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1. Introduction

In cooperative game theory and decision theory, functions on some domains play im-

portant roles. For a set Ω = {1, 2, . . . , n} and the power set 2Ω of Ω, in cooperative game

theory, Ω denotes a set of players, 2Ω is interpreted as the collection of all coalitions, and

a function v : 2Ω → R with v(∅) = 0 is a transferable game or a game. On the other

hand, in decision theory, Ω denotes a set of states of the world, 2Ω is interpreted as the

collection of all events, and v : 2Ω → R with v(∅) = 0 represents a decision maker’s beliefs.

In cooperative game theory and decision theory, it has been recognized that studies into

what kinds of properties such a function v has are important. The purpose of this paper

is to further investigate two properties of v, that is, v’s modularity and monotonicity.

In economics and statistics, a decision maker’s beliefs are usually captured by a prob-

ability measure when she is faced with “uncertain situations.” However, the validity of

capturing a decision maker’s beliefs by a probability measure has been cast doubt on in

statistics and economics.1 Shafer (1976) defines a belief function by a totally monotone

game, and shows that a game v is totally monotone if and only if its Möbius inversion is

non-negative (see Section 2 for definitions).2 Focusing on the notion of v’s k-monotonicity

that is a restricted notion of totally monotone games, Chateauneuf and Jaffray (1989) an-

alyze the relation between v’s k-monotonicity and its Möbius inversion, and provide some

characterization of k-monotone games through the Möbius inversion. One of the purposes

of this paper is to investigate properties that serve the bridge between the study of totally

monotone games and that of k-monotone games.

Kajii et al. (2007) investigate the relationship between the modularity of a game and

its Möbius inversion. Kajii et al. (2007) show that a game v is modular for some collection

of subsets of a state space if and only if for a game v, its Möbius inversion βT is equal to

zero for all T that is not E-complete, where E denotes a collection of events.3 However, two

problems remain to be solved. First, contrary to Kajii et al. (2007) in which the cases of

2-modularity are analyzed, can these results be generalized into the results of k-modularity

for k ≥ 2? Second, contrary to the case in which v’s modularity is characterized by its

Möbius inversion with the value being zero, can we provide a condition under which for

a game v for k ≥ 2, its Möbius inversion takes non-negative values, and not just zero?
1In statistics, to appropriately model uncertain situations, Dempster (1967) and Shafer (1976) propose

a belief function to overcome shortcomings that the approach to evaluating uncertain situations by a
probability measure has. To analyze uncertain situations from the point of view of economics, Schmeidler
(1989) axiomatizes behaviors of a rational decision maker (the Choquet expected utility). See Schmeidler
(1989) for details.

2For analyses of totally monotone games, see, for example, Chateauneuf and Rébillé (2004).
Chateauneuf and Rébillé (2004) show the well-known Yosida-Hewitt (1952)’s decomposition theorem for
totally monotone games on the set of all subsets of N.

3The definitions of v’s modularity and E-completeness are provided in Section 3.
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This task is important since such a condition enables us to characterize some class of

totally monotone games by the modularity of a game v. Furthermore, the analyses of the

modularity of a game are also important since they enable us to relate the Shapley value

(Shapley (1953)) to potential functions (Hart and Mas-Colell (1989)). Thus, we generalize

Kajii et al. (2007), and then characterize v’s modularity by its Möbius inversion with the

value being zero, within a more general framework than that of Kajii et al. (2007).

However, our contribution is not restricted to the generalization of Kajii et al. (2007)

mentioned above. In addition to generalizing Kajii et al. (2007)’s result, by introducing the

notion of k-simpleness, this paper characterizes some class of totally monotone games by

the k-modularity and the k-monotonicity of a game v under k-simpleness through the use

of Chateauneuf and Jaffray’s (1989) theorem. Furthermore, our results of the modularity

are closely related to the results in the literature on non-additive measure theory. Sugeno

et al. (1995) propose the notion of the inclusion-exclusion covering characterized through

the Möbius inversion of a game by Fujimoto and Murofushi (1997) (see Subsection 6.1

for details). As shown in Subsection 6.1, the modularity of a game can be related to the

inclusion-exclusion covering. Furthermore, based on Miranda et al. (2005) that provide

a characterization of k-additive capacities, the modularity of a game can be related to a

k-additive capacity (see Subsection 6.2 for details).

We provide the economic interpretations of our results by applying them to existing

problems. One of the applications is a Gini index representation axiomatized by Ben-

Porath and Gilboa (1994). For this decision model under uncertainty, we provide an alter-

native characterization directly based on our results. Our results enable us to characterize

the Gini index representation through Choquet integrals that cannot be characterized

within the framework of Kajii et al. (2007). Furthermore, we apply our results to poten-

tial functions proposed by Hart and Mas-Colell (1989) (see Section 3 for the definition)

and further analyzed by Ui et al. (2011). This application implies that our results can

also be applied to cooperative game theory.

The organization of this paper is as follows. Section 2 provides the definitions and well-

known results about the modularity of a game and Möbius inversions. Section 3 presents

the definitions and results provided by Kajii et al. (2007). Section 4 generalizes Kajii et

al. (2007), and provides a condition under which for a game v, its Möbius inversion is

equal to zero within the framework of the k-modularity of v for k ≥ 2. By introducing

the notion of being k-simple, Section 5 characterizes some class of totally monotone games

by the k-modularity and the k-monotonicity of a game v. That is, Section 5 provides a

condition under which for a game v, its Möbius inversion takes non-negative values, and

not just zero. Section 6 applies our results to previous ones. Section 7 concludes this

paper.
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2. Modularity and Möbius Inversion

In this section, we provide definitions and well-known results about the modularity

of a game and its Möbius inversion. Let Ω = {1, . . . , n} be a finite set of states of the

world, whose generic element is denoted by ω. A subset E ⊆ Ω is called an event. Denote

by F the collection of all non-empty subsets of Ω, and by Fk the collection of subsets

with k elements. For example, F1 denotes the set of all singleton subsets of Ω, that is,

F1 = {{ω} |ω ∈ Ω}.
A set function v : 2Ω → R with v(∅) = 0 is called a transferable utility game, or a

game.4 For a game v, we use the following definitions:

• v is non-negative if v(E) ≥ 0 for all E ∈ 2Ω.

• v is modular if v(E∪F ) = v(E)+v(F )−v(E∩F ) for all E,F ∈ 2Ω. v is k-modular for

k ≥ 2 if v
(∪k

i=1Ai

)
=

∑
{I:∅�=I⊂{1,... ,k}}(−1)|I|+1v (∩i∈IAi) for all A1, . . . , Ak ∈ 2Ω,

where |I| denotes the cardinality of I.

• v is convex (or supermodular) if v(E∪F ) ≥ v(E)+v(F )−v(E∩F ) for all E,F ∈ 2Ω.

• v is monotone if E ⊆ F implies v(E) ≤ v(F ) for all E, F ∈ 2Ω. v is k-monotone for

k ≥ 2 if v
(∪k

i=1Ai

) ≥ ∑
{I:∅�=I⊂{1,... ,k}}(−1)|I|+1v (∩i∈IAi) for all A1, . . . , Ak ∈ 2Ω.

• v is totally monotone if it is monotone and k-monotone for all k ≥ 2.5 v is called a

belief function if it is totally monotone and v(Ω) = 1.

• v is a capacity if v(E) ≤ v(F ) for all E ⊆ F and v(Ω) = 1.

For T ∈ F , let a game uT be the unanimity game on T defined by the following rule:

uT (S) = 1 if T ⊆ S and uT (S) = 0 otherwise. Each game v is uniquely represented as a

linear combination of unanimity games (Shapley (1953)): v =
∑

T∈F βT uT , or equivalently

v(E) =
∑

T⊆E βT for all E ∈ F , where βT =
∑

E⊆T (−1)|T |−|E|v(E). By convention, we

omit the empty set in the summation indexed by subsets of Ω. The set of coefficients

{βT }T∈F is referred to as the Möbius inversion or the Harsányi dividend (Harsányi (1959))

of v. A totally monotone game v can be characterized by the coefficients βT for all T ∈ F .

The following proposition is shown by Shafer (1976).

Proposition 1 (Shafer (1976)). For any game v, v =
∑

TF βT uT is totally monotone

if and only if βT is non-negative for all T ∈ F .

4In cooperative game theory, Ω and 2Ω are interpreted as a set of players and the collection of coalitions,
respectively.

5In the literature, the monotonicity of v is often omitted.
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By Proposition 1, we obtain the following corollary.

Corollary 1. For a non-negative game v, β{ω} = v({ω}) ≥ 0 for all singleton sets

{ω} ∈ F1. Moreover, a non-negative game v is totally monotone if and only if its Möbius

inversion βT ≥ 0 for all T with |T | ≥ 2.

Corollary 1 states that the class of totally monotone games is a finite convex cone

spanned by unanimity games. Our paper characterizes games spanned by a subclass

of unanimity games.6 Chateauneuf and Jaffray (1989) study the relation between the

inclusion-exclusion formula for a game v and its Möbius inversion. The following proposi-

tion shows that the inclusion-exclusion formula for v can be related to its Möbius inversion.

Proposition 2 (Chateauneuf and Jaffray (1989)). Let v =
∑

T∈F βT uT be a game,

and let k be an integer satisfying k ≥ 2. Then,

v(
⋃

1≤i≤k Ti) −
∑

∅�=I⊆{1,2,...,k}(−1)|I|+1v(
⋂

j∈I Tj) =
∑

T⊆⋃Ti,T �⊆Ti(1≤i≤k) βT .

Chateauneuf and Jaffray (1989) also clarify the relation between v’s monotonicity and

its Möbius inversion.

Proposition 3 (Chateauneuf and Jaffray (1989)). Let v =
∑

T∈F βT uT be a game,

and let k be an integer satisfying k ≥ 2. Then, the following two statements are equivalent.

(i) v is k-monotone.

(ii)
∑

A⊆T⊆B βT ≥ 0 for every A ∈ 2Ω with 2 ≤ |A| ≤ k and every B ∈ 2Ω.

3. Complete Collection and Möbius Inversion

Before we provide generalizations of Kajii et al. (2007) in the following sections, we

review Kajii et al. (2007)’s setup and results in this section. Let E ⊆ F be a collection

of events. By proposing the notion of E-completeness, Kajii et al. (2007) analyze the

modularity of a game v that is intended to clarify a condition under which its Möbius

inversion takes the value βT = 0 for all T �∈ E . Kajii et al. (2007) introduce the following

definition.

Definition 1. Let E ⊆ F be a collection of events. An event T ∈ F is E-complete if, for

any two distinct points ω1 and ω2 in T , there exists a set E ∈ E such that {ω1, ω2} ⊆ E ⊆
T . The collection of all E-complete events is called the E-complete collection and denoted

by Υ(E). A collection E ⊆ F is said to be complete if all E-complete subsets belong to E ,

i.e., E = Υ(E).
6Pintér (2011, Lemma 4) shows that for any game v, the class of capacities (in terms of Pintér (2011),

the class of monotone games) is also a finite convex cone spanned by the generalized unanimity games that
include unanimity games as a special case. For a definition of generalized unanimity games, see Pintér
(2011).
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Note that a singleton set is E-complete, so is any E ∈ E .7 To relate the modularity

of a game to the notion of being E-complete, Kajii et al. (2007) introduce the following

definition.

Definition 2. Let E ⊆ F be a collection of events. Let T1, T2 ∈ F . A pair of events

{T1, T2} with T1 �⊆ T2 and T2 �⊆ T1 are said to be an E-decomposition pair for T ∈ F , if

T1 ∪ T2 = T and, for any E ∈ E , E ⊆ T implies E ⊆ T1 or E ⊆ T2 (or both). An event

T ∈ F is E-decomposable if there exists an E-decomposition pair for T .

The following lemma in Kajii et al. (2007) clarifies the relation between the notion of

being E-decomposable and the notion of being E-complete.

Lemma 1. An event T ∈ F is not E-complete if and only if T is E-decomposable.

If a game v =
∑

T∈F βT uT is modular, then βT = 0 for all T ∈ F with |T | ≥ 2. By

restricting the domain on which v is modular, Kajii et al. (2007) propose the notion of

being modular for E-decomposition pairs.

Definition 3. Let E ⊆ F be a collection of events, and let v =
∑

T∈F βT uT be a game. A

game v is said to be modular for E-decomposition pairs if v(T ) = v(T1)+v(T2)−v(T1∩T2)

for every E-decomposable set T and every E-decomposition pair {T1, T2} for such a T .

The modularity for E-decomposition pairs and the coefficients of the Möbius inversion

can be related by the following theorem, which is proved by Kajii et al. (2007). One of

the purposes of this paper is to extend this theorem. Section 4 provides the extension.

Theorem 1 (Kajii et al. (2007)). Let E ⊆ F be a collection of events. Let v =
∑

T∈F βT uT be a game. The following statements are equivalent: (i) v is modular for

E-decomposition pairs; (ii) βT = 0 for any T that is not E-complete, i.e., T /∈ Υ(E).

4. A Generalization of Kajii et al. (2007)

Based on the notion of E-completeness, within the framework of the 2-modularity of a

game v, Kajii et al. (2007) provide a condition under which its Möbius inversion is equal

to zero. In this section, we generalize Kajii et al. (2007)’s result. That is, we provide

a condition under which for a game v, its Möbius inversion is equal to zero within the

framework of the k-modularity of v for k ≥ 2 that is more general than that of Kajii et al.

(2007). This task is accomplished by generalizing E-completeness into the notion of being

complete of order k within the framework of the k-modularity of a game v for k ≥ 2. For

that purpose, at first, we generalize the notion of E-completeness in Kajii et al. (2007).
7The term “complete” is adopted from an analogy to a complete graph. For T ∈ F , let us consider

an undirected graph with a vertex set T where {ω, ω′} ⊆ T is an edge if there exists E ∈ E such that
{ω, ω′} ⊆ E ⊆ T . Then, this is a complete graph if and only if T is E-complete.
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Definition 4. Let m ≥ 2 be an integer. A set S ∈ F is said to be E-complete of order m

if, for every T satisfying both T ⊆ S and 2 ≤ |T | ≤ m, there exists an E ∈ E such that

T ⊆ E ⊆ S. Denote by Υm(E) the collection of all sets that are E-complete of order m.

Example 1. Every singleton set is E-complete of order m for all m. That is, F1 ⊆ Υm(E).

Example 2. Any set T ∈ E is E-complete of order m for all m. That is, E ⊆ Υm(E)

Example 3. Let Ω = {1, 2, 3, 4} and let E = F2. Then, {1, 2, 3} is E-complete of order 2

since {1, 2}, {2, 3}, {1, 3} ∈ E . However, {1, 2, 3} is not E-complete of order 3 since there

is no T ∈ E such that {1, 2, 3} ⊆ T . For a finite set Ω = {1, 2, . . . , n} and E = F2,

Υ2(F2) = F and Υ3(F2) = F1 ∪ F2.

Note that for m = 2, the notion of being E-complete of order m coincides with that of

being E-complete. Therefore, the idea of E-completeness of order m is a generalization of

the idea of E-completeness in Kajii et al. (2007). Next, we introduce the notion of k-set’s

E-decomposition.

Definition 5. Let E ⊆ F . A collection {T1, . . . , Tk} is said to be a k-set’s E-decomposition

if it satisfies the following two conditions: (i) (∪k
i=1Ti)\Tj is a singleton {ωj} for all 1 ≤ j ≤

k, and (ii) for ω1, ω2, · · · , ωk in (i), there is no E ∈ E such that {ω1, . . . , ωk} ⊆ E ⊆ ∪k
i=1Ti.

Denote by W k(E) the collection of all k-set’s E-decompositions.

The notion of k-set’s E-decomposition is a restriction of E-decomposition pairs for

k = 2. If, for {ω1, ω2} ⊆ T , there is no E ∈ E such that {ω1, ω2} ⊆ E ⊆ T , then

{{T\{ω1}}, {T\{ω2}}} are an E-decomposition pair. This is because if E ∈ E satisfies

E ⊆ T , then E ⊆ T\{ω1} or E ⊆ T\{ω2}. However, the converse is not true. Clearly,

by Definition 4, for all k ≤ m, ∪k
i=1Ti /∈ Υm(E) if and only if {T1, . . . Tk} is a k-set’s

E-decomposition. As such, we can also define decompositions by corresponding to each

S /∈ Υm(E) as follows.

Definition 6. Let E ⊆ F be a collection of events, and let m ≥ 2 be an integer. A

collection {W̃ k
m(E)}2≤k≤m is said to be an E-decomposition collection with respect to Υm(E)

if it satisfies the following conditions: (i) W̃ k
m(E) ⊆ W k(E) for all k with 2 ≤ k ≤ m, (ii)

for every S /∈ Υm(E), there exist a unique k with 2 ≤ k ≤ m and a unique collection

{T1, . . . Tk} ∈ W̃ k
m(E) such that S = ∪k

i=1Ti.

Example 4. Let Ω = {1, 2, 3} and E = {{1,2}}. Then, Υ2(E) = {{1}, {2}, {3}, {1, 2}},
and F\Υ2(E) = {{1,3}, {2, 3}, {1, 2, 3}},
W 2(E) = {{{1},{3}}, {{2},{3}}, {{2,3}, {1, 2}}, {{1,3}, {1, 2}}},
W 3(E) = {{1,2}, {1, 3}, {2, 3}}. Therefore, W̃ 2

2 (E) = {{{1},{3}},{{2}, {3}}, {{2, 3}, {1, 2}}}
or W̃ 2

2 (E) = {{{1},{3}},{{2}, {3}}, {{1, 3}, {1, 2}}}.
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Note that
∑

2≤k≤m |W̃ k
m(E)| ≤ |F\Υm(E)| = 2n−1−|Υm(E)|. We can easily show that

all of our results for {W k(E)}2≤k≤m hold for {W̃ k
m(E)}2≤k≤m, which enables us to reduce

the number of decompositions. Therefore, the notion of E-decomposition collections with

respect to Υm(E) reduces the number of equations that should be analyzed.

To relate a game v’s modularity for k-set’s E-decompositions to the Möbius inversion,

we define the modularity that is restricted to the collection of k-set’s E-decompositions.

Definition 7. Let k ≥ 2 be an integer. A game v is said to be k-modular for k-set’s

E-decompositions if v(S) =
∑

∅�=I⊆{1,...,k}(−1)|I|+1v(
⋂

j∈I Tj) for every {T1, . . . , Tk} ∈
W k(E), where S = ∪k

i=1Ti.

Similarly, we define the modularity for E-decomposition collections with respect to

Υm(E).

Definition 8. Let {W̃ k
m(E)}2≤k≤m be any E-decomposition collection with respect to

Υm(E). Then, a game v is said to be at most m-modular for {W̃ k
m(E)}2≤k≤m if v(S) =

∑
∅�=I⊆{1,...,k}(−1)|I|+1v(

⋂
j∈I Tj) for every {T1, . . . , Tk} ∈ W̃ k

m(E) for all k with 2 ≤ k ≤ m,

where S = ∪k
i=1Ti.

To prove Theorem 2, the following proposition is in order. The idea of the proof is

based on Kojima and Ui (2007).

Proposition 4. Fix a game v, a collection E ⊆ F , and an integer m. The following three

statements about a game w =
∑

T∈F γT uT are equivalent:

(i) w(S) = v(S) if S ∈ Υm(E), and γT = 0 if T �∈ Υm(E).

(ii) {γT }T∈F is determined recursively by the following rule:

1. γ{i} = v({i}) for all i ∈ Ω.

2. For T ∈ F with |T | ≥ 2, γT = v(T )−∑
S�T γS if T ∈ Υm(E), and γT = 0 if T �∈ Υm(E).

(iii) w satisfies the following two conditions:

(a) w(S) = v(S) if S ∈ Υm(E).

(b) w(S) =
∑

∅�=I⊆{1,...,k}(−1)|I|+1w(
⋂

j∈I Tj) for all {T1, . . . , Tk} ∈ W k(E) satisfying both

∪m
i=1Ti = S and 2 ≤ k ≤ m if S �∈ Υm(E).

Proof. (i) ⇔ (ii): The rule in (ii) is rewritten as follows: if S ∈ Υm(E), then v(S) =
∑

T⊆S γT = w(S), and if T �∈ Υm(E), then γT = 0, which is (i).

(ii) ⇔ (iii): Let w be as stated in (ii). Then, Condition (a) in (iii) is obviously satisfied. To

show that Condition (b) in (iii) is satisfied, let S �∈ Υm(E) and let {T1, . . . , Tk} ∈ W k(E)

such that ∪k
i=1Ti = S. Let {ωi} = S\Ti for i = 1, . . . , k. Since S �∈ Υm(E), by Definition

5, there is no E ∈ E such that {ω1, . . . , ωk} ⊆ E ⊆ S. Pick any T satisfying both T ⊆ S

and T �⊆ Ti for all 1 ≤ i ≤ k. Then, it must hold that {ω1, . . . , ωk} ⊆ T ⊆ S. Hence,
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there is no E ∈ E such that {ω1, . . . , ωk} ⊆ E ⊆ T since there is no E ∈ E such that

{ω1, . . . , ωk} ⊆ E ⊆ S. Thus, T �∈ Υm(E) and γT = 0 by (ii). Therefore, by Proposition 2,

w(S) − ∑
∅�=I⊆{1,...,k}(−1)|I|+1w(∩j∈ITj) =

∑
T⊆S,T �⊆Ti(1≤i≤k) γT =

∑
{ω1,...,ωk}⊆T⊆S γT =

0, which is Condition (b) in (iii). Thus, (ii) implies (iii).

Suppose that w satisfies the conditions in (iii). To prove that (iii) implies (ii), it

suffices to show that w is uniquely determined because the unique game that satisfies the

conditions in (ii) satisfies the conditions in (iii). To show this uniqueness, we construct

w recursively such that in the h-th step, we determine the unique value of w(S) with

|S| = h from w(S′) with |S′| ≤ h − 1. Start with w(∅) = 0. Consider the h-th step with

h ≥ 1 and pick any S with |S| = h. If S ∈ Υm(E), then w(S) = v(S) by Condition (a)

in (iii). If S �∈ Υm(E), then there exists {T1, . . . Tk}, which is a k-set’s E-decomposition

of S for some k with 2 ≤ k ≤ m by Definition 5. Hence, by Condition (b) in (iii),

w(S) =
∑

∅�=I⊆{1,...,k}(−1)|I|+1w(
⋂

j∈I Tj). Since the terms on the right-hand side are

uniquely calculated in the earlier steps, so is w(S) on the left-hand side. By this procedure,

we can uniquely determine w recursively, which establishes the uniqueness.

The following result is an immediate consequence of the above proposition.

Theorem 2. Let m ≥ 2 be an integer and v =
∑

T∈F βT uT be a game. The following two

conditions are equivalent:

(i) v is k-modular for k-set’s E-decompositions for all 2 ≤ k ≤ m.

(ii) βT = 0 for every T �∈ Υm(E).

This theorem states that by a game v’s k-modularity, we can characterize its Möbius

inversion that is equal to zero within a more general framework than that of Kajii et al.

(2007). The result can be extended to any E-decomposition collection with respect to

Υm(E).

Corollary 2. Let m ≥ 2 be an integer and v =
∑

T∈F βT uT be a game. Let {W̃ k
m(E)}2≤k≤m

be any E-decomposition collection with respect to Υm(E). The following two conditions are

equivalent:

(i) v is at most m-modular for {W̃ k
m(E)}2≤k≤m.

(ii) βT = 0 for every T �∈ Υm(E).

Proof. Clearly, Proposition 4 holds for {W̃ k
m(E)}2≤k≤m instead of {W k(E)}2≤k≤m.

Applying Theorem 2 and Corollary 2 to E = ∪k
i=2 Fi gives the following corollary.

Corollary 3. Let k ≥ 2 be an integer, |Ω| ≥ k + 1, and v =
∑

T∈F βT uT . Define a

collection of decompositions, all of which consist of (k + 1) sets by
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WFk+1
≡ {{S\{ω1}}, {S\{ω2}}, . . . , {S\{ωk+1}}

∣∣ |S| ≥ k + 1, {ω1, ω2, . . . , ωk+1} ∈ Fk+1

}
.

Then, the following three conditions for v are equivalent:

(1) v is (k + 1)-modular for (k + 1)-set’s ∪k
i=2Fi-decompositions.

(2) v is (k + 1)-modular for {W̃ j
k+1(E)}2≤j≤k+1, where {W̃ j

k+1(E)}2≤j≤k+1 = WFk+1
.

(3) βT = 0 for every T with |T | ≥ k + 1.

Proof. Let E = ∪k
i=2 Fi. Then, Υk+1(E) = E ∪ F1. Thus, S �∈ Υk+1(E) if and only if

|S| ≥ k + 1. Conditions (1) and (3) are equivalent since it follows from Theorem 2 that

W j(E) = ∅ for 2 ≤ j ≤ k and W k+1(E) = WFk+1
. On the other hand, Conditions

(2) and (3) are equivalent since it follows from Corollary 2 that {W̃ j
k+1(E)}2≤j≤k+1 =

{W̃ k+1
k+1 (E)} = WFk+1

.

Note that in Condition (2), we use the term “(k + 1)-modular” instead of “at most

(k + 1)-modular.”

5. Characterization of Totally Monotone Games

Section 4 provided an extension of Kajii et al. (2007). However, one issue remains to

be solved. That is, can we derive a condition under which for a game v =
∑

T∈F βT uT ,

its Möbius inversion takes non-negative values, and not just zero? This issue is indeed

important since it enables us to characterize totally monotone games by the k-modularity

and the k-monotonicity of a game v. For that purpose, we propose the notion of being

k-simple.

Definition 9. A collection E ⊆ F is said to be k-simple if, for every S with |S| ≥ 2, there

exists T satisfying both T ⊆ S and 2 ≤ |T | ≤ k such that there exists no E ∈ E with

T ⊆ E � S. Equivalently, for all S ∈ F with |S| ≥ 2, if S ∈ Υk(E), then S �∈ Υk(E\S).

Example 5. Any partition of Ω is k-simple for all k ≥ 2, and so is {{1,2}, {2, 3}, {3, 4}, . . . , {n−
1, n}}.

We need the following lemma to show Corollary 5.

Lemma 2. The collection F2 is 3-simple. More generally, for all k ≥ 2, the collection

∪k
i=2Fi is (k + 1)-simple.

Proof. Let E = ∪k
i=2Fi for k ≥ 2. Pick any S with 2 ≤ |S|. If |S| ≤ k, then replace T

in Definition 9 with S itself, which shows that there is no E ∈ E such that T ⊆ E � S.

When k + 1 ≤ |S|, choose any T satisfying both T ⊆ S and |T | = k + 1. Then, such a T

satisfies the following: there is no E ∈ E such that T ⊆ E � S since E ∈ E implies that

|E| ≤ k. Thus, E must be (k + 1)-simple.



10

Note that if E is k-simple, then any E ′ ⊆ E is k-simple. This fact considered together

with Example 5 and Lemma 2 gives that the class of being k-simple is not so small.

The following lemma states that the notion of being k-simple involves the same property

as completeness.

Lemma 3. Let E be k-simple. Then, for S with |S| ≥ 2, S ∈ E if and only if S is

E-complete of order k. That is, E ∪ F1 = Υk(E)

Proof. By Examples 1 and 2, E ∪ F1 ⊆ Υk(E). Then, suppose that S /∈ E and |S| ≥ 2.

Since E is k-simple, there exists T ⊆ S with 2 ≤ |T | ≤ k such that there exists no E ∈ E
with T ⊆ E � S. This means that there exists no E ∈ E with T ⊆ E ⊆ S since S /∈ E ,

which shows that S is not E-complete of order k. Thus, E ∪ F1 = Υk(E).

Now, we are in a position to provide our main result in this section.

Theorem 3. Let v =
∑

T∈F βT uT be a non-negative game, and let m be an integer satis-

fying m ≥ 2. Let E be m-simple. Let v be k-modular for k-set’s E-decompositions for all

2 ≤ k ≤ m. Then, if v is m-monotone, then v is totally monotone.

Proof. Suppose that v =
∑

T∈F βT uT is m-monotone. Since v is k-modular for k-set’s E-

decompositions for all 2 ≤ k ≤ m, it holds that βT = 0 for every T �∈ Υm(E) by Theorem

2. Thus, it holds that βT = 0 for every T �∈ E ∪ F1 by Lemma 3. It suffices to show

that βS ≥ 0 for every S ∈ E . Suppose that S ∈ E . Since E is m-simple, there exists a

set F with 2 ≤ |F | ≤ m such that there exists no E ∈ E with F ⊆ E � S. Since v is

m-monotone, Condition (ii) in Proposition 3 holds. Thus, since 2 ≤ |F | ≤ m, it holds

that
∑

F⊆X⊆S βX ≥ 0. On the other hand, every X with F ⊆ X � S satisfies X �∈ E ,

and thus, βX = 0. Hence, 0 ≤ ∑
F⊆X⊆S βX = βS . By Proposition 1, it is shown that v is

totally monotone.

Note that the converse is also true. Theorem 3 states that when E is m-simple, to-

tally monotone games can be characterized by m-monotone games in addition to the

k-modularity for k-set’s E-decompositions for all 2 ≤ k ≤ m.

Corollary 4. Let E be 2-simple. For a non-negative game v ∈ RF , suppose that v is

modular for E-decomposition pairs (that is, 2-modular for 2-set’s E-decompositions). If v

is convex (that is, 2-monotone), then v is totally monotone.

Note that the converse is also true. From the viewpoint of economics, this corollary is

important because two decision models under uncertainty, that is, the E-capacity expected
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utility model of Eichberger and Kelsey (1999) and the multiperiod decision model of Gilboa

(1989), can be characterized by this corollary.8

Corollary 5. If v : 2Ω → R is non-negative, 3-modular for 3-set’s F2-decompositions and

2-monotone, then v =
∑

T∈F1∪F2
βT uT where βT ≥ 0. More generally, for 2 ≤ k ≤ n − 1,

if v : 2Ω → R is non-negative, (k+1)-modular for (k+1)-set’s ∪k
i=2Fi-decompositions and

k-monotone, then v =
∑

T∈∪k
i=1Fi

βT uT where βT ≥ 0.

Proof. This corollary is proved in the same way as Theorem 3 by setting E =∪k
i=2 Fi. By

Corollary 3, it holds that βT = 0 for every T with |T | ≥ k+1. Thus, it suffices to show that

βS ≥ 0 for every S with |S| ≤ k. This is shown by setting F = S for
∑

F⊆X⊆S βX ≥ 0 in

the proof of Theorem 3 since v is k-monotone.

6. Applications

In this section, we compare our results with previous results, and apply our results to

previously studied cases. In Subsection 6.1, we discuss the relation between Fujimoto and

Murofushi (1997) and our paper. In Subsection 6.2, we discuss the relation between k-

additive measures (or k-additive capacities) in Grabisch (1997) and the modularity in this

paper. Furthermore, we apply our results to a Gini index representation analyzed by Ben-

Porath and Gilboa (1994). In Subsection 6.3, we apply our results to potential functions

proposed by Hart and Mas-Colell (1989) and further analyzed by Ui et al. (2011).

6.1. Inclusion-Exclusion Covering

One of the most relevant papers is Fujimoto and Murofushi (1997). First, we present

the notion of the inclusion-exclusion covering proposed by Sugeno et al. (1995). Sugeno

et al. (1995) provide the notion of the inclusion-exclusion covering that is further analyzed

by Murofushi et al. (1998) and Fujimoto and Murofushi (1997).

Definition 10. Let Ω = {1, . . . , n} be a finite set, and let v be a game. A covering

C = {C1, . . . , Cm} of Ω, i.e., ∪m
i=1Ci = Ω and Ci ⊆ Ω for all i = 1, . . . ,m, is an inclusion-

exclusion covering of Ω with respect to v if v(A) =
∑

I⊆{1,...,m},I �=∅(−1)|I|+1v(∩i∈ICi ∩A)

for every A ⊆ Ω.

8Let Ω = {1, . . . , n} be a finite set of states, and let E ⊆ F be a collection of events. For the E-capacity
expected utility model (Eichberger and Kelsey (1999)), we can generalize the collection E into a 2-simple
collection that is more general than Eichberger and Kelsey (1999) and Kajii et al. (2007). In Eichberger
and Kelsey (1999) and Kajii et al. (2007), the collection E = {E1, . . . , En} is supposed to be a partition of
Ω with |Ei| ≥ 2 for each i, and to be a collection of non-empty, disjoint subsets of Ω with |Ei| ≥ 2 for each
i, respectively. For a multiperiod decision model (Gilboa (1989)), let E = {{i, i + 1}|1 ≤ i < n}. Then, E
is the collection of adjacent time periods, and this collection E is 2-simple.
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Fujimoto and Murofushi (1997) characterize the notion of the inclusion-exclusion cov-

ering through the Möbius inversion of a game v.

Proposition 5 (Fujimoto and Murofushi (1997)). Let v =
∑

T∈F βT uT , where the

set of coefficients {βT }T∈F is the Möbius inversion of v. Then, the following are equivalent:

(i) A covering C = {C1, . . . , Cm} of Ω is an inclusion-exclusion covering of Ω with respect

to v.

(ii) βT = 0 whenever T �⊆ Ci for every Ci ∈ C.

To relate Fujimoto and Murofushi (1997) with our paper, the following lemma is in

order.

Lemma 4. Let C = {C1, . . . , Cm} where Ci ⊆ Ω, ∪m
i=1Ci = Ω and k = max1≤i≤m |Ci|.

Moreover, let E = {T | |T | ≥ 2, T ⊆ Ci for some i ∈ {1, . . . ,m}}. Then, Υk+1(E) = E ∪ F1.

Proof. Assume that |T | > 1. Suppose that T /∈ E and T is E-complete of order (k + 1).

There is at least one S such that S ⊆ T and S ∈ E since T is E-complete of order (k +1).

This S satisfies S �= T since T /∈ E .

Let S∗ ∈ arg maxS⊆T,S∈E |S|. There exists ω ∈ T \S∗ since S∗ �= T . Note that |S∗| ≤ k

by definition of k. Hence, there must exist a set E ∈ E such that {ω} ∪ S∗ ⊆ E ⊆ T since

T is E-complete of order k + 1. However, E ∈ E and |S∗| < |E|. This contradicts the

assumption of maximality of S∗.

Lemma 4 together with Theorem 2 leads to the following result.

Proposition 6. Let C = {C1, . . . , Cm} where Ci ⊆ Ω, ∪m
i=1Ci = Ω and k = max1≤i≤m |Ci|.

Moreover, let E = {T | |T | ≥ 2, T ⊆ Ci for some i ∈ {1, . . . ,m}}. The following two con-

ditions for a game v =
∑

T∈F βT uT are equivalent:

(i) v is p-modular for p-set’s E-decomposition for all 2 ≤ p ≤ k + 1.

(ii) βT = 0 whenever T �⊆ Ci for every Ci ∈ C.

This proposition states that Theorem 2 can provide the same result in Fujimoto and

Murofushi (1997) with respect to T such that βT = 0 whenever T �⊆ Ci for every Ci ∈ C
where collection C satisfies the condition in Proposition 6. On the other hand, there exist

many examples that are obtained from our results, but not from Fujimoto and Murofushi

(1997). One of the examples is as follows.

Example 6. Let Ω = {ω1, ω2, ω3, ω4, ω5, ω6}, and let E1 = {ω1, ω2, ω3}, and E2 =

{ω4, ω5, ω6}. Moreover, let E = {E1,E2}. Since Υ2(E) = E ∪ F1, the following two con-

ditions for a game v =
∑

T∈F βT uT are equivalent by Theorem 2: (i) v is 2-modular for

2-set’s E-decomposition. (ii) βT = 0 whenever T �= E1, T �= E2, and T /∈ F1. It is

impossible to induce Condition (ii) by Fujimoto and Murofushi (1997).
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The number of equations in (i) of Proposition 6 may be more than that in Fujimoto

and Murofushi (1997) that is exactly |F| = 2n − 1. However, by using Corollary 2 instead

of Theorem 2, we can reduce the number of equations to 2n − 1 − |E ∪ F1|.

6.2. k-Additive Capacities and the Gini Index

The notion of k-additive measures (or k-additive capacities) is introduced by Grabisch

(1997). The notion of k-additive measures is proposed to decrease the complexity of

capacities in applications since a capacity defined on a set Ω with n elements requires the

definition of 2n real coefficients (see also Grabisch (2000a)). Grabisch (2000b) extends

Chateauneuf and Jaffray (1989) that analyze the set of probability measures dominating a

given capacity, and analyzes the set of k-additive measures dominating a given capacity.9

First, the definition of k-additive measures is provided.

Definition 11 (Grabisch (1997)). Let Ω = {1, . . . , n} be a finite set. A capacity v on

(Ω, 2Ω) is k-order additive or k-additive for some k ∈ {1, 2, . . . , n} if its Möbius inversion

vanishes for any T such that |T | > k and there exists at least one subset T with exactly

k elements such that βT �= 0.

Corollary 3 in this paper provides the following characterization of k-additive capaci-

ties.10

Corollary 6. Let k ≥ 2, and let |Ω| ≥ k + 1. Then, the following two conditions of v are

equivalent:

(i) A capacity v is at most k-additive.

(ii) For all S with |S| ≥ k+1 and all {ω1, ω2, ···, ωk+1} ∈ Fk+1 with {ω1, ω2, ···, ωk+1} ⊆ S,

v(S) =
∑

∅�=I⊆{1,...,k+1}
(−1)|I|+1v(∩j∈I(S\{ωj})).

The analyses of 2-additive capacities are worth mentioning. As an application of the

results obtained in the previous sections, this paper generalizes Ben-Porath and Gilboa

(1994)’s Gini representation. Ben-Porath and Gilboa (1994) axiomatize social welfare

functions represented by a linear combination of total income and the Gini index. Gaj-

dos (2002) provides an axiomatization that is more general than that of Ben-Porath and

9Miranda et al. (2006) analyze the set of k-additive belief functions dominating a given capacity, which
is between the set of probability measures and the set of k-additive measures. Miranda et al. (2005)
axiomatize the behaviors of a rational decision maker, and show that if she satisfies a set of axioms, then
her beliefs are captured by a unique k-additive measure and her preferences are represented by the Choquet
integral with respect to the k-additive measure.

10Miranda et al. (2005) shows that a capacity v is at most k-additive if and only if for all A such that
i1, . . . , ik ∈ A,

∑
B⊆{i1,... ,ik}, i1,... ,ik∈A v(A\B)(−1)|B| =

∑
B⊆{i1,... ,ik} v({i1, . . . , ik}\B)(−1)|B|.
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Gilboa (1994) and proposes a generalized Gini index.11 In Ben-Porath and Gilboa (1994)

and Gajdos (2002), policymakers’ beliefs are captured by symmetric capacities.12 From

the viewpoint of economics, it is reasonable to assume that policymakers’ beliefs are cap-

tured by symmetric capacities since the symmetricity of capacities can be interpreted as

necessitating policymakers to be impartial. However, our results in this subsection do not

necessarily require the symmetricity of capacities. Before we generalize Ben-Porath and

Gilboa (1994)’s Gini representation, we provide the definition of Choquet integrals and a

characterization of Choquet integrals by Möbius inversions, which is shown by Gilboa and

Schmeidler (1994).

Let RΩ = {x |x : Ω → R} be the set of all real valued functions on Ω. For x ∈ RΩ and

a capacity v, the Choquet integral of x with respect to v is defined as
∫
Ω xdv =

∫ ∞
0 v(x ≥

α)dα +
∫ 0
−∞ (v(x ≥ α) − 1) dα, where v(x ≥ α) = v ({ω ∈ Ω |x(ω) ≥ α}). Gilboa and

Schmeidler (1994) provide the relation between the Choquet integral and the Möbius

inversion.

Theorem 4 (Gilboa and Schmeidler (1994)). For all x ∈ RΩ and a capacity v =
∑

T∈F βT uT ,
∫

xdv =
∑

T∈F βT

∫
xduT =

∑
T∈F βT minT x, where minT x = minω∈T x(ω).

Let Ω = {1, . . . , n} be a set of individuals, and let f = (f1, . . . , fn) be an income profile,

where fi denotes the income of individual i. Ben-Porath and Gilboa (1994) axiomatize

the following operator J for an income profile f = (f1, . . . , fn):

J(f) =
n∑

i=1

fi − δ
∑

1≤i<j≤n

|fi − fj|, (1)

where 0 < δ < 1/(n − 1) is constant. This representation means that a Gini preference

can be represented by a linear combination of total income and the Gini index. Given

|a − b| = a + b − 2min{a, b}, (1) can be written as J(f) = (1 − (n − 1)δ)
∑n

i=1 fi +

2δ
∑

1≤i<j≤n min{fi, fj}. This representation can be generalized by our results in previous

sections. In this regard, let us define the following operator I for an income profile f =

(f1, . . . , fn):

I(f) =
n∑

i=1

βifi +
∑

1≤i<j≤n

β{i,j} min{fi, fj}, (2)

where βi ≥ 0 and β{i,j} ≥ 0 are some constant numbers. We call this form the generalized

Ben-Porath-Gilboa representation. Then, our main results in Section 4 prove the following.
11Gajdos (2002) calls it a P-Gini index. See also Section 5 in Gilboa and Schmeidler (1994).
12A game v : 2Ω → R is a symmetric capacity if it is a capacity and v(E) = v(F ) for any E, F ∈ 2Ω with

|E| = |F |. Gajdos (2002) shows that if a symmetric capacity is at most k-additive, then it is expressed by
a polynomial of degree at most k. Corollary 2 in this paper leads to the same result in Gajdos (2002) for
symmetric capacities.
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Proposition 7. Let f = (f1, . . . , fn) be an income profile. Then, the following two con-

ditions for operator I are equivalent:

(i) I is the generalized Ben-Porath-Gilboa representation defined by (2).

(ii) There exists a non-negative convex game v that is 3-modular for 3-set’s F2-decompositions

such that I(f) =
∫

fdv.

Proof. (i) ⇒ (ii). Let I be the generalized Ben-Porath-Gilboa representation defined by

I(f) =
∑n

i=1 βifi +
∑

1≤i<j≤n β{i,j} min{fi, fj}, where βi ≥ 0 and β{i,j} ≥ 0. Then,

define a game v =
∑

T γT uT such that γ{i} = βi for all 1 ≤ i ≤ n, γ{i,j} = β{i,j} for

all 1 ≤ i < j ≤ n, and γT = 0 for all other T . By Theorem 4,
∫

fdv =
∑n

i=1 βifi +
∑

1≤i<j≤n β{i,j} min{fi, fj} = I(f). Since βi ≥ 0 and β{i,j} ≥ 0, v is a totally monotone

game, which implies that v is a non-negative convex game. Moreover, since γT = 0 for all

T with |T | ≥ 3, v is 3-modular for 3-set’s F2-decompositions by Corollary 3 .

(ii) ⇒ (i). Let v satisfy Condition (ii) in Proposition 7. By Corollary 5, v can be written as

v =
∑n

i=1 βiu{i}+
∑

1≤i<j≤n β{i,j}u{i,j}, where βi ≥ 0 and β{i,j} ≥ 0 since v is non-negative,

convex (that is, 2-monotone), and 3-modular for 3-set’s F2-decompositions. Hence, I is

the generalized Ben-Porath-Gilboa representation.

Note that v in this proposition is a 2-additive capacity. This proposition states that

the generalized Ben-Porath-Gilboa representation can be characterized by 2-additive ca-

pacities. A decision maker’s beliefs are not necessarily restricted to symmetric capacities,

while her beliefs are captured by symmetric capacities in Ben-Porath and Gilboa (1994)

and Gajdos (2002).

6.3. Potential Functions

In this subsection, we apply our results of the modularity of a game to cooperative

games, and extend Ui et al. (2011) that analyze the Myerson value (Myerson (1977)).13

First, we provide the definitions of the Shapley value. Second, we provide the result

obtained by Ui et al. (2011). Finally, we provide an extension of Ui et al. (2011).

Let Ω = {1, . . . , n} (n ≥ 3) be a set of players. A subset S of Ω is a coalition, and 2Ω

denotes the set of all coalitions. Let GΩ denote the collection of all games on 2Ω. The

Shapley value is a function φ : GΩ → RΩ satisfying the following:

φi(v) =
∑

S∈2Ω, i∈S

(|S| − 1)!(|N | − |S|)!
|N |! (v(S) − v(S\{i})) for each i ∈ Ω,

13Myerson (1977) introduces the Myerson value as a solution for cooperative games under the partial
cooperation structures described by networks, i.e., sets of 2-player coalitions. Myerson (1980) and van den
Nouweland et al. (1992) consider the partial cooperation structures described by sets of coalitions (not
necessarily 2-player coalitions), and study the Myerson value for them. The Myerson value in the partial
cooperation structures coincides with the Shapley value of a specific game generated by a given game.
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where v(S) − v(S\{i}) denotes the marginal contribution of a player i in a coalition S.14

It is shown that the Shapley value of v =
∑

T∈F βT uT can be represented as follows:

φi(v) =
∑

T∈F βT φi(uT ) =
∑

T∈F , i∈T βT /|T |.
Hart and Mas-Colell (1989) define a potential function for all games (transferable utility

games). Let p : GΩ → R. For all i ∈ Ω, the function Dpi : GΩ → R is defined by

the marginal contribution of player i to p, that is, Dpi(v) = p(v) − p(v|Ω\{i}), where

v|Ω\{i} denotes the restriction of (Ω, v) to (Ω\{i}, v). Then, a function p : GΩ → R is

a potential function of v if it satisfies
∑

i∈S Dpi(v) = v(S) for each S. Hart and Mas-

Colell (1989) show that p is uniquely provided by p(v) =
∑

T∈F βT /|T |, and that for

all i ∈ Ω, the marginal contribution of player i coincides with the Shapley value, i.e.,

Dpi(v) =
∑

T∈F ,i∈T βT /|T | = φi(v).

Based on the extended notion of partial coalition structures, Ui et al. (2011) analyze the

Myerson value. Let H ⊆ 2Ω\F1 be a set of coalitions.15 We write HS = {H ∈ H |H ⊆ S}
and H−i = HΩ\{i} for S ∈ 2Ω and i ∈ Ω, respectively. For a game v and a set of coalitions

H, let us consider another game vH as defined below.

Definition 12. A game vH =
∑

T∈F βH
T uT is the H-projected game of v=

∑
T∈F βT uT if

βH
T is determined recursively by the following rules:

1. βH
{i} = v({i}) for all i ∈ Ω.

2. For T ∈ 2Ω with |T | ≥ 2, βH
T = v(T ) − ∑

S�T βH
S if T ∈ H and βH

T = 0 otherwise.

Note that the above rule is rewritten as vH(S) = v(S) for each S ∈ H∪F1 and βH
T = 0

for each T �∈ H ∪ F1 by Proposition 4.

Definition 13. A set of coalitions H ⊆ 2Ω\F1 is said to be a complete coalition structure

if Υ2(H) = F1 ∪H.

Let CCS denote the set of all complete coalition structures, and let H ∈ CCS be any

given structure. Furthermore, let v : 2Ω → R be a game. Ui et al. (2011) consider the

following condition for a function fH : GΩ → RΩ.16

(C1): for every v, fH(v) is the vector of the marginal contributions of a game pH satisfying

the following two conditions:

(a) If S ∈ H ∪ F1, then
∑

i∈S

(
pH(S) − pH(S\{i})) = v(S).

(b) If S �∈ H∪F1 and {S\{i}, S\{j}} ∈ W 2(H),17 then pH(S)−pH(S\{i}) = pH(S\{j})−
14The Shapley value is axiomatized by four well-known axioms: efficiency, the null-player property,

symmetricity, and additivity. See Shapley (1953) for details.
15Here, the definition of a set of coalitions H is slightly different from that in Ui et al. (2011).
16This function should be defined by f : CCS × GΩ → R

Ω. However, in this paper, any structure
H ∈ CCS is fixed. Therefore, f is defined by a function fH that assigns a |Ω|-dimensional real vector to
any game on Ω.

17Recall that W 2(H) denotes the collection of all 2-set’s H-decompositions. See Definition 5.
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pH(S\{i, j}). That is, fH
i (v) = pH(Ω) − pH(Ω\{i}) for each i ∈ Ω and H ∈ CCS.

Condition (C1) can be related to the Shapley value.

Proposition 8 (Ui et al. (2011)). A solution fH : GΩ → RΩ satisfies Condition (C1)18

if and only if fH(v) = φ(vH) for each H ∈ CCS and each v where vH is the H-projected

game of v and φ is the Shapley value.

By interpreting pH(S) given v as pH(v|S), Ui et al. (2011) regard pH(S) as a potential,

and we follow this approach. Based on Theorem 2, we can extend Proposition 8 to the

structures that correspond to the completeness of order m.

Definition 14. A set of coalitions H ⊆ 2Ω\F1 is said to be a complete coalition structure

of order m if Υm(H) = F1 ∪H.

Let CCSm denote the set of all complete coalition structures of order m. For ease of

exposition, we consider the case of m = 3. Let H ∈ CCS3 be any given structure. We

consider the following condition for a function fH : GΩ → RΩ.

(C2): for every v, fH(v) is the vector of the marginal contributions of a game pH satisfying

the following three conditions:

(a) If S ∈ F1 ∪H, then
∑

i∈S(pH(S) − pH(S\{i})) = v(S).

(b) If S �∈ F1 ∪ H and {S\{i}, S\{j}, S\{k}} ∈ W 3(H), then pH(S) − pH(S\{i}) =

(pH(S\{j})−pH(S\{i, j}))+(pH(S\{k})−pH(S\{i, k}))−(pH(S\{j, k})−pH(S\{i, j, k})).
(c) If S �∈ F1 ∪H and {S\{i}, S\{j}} ∈ W 2(H), then pH(S) − pH(S\{i}) = pH(S\{j}) −
pH(S\{i, j}). That is, fH

i (v) = pH(Ω) − pH(Ω\{i}) for each i ∈ Ω and H ∈ CCS3.

Then, we can extend Proposition 8 as follows.

Proposition 9. A solution fH : GΩ → RΩ satisfies Condition (C2) if and only if

fH(v) = φ(vH) for each H ∈ CCS3 and each v where vH is the H-projected game of

v and φ is the Shapley value.

Our proof of Proposition 9 is similar to that of van den Brink (2001, Theorem 2.5).

van den Brink (2001) shows that a function f : GΩ → RΩ is equal to the Shapley value if

and only if it satisfies efficiency, the null player property, and fairness.19 First, it is shown

that the Shapley value satisfies the three conditions. Second, a solution f satisfying the

18Ui et al. (2011) call solution fH the Myerson value for complete coalition structures.
19van den Brink (2001) proposes fairness. This property states that if to a game v ∈ GΩ we add a game

w ∈ GΩ where players i and j are symmetric, then the payoffs of players i and j change by the same amount.
That is, if i, j ∈ Ω are symmetric players in a game w ∈ GΩ, then fi(v + w) − fi(v) = fj(v + w) − fj(v)
for all v ∈ GΩ.
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three conditions must be uniquely constructed from the three conditions in a recursive

way, which is based on some geometric property.

Proof. Note that if H ∈ CCS3, then Υ3(H) = F1 ∪ H. First, we show that the potential

for vH satisfies (C2). Let pH be the potential for vH =
∑

T∈F βH
T uT . Then, it follows

from Hart and Mas-Colell (1989) that pH =
∑

T∈F (βH
T /|T |)uT . Therefore, if S ∈ F1 ∪H,

then it holds that
∑

i∈S

(
pH(S) − pH(S\{i})) = vH(S) = v(S), where the first equality

holds because pH is the potential for vH, and the second equality holds by the definition

of the H-projected game of v. This is Condition (a) in (C2). Next, since βH
T /|T | = 0 for

all T /∈ Υ3(H) = F1 ∪ H, by setting w(S) = pH(S) in Proposition 4, it holds that for

S �∈ F1 ∪H and {S\{i}, S\{j}, S\{k}} ∈ W 3(H),

pH(S) − pH(S\{i})
= (pH(S\{j}) − pH(S\{i, j}))

+(pH(S\{k}) − pH(S\{i, k})) − (pH(S\{j, k}) − pH(S\{i, j, k})),

and for S �∈ F1 ∪ H and {S\{i}, S\{j}} ∈ W 2(H), pH(S) − pH(S\{i}) = pH(S\{j}) −
pH(S\{i, j}). These are Conditions (b) and (c) in (C2).

Second, we show that a game pH satisfying (C2) must be the potential for vH =
∑

T∈F βH
T uT . To show this, it suffices to show that if such a pH exists, then it exists

uniquely since we have already shown that the potential for vH satisfies (C2). We can

show this claim by an argument similar to that in the proof of Proposition 4. We construct

pH recursively as follows. Start with pH(∅) = 0 since pH is a game. If S is a singleton,

that is, S = {i}, then pH({i}) = v({i}) by Condition (a) in (C2). For |S| ≥ 2, if S ∈ H,

then it follows from Condition (a) in (C2) that pH(S) = |S|−1
(
v(S) +

∑
i∈S pH(S\{i})).

If S /∈ H, {S\{i}, S\{j}, S\{k}} ∈ W 3(H), then it follows from Condition (b) in (C2)

that

pH(S) = pH(S\{i}) + (pH(S\{j}) − pH(S\{i, j})) + (pH(S\{k})
−pH(S\{i, k})) − (pH(S\{j, k}) − pH(S\{i, j, k})).

If S �∈ H, {S\{i}, S\{j}} ∈ W 2(H), then it follows from Condition (c) in (C2) that

pH(S) = pH(S\{i}) + pH(S\{j}) − pH(S\{i, j}).

7. Conclusion

This paper analyzes two problems that remain to be solved in Kajii et al. (2007). First,

we generalize Kajii et al. (2007), and provide a condition under which for a game v, its

Möbius inversion is equal to zero within the framework of the k-modularity of v for k ≥ 2.
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This condition is more general than that in Kajii et al. (2007). Second, we provide a

condition under which for a game v for k ≥ 2, its Möbius inversion takes non-negative

values, and not just zero. This task is important since such a condition enables us to

characterize some class of totally monotone games by the modularity of a game v.

Our results for modularity are closely related to the results in the literature on non-

additive measure theory. The modularity of a game can be related to the inclusion-

exclusion covering proposed by Sugeno et al. (1995). The modularity of a game can also be

related to a k-additive capacity proposed by Grabisch (1997). Furthermore, we provide the

economic interpretations of our results applying them to existing problems. We show that

a Gini index representation axiomatized by Ben-Porath and Gilboa (1994) is characterized

by the Choquet integrals satisfying some conditions. The Gini index representation cannot

be obtained within the framework of Kajii et al. (2007). An application of our results to

potential functions proposed by Hart and Mas-Colell (1985) and further analyzed by Ui

et al. (2011) implies that our results can also be applied to cooperative game theory.

Some tasks remain for the future. This paper does not analyze axiomatizations of

totally monotone games from the viewpoint of decision theory. In addition to character-

izations of totally monotone games within a general framework, it is important to shed

some light on totally monotone games from the normative viewpoint of economics. This

is a topic for future research.
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