since Λ is assumed to be a bounded closed interval, the space Cb(Λ) is separable (see, e.g.,

Corollary 11.2.5 in Dudley (2002)). Thus, it follows form Lemma 3.1 that a sequence of individual

effects that satisfies Assumption 4 can be generally constructed as almost sure realizations of ergodic

stationary processes. In view of this construction, Assumption 4 is seen to be a mild requirement on

individual effects since the class of weakly convergent sequences includes real sequences that behave like

a realization of random variables.

Remark 3.1. As a technical matter, notice that without the separability condition on Cb(E), the result

in Lemma 3.1 may not be valid. Without the separability of Cb(E), Birkhoff’s ergodic theorem only

implies that, for each ψ ∈ Cb(E), there exists an event Ωψ with probability one such that, for ω ∈ Ωψ,

(1/N)
∑N
i=1 ψ(Xi(ω)) → Eψ(Xi). The point here is that the almost sure event Ωψ can be different across

ψ. The key feature of Lemma 3.1 is that if Cb(E) is separable, then we can take an almost sure event Ω0

on which the convergence (1/N)
∑N
i=1 ψ(Xi(ω)) → Eψ(Xi) holds for all ψ (i.e. the almost sure event Ω0

does not depend on ψ).

3.2 The Efficiency Bound

In this subsection, we present the lower bound of the asymptotic variances of estimators of θ. As

is common in the statistics and econometrics literatures, we use a convolution theorem to derive the

efficiency bound. A convolution theorem is a representation theorem that states that the asymptotic

distribution of any regular estimator can be written as a convolution of a certain normal distribution

and some noise factor. Because a convolution increases the variance, the convolution theorem implies

that the normal distribution in the convolution is optimal in terms of asymptotic variances.

The convolution theorem restricts its attention to the class of regular estimators in order to avoid

the well-known problem of superefficiency (see, e.g., van der Varrt 1998). Because of its inherently

technical nature, we defer the precise definition of a regular estimator to the next section. Roughly

speaking, regularity is a local uniformity requirement on the asymptotic behavior of an estimator. A

regular estimator can be considered as desirable because the distribution of a regular estimator is not

too sensitive to a small change in the parameter. Moreover, regularity is not very restrictive since
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regularity is typically much weaker than uniform convergence in distribution of an estimator over a small

neighborhood of the true parameter value (see, e.g., Bickel et al. (1993)).

To state the main result, it is useful to introduce some additional notation. Let PΓ
θ,q be the mixture

distribution of Pθ,η,q with Γ. Let ΠT be a projection operator onto the closure of

T :=
{
η̃ℓ̇2 + l̇ ∈ L2(PΓ

θ,q) : η̃ ∈ Cb(Λ), l̇ ∈ Tq
}
. (3.6)

Note that we regard the set T as a subspace of L2(PΓ
θ,q) and thus we take a closure with respect to the

L2(PΓ
θ,q)-norm. The set T can be interpreted as the tangent set for the nuisance parameters ηi’s and q.

Theorem 3.2 (A convolution theorem). Suppose that Assumptions 1 to 4 hold. Assume that the map

η 7→ EηΠT ℓ̇1(z|η)2 is continuous on Λ. Define

Vξ :=

∫
Eη
(
ℓ̇1(z|η)−ΠT ℓ̇1(z|η)

)(
ℓ̇1(z|η)−ΠT ℓ̇1(z|η)

)′
dΓ(η) (3.7)

and suppose that Vξ is nonsingular.6 Let τNT be any regular estimator of θ as N,T → ∞. Then

√
NT (τNT − θ)

d−→ N(0, V −1
ξ ) ∗Wξ (3.10)

for some distribution W on Rp where ∗ denotes a convolution operator. Further, if the limit law of τNT

has variance matrix Σξ, then Σξ ≥ V −1
ξ in the matrix sense.

This theorem shows that the asymptotic distribution of any regular estimator of θ can be written

as a convolution of the normal distribution N(0, V −1
ξ ) and some noise factor Wξ. It implies that the

law N(0, V −1
ξ ) is optimal in the sense that the asymptotic variances of any regular estimators cannot be

smaller than V −1
ξ . We refer to the matrix Vξ as the efficient information matrix for θ. We say that an

estimator sequence τNT is asymptotically efficient (or, simply, efficient) if it is regular and asymptotically

normal with mean zero and variance matrix V −1
ξ .

The functions ℓ̇1(z|η) − ΠT ℓ̇1(z|η) corresponds to an efficient score function in the usual semipara-

metric efficiency arguments for i.i.d. models. It can be shown that if an estimator τNT admits an

expansion

√
NT (τNT − θ) =

1√
NT

N∑
i=1

T∑
t=1

V −1
ξ

(
ℓ̇1(zit|θ, ηi, q)−ΠT ℓ̇1(zit|θ, ηi, q)

)
+ op(1) (3.11)

as N,T → ∞, then the estimator is efficient, i.e., it is regular and asymptotically normal with mean zero

and variance matrix V −1
ξ .

Although the projection ΠT ℓ̇1 is defined as the projection onto T ⊆ L2(PΓ
θ,q), it can be heuristically

calculated in the following way: we first fix η and then project the function z 7→ ℓ̇1(z|η) onto the closure

of

Tη :=
{
η̃(η)ℓ̇2(·|η) + l̇(·|η) ∈ L2(Pθ,η,q) : η̃ ∈ Cb(Λ), l̇ ∈ Tq

}
⊆ L2(Pθ,η,q). (3.12)

6Recall that we have suppressed the dependence of ℓ̇1 and Eη on θ and q. If we make explicit such dependence, then

Vξ =

∫
Eθ,η,q

(
ℓ̇1(z|θ, η, q)−ΠT ℓ̇1(z|θ, η, q)

)(
ℓ̇1(z|θ, η, q)−ΠT ℓ̇1(z|θ, η, q)

)′
dΓ(η) (3.8)

= lim
N→∞

1

N

N∑
i=1

Eθ,ηi,q

(
ℓ̇1(zit|θ, ηi, q)−ΠT ℓ̇1(zit|θ, ηi, q)

)(
ℓ̇1(zit|θ, ηi, q)−ΠT ℓ̇1(zit|θ, ηi, q)

)′
. (3.9)

This makes clear the reason for the subscript ξ in Vξ.
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The sets T and Tη look similar but differ in that the former is the subset of L2(Pθ,Γ,q), while the latter

is the subset of L2(Pθ,η,q) for a fixed η. When we interpret the density f(z|θ, η, q) as the conditional

density of z given random η, the projection onto Tη can be regarded as a projection ‘conditional on η’.

We now give an interpretation of the efficient information matrix Vξ. Notice that by Assumption 4

we can write

Vξ = lim
N→∞

1

N

N∑
i=1

Eηi
(
ℓ̇1(zit|ηi)−ΠT ℓ̇1(zit|ηi)

)(
ℓ̇1(zit|ηi)−ΠT ℓ̇1(zit|ηi)

)′
. (3.13)

In view of this, each summand in the last display can be interpreted as the efficient information for θ when

we only use the data for individual i. Thus Vξ can be interpreted as the ‘average’ efficient information

across individuals.

Remark 3.2. One possible drawback of a convolution theorem is that it is only valid for the prescribed

set of regular estimators. A local asymptotic minimax theorem, which is also popular in the efficiency

literature (see, e.g., Chamberlain (1992)), complements this drawback. Specifically, using a local asymp-

totic minimax theorem (van der Vart and Wellner (1996, Theorem 3.11.5)), we can show that the limit

law N(0, V −1
ξ ) is optimal among all estimators in terms of the maximum risk over an arbitrarily small

‘neighborhood’ of the true parameter value. To be more precise, define a neighborhood of the true

parameter ξ = (θ, {ηi}∞i=1, q) by

Bξ(δ) :=

{
ξ̌ = (θ̌, {η̌i}∞i=1, q̌) ∈ Θ×W (Λ)×Q : sup

i
∥Pθ,ηi,q − Pθ̌,η̌i,q̌∥TV < δ

}
(δ > 0) (3.14)

where ∥ · ∥TV is the total variation norm of finite signed measures on Z. Let ℓ be an arbitrary subcovex

loss function on Rdθ .7 It can be shown that for any estimator τNT of θ (not necessarily a regular

estimator), we have

inf
δ>0

lim inf
N,T→∞

sup
ξ̌∈Bξ(δ)

Eξ̌ℓ
(√

NT (τNT − θ)
)
≥
∫
ℓdN(0, V −1

ξ ) (3.15)

where Eζ̌ denotes an expectation operator under ζ̌ = (θ̌, {η̌i}∞i=1, q̌). This result says that the maximum

risk of an arbitrary estimator is bounded below by the risk of the law N(0, V −1
ξ ). The local minimax

result has its advantage over a convolution theorem in that it is valid for all estimators. However, it also

has a drawback that it only evaluates the maximum risk over a small neighborhood, rather than the risk

exactly at the point of the true parameter value (van der Vaart (2002, p.348)).

3.3 Application

As an application of Theorem 3.2, we will derive the efficiency bound for θ in the parametric conditional

density model (Example 1).

Recall that, in Example 1, the density of zit = (yit, x
′
it)

′ is factored into

fY |X(yit|xit, θ, ηi)fX(xit|ηi)dµY (yit)dµX(xit) (3.16)

7For the definition of subcovex loss functions, see van der Vaart (2002, p.347).
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where the form of fY |X is known up to parameters (θ, ηi), while the shape of fX is completely unknown

except that it may depend on ηi. Note that in this setting q = fX . We assume that the mapping

(θ, η) 7→
√
fY |X(y|x, θ, η)fX(x|η) (3.17)

is continuously Frechet differentiable in L2(µY ⊗ µX) and its Frechet derivative at (θ, η) is given by ℓ̇1(y|x, η)

ℓ̇2(y|x, η) + g(x, η)

×
√
fY |X(y|x, θ, η)fX(x|η) (3.18)

(Assumption 2). If the density were differentiable with respect to θ and η, then we could write

ℓ̇1(y|x, η) =
∂

∂θ
log fY |X(y|x, θ, η), ℓ̇2(y|x, η) =

∂

∂η
log fY |X(y|x, θ0, η), (3.19)

g(x, η) =
∂

∂η
log fX(x, η). (3.20)

It can be shown that TfX is a set of functions l̇(x|η) such that Eη l̇(x|η) = 0 for every η and the map

η 7→ l̇(x|η)
√
fX(x, η) is continuous in L2(ν). Then, in this model,

T =
{
η̃ℓ̇2 + l̇ ∈ L2(PΓ

θ,q) : η̃ ∈ Cb(Λ), l̇ ∈ TfX
}
. (3.21)

It is easy to verify that

ΠT ℓ̇1(y|x, η) =

(
Eη ℓ̇1(y|x, η)ℓ̇2(y|x, η)

Eη ℓ̇22(y|x, η)

)
ℓ̇2(y|x, η). (3.22)

As noted in the preceding subsection, this can be calculated as the projection of ℓ1(y|x, η) on the closure

of Tη. We note that the bias-corrected fixed effects estimator θ̂ of Hahn and Newy (2004) (an analytical

bias corrected version) admits the following expansion

√
NT (θ̂ − θ) =

1√
NT

N∑
i=1

T∑
t=1

V −1
ξ

(
ℓ̇1(yit|xit, ηi)−ΠT ℓ̇1(yit|xit, ηi)

)
+ op(1) (3.23)

as N,T → ∞ with N/T 3 → ∞ under certain regularity conditions. Thus, their bias-corrected fixed-

effects estimator is asymptotically efficient.

4 The Derivation of the Efficiency Bound

The efficiency bound for a nonlinear panel data model with fixed effects cannot be obtained by the usual

semiparametric efficiency arguments for models with i.i.d. observations because of the presence of fixed

effects and because we consider double asymptotics. In this section, we will give a detailed explanation

of how we obtain the efficiency bound presented in Theorem 3.2. In order to derive the efficiency bound,

we use the convolution theorem by van der Vaart and Wellner (1996). The most difficult part is how

to set a tangent set for the whole model, which is far from straightforward because of the presence of

the fixed effects. In the first subsection below, we introduce the convolution theorem by van der Vaart

and Wellner (1996). In the second subsection, we then consider applying the theorem to our panel data

model and derive the efficiency bound for estimating θ.
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4.1 A convolution theorem of van der Vaart and Wellner (1996)

In this section, we briefly review the convolution theorem in van der Vaart and Wellner (1996).8 We

begin by introducing their notation and terminology. Let H be a linear subspace of a Hilbert space

H with inner product ⟨·, ·⟩ and norm ∥ · ∥. For each N ∈ N and h ∈ H, let PN,h be a probability

measure on a measurable space (XN ,AN ). Let B denote the M -dimensional Euclidean space.9 Consider

a problem of estimating a ‘localized parameter’ κN (h) ∈ B given an observation with law PN,h. Let

{∆h : h ∈ H} be an iso-Gaussian process indexed by H. That is, the process {∆h : h ∈ H} is a Gaussian

process with mean zero and covariance function E∆h1∆h2 = ⟨h1, h2⟩. The sequence of experiments

{XN ,AN , PN,h : h ∈ H} or simply {PN,h : h ∈ H} is said to be locally asymptotically normal (LAN) if

we can write

log
dPN,h
dPN,0

= ∆N,h −
1

2
∥h∥2 + op(1),

as N → ∞ under PN,0where ∆N,h is a sequence of random variables such that as N → ∞,

∆N,h
0⇝ ∆h, marginally. (4.1)

Here,
h⇝ denotes weak convergence under PN,h. The more precise expression of the condition (4.1) is

that for any finite subset {h1, h2, · · · , hd} ⊆ H,


∆N,h1

∆N,h2

...

∆N,hd


0⇝ N(0, (⟨hi, hj⟩)), (4.2)

as N → ∞ where (⟨hi, hj⟩) is a d × d matrix whose (i, j)-th component is ⟨hi, hj⟩. The sequence of

parameters κN (h) is assumed to be regular (or differentiable) with respect to a norming real sequence

rN in the sense that as N → ∞,

rN (κN (h)− κN (0)) → κ̇, ∀h ∈ H,

for some bounded linear map κ̇ : H → B. A sequence of estimators τN is said to be regular with respect

to rN if, as N → ∞,

rN (τN − κN (h))
h⇝ L, ∀h ∈ H.

8While we consider double asymptotics under which both N and T tend to infinity, the convolution theorem stated

here considers only N as the index that tends to infinity. However, the theorem is sufficient for our purpose by the

following argument. The theorem can be directly applied to the case of diagonal asymptotics under which T depends on

N , say T = TN , and TN → ∞ as N → ∞. If a convergence result holds under any diagonal asymptotics in which TN is

nondecreasing in N , then that result also holds under double asymptotics (see Remark (a) after Definition 2 in Phillips

and Moon (1999)). This condition is satisfied in our convolution theorem. When N,T → ∞ with a restriction such as

N/T 3 → 0, we consider only nondecreasing sequences TN that satisfy that restriction.
9van der Vaart and Wellner (1996) considers a more general setting where B is a Banach space, rather than merely the

Euclidean space. For our purposes, however, it is sufficient to consider the special case where B is the Euclidean space.
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It should be emphasized that this definition requires that the limit distribution L be the same across

h.10 as N → ∞. A bounded linear map κ̇ : H → B has an adjoint map κ̇∗ : B → H̄, where H̄ is the

completion of H.11 The adjoint map is determined by the relation

⟨κ̇∗b, h⟩ = b′κ̇(h),

for all h ∈ H and all b ∈ B. Denote by ej an M -dimensional vector such that the j-th component is one

but all other elements are zero. Define κ̇∗j := κ̇∗ej . The following theorem, which is broadly known as a

convolution theorem, is a special case of Theorem 3.11.2 in van der Vaart and Wellner (1996).

Theorem 4.1 (A special case of Theorem 3.11.2 of van der Vaart and Wellner (1996)). Assume that

(PN,h : h ∈ H) is locally asymptotically normal. Further, assume that the sequence of parameters κN (h)

and that of estimators τN are regular. Then, the limit distribution L of rN (τN − κN (0)) equals the sum

G+W of two independent random vectors in B such that

G ∼ N
(
0, (⟨κ̇∗i , κ̇∗j ⟩)

)
.

Applying the same argument as in Section 3, we see that the theorem implies that the law of G is

optimal in the sense that the asymptotic variances of any regular estimators cannot be smaller than the

variance of G.

4.2 The derivation of the efficiency bound

We now consider applying Theorem 4.1 to our nonlinear panel data model with fixed effects. In order to

keep the developments as simple as possible and highlight the difficulties caused by fixed effects, we first

consider the case without a nuisance function q. That is, we deal with the case where the observation

zit is generated according to the density f(zit|θ, ηi). In this case, the totality of the parameters is

ξ = (θ, {ηi}∞i=1). Later, we will show how to extend our arguments to the case where the nuisance

function q is also present. The derivation of the efficiency bound consists of two steps. First, we

establish the LAN property. Second, we apply the convolution theorem to calculate the bound. The

second part is not long, while the first part requires a considerable work. Thus, most of this subsection

is devoted to the first part, i.e., the verification of the LAN property of our panel data model with fixed

effects.

In order to establish the LAN property, we begin by considering how to set the indexed set H. The

convolution theorem requires that H is a linear subspace of some Hilbert space H. However, it is usually

sufficient to verify the following two conditions: (i) H is a linear space and (ii) we can define an inner

10When the statistical experiment is indexed by N and T and we consider double asymptotics, the regularity of a

parameter κNT (h) can be defined using the nondecreasing sequence argument. For example, a parameter κNT (h) is said

to be regular with respect to a norming sequence rNT if there is some bounded linear map κ̇ : H → B such that for every

nondecreasing sequence TN we have rNTN
(κNTN

(h) − κNTN
(0)) → κ̇ for all h ∈ H, as N → ∞. The regularity of an

estimator τNT is defined in an analogous way. When N,T → ∞ with a restriction such as N/T 3 → 0, we consider only

nondecreasing sequences TN that satisfy that restriction.
11van der Vaart and Wellner (1996) considers an adjoint map from the dual space B∗ of B to H̄. In the present setting,

since B is the Euclidean space, we can identify the dual space B∗ with B.
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product on H using the second term in the LAN expansion. The requirement that H be a Hilbert space

is not essential because every inner product space can be completed. The condition (ii) can be further

relaxed; even if H is only a semi-inner product space, there will be no problem because we can always

take a quotient space. More specifically, if ⟨·, ·⟩ is a semi-inner product on H, then we consider the

quotient space H/K where K := {h ∈ H : ⟨h, h⟩ = 0} (for a definition of a quotient space, see, e.g.,

Rudin (1991)).

In models with i.i.d. observations, the probability measure PN,h in Theorem 4.1 corresponds to a law

that is localized around the truth in the direction h ∈ H. Thus the choice of H is closely related to a

localization scheme we will adopt. We first discuss the following seemingly natural localization scheme,

which is employed in Hahn and Kuersteiner (2002) in the context of panel autoregressive models. As we

shall see, the method cannot be easily applied to our general nonlinear panel data model.

In view of the usual LAN theory for parametric i.i.d. models (see, e.g, van der Vaart (1998, Chapter

7)), it may seem natural to localize the parameter ξ = (θ, {ηi}∞i=1) as follows:

θ +
1√
NT

θ̃, η1 +
1√
NT

η̃1, η2 +
1√
NT

η̃2, · · · . (4.3)

Here, θ̃ ∈ Rdθ and {η̃i}∞i=1 is some bounded real sequence. In this case, we regard (θ̃, {η̃i}∞i=1) as h in

Theorem 4.1. Let W̃ ⊆ RN be a set for perturbing sequences {η̃i}∞i=1 and define H = Rdθ × W̃ . Let

PNT,h be the law of the panel data {{zit}Tt=1}Ni=1 under the localized parameter (4.3) and let PNT,0 be

the law under the true parameter. The local log likelihood ratio is given by

log
dPNT,h
dPNT,0

=

T∑
t=1

N∑
j=1

log
f
(
zit|θ + θ̃/

√
NT, ηi + η̃i/

√
NT

)
f(zit|θ, ηi)

. (4.4)

By heuristic calculations, we expect that the log likelihood ratio is expanded as

log
dPNT,h
dPNT,0

=
1√
NT

N∑
i=1

T∑
t=1

(
θ̃′ℓ̇1(zit|ηi) + η̃iℓ̇2(zit|ηi)

)
− lim
N→∞

1

2N

N∑
i=1

Eηi
(
θ̃′ℓ̇1(zit|ηi) + η̃iℓ̇2(zit|ηi)

)2
+ op(1) (4.5)

as N,T → ∞ under PNT,0. In order to verify the LAN condition, we have to specify the set W̃ .The most

natural candidate is the set W̃0 of all the sequences {η̃i}∞i=1 such that the above expansion is valid and

the first term satisfies some central limit theorem. However, this specification is not generally applicable

because the set W̃0 is not necessarily a linear space (notice that since H must be linear, W̃ itself must

also be linear). The following example illustrates this fact.

Example 3. We consider the celebrated example of Neyman and Scott (1948). Suppose that zit is

real-valued and can be written as zit = ηi + uit. Here uit is an error term that is i.i.d. across i and

t. Assume that uit ∼ N(0, γ). In this example, θ = γ > 0. By direct calculations, we can show that

whenever limN→∞
1
N

∑N
i=1 η̃

2
i exists and is finite, then as N,T → ∞

log
dPNT,h
dPNT,0

=
1√
NT

N∑
i=1

T∑
t=1

{
γ̃

2

(
u2it
γ2

− 1

γ

)
− η̃iuit

γ

}
(4.6)

−1

2

{
γ̃2

4
E
(
u2it
γ2

+
1

γ

)2

+
1

γ
lim
N→∞

1

N

N∑
i=1

η̃2i

}
+ op(1), (4.7)
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under PNT,0 and the first term in the expansion is asymptotically normal with mean 0 and variance

twice the second term.12 Here γ̃ corresponds to θ̃ in a general setting. Conversely, if this expansion is

valid, then obviously the limit limN→∞
1
N

∑N
i=1 η̃

2
i exists and is finite. Thus, in this simple model,

W̃0 =

{
{η̃i}∞i=1 ∈ RN : lim

N→∞

1

N

N∑
i=1

η̃2i exists and is finite.

}
. (4.8)

The set W̃0 of Cesaro convergent sequences is not a linear space.To see this, set ai = 1 for every i and

bi = (−1)k where k is the unique integer determined by 2k < i ≤ 2k+1 (i ∈ N). Then lim 1
N

∑N
i=1 a

2
i =

lim 1
N

∑N
i=1 b

2
i = 1. Hence, {η̃i}∞i=1 and {bi}∞i=1 are both in W̃0, provided that ±1 ∈ Λ. However,

1
N

∑N
i=1 aibi oscillates and so does 1

N

∑N
i=1(ai + bi)

2. Thus, the sum {ai + bi}∞i=1 does not lie in W̃0.

Thus we must consider restricting W̃0 in such a way that it becomes a linear space. However, it is

not an easy task to find an appropriate restriction on W̃0, because it can be model-specific. Further, a

situation can be much more complicated when we consider a model with a nuisance function q.

One may think that just assuming the conditions required for the local asymptotic normality, instead

of specifying the set W̃ concretely, may be sufficient for our present purpose. However, such a high-level

approach is not always satisfactory for the following reason. Calculating the efficiency bounds typically

involves a projection onto the space spanned by scores for nuisance parameters. Not specifying the space

H can lead to not specifying the space of scores, making the calculation of the projection infeasible.

The main problem about the above perturbation method is intractability of the sequence space for

{η̃i}∞i=1. In order to avoid the technical difficulties caused by the sequence space, we take a different

approach. Motivated by Strasser (1998), we use a function, rather than a sequence, to perturb the

parameters. To be more precise, let η̃(·) ∈ Cb(Λ) and localize the parameter ξ = (θ, {ηi}∞i=1) as follows:

θ +
1√
NT

θ̃, η1 +
1√
NT

η̃(η1), η2 +
1√
NT

η̃(η2), · · · , (4.9)

where, as before, θ̃ ∈ Rdθ . This localization looks similar to (4.3) but differs in that each ηi is now

perturbed by the function η̃(ηi) evaluated at ηi. Note that since the true parameter ξ = (θ, {ηi}∞i=1)

is held fixed, the pair (θ̃, η̃(·)) completely determines the localized parameter (4.9). Thus, under this

localization, we can regard the pair (θ̃, η̃(·)) to be h in Theorem 4.1. We set H := Rdθ × Cb(Λ). As

before, we denote by PNT,h the law of the panel data under the localized parameter (4.9).

Under this localization scheme, we can now verify the LAN condition required in Theorem 4.1. First,

it is obvious that the set H = Rdθ ×Cb(Λ) is a linear space. Further, under Assumptions 1, 2 and 4, we

rigorously prove in the Appendix that the asymptotic expansion (4.5) is valid with η̃i replaced by η̃(ηi).

We also show in the Appendix that the first term in the LAN expansion converges in distribution to a

zero-mean normal distribution whose variance is twice the second term. Based on the LAN expansion,

we next consider a LAN inner product on H. Notice that by Assumption 2 and the continuity of η̃(·),

the map

η 7→ Eη
(
θ̃′ℓ̇1(z|η) + η̃(η)ℓ̇2(z|η)

)2
(4.10)

12In this example, we do not assume that Λ is closed and bounded, simply because we do not need the assumption in

order for the expansion (4.6) to hold.
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is continuous on Λ. Thus, by Assumption 4, we have

lim
N→∞

1

N

N∑
i=1

Eηi
(
θ̃′ℓ̇1(zit|ηi) + η̃(ηi)ℓ̇2(z|ηi)

)2
=

∫
Eη
(
θ̃′ℓ̇1(z|η) + η̃(η)ℓ̇2(z|η)

)2
. (4.11)

That is, we can write the second term in the LAN expansion as the integral with respect to PΓ
θ , rather

than a Cesaro limit. As noted in Section 3, this greatly facilitates our use of techniques from functional

analysis: integrals are much more tractable than Cesaro limits. This is the main advantage of our

localization scheme and weak convergence assumption on individual effects (Assumption 4). Using this

integral, the LAN inner product on H is defined as follows:

⟨ha, hb⟩ :=
∫

Eη
(
θ̃′aℓ̇1(z|η) + η̃a(η)ℓ̇2(z|η)

)(
θ̃′bℓ̇1(z|η) + η̃b(η)ℓ̇2(z|η)

)
dΓ(η).

for ha = (θ̃a, η̃a) and hb = (θ̃b, η̃b). Rigorously speaking, this functional ⟨·, ·⟩ on H ×H is a semi-inner

product on H, so we consider the quotient space H/K, as noted above. However, we will simply write H

for H/K for simplicity of notation. We set H to be the completion of H with respect to the inner product

⟨·, ·⟩. Since we have checked all the conditions required for the LAN property, we have established the

following result.

Theorem 4.2 (LAN). Consider the situation without the nuisance function q. Suppose that Assump-

tions 1, 2 and 4 hold. We define PNT,h, H, H and ⟨·, ·⟩ as above. Then, the statistical experiment

{PNT,h : h ∈ H} is locally asymptotically normal in the sense of van der Vaart and Wellner (1996). That

is, for every h = (θ̃, η̃(·)) ∈ H, we have

log
dPNT,h
dPNT,0

= ∆NT,h −
1

2
∥h∥2 + op(1)

as N,T → ∞ under PNT,0 where

∆NT,h :=
1√
NT

N∑
i=1

T∑
t=1

(
θ̃′ℓ̇1(zit|ηi) + η̃(ηi)ℓ̇2(zit|ηi)

)
(4.12)

converges weakly to ∆h ∼ N(0, ∥h∥2), marginally.

Next we turn to extend the LAN results to the case with a nuisance function q. For this purpose, we

set H := Rdθ ×Cb(Λ)× Tq. By Assumption 3, it is easily seen that H is a linear space. By definition of

Tq, for each l̇ ∈ Tq , we can pick out a parametrization qs such that (3.2) holds. For h = (θ̃, η̃, l̇) ∈ H, let

PNT,h be the probability law whose density is

N∏
i=1

T∏
t=1

f
(
zit

∣∣∣θ + θ̃/
√
NT, ηi + η̃(ηi)/

√
NT, q1/

√
NT

)
. (4.13)

By exactly the same arguments as in the case without the nuisance function q, we have the following

expansion: under PNT,0,

log
dPNT,h
dPNT,0

=
1√
NT

N∑
i=1

T∑
t=1

(
θ̃′ℓ̇1(zit|ηi) + η̃(ηi)ℓ̇2(zit|ηi) + l̇(zit|ηi)

)
−1

2

∫
Eη
(
θ̃′ℓ̇1(z|η) + η̃(η)ℓ̇2(z|η) + l̇(z|η)

)2
dΓ(η) + op(1) (4.14)
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as N,T → ∞. Based on this expansion, we define an inner product on H by

⟨ha, hb⟩ :=
∫

Eη
(
θ̃′aℓ̇1(z|η) + η̃a(η)ℓ̇2(z|η) + l̇a(z|η)

)(
θ̃′bℓ̇1(z|η) + η̃b(η)ℓ̇2(z|η) + l̇b(z|η)

)
dΓ(η)

for ha = (θ̃a, η̃a, l̇a) and hb = (θ̃b, η̃b, l̇b) in H. Again, since this function is a semi-inner product, we

consider the quotient space H/K. As before, we will simply write H for H/K. Let H be the completion

ofH with respect to the inner product ⟨·, ·⟩. Since all the requirements for the LAN property are satisfied,

we have thee following result.

Theorem 4.3 (LAN). Consider the situation with a nuisance function q. Suppose that Assumptions 1

to 4 hold. We define PNT,h, H, H and ⟨·, ·⟩ as above. Then, the statistical experiment {PNT,h : h ∈ H}

is locally asymptotically normal in the sense of van der Vaart and Wellner (1996). That is, for every

h = (θ̃, η̃(·)) ∈ H, we have

log
dPNT,h
dPNT,0

= ∆NT,h −
1

2
∥h∥2 + op(1)

as N,T → ∞ under PNT,0 where

∆NT,h :=
1√
NT

N∑
i=1

T∑
t=1

(
θ̃′ℓ̇1(zit|ηi) + η̃(ηi)ℓ̇2(zit|ηi) + l̇(zit|ηi)

)
(4.15)

converges weakly to ∆h ∼ N(0, ∥h∥2), marginally.

Remark 4.1. When interpreting the efficiency bound given in Theorem 3.2, it is more useful to consider

the LAN result in terms of a score function. We define a score operator13 A from Rdθ × Cb(Λ) × Tq to

L2(PΓ
θ ) by

A(h) = A(θ̃, η̃, l̇) = θ̃′ℓ̇1 + η̃ℓ̇2 + l̇. (4.16)

The function θ̃′ℓ̇1(·|η) + η̃(η)ℓ̇2(·|η) + l̇ can be regarded as a score function for the one-dimensional

submodel f(·|θ+ sθ̃, η+ sη̃(η), qs) where s ∈ (−ϵ, ϵ) is the parameter of the submodel (this is the reason

that the operator A is called a ‘score’ operator).

Since A is a linear operator and

⟨ha, hb⟩ = ⟨A(ha), A(hb)⟩L2(PΓ
θ,q)

(4.17)

for all (θ̃a, η̃a, l̇a) and (θ̃b, η̃b, l̇) in H, we see that A is an isometry. It follows that the inner product

space H can be identified with the range of A:

J := Range(A) =
{
θ̃′ℓ̇1 + η̃ℓ̇2 + l̇ ∈ L2

(
PΓ
θ,q

)
: θ̃ ∈ Rdθ , η̃ ∈ Cb(Λ), l̇ ∈ Tq

}
. (4.18)

As a result, the completion H coincides with the closure of J . Since the function θ̃′ℓ̇1+η̃ℓ̇2+ l̇ corresponds

to a score function for a parametric submodel of our model, the set J can be interpreted as the tangent

set for our panel data model.

Based on Theorem 4.3, we now prove Theorem 3.2.

13See van der Vaart (1998, Chapter 25) for a score operator in the context of i.i.d. models.
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Proof of Theorem 3.2. To prove this theorem, we follow the arguement in van der Vaart (1998, p369),

which is a standard way to derive the efficiency bounds for semiparametric models. A proof using

Theorem 4 in Hahn (2002) is also possible but in this case our direct proof is much simpler.

The ‘parameter’ of interest is now kNT (h) = θ + θ̃/
√
NT and so we have k̇(h) = θ̃. Since B = Rp,

every continuous linear finctional b∗ : B → R takes the form Rp ∋ x 7→ b′x for some b ∈ Rp. Define a

linear map k∗ : B → H by k̇∗b∗ = b′V −1
ξ

(
ℓ̇1(z|η)−ΠT ℓ̇1(z|η)

)
. Observe that for any h = (θ̃, η̃, l̇) ∈ H

and b ∈ Rp

⟨k̇∗b∗, h⟩ =

∫
Eηb′V −1

ξ

(
ℓ̇1(z|η)−ΠT ℓ̇1(z|η)

)(
θ̃′ℓ̇1(z|η) + η̃(η)ℓ̇2(z|η) + l̇(z|η)

)
dΓ(η)

=

∫
Eηb′V −1

ξ

(
ℓ̇1(z|η)−ΠT ℓ̇1(z|η)

)(
θ̃′ℓ̇1(z|η)

)
dΓ(η)

=

∫
Eηb′V −1

ξ

(
ℓ̇1(z|η)−ΠT ℓ̇1(z|η)

)(
ℓ̇1(z|η)−ΠT ℓ̇1(z|η)

)′
θ̃dΓ(η)

= b′θ̃.

This shows that k̇∗ is the adjoint map of k̇ under the LAN inner product defined in Theorem 4.3.

Further, it can be easily seen that ∥k̇∗b∗∥2 = b′V −1
ξ b. Since this holds for arbitrary b ∈ Rp, we prove the

theorem.

5 Conclusion

This paper derives the efficiency bounds for estimates of model parameters in nonlinear panel data

models with individual effects when both N and T tend to infinity. Our results verify that bias-corrected

fixed effects estimators considered in Hahn and Newey (2005) are asymptoticaly efficient. To derive the

efficiency bounds, we apply a convolution theorem that allows data to be non-i.i.d. and a parameter

space to be infinite-dimensional. The presence of incidental parameters and our use of double asymptotics

make the derivation of the lower bounds nontrivial and somewhat nonstandard. A weak convergence

assumption on individual effects plays a key role in overcoming such difficulties. We conjecture that the

method used in this paper can be applied to the derivation of the efficiency bounds for nonlinear dynamic

panel data models as considered in Hahn and Kuersteiner (2011).

A Appendix: Proofs

A.1 Proof of Theorem 4.2

In this subsection, we prove Theorem 4.2, which establishes the LAN property of the nonlinear panel

data models we consider. Under the perturbation (4.3), the local log likelihood ratio process of our

nonlinear panel data model with individual effects is

log
dPNT , h

dPNT,0
=

T∑
t=1

N∑
i=1

log
f
(
zit|θ + θ̃/

√
NT, ηi + ψ(ηi)/

√
NT

)
f(zit|θ, ηi)

. (A.1)

To simplify notation let

pNT (z, η) := f
(
z
∣∣∣θ + θ̃/

√
NT, η + ψ(η)/

√
NT

)
(A.2)
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and let

p(z, η) := f (z|θ, η) . (A.3)

We define

WNT (z, η) :=

 2
(√

pNT (z,η)
p(z,η) − 1

)
if p(z, η) ̸= 0

0 if p(z, η) = 0

and note that WNT (zit, ηi) is well-defined with probability one. Apply a Taylor expansion to log(1 + x)

to obtain log(1 + x) = x− (1/2)x2 + x2R(2x) where R(x) → 0 as x → 0. Using this expansion, we can

write the local log likelihood ratio process as

log
dPNT , h

dPNT,0
=

T∑
t=1

N∑
i=1

WNT (zit, ηi)−
1

4

T∑
t=1

N∑
i=1

W 2
NT (zit, ηi)

+
1

2

T∑
t=1

N∑
i=1

W 2
NT (zit, ηi)R(WNT (zit, ηi)). (A.4)

The local asymptptic normality of our nonlinear panel data model will be established through investi-

gating the asymptotic behavior of each term appeared in the right hand side of (A.4) and verifying that

the asymptotic variance of the central sequence defines an inner product on H = Θ × Cb(R) and that

the inner-product space is a subspace of a Hilbert space.

Before proceeding to the proof, we will introduce some additional notation. Define

g(z, η) := θ̃′ℓ̇1(z|θ, η) + ψ(η)ℓ̇2(z|θ, η) (A.5)

and

ANT (η) :=
√
pNT (z, η)−

√
p(z, η). (A.6)

Further, write

rNT (η) := ANT (η)−
1

2
√
NT

g(z, η)
√
p(z, η). (A.7)

We begin the proof of the LAN property by verifying the following useful lemma, which is a consequence

of Assumption 2 and 4.

Lemma A.1. (i) For every compact subset K of R, we have

lim sup
N,T→∞

sup
η∈K

NT

∫
r2NT (η)dµ = 0. (A.8)

Furthermore,

lim sup
N,T→∞

sup
η∈K

NT

∣∣∣∣∫ A2
NT (z, η)dµ− 1

4NT
Eθ,ηg2(z, η)

∣∣∣∣ = 0. (A.9)

(ii) We have

lim sup
N,T→∞

sup
η∈Λ

NT

∫
r2NT (η)dµ ≤ C1 <∞. (A.10)

Moreover,

lim sup
N,T→∞

sup
η∈Λ

NT

∣∣∣∣∫ A2
NT (z, η)dµ− 1

4NT
Eθ,ηg2(z, η)

∣∣∣∣ ≤ C2 <∞. (A.11)
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Proof. To show the first statement of (i), we introduce the following notation:

sNT ((θ
′, η)′, (u′1, u2)

′)

:=

√
f

(
z
∣∣∣(θ′, η)′ + 1√

NT
(u′1, u2)

′
)
−
√
f(z|θ, η)− 1

2
√
NT

(u′1, u2)ℓ̇(z|θ, η)
√
f(z|θ, η).

From Lemma.5 of Appendix 9 in Bickel et. (1993, p509), it holds that for every compact sets K1

and K2 of Rp+1,

NT

∫
s2NT ((θ

′, η)′, (u′1, u2)
′)dµ (A.12)

converges to 0 uniformly for (θ′, η)′ ∈ K1 and u ∈ K2. Now fix θ, θ̃ and ψ. Note that since ψ is

assumed to be bounded, there exists some compact subset A ⊆ R such that ψ(η) ∈ A for all η ∈ Λ.

From the uniform convergence of (A.12) it follows that for every compact subset K ⊆ R,

sup
η∈K

NT

∫
r2NT (η)dµ

≤ sup
η∈K

sup
u2∈A

NT

∫
s2NT ((θ

′, η)′, (θ̃′, u2)
′)2dµ→ 0.

Thus the first statement of (i) follows.

To show the second statement of (i), first observe that

NT

∣∣∣∣∫ ANT (z, η)
2dµ− 1

4NT
Eθ,ηg2(z, η)

∣∣∣∣
≤
{
NT

∫
r2NT (η)dµ

}1/2
{
NT

∫ (
ANT (η) +

1

2
√
NT

g(z, η)
√
p(z, η)

)2

dµ

}1/2

where this inequality follows from the Cauchy-Schwarz inequality. Further, note that

sup
η∈K

NT

∫ (
ANT (η) +

1

2
√
NT

g(z, η)
√
p(z, η)

)2

dµ

≤ 2

(
sup
η∈K

NT

∫
r2NT (η)dµ+

1

42
sup
η∈K

Eθ,ηg2(z, η)
)
.

By the first statement of (i), the first term in the last display is o(1), and by Assumption ?? the

second term is finite. It thus follows that

sup
η∈K

NT

∣∣∣∣∫ ANT (z, η)
2dµ− 1

4NT
Eθ,ηg2(z, η)

∣∣∣∣ = o(1),

which is the required result.

The proof of (ii) is similar.

Lemma A.2. As N,T → ∞, we have

T∑
t=1

N∑
i=1

WNT (zit, ηi) =
1√
NT

T∑
t=1

N∑
i=1

g(zit, ηi)−
1

4

∫
Eθ,ηg2(zit, η)dΓ(η) + op(1). (A.13)

Proof. The proof proceeds through analysing the mean and variance of

T∑
t=1

N∑
i=1

WNT (zit, ηi)− (1/
√
NT )

T∑
t=1

N∑
i=1

g(zit, ηi). (A.14)
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Because we are faced with incidental parameters and use double asymptotics, the proof is more technical

than in the case with i.i.d observations.

First observe that

Var

[
T∑
t=1

N∑
i=1

WNT (zit, ηi)−
1√
NT

T∑
t=1

N∑
i=1

g(zit, ηi)

]
(A.15)

= T
N∑
i=1

Var

[
WNT (zit, ηi)−

1√
NT

g(zit, ηi)

]
(A.16)

≤ T
N∑
i=1

Eθ,ηi
[
WNT (zit, ηi)−

1√
NT

g(zit, ηi)

]2
(A.17)

= 4T

N∑
i=1

∫ [
(pNT (z, ηi)− p(z, ηi))−

1

2
√
NT

g(z, ηi)
√
p(z, η)

]2
dµ(z). (A.18)

The etreme tight hand side of (A.15) can be written as 4T
∑N
i=1

∫
r2NT (η)dµ. By Assumption 2, we

have

lim
N,T→∞

NT

∫
r2NT (η)dµ = 0. (A.19)

Now take ϵ > 0. By Remark ??, there exists a compact set K ⊆ Λ such that

1

N

N∑
i=1

1K(ηi) > 1− ϵ for all n ∈ N. (A.20)

lim sup
N,T→∞

sup
η∈K

NT

∫
r2NT (η)dµ = 0. (A.21)

Moreover, by Assumption ?? and the boundedness of ψ we have

lim sup
N,T→∞

sup
η∈Λ

NT

∫
r2NT (η)dµ ≤ C <∞. (A.22)

Combining these results yields

lim sup
N,T→∞

T
N∑
i=1

∫
r2NT (ηi)dµ (A.23)

≤ lim sup
N,T→∞

1

N

∑
ηi∈K

NT

∫
r2NT (ηi)dµ+ lim sup

N,T→∞

1

N

∑
ηi /∈K

NT

∫
r2NT (ηi)dµ (A.24)

≤ lim sup
N,T→∞

sup
η∈K

NT

∫
r2NT (η)dµ+ ϵ lim sup

N,T→∞
sup
η∈Λ

NT

∫
r2NT (η)dµ (A.25)

≤ Cϵ. (A.26)

Since this holds for arbitrary ϵ > 0, we have lim supN,T→∞ T
∑N
i=1

∫
r2NT (ηi)dµ = 0. Thus it follows

that as N,T → ∞,

Var

[
T∑
t=1

N∑
i=1

WNT (zit, ηi)−
1√
NT

T∑
t=1

N∑
i=1

g(zit, ηi)

]
= o(1). (A.27)
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Next we turn to the expectation of (A.14). Observe that

E

[
T∑
t=1

N∑
i=1

WNT (zit, ηi)− (1/
√
NT )

T∑
t=1

N∑
i=1

g(zit, ηi)

]
(A.28)

= T

N∑
i=1

Eθ,ηiWNT (zit, ηi) (A.29)

= T
N∑
i=1

(
2

∫ √
pNT (z, ηi)p(z, ηi)dµ− 2

)
(A.30)

= −T
N∑
i=1

∫ [√
pNT (z, ηi)−

√
p(z, ηi)

]2
dµ =: −T

N∑
i=1

BNT (ηi). (A.31)

By Minkowski’s inequality, we have∣∣∣∣∣(BNT (η)) 1
2 −

(
1

4
Eθ,ηg2(z, η)

) 1
2

∣∣∣∣∣ ≤
∫
r2NT (η)dµ. (A.32)

Thus the analogous arguements with the above show that as N,T → ∞,

−T
N∑
i=1

BNT (ηi) = − 1

4N

N∑
i=1

Eθ,ηig2(z, ηi) + o(1). (A.33)

By Assumption ??, we can see that η → Eθ,ηg2(z, η) is also continuous and bounded on Λ. Therefore,

Assumption 4 implies that

lim
N→∞

1

N

N∑
i=1

Eθ,ηig2(z, ηi) =
∫

Eθ,ηg2(z, η)dΓ(η). (A.34)

This shows that

E

[
T∑
t=1

N∑
i=1

WNT (zit, ηi)−
1√
NT

T∑
t=1

N∑
i=1

g(zit, ηi)

]
= −1

4

∫
Eθ,ηg2(z, η)dΓ(η) + o(1). (A.35)

Combining (A.35) and (A.27), we have the desired result.

Lemma A.3. As N,T → ∞, we have

T∑
t=1

N∑
i=1

W 2
NT (zit, ηi) =

1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi) + op(1). (A.36)
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Proof. By the Cauchy-Schwarz inequality and Minkowski’s inequality, we have

E

∣∣∣∣∣
T∑
t=1

N∑
i=1

W 2
NT (zit, ηi)−

1

NT

T∑
t=1

N∑
i=1

g2(z, ηi)

∣∣∣∣∣
≤

T∑
t=1

N∑
i=1

E
∣∣∣∣W 2

NT (zit, ηi)−
1

NT
g2(z, ηi)

∣∣∣∣
≤ T

N∑
i=1

Eθ,ηi

∣∣∣∣(WNT (zit, ηi)−
1√
NT

g(z, ηi)

)(
WNT (zit, ηi) +

1√
NT

g(z, ηi)

)∣∣∣∣
≤ T

N∑
i=1

(
Eθ,ηi

(
WNT (zit, ηi)−

1√
NT

g(z, ηi)

)2
)1/2

×

(
Eθ,ηi

(
WNT (zit, ηi) +

1√
NT

g(z, ηi)

)2
)1/2

≤ T

N∑
i=1

(
Eθ,ηi

(
WNT (zit, ηi)−

1√
NT

g(z, ηi)

)2
)1/2

×

((
Eθ,ηiW 2

NT (zit, ηi)
)1/2

+

(
1

NT
Eθ,ηig2(z, ηi)

)1/2
)

≤

(
T

N∑
i=1

Eθ,ηi
(
WNT (zit, ηi)−

1√
NT

g(z, ηi)

)2
)1/2

×

(
T

N∑
i=1

Eθ,ηiW 2
NT (zit, ηi)

)1/2

+

(
T

N∑
i=1

Eθ,ηi
(
WNT (zit, ηi)−

1√
NT

g(z, ηi)

)2
)1/2

×

(
1

N

N∑
i=1

Eθ,ηig2(z, ηi)

)1/2

.

We know from the proof of the previous lemma that the first factors in the two terms in the last display

are o(1) and further that the second factor in the second term is O(1). Now observe that

T
N∑
i=1

Eθ,ηiW 2
NT (zit, ηi) = 4T

N∑
i=1

∫ [√
pNT (z, ηi)−

√
p(z, ηi)

]2
dµ

= 4T
N∑
i=1

BNT (ηi)

=
1

N

N∑
i=1

Eθ,ηig2(z, ηi) + o(1)

= O(1).

where the last two equalities follows from the results in the proof of the previous lemma (see (A.33) and

(A.34)). Thus, as N,T → ∞, we have E
∣∣∣∑T

t=1

∑N
i=1W

2
NT (zit, ηi)− 1

NT

∑T
t=1

∑N
i=1 g

2(z, ηi)
∣∣∣ = o(1),

which implies the desired result.

Lemma A.4. For any ϵ > 0, we have as N → ∞, regardless of whether T is fixed or tends to infinity,

1

N

N∑
i=1

Eθ,ηig2(zit, ηi)1
{
|g(zit, ηi)| >

√
NTϵ

}
→ 0. (A.37)

Proof. This result follows from Lemma 6.3 in Strasser (1996b).

Lemma A.5. As N,T → ∞, we have

1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi)
p→
∫

Eθ,ηg2(z, η)dΓ(η). (A.38)
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Proof. This lemma is an extention of the result in p.380 in Strasser (1985). The difference is that Strasser

(1985) considers the case where only the number of individuals tends to infinity, while we consider double

asymptotics. Thus our proof needs more delicate calculations.

We will show that as N,T → ∞,

1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi) =
1

N

N∑
i=1

Eθ,ηg2(zit, η) + op(1), (A.39)

which implies the required result by Assumption 4. To show this, fix ϵ > 0 and δ > 0. Take a positive

number γ > 0 such that

γ2 <
ϵ2δ

18 supN∈N(1/N)
∑N
i=1 Eθ,ηig2(zit, ηi)

. (A.40)

For notational simplicity, we write Iit,NT := 1
{
|g(zit, ηi)| ≤

√
NTγ

}
. First observe taht∣∣∣∣∣ 1N

N∑
i=1

Eθ,ηig2(zit, ηi)−
1

N

N∑
i=1

Eθ,ηig2(zit, ηi)Iit,NT

∣∣∣∣∣
≤ 1

N

N∑
i=1

Eθ,ηig2(zit, ηi)1
{
|g(zit, ηi)| >

√
NTγ

}
→ 0 (A.41)

as N,T → ∞ by Lemma. This implies that there exists some M1 ∈ N such that for all N,T ≥ M1 the

left hand side of (A.41) is smaller than or equal to ϵ/3. Thus for N,T ≥M1 we have

P

(∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi)−
1

N

N∑
i=1

Eθ,ηig2(zit, ηi)

∣∣∣∣∣ > ϵ

)

≤ P

(∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi)−
1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi)Iit,NT

∣∣∣∣∣ > ϵ

3

)

+P

(∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi)Iit,NT − 1

N

N∑
i=1

Eθ,ηig2(zit, ηi)Iit,NT

∣∣∣∣∣ > ϵ

3

)
. (A.42)

Since

P

(∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi)−
1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi)Iit,NT

∣∣∣∣∣ > ϵ

3

)
(A.43)

≤ P
(

max
1≤t≤T

max
1≤i≤N

g2(zit, ηi) >
√
NTγ

)
(A.44)

≤ 1

N

N∑
i=1

Eθ,ηig2(zit, ηi)1
{
|g(zit, ηi)| >

√
NTγ

}
, (A.45)

there exists some M2 ∈ N such that, for all N,T ≥M2, the first term of the right hand side of (A.42) is

smaller than to δ/2. Further

P

(∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi)Iit,NT − 1

N

N∑
i=1

Eθ,ηig2(zit, ηi)Iit,NT

∣∣∣∣∣ > ϵ

)
(A.46)

≤ 9

ϵ2N2T

N∑
i=1

Eθ,ηig4(zit, ηi)Iit,NT ≤ 9γ2

ϵ2N

N∑
i=1

Eθ,ηig2(zit, ηi) <
δ

2
. (A.47)

Cosequently, for all N,T ≥M := max{M1,M2}, we have

P

(∣∣∣∣∣ 1

NT

T∑
t=1

N∑
i=1

g2(zit, ηi)−
1

N

N∑
i=1

Eθ,ηig2(zit, ηi)

∣∣∣∣∣ > ϵ

)
< δ. (A.48)

This shows the lemma.
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Lemma A.6. As N,T → ∞, we have

T∑
t=1

N∑
i=1

W 2
NT (zit, ηi)R(WNT (zit, ηi)) = op(1) (A.49)

Proof. First note that∣∣∣∣∣
T∑
t=1

N∑
i=1

W 2
NT (zit, ηi)R(WNT (zit, ηi))

∣∣∣∣∣ ≤ max
1≤t≤T

max
1≤i≤N

|R (WNT (zit, ηi))|
T∑
t=1

N∑
i=1

W 2
NT (zit, ηi).

By Lemma A.3 and Lemma A.5, we have
∑T
t=1

∑N
i=1W

2
NT (zit, ηi) = Op(1) as N,T → ∞. Thus it

suffices to show that as N,T → ∞,

max
1≤t≤T

max
1≤i≤N

|R(WNT (zit, ηi))| = op(1). (A.50)

Now observe that

P
(

max
1≤t≤T

max
1≤i≤N

|WNT (zit, ηi)| >
√
2ϵ

)
(A.51)

≤ T
N∑
i=1

P
(
W 2
NT (zit, ηi) > 2ϵ2

)
(A.52)

≤ T
N∑
i=1

P
(
g2(zit, ηi) > ϵ2NT

)
+ T

N∑
i=1

P
(
|Ait| > ϵ2NT

)
(A.53)

where Ait := NTW 2
NT (zit, ηi) − g2(z, ηi). Note that from the result in the previous lemma we have

(1/N)
∑N
i=1 E|Ait| → 0 as N → ∞. By Markov’s inequality, we have

P
(

max
1≤t≤T

max
1≤i≤N

|WNT (zit, ηi)| >
√
2ϵ

)
(A.54)

≤ 1

ϵ2N

N∑
i=1

Eθ,ηig2(zit, ηi)1
{
g2(zit, ηi) > ϵT

}
+

1

ϵ2N

N∑
i=1

E|Ait|. (A.55)

From the result in Lemma the first term of the last display tend to 0. Thus we see that as N,T → ∞

max
1≤t≤T

max
1≤i≤N

|WNT (zit, ηi)| = op(1). (A.56)

Next we show that (A.56) implies (A.50). Since R(x) → 0 as x→ 0, for ϵ > 0 there exists a number

δ(ϵ) > 0 such that if |x| ≤ δ(ϵ), then |R(x)| ≤ ϵ. Thus,{
max

1≤i≤N
|WNT (zit, ηi)| ≤ δ(ϵ)

}
⊆
{

max
1≤i≤N

|R(WNT (zit, ηi))| ≤ ϵ

}
. (A.57)

Since this holds for each t, we have{
max
1≤t≤T

max
1≤i≤N

|WNT (zit, ηi)| ≤ δ(ϵ)

}
⊆
{

max
1≤t≤T

max
1≤i≤N

|R(WNT (zit, ηi))| ≤ ϵ

}
. (A.58)

Taking complements and using the subadditivity of a measure, we have

P
(

max
1≤t≤T

max
1≤i≤N

|R(WNT (zit, ηi))| > ϵ

)
≤ P

(
max
1≤t≤T

max
1≤i≤N

|WNT (zit, ηi)| > δ(ϵ)

)
. (A.59)

Since the right hand side tends to 0 as N,T → ∞, we obtain the desired result.

Lemma A.7. As N,T → ∞, we have

1√
NT

T∑
t=1

N∑
i=1

g(zit, ηi)
d→ N

(
0,

∫
Eθ,ηg2(zit, η)dΓ(η)

)
. (A.60)

Proof. This follows by the same arguments as in Lemma 6.3 in Strasser (1998).
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Proof of Theorem 4.2

Just combine the above results.
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