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AN EXTENSION OF THE CHAOS EXPANSION APPROXIMATION
FOR THE PRICING OF EXOTIC BASKET OPTIONS

HIDEHARU FUNAHASHI AND MASAAKI KIJIMA

ABSTRACT. Funahashi and Kijima (2013) have proposed an approximation method based on the
Wiener–Ito chaos expansion for the pricing of European-style contingent claims. In this paper,
we extend the method to the multi-asset case with general local volatility structure for the pricing
of exotic basket options such as Asian basket options. Through ample numerical experiments,
we show that the accuracy of our approximation remains quite high even for a complex basket
option with long maturity and high volatility.

Keywords: Wiener–Ito chaos expansion, local volatility, average option, basket option, spread
option, Asian basket option

1. INTRODUCTION

The aim of this paper is to provide an approximation method for the pricing of European-style
Asian basketoptions and their variants.

Asian options belong to the class of path-dependent options whose payoff functions are de-
termined by the average of underlying asset price process over some pre-determined period of
time.1 Asian options are popular in the foreign exchange and commodities markets, since they
can help corporate firms hedge risks arising from their businesses. In addition, Asian options
are cheaper than the corresponding vanilla options, and hence they are preferred by practition-
ers. On the other hand, basket options are also exotic options, whose payoff functions are based
on more than one underlying assets. Examples of basket options include index options, spread
options, rainbow options and options on a portfolio. This type of options is also popular in
the foreign exchange market, because financial corporations with multiple currency exposures
can hedge their exposures less expensively by purchasing a basket option than by purchasing
vanilla options on each currency individually. Asian basket options are the combination of these
popular options. In general, both Asian and basket options are known to be difficult to price
analytically and numerically.

A large number of numerical methods have been proposed in the literature for the pricing of
Asian and/or basket options. For Asian options, numerical methods based on the partial dif-
ferential equation (PDE for short) or Monte Carlo methods are proposed by Kemna and Vorst
(1990), Dewynne and Wilmott (1993), Lapeyre and Temam (2001), Vecer (2001) and many oth-
ers, whereas the literature for basket options includes Rubinstein (1991), Pellizzari (2001) and

Date: April 8, 2013.
H. Funahashi: Mizuho Securities Co. Ltd. and Tokyo Metropolitan University. Address: Otemachi First Square

1-5-1, Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan. E-mail:fr021768@yahoo.co.jp
M. Kijima: Graduate School of Social Sciences, Tokyo Metropolitan University. Address: 1-1 Minami-Ohsawa,

Hachiohji, Tokyo 192-0397, Japan. E-mail:kijima@tmu.ac.jp
Kijima is grateful for the research grant funded by the Grant-in-Aid (A) (#21241040) from Japan’s Ministry of

Education, Culture, Sports, Science and Technology. This paper is an output of one of the 2012 Project Research
at KIER as the Joint Usage and Research Center.

1Unless stated otherwise, ‘average’ always meansarithmeticaverage in this paper.
1



2 HIDEHARU FUNAHASHI AND MASAAKI KIJIMA

Hager et al. (2010). Unfortunately, these methods are in general computationally too burden-
some for practical use. In particular, for general basket options, any standard method such as
finite difference method and tree method is subject to the ‘curse of dimensionality’ and cannot
solve the problem for the high-dimensional case within a reasonable time for practice. While
Monte Carlo simulation seems to work for the pricing problem even for the high-dimensional
case, this method is in general too computationally expensive to be used for calibration pur-
pose. Therefore, closed-form approximation formulas might be the only feasible solution to
practitioners for the pricing of Asian basket options.

When the underlying asset model is restricted to the geometric Brownian motion (GBM for
short) case, several effective approximations have been proposed in the literature. Tumbull and
Wakeman (1991) and Ritchken et al. (1993) apply a fourth-order Edgeworth series approxi-
mation to the log-normal distribution and obtain an analytical approximation for Asian option
prices. Levy (1992) modifies the Tumbull–Wakeman approximation to derive another analytic
approximation method which is considered to give more accurate results. Milevsky and Pos-
ner (1998) propose closed-form approximation formulas for Asian options based on reciprocal
Gamma distributions. Posner and Milevsky (1998) use Johnson functions to approximate the
state price density by matching the first four moments and use them in integral formulas for
pricing Asian options. Ju (2002) approximates the ratio of the characteristic function of the
arithmetic average to that of the approximating log-normal random variable by using the sixth-
order Taylor expansion around zero and derives a very accurate approximated closed-form so-
lution. It should be noted that these methods can be directly applied for the pricing of basket
options (see Ju (2002) and Krekel et al. (2004) for detailed discussions). On the other hand,
Zhang (2001) proposes a semi-analytical approach that uses a singularity-removing technique
to derive an analytical approximation formula of Asian options and derives the PDE for the
correction term between the exact price and the analytical approximation.

It is well known that the Black and Scholes model (1973) cannot consistently price Euro-
pean options in the market, since implied volatility surfaces are usually skew- or smile-shaped.
This tendency holds for the case of Asian basket options as well, and the above mentioned
approximations are not suitable for practical use because they are based on the GBM assump-
tion. Hence, it is required to develop some approximation method for more general underlying
processes. In this regard, Takahashi (1999) applies the Malliavin–Watanabe theory to derive
second-order asymptotic approximation formulas for both Asian and basket options under a
general class of diffusion processes. Also, Fouque and Han (2003) use perturbation techniques
to approximate Asian option prices under a stochastic volatility environment.

In this paper, we propose an approximation method based on the chaos expansion approach,
recently proposed by Funahashi and Kijima (2013), for the pricing of Asian basket options.
Through ample numerical examples, we show that the accuracy of our approximation remains
quite high even for a complex basket option with long maturity and high volatility under various
diffusion models. By the comparison with the previous works, we show that our approximation
provides highly accurate results over a wide range of data sets even for the GBM case. More-
over, our approximation formulas can capture the skew and smile effects. Also, our approach
can not only save computational time without sacrificing much accuracy, but also lead to the
effective and/or stable calculation of Greeks.

This paper is organized as follows. After explaining our problem concisely in the next sec-
tion, we extend the chaos expansion approach of Funahashi and Kijima (2013) to the multi-asset
case in Section 3. Each asset price is approximated by a truncated sum of iterated Ito stochastic
integrals, and the Asian basket variable is also described, after the change of order of integra-
tion, as a sum of iterated Ito stochastic integrals. An approximated formula of Asian basket



AN EXTENSION OF THE CHAOS EXPANSION APPROXIMATIONFOR THE PRICING OF EXOTIC BASKET OPTIONS3

options can then be derived in closed form. In Section 4, we consider a special case where each
local volatility function depends only on its price, not on the other asset prices. Approxima-
tion for the ordinary Black–Scholes setting (1973) is also considered and compared with the
previous approximation results mentioned above. Section 5 is devoted to numerical examples.
Comparing the closed formulas with Monte Carlo simulation results, it is observed that our
approximation remains quite accurate even for a complex basket option with long maturity and
high volatility. Finally, Section 6 concludes this paper.

Throughout this paper,(Ω,F ,Q, {Ft}t≥0) will be a filtered probability space where the filtra-
tion {Ft}t≥0 satisfies the usual conditions. The probability measureQ is a risk-neutral measure
and the expectation operator underQ is denoted byE.

2. THE SETUP

In this paper, we consider a financial market withN risky assets{Si,t}0≤t≤T , i = 1, 2, . . . , N ,
and one risk-free asset{S0,t}0≤t≤T . The risk-free asset is a money-market account with spot
interest rater(t), that is a deterministic function of timet. On the other hand, the risky assets
are modeled by the following stochastic differential equation (SDE for short):

(2.1)
dSi,t

Si,t

= r(t)dt+ σi(St, t)dWi,t, 0 ≤ t ≤ T,

under the risk-neutral measureQ, whereSt = (S1,t, . . . , SN,t) and the volatilitiesσi(s, t) are
deterministic functions of both asset pricess = (s1, . . . , sN) and timet, and where{Wi,t}t≥0

are standard Brownian motions underQ with correlationdWi,tdWj,t = ρi,jdt. It is assumed
throughout that each volatilityσi(s, t) is an analytic function of(s, t).

For the multivariatelocal volatility model (2.1), we consider the following exotic basket
options. Namely, for weighting (deterministic) functionswi,t, define the random variable

(2.2) VT :=
N∑
i=1

∫ T

0

wi,tSi,tdt, V0 = V,

and consider a call option written onVT with exercise priceK, i.e.,

(2.3) C(V,K, T ) = E
[
e−

∫ T
0 r(u)du (VT −K)+

]
.

The aim of this paper is to derive the option valueC(V,K, T ).
To this end, there may be several approaches that are applicable for the pricing problem. For

example, in principle, any standard method such as finite difference method and tree method
can be applied to solve the problem. However, these methods are subject to the curse of dimen-
sionality and cannot solve the problem within a reasonable time for practice. On the other hand,
Monte Carlo simulation seems to work for the pricing problem even for the high-dimensional
case. However, when calibration is required to the market, this method is in general too com-
putationally expensive to be used in practice, because the entire optimization procedure is ex-
tremely time-consuming. Therefore, closed-form approximation formulas might be the only
feasible solution for practitioners.

In this paper, we apply the chaos expansion approach recently developed by Funahashi and
Kijima (2013) to approximate the random variableVT by a truncated sum of iterated Ito sto-
chastic integrals. We then derive the probability density function (PDF for short) of the ap-
proximated random variable. The value of the call option can be derived in closed form by the
approximated PDF.
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Before proceeding, we emphasize that the above formulation is a generalization of the fol-
lowing well-known options:

European Option: LetN = 1 andw1,t = δ(T − t), whereδ(u) represents the Dirac delta
function. Then,VT = S1,T so that the option (2.3) reduces to the plain-vanilla European
option.

Asian Option: Let N = 1 andw1,t = 1/T for all 0 ≤ t ≤ T . Then,VT = 1
T

∫ T

0
S1,tdt.

This option is called an average or (arithmetic) Asian option.
Partial Average Option: Let N = 1 andw1,t = 1/(T1 − T2) for all T1 ≤ t ≤ T2

andw1,t = 0 otherwise, where0 ≤ T1 < T2 ≤ T . In this case, we haveVT =
1

(T2−T1)

∫ T2

T1
S1,tdt.

Basket Option: Let wi,t = wiδ(T − t), wherewi are some constants fori = 1, 2, . . . , N .
In this case, we haveVT =

∑N
i=1 wiSi,T , the so-called basket option.

Spread Option: As a special case of basket options, ifN = 2, w1 = 1 andw2 = −1,
then we haveVT = S1,T − S2,T . Hence, the option is reduced to a spread option.

Asian Basket Option: Let wi,t = 1/T , i = 1, 2, . . . , N , for all 0 ≤ t ≤ T . Then,
VT =

∑N
i=1

1
T

∫ T

0
Si,tdt, and the option is called an Asian basket option.

3. THE CHAOS EXPANSION APPROACH

The chaos expansion approach is composed by the following four steps:

(1) Represent the underlying asset by Hermite polynomials,
(2) Expand the underlying dynamics by means of successive substitution, and approximate

it by a truncated sum of iterated Ito stochastic integrals using the Wiener–Ito chaos
expansion,

(3) Derive the PDF of the approximated underlying variable, and
(4) Compute the value of a European contingent claim in closed form by using the PDF.

In the following, we extend the results of Funahashi and Kijima (2013) to the multi-dimensional
case. Some of the extensions are straightforward; in that case, we omit our exposition largely.

3.1. Approximation of the underlying assets. First, by applying Ito’s formula to the SDE
(2.1), we obtain

(3.1) Si,t = Fi(0, t) exp

[
Ji,t(σi)−

1

2
∥σi∥2t

]
,

whereFi(0, t) = Si,0e
∫ t
0 r(u)du is the forward price of the underlying asset with delivery datet,

Ji,t(g) =
∫ t

0
g(u)dWi,u and∥g∥2t =

∫ t

0
g2(u)du. It is well known (see, e.g., Chapter 1 of Nualart

(2006)) that the above expression can be written as

(3.2) Si,t = Fi(0, t)
∞∑
n=0

∥σi∥nt
n!

hn

(
Ji,t(σi)

∥σi∥t

)
for anyσi ∈ L2([0, T ]), wherehn(x) denotes the Hermite polynomial of ordern.

Second, letS(0)
i,t = Fi(0, t) and defineS(m)

i,t successively by

(3.3) S
(m+1)
i,t = Fi(0, t) exp

[
Jt(σ

(m)
i )− 1

2
∥σ(m)

i ∥2t
]
,
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whereσ(m)
i (t) = σi(S

(m)
t , t) with S

(m)
t = (S

(m)
1,t , . . . , S

(m)
N,t ). As in Funahashi and Kijima (2013),

we assume thatS(m)
t converges toSt componentwise almost surely asm → ∞. Then, we have

Si,t = S
(1)
i,t +

∞∑
m=1

{
S
(m+1)
i,t − S

(m)
i,t

}
.

Also, from (3.2) and (3.3), we obtain

S
(m+1)
i,t

Fi(0, t)
=

∞∑
n=0

∥σ(m)
i ∥nt
n!

hn

(
Ji,t(σ

(m)
i )

∥σ(m)
i ∥t

)
.

It follows that

Si,t = S
(1)
i,t + Fi(0, t)

∞∑
m,n=1

Ii:m,n(t),

where

(3.4) Ii:m,n(t) =
1

n!

{
∥σ(m)

i ∥nt hn

(
Ji,t(σ

(m)
i )

∥σ(m)
i ∥t

)
− ∥σ(m−1)

i ∥nt hn

(
Ji,t(σ

(m−1)
i )

∥σ(m−1)
i ∥t

)}
.

As in Funahashi and Kijima (2013), we approximateSi,t by a truncated sum atm + n ≤ 3.
Namely, our approximation is given by

(3.5) Si,t ≈ S
(1)
i,t + Fi(0, t)

∑
m+n≤3

Ii:m,n(t).

This approximation is justified by Proposition 2.2 of Funahashi and Kijima (2013), when the
volatility term is small in theL2 sense.

It remains to approximate the remaining terms in (3.5). To this end, we invoke Proposition
1.14 of Nualart (2006) to derive

S
(1)
i,t

Fi(0, t)
= 1 +

∞∑
n=1

∫ t

0

∫ tn

0

· · ·
∫ t2

0

σ
(0)
i (t1)σ

(0)
i (t2) · · ·σ(0)

i (tn)dWi,t1 · · · dWi,tn ,

whereσ(0)
i (t) = σi(S

(0)
t , t), S(0)

t = (F1(0, t), . . . , FN(0, t)), is a deterministic function. Accord-
ing to our strategy, we approximate it as

S
(1)
i,t ≈ Fi(0, t)

[
1 +

∫ t

0

σ
(0)
i (t1)dWt1 +

∫ t

0

∫ t2

0

σ
(0)
i (t1)σ

(0)
i (t2)dWi,t1dWi,t2

+

∫ t

0

∫ t3

0

∫ t2

0

σ
(0)
i (t1)σ

(0)
i (t2)σ

(0)
i (t3)dWi,t1dWi,t2dWi,t3

]
,(3.6)

the third-order approximation.
In order to approximateIi:m,n(t), m+ n ≤ 3, we employ Taylor’s expansion aroundS(m−1)

t ,
as in Funahashi and Kijima (2013). Namely, sinceJi,t(σ

(m)
i ) =

∫ t

0
σi(S

(m)
u , u)dWi,u, it follows

that

Ji,t(σ
(m)
i ) ≈ Ji,t(σ

(m−1)
i ) +

N∑
p=1

∫ t

0

∂pσ
(m−1)
i (u){S(m)

p,u − S(m−1)
p,u }dWi,u

+
1

2

N∑
p,q=1

∫ t

0

∂pqσ
(m−1)
i (u){S(m)

p,u − S(m−1)
p,u }{S(m)

q,u − S(m−1)
q,u }dWi,u,(3.7)
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where∂pσ
(m)
i (u) denotes the partial derivative ofσ(m)

i (u) with respect to thepth variable and
∂pqσ

(m)(u) represents the second-order partial derivative with respect to thepth andqth vari-
ables. Furthermore, we use the approximation

(3.8) J2
i,t(σ

(m)
i ) ≈ J2

i,t(σ
(m−1)
i ) + 2Ji,t(σ

(m−1)
i )

N∑
p=1

∫ t

0

∂pσ
(m−1)
i (u){S(m)

p,u − S(m−1)
p,u }dWi,u.

Repeated application of the expansion results (3.7) and (3.8) leads to the following. Re-
call that our strategy is to neglect those terms that produce fourth- or higher-order iterated Ito
stochastic integrals. The proof is given in Appendix A.

Lemma 3.1. Each termIi:m,n(t) defined by (3.4) is approximated as follows:

Ii:1,1(t) ≈
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)dWp,u

)
dWi,s

+
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ(0)
p (r)dWp.r

)
dWp,u

)
dWi,s

+
N∑

p,q=1

∫ t

0

∂pqσ
(0)
i (s)Fp(0, s)Fq(0, s)

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ(0)
q (r)dWq.r

)
dWp,u

)
dWi,s

+
1

2

N∑
p,q=1

∫ t

0

∂pqσ
(0)
i (s)Fp(0, s)Fq(0, s)

(∫ s

0

σ(0)
p (u)σ(0)

q (u)du

)
dWi,s,

Ii:1,2(t) ≈
N∑
p=1

∫ t

0

σ
(0)
i (s)

(∫ s

0

∂pσ
(0)
i (u)Fp(0, u)

(∫ u

0

σ(0)
p (r)dWp,r

)
dWp,u

)
dWi,s

+
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ
(0)
i (u)

(∫ u

0

σ(0)
p (r)dWp,r

)
dWi,u

)
dWi,s

+
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ
(0)
i (r)dWi,r

)
dWp,u

)
dWi,s

+
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ
(0)
i (u)σ(0)

p (u)du

)
dWi,s,

and

Ii:2,1(t) ≈
N∑

p,q=1

∫ t

0

∂pσ
(0)
i Fp(0, s)

(∫ s

0

∂qσ
(0)
p Fq(0, s)

(∫ u

0

σ(0)
q (r)dWq,r

)
dWp,u

)
dWi,s.

Note that all the integrands in Lemma 3.1 are deterministic functions, sinceσ
(0)
i (t) = σi(S

(0)
t , t)

with S
(0)
i,t = Fi(0, t) being the forward price of assetSi,t that is observed in the market.

We are now in a position to state our approximation result. The next result is obtained by
putting above approximation results all together.

Theorem 3.1.Each asset priceSi,t is approximated as

(3.9) Si,t ≈ Fi(0, t)
[
1 + A1

i,t + A2
i,t + A3

i,t

]
, i = 1, 2, . . . , N,
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where

A1
i,t =

∫ t

0

P 1
i (s)dWi,s,

A2
i,t =

∫ t

0

σ
(0)
i (s)

(∫ s

0

σ
(0)
i (u)dWi,u

)
dWi,s

+
N∑
p=1

∫ t

0

P 2
i:p(s)

(∫ s

0

σ(0)
p (u)dWp,u

)
dWi,s,

andA3
i,t =

∑7
k=1A

3
i,t(k) withA3

i,t(k) being defined by

A3
i,t(1) =

∫ t

0

σ
(0)
i (s)

(∫ s

0

σ
(0)
i (u)

(∫ u

0

σ
(0)
i (r)dWi,r

)
dWi,u

)
dWi,s,

A3
i,t(2) =

N∑
p=1

∫ t

0

P 2
i:p(s)

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ(0)
p (r)dWp.r

)
dWp,u

)
dWi,s,

A3
i,t(3) =

N∑
p=1

∫ t

0

σ
(0)
i (s)

(∫ s

0

P 2
i:p(u)

(∫ u

0

σ(0)
p (r)dWp,r

)
dWp,u

)
dWi,s,

A3
i,t(4) =

N∑
p=1

∫ t

0

P 2
i:p(s)

(∫ s

0

σ
(0)
i (u)

(∫ u

0

σ(0)
p (r)dWp,r

)
dWi,u

)
dWi,s,

A3
i,t(5) =

N∑
p=1

∫ t

0

P 2
i:p(s)

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ
(0)
i (r)dWi,r

)
dWp,u

)
dWi,s,

A3
i,t(6) =

N∑
p,q=1

∫ t

0

P 2
i:p(s)

(∫ s

0

P 2
p:q(s)

(∫ u

0

σ(0)
q (r)dWq,r

)
dWp,u

)
dWi,s,

A3
i,t(7) =

N∑
p,q=1

∫ t

0

P 3
i:p,q(s)

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ(0)
q (r)dWq.r

)
dWp,u

)
dWi,s.

Note thatAk
i,t, k = 1, 2, 3, corresponds to thekth-order iterated Ito stochastic integrals. In

particular,A1
i,t follows a normal distribution with zero mean. Here, we define

P 1
i (s) := σ

(0)
i (s) +

N∑
p=1

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ
(0)
i (u)σ(0)

p (u)du

)

+
1

2

N∑
p,q=1

∂pqσ
(0)
i (s)Fp(0, s)Fq(0, s)

(∫ s

0

σ(0)
p (u)σ(0)

q (u)du

)
,

P 2
i:p(s) := ∂pσ

(0)
i (s)Fp(0, s), p = 1, 2, . . . , N,

P 3
i:p,q(s) := ∂pqσ

(0)
i (s)Fp(0, s)Fq(0, s), p, q = 1, 2, . . . , N.

Note thatP k
i (t)’s are all deterministic functions.
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Now, from (3.9), we have

(3.10)
∫ T

0

wi,tSi,tdt =

∫ T

0

wi,tFi(0, t)dt+ ai,1(T ) + ai,2(T ) + ai,3(T ),

where

ai,k(T ) =

∫ T

0

wi,tFi(0, t)A
k
i,tdt, k = 1, 2, 3.

By changing the order of integration, we obtain

ai,1(T ) =

∫ T

0

p̄1i (t, T )dWi,t, p̄1i (t, T ) := P 1
i (t)

∫ T

t

wi,sFi(0, s)ds,

and

ai,2(T ) =

∫ T

0

s̄i(t, T )

(∫ t

0

σ(0)
p (s)dWp,s

)
dWi,t

+
N∑
p=1

∫ T

0

p̄2i:p(t, T )

(∫ t

0

σ(0)
p (s)dWp,s

)
dWi,t,

where

s̄i(t, T ) := σ
(0)
i (t)

∫ T

t

wi,sFi(0, s)ds, p̄2i:p(t, T ) := P 2
i:p(t)

∫ T

t

wi,sFi(0, s)ds.

Similar representation holds forai,3(T ). Namely, the first term ofai,3(T ) is given by

a1i,3(T ) :=

∫ T

0

wi,tFi(0, t)A
3
i,t(1)dt

=

∫ T

0

s̄i(t, T )

(∫ s

0

σ
(0)
i (u)

(∫ u

0

σ
(0)
i (r)dWi,r

)
dWi,u

)
dWi,s.

Other termsaki,3(T ), k = 2, . . . , 7, are provided in Appendix B. The random variableVT in (2.2)
is now approximated as

(3.11) VT ≈
N∑
i=1

∫ T

0

wi,tFi(0, t)dt+ a1(T ) + a2(T ) + a3(T ),

whereak(T ) =
∑N

i=1 ai,k(T ).

3.2. Option pricing formula. LetXT := VT −
∑N

i=1

∫ T

0
wi,tFi(0, t)dt so that

Xt ≈ a1(t) + a2(t) + a3(t).

Sincea1(T ) is a mixture of normal random variables,a1(t) follows a normal distribution with
zero mean and variance

Σt =
N∑

i,j=1

∫ t

0

ρi,j p̄i,1(s)p̄j,1(s)ds.

It follows thata1(t) can be rewritten as

(3.12) a1(t) =

∫ t

0

√
ΛsdŴs,

whereΛt =
∑N

i,j=1 ρi,j p̄i,1(t)p̄j,1(t) anddŴt =
∑N

i=1

(
p̄i,1(t)/

√
Λt

)
dWi,t. Note thatŴt is

considered to be a standard Brownian motion underQ.
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By applying the following result, an approximation of the density function ofXt can be
obtained. The proof is found in Funahashi and Kijima (2013). The density function ofXt is
denoted byfXt(x).

Lemma 3.2. The density function ofXt is approximated by

fXt(x) ≈ n (x; 0,Σt)−
∂

∂x
{E[a2(t)|a1(t) = x]n (x; 0,Σt)}

− ∂

∂x
{E[a3(t)|a1(t) = x]n (x; 0,Σt)}

+
1

2

∂2

∂x2

{
E[a2(t)2|a1(t) = x]n (x; 0,Σt)

}
,

wheren(x; a, b) denotes the normal density function with meana and varianceb.

The conditional expectations in Lemma 3.2 can be evaluated explicitly. Some key results are
provided in Appendix C. Using the approximated density function, sayf̃XT

(x), the call option
price (2.3) can now be approximated by

C(V,K, T ) = E
[
e−

∫ T
0 r(t)dt (V (T )−K)+

]
= E

[
e−

∫ T
0 r(t)dt

(
XT + K̄

)+]
≈ e−

∫ T
0 r(t)dt

∫ ∞

−K̄

(x+ K̄)f̃XT
(x)dx,

whereK̄ :=
∑N

i=1

∫ T

0
wi,tFi(0, t)dt − K. The derivation of the approximated option price is

tedious but straightforward. The resulting formula is complicated and omitted. The complete
derivation and formulas are available from the authors upon request.

4. SOME SPECIAL CASES

So far, we have considered the general local volatility model (2.1) whose volatility value
depends not only on its price but also the other asset prices. However, it is usually very difficult
to specify the volatility functions in its full generality for practical uses. In this section, as a
special case of (2.1), we assume that

(4.1)
dSi,t

Si,t

= r(t)dt+ σi(Si,t, t)dWi,t, 0 ≤ t ≤ T,

under the risk-neutral measureQ. That is, we assume that the local volatility depends only on
the price of its own (not the others), while assuming that the Brownian motions are correlated as
dWi,tdWi,t = ρi,jdt. Then, all the cross partial-derivatives in Theorem 3.1 disappear. Namely,
in this case,P k

i (s) in Theorem 3.1 are reduced to

P 1
i (s) := σ

(0)
i (s) + ∂iσ

(0)
i (s)Fi(0, s)

(∫ s

0

{
σ
(0)
i (u)

}2

du

)
+

1

2
∂iiσ

(0)
i (s)F 2

i (0, s)

(∫ s

0

{
σ
(0)
i (u)

}2

du

)
,(4.2)

P 2
i:i(s) := ∂iσ

(0)
i (s)Fi(0, s),

P 3
i:i,i(s) := ∂iiσ

(0)
i (s)F 2

i (0, s).
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Hence, each asset price is approximated as

Si,t ≈ Fi(0, t)

[
1 +

∫ t

0

ri,1(s)dWi,s +

∫ t

0

ri,2(s)

(∫ s

0

σ
(0)
i (u)dWi,u

)
dWi,s

+

∫ t

0

ri,3(s)

(∫ s

0

σ
(0)
i (u)

(∫ u

0

σ
(0)
i (r)dWi,r

)
dWi,u

)
dWi,s(4.3)

+

∫ t

0

ri,4(s)

(∫ s

0

ri,5(u)

(∫ u

0

σ
(0)
i (r)dWi,r

)
dWi,u

)
dWi,s

]
,

whereσ(0)
i (s) := σi(Fi(0, s), s) and

ri,1(s) := P 1
i (s),

ri,2(s) := σ
(0)
i (s) + P 2

i:i(s),

ri,3(s) := σ
(0)
i (s) + 3P 2

i:i(s) + P 3
i:i,i(s),

ri,4(s) := σ
(0)
i (s) + P 2

i:i(s),

ri,5(s) := P 2
i:i(s).

The iterative integralsai,k(T ), k = 1, 2, 3, in (3.10) can also be simplified as

ai,1(T ) =

∫ T

0

r̄i,1(t)dWi,t,

ai,2(T ) =

∫ T

0

r̄i,2(t)

(∫ t

0

σ
(0)
i (s)dWi,s

)
dWi,t,(4.4)

ai,3(T ) =

∫ T

0

r̄i,3(t)

(∫ t

0

σ
(0)
i (s)

(∫ s

0

σ
(0)
i (u)dWi,u

)
dWi,s

)
dWi,t

+

∫ T

0

r̄i,4(t)

(∫ s

0

ri,5(u)

(∫ u

0

σ
(0)
i (r)dWi,r

)
dWi,u

)
dWi,s,

wherer̄i,k(t) = ri,k(t)
∫ T

t
wi,sF (0, s)ds for k = 1, 2, 3, 4.

Moreover, the conditional expectations in Lemma 3.2 are derived explicitly as

E[a2(t)|a1(t) = x] = q1(t)

(
x2

Σ2
t

− 1

Σt

)
,

E[a3(t)|a1(t) = x] = q2(t)

(
x3

Σ3
t

− 3x

Σ2
t

)
,

E[a22(t)|a1(t) = x] = q3(t)

(
x4

Σ4
t

− 6x2

Σ3
t

+
3

Σ2
t

)
+ q4(t)

(
x2

Σ2
t

− 1

Σt

)
+ q5(t),
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where

Σt =
N∑

i,j=1

∫ t

0

ρi,j r̄i,1(s)r̄j,1(s)ds,

q1(t) =
N∑

i,j,k=1

∫ t

0

ρi,j r̄j,1(s)r̄i,2(s)

(∫ s

0

ρi,kσ
(0)
i (u)r̄k,1(u)du

)
ds,

q2(t) =
N∑

i,j,k,l=1

∫ t

0

ρi,j r̄j,1(s)r̄i,3(s)

(∫ s

0

ρi,kσ
(0)
i (u)r̄k,1(u)

(∫ u

0

ρi,lσ
(0)
i (r)r̄l,1(r)dr

)
du

)
ds

+
N∑

i,j,k,l=1

∫ t

0

ρi,j r̄j,1(s)r̄i,4(s)

(∫ s

0

ρi,kr̄k,1(u)ri,5(u)

(∫ u

0

ρi,lσ
(0)
i (r)r̄l,1(r)dr

)
du

)
ds,

q3(t) = q21(t),

q4(t) = 2
N∑

i,j,k,l=1

∫ t

0

ρi,kr̄k,1(s)r̄i,2(s)

(∫ s

0

ρj,lr̄l,1(u)r̄j,2(u)

(∫ u

0

ρi,jσ
(0)
i (r)σj,0(r)dr

)
du

)
ds

+ 2
N∑

i,j,k,l=1

∫ t

0

ρi,kr̄k,1(s)r̄i,2(s)

(∫ s

0

ρi,jσ
(0)
i (u)r̄j,2(u)

(∫ u

0

ρj,lσj,0(r)r̄l,1(r)dr

)
du

)
ds

+
N∑

i,j,k,l=1

∫ t

0

ρi,j r̄i,2(s)r̄j,2(s)

(∫ s

0

ρi,lσ
(0)
i (u)r̄l,1(u)du

)(∫ s

0

ρj,mσj,0(u)r̄m,1(u)du

)
ds,

q5(t) =
N∑

i,j=1

∫ t

0

ρi,j r̄i,2(s)r̄j,2(s)

(∫ s

0

ρi,jσ
(0)
i (u)σj,0(u)du

)
ds.

By substituting these results into Lemma 3.2, we can obtain the following results.

Theorem 4.1.The probability density function ofXt is approximated as

fXt(x) ≈ 1

2
n (x; 0,Σt)

[
q3(t)

Σ3
t

h6

(
x√
Σt

)
+

(2q2(t) + q4(t))

Σ2
t

h4

(
x√
Σt

)
+

2q1(t)(√
Σt

)3h3

(
x√
Σt

)
+

q5(t)

Σt

h2

(
x√
Σt

)
+ 2

]
,

whereΣt and qi(t) are defined above andn(x; a, b) denotes the normal density function with
meana and varianceb.

Theorem 4.2. The value of a European call option with maturityT and strikeK is approxi-
mated as

C(T ) ≈ e−
∫ T
0 r(t)dtn(K̄; 0,Σt)

2Σ4
t

[
q3(T )(K̄

4 − 6K̄2Σt + 3Σ2
t )

+Σ2
t (q4(T ) + 2q2(T ))

(
K̄2 − Σt

)
+Σ3

t

{
−2q1(T )K̄ + q5(T )Σt + 2Σ2

t

}]
+e−

∫ T
0 r(t)dtK̄

(
1− Φ(−K̄/

√
Σt)
)
,
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whereΦ(x) is the cumulative distribution function of the standard normal distribution.

4.1. The GBM case. As in the previous papers, we now assume that the underlying assets
follow ordinary geometric Brownian motions, i.e.,

(4.5)
dSi,t

Si,t

= rdt+ σidWi,t, 0 ≤ t ≤ T,

wherer andσi are some constants withdWi,tdWi,t = ρi,jdt. Then, by definition, we have
σ
(0)
i (s) = σi so thatP k

i (s) in (4.2) are reduced to

P 1
i (s) = σi, P 2

i:i(s) = P 3
i:i,i(s) = 0.

It follows from (4.3) that each asset price is approximated as

Si,t ≈ Si,0e
rt

[
1 +

∫ t

0

σidWi,s +

∫ t

0

σi

(∫ s

0

σidWi,u

)
dWi,s

+

∫ t

0

σi

(∫ s

0

σi

(∫ u

0

σidWi,r

)
dWi,u

)
dWi,s

]
,(4.6)

sinceσ(0)
i (s) = ri,k(s) = σi, k = 1, . . . , 4, andri,5(s) = 0 in this case. The iterative integrals

ai,k(T ) in (4.4) are further simplified as

ai,1(T ) =

∫ T

0

r̄i(t)dWi,t,

ai,2(T ) =

∫ T

0

r̄i(t)

(∫ t

0

σidWi,s

)
dWi,t,

ai,3(T ) =

∫ T

0

r̄i(t)

(∫ t

0

σi

(∫ s

0

σidWi,u

)
dWi,s

)
dWi,t,

wherer̄i(t) = Si,0σi

∫ T

t
wi,se

rsds. The option price formula in Theorem 4.2 is simplified ac-
cordingly.

4.2. Numerical comparison for the GBM case. In this subsection, we calculate ordinary
Asian option and Basket option prices by using our method and compare them with those ob-
tained by several approximation methods previously proposed in the literature under the Black–
Scholes setting (1973). In order to avoid intentional choice of parameter values, we adopt the
same parameter setting as those used in Table 2 of Ju (2002).

Table 1 shows the Asian option prices calculated by the semi-analytic method (SA (Exact))
of Zhang (2001), the log-normal approximation (LN) of Levy (1992), the Edgeworth expan-
sion method (EW) of Tumbull and Wakeman (1991) and Ritchken et al. (1993), the reciprocal
gamma approximation (RG) of Milevsky and Posner (1998), the 4th-order moment approxi-
mation (FM4) of Posner and Milevsky (1998), the 6th-order Taylor expansion approximation
(TE6) of Ju (2002) and our approximation (WIC). We use SA (Exact) to be the benchmark
values for our comparison purposes. In the table, volatilityσ varies from5% to 50% and strike
K from 95 to 105. The other parameters are set asS0 = 100, r = 0.09, andT = 3. In order
to check the accuracy, the residual mean squared error (labeled by RMSE) as well as the max-
imum absolute error (labeled by MAE) from the SA (Exact) is considered. The results of SA,
LN, EW, RG, FM4 and TE6 are quoted from Table 2 of Ju (2002). The ranking based on the
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σ K SA (Exact) TE6 LN EW RG FM WIC
0.05 95 15.11626 15.11626 15.1163 15.11628 15.11624 15.11626 15.1162

100 11.30361 11.3036 11.30422 11.30368 11.30318 11.30361 11.30353
105 7.55332 7.55335 7.5567 7.55335 7.55075 7.55333 7.55312

0.1 95 15.2138 15.21396 15.22546 15.21443 15.20538 15.21383 15.21282
100 11.63766 11.63798 11.65759 11.6351 11.62237 11.63764 11.63681
105 8.39122 8.3914 8.41475 8.3863 8.37232 8.39115 8.39084

0.2 95 16.63723 16.63942 16.74023 16.52766 16.55504 16.63634 16.6326
100 13.76693 13.7677 13.86951 13.6658 13.68133 13.76559 13.76443
105 11.21985 11.21879 11.31054 11.14619 11.14037 11.21835 11.21842

0.3 95 19.0232 19.02652 19.2791 18.36063 18.80529 19.0162 19.01279
100 16.58613 16.58509 16.82823 16.10382 16.37079 16.57768 16.57895
105 14.39295 14.38751 14.6101 14.0994 14.19042 14.38394 14.38808

0.4 95 21.74097 21.74461 22.2318 19.63683 21.30176 21.71507 21.71776
100 19.5883 19.58355 20.05569 18.26416 19.15285 19.5579 19.57066
105 17.62548 17.61269 18.05875 16.98036 17.20469 17.59266 17.61289

0.5 95 24.5719 24.5774 25.40607 20.2883 23.79644 24.50412 24.52514
100 22.63085 22.62276 23.43633 20.82553 21.85456 22.55035 22.59402
105 20.84322 20.82213 21.60941 21.00517 20.07802 20.7542 20.81615

RMSE 0.00662 0.39303 1.26967 0.37305 0.03486 0.01748
MAE 0.02108 0.83417 4.2836 0.77629 0.08902 0.04676
Rank No1 No3 No2

Table 1: Asian option prices for the GBM case. The results of SA, LN, EW, RG, FM and TE6 are quoted
from Table 2 of Ju (2002), where SA (Exact) stands for the semi-analytic method of Zhang (2001), LN
the log-normal approximation of Levy (1992), EW the Edgeworth expansion method of Tumbull and
Wakeman (1991) and Ritchken et al. (1993), RG the reciprocal gamma approximation of Milevsky and
Posner (1998), FM4 the 4th-order moment approximation of Posner and Milevsky (1998), TE6 the 6th-
order Taylor expansion approximation of Ju (2002), and WIC the approximation method proposed in this
paper. The other parameters are set asS = 100, r = 0.09, andT = 3. The CPU time to calculate our
results (WIC) was0.001 second for each case in average.

RMSE (also MAE) is also appended in the table. The CPU time to calculate our results (WIC)
was0.001 second for each case in average.2

On the other hand, Table 2 shows the basket option prices calculated by the Monte Carlo
simulation (MC), LN, RG, FM4 TE6, the geometric conditioning method (GC) of Curran (1994)
and our approximation method WIC, where each basket consists of fivehomogeneousstocks.
In the table, strikeK varies from 90 to 110, short rater from 0.05 to 0.1, volatilityσ from 20%
to 50%, and correlationρ from 0 to 0.5. The weights arew1 = 0.05, w2 = 0.15, w3 = 0.2,
w4 = 0.25 andw5 = 0.35. The other parameters are set asSi,0 = 100 andT = 3. The results
of MC, LN, RG, FM4, GC and TE6 are quoted from Table 6 of Ju (2002). As in Table 1,
the residual mean squared error (RMSE) as well as the maximum absolute error (MAE) from
Monte Carlo simulation (MC) and the ranking are also appended. The CPU time to calculate
our results (WIS) was0.826 second in average.

From these tables, it is explicitly observed that our approximation (WIC) is quite comparable
to the existing accurate methods even for the GBM case. In particular, even in the case of high
volatility, we can see that the accuracy of our approximation remains quite high. Note that we
have made no intention for the parameter choice. Also, our approximation is not restricted to

2The CPU time is measured by the time function equipped by C++. Note thatqi(T ) in the option pricing
formula (Theorem 4.2) are evaluated by numerical integration.
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K r σ ρ MC TE6 LN RG FM GC WIC
90 0.05 0.2 0 23.012123.0148 23.0561 22.9501 23.0169 22.9777 23.03326
100 0.1 0.2 0 26.167126.1706 26.2005 26.1232 26.1738 26.1463 26.18798
110 0.05 0.5 0 21.018421.0437 21.8495 20.4446 20.5303 19.3543 21.39616
90 0.1 0.5 0 37.228737.1973 37.969 36.5845 37.3486 36.3446 37.86944
100 0.05 0.2 0.5 18.579818.5812 18.5875 18.193 18.5809 18.5653 18.58114
110 0.1 0.2 0.5 21.7596 21.76 21.7664 21.3672 21.7598 21.7465 21.75889
90 0.05 0.5 0.5 36.828 36.8255 36.9131 33.4933 36.8083 36.5786 36.83792
100 0.1 0.5 0.5 38.590638.5874 38.6742 35.3043 38.5789 38.3534 38.59878
110 0.05 0.2 0 9.8016 9.8013 9.8546 9.7366 9.796 9.6887 9.81099
90 0.1 0.2 0 33.371133.3707 33.381 33.3551 33.3735 33.3639 33.38699
100 0.05 0.5 0 25.161 25.1394 26.0042 24.4746 24.7427 23.6466 25.60056
110 0.1 0.5 0 27.6233 27.619 28.4929 26.9366 27.3201 26.2559 28.13687
90 0.05 0.2 0.5 24.810424.8111 24.8172 24.4386 24.811 24.7999 24.80759
100 0.1 0.2 0.5 27.546227.5463 27.5519 27.2072 27.5463 27.537 27.53928
110 0.05 0.5 0.5 29.103429.1026 29.1871 25.8326 29.0556 28.8042 29.12288
90 0.1 0.5 0.5 42.767342.7625 42.8455 39.678 42.776 42.5596 42.767
100 0.05 0.2 0 15.678 15.6802 15.7425 15.5903 15.6775 15.6027 15.69741
110 0.1 0.2 0 19.436819.4357 19.4894 19.3541 19.4358 19.3805 19.45461
90 0.05 0.5 0 29.999829.9817 30.8485 29.2973 29.7887 28.7457 30.54791
100 0.1 0.5 0 32.114532.1032 32.9523 31.4284 32.0113 30.9819 32.70757
110 0.05 0.2 0.5 13.490213.4905 13.4954 13.1811 13.4901 13.4713 13.49058
90 0.1 0.2 0.5 34.008834.0101 34.014 33.7796 34.0102 34.0047 33.9919
100 0.05 0.5 0.5 32.705432.7176 32.8051 29.3599 32.6827 32.4421 32.73262
110 0.1 0.5 0.5 34.836434.8388 34.9267 31.4782 34.8126 34.5777 34.85218

RMSE 0.01078 0.41767 1.68341 0.1553 0.67642 0.26348
MAE 0.0314 0.8696 3.3582 0.4881 1.6641 0.64074
Rank No1 No2 No3

Table 2: Basket option prices for the GBM case. The results of MC, LN, RG, FM4, GC and TE6 are
quoted from the Table 6 of Ju (2002), where MC stands for the Monte Carlo simulation, LN the log-
normal approximation of Levy (1992), RG the reciprocal gamma approximation of Milevsky and Posner
(1998), FM4 the 4th-order moment approximation of Posner and Milevsky (1998), TE6 the 6th-order
Taylor expansion approximation of Ju (2002), GC the geometric conditioning method of Curran (1994)
and WIC the proposed method in this paper. Here, each basket consists of five homogeneous stocks with
initial priceSi,0 = 100. The option maturity isT = 3 years, and the weights arew1 = 0.05, w2 = 0.15,
w3 = 0.2, w4 = 0.25 andw5 = 0.35. The CPU time to calculate our results (WIC) was0.826 second in
average.

the GBM case. In the next section, we shall show the applicability of our approximation method
for more complex models.

5. NUMERICAL EXAMPLES

In this section, we examine the accuracy of our approximation method under more general
settings. Since there are no closed form solutions for Asian basket options, we compare our
approximation results with Monte Carlo simulation.

In the following, we investigate three settings. First, we test the so-called constant elasticity
of variance (CEV) model. Second, we examine a complex nonlinear volatility model and test
the performance of our approximation formulas by calibrating it to the real market. Finally, we
consider a general Asian basket option.

5.1. The CEV Model. In this subsection, we suppose that the underlying asset price follows
the CEV model. To be more specific, we assume that the volatility in the SDE (4.1) is specified
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Figure 1: Asian option prices for the square-root model. The left-hand side panel corresponds to the
short maturity (T = 6 months) case and the right-hand side panel corresponds to the long maturity
(T = 5 years) case. MC means the option prices calculated by Monte Carlo simulation, while WIC
indicates the approximate prices calculated by the formula given in Theorem 4.2. The parameters are set
asS0 = 100, r = 0.03, andσ = 1.33.

for eachi as
σi(Si,t, t) := σiS

βi−1
i,t , t ≥ 0,

whereσi andβi are some constants. In particular, ifβi = 1 then the model becomes the Black-
Scholes setting, whereas it is called the square-root model ifβi = 0.5.

We show in Figures 1 and 2 the differences between the option prices calculated by our
approximation formula in Theorem 4.2 and the corresponding Monte Carlo simulation results
for short maturity (6 months, left-hand-side panel) and long maturity (5 years, right-hand-side
panel) cases.

Figure 1 reports the Asian option prices under the square-root model (β = 0.5). The param-
eters are set asS0 = 100, r = 0.03, andσ = 1.33.

On the other hand, in Figure 2, we consider a European basket option that consists of 2
asymmetric stocks. The parameters are set asr = 0.03, S1,0 = S2,0 = 100, β1 = 1, β2 = 0.5,
σ1 = 0.15 andσ2 = 1.33. Thus, while asset 1 follows the square-root process, asset 2 follows
the GBM, in order to make the underlying assets asymmetric. Figure 2 reports the results for
the cases ofρ = 0.75, ρ = 0 andρ = −0.75 from the top two panels to the bottom two
panels, respectively. The left-hand-side panel corresponds to the short maturity (6 months)
case, whereas the right-hand-side panel corresponds to the long maturity (5 years) case.

From these figures, for both Asian and Basket options, we observe that the error becomes
slightly large for long maturity and/or far in-the- and out-of-the money strikes. But, the errors
of our approximation are small enough for practical uses.

5.2. Calibration to the market. We examine the performance of our approximation formula
in Theorem 4.2 by testing it on real market data. For this purpose, we consider two examples
of volatility surface observed in the currency options market of 5 year JPY/USD and JPY/AUD
options.

To this end, we need to slightly modify the SDE (4.1) in order to apply our results to the FX
options market. Namely, we assume that thei-th spot exchange rateSi,t follows the SDE

(5.1)
dSi,t

Si,t

= (rd(t)− ri,f (t))dt+ σi(Si,t, t)dWi,t, i = 1, 2,
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The case ofρ = 0.75
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The case ofρ = 0.0
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The case ofρ = −0.75

Figure 2: Basket option prices for the CEV model. The left-hand side panel corresponds to the short
maturity (T = 6 months) case and the right-hand side panel corresponds to the long maturity (T = 5
years) case. The top two panels report the results for the case ofρ = 0.75, the middle panelsρ = 0
and the bottom panelsρ = −0.75, respectively. MC means the option prices calculated by Monte Carlo
simulation, while WIC indicates the approximate prices calculated by the formula given in Theorem 4.2.
The parameters are set asS1,0 = S2,0 = 100, r = 0.03, β1 = 1, β2 = 0.5, σ1 = 0.15 andσ2 = 1.33.
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Figure 3: Asian option prices for the calibrated parameters. MC indicates the results calculated by
Monte Carlo simulation, while WIC means that the results are obtained our approximation method. The
other parameters are set asrd(t) = 0.00977, r1,f (t) = 0.0222, S1,0 = 77.54, T = 3.

whererd(t) andri,f (t) represent the domestic andith foreign short rates, respectively. In this
setting, the forward price in Theorem 4.2 is modified asFi(0, t) = exp{

∫ t

0
(rd(s)− ri,f (s))ds}.

In order to capture the volatility smile in the FX options market, we assume that the volatility
in (5.1) is given by

(5.2) σi(Si,t, t) :=
(
αi + βix+

γi
x
+ δix

2
)
e−ϵix, t ≥ 0,

wherex = Si,t/Fi(0, t). The idea behind this specification is found in Funahashi and Kijima
(2013).

First, we examine Asian options under the above setting. We calibrate our model to the 5
year JPY/USD option market dated on November 11 2011. The calibrated parameters are given
as

α1 β1 γ1 δ1 ϵ1
1.29531 −1.99897 −0.00018 1.014743 0.809651

Figure 3 reports the prices of 3-year Asian options computed from these calibrated parameters.
In the figure, MC indicates the prices calculated by Monte Carlo simulation and WIC means
the approximate prices calculated by the formula given in Theorem 4.2. The other parameters
are set asrd(t) = 0.00977, r1,f (t) = 0.0222, andS1,0 = 77.54.

Second, we examine the basket options on two currencies, JPY/USD and JPY/AUD. In addi-
tion to the JPY/USD case, we calibrate our model to the 5 year JPY/AUD option market on the
same date (November 11, 2011). The calibration results are given as

α2 β2 γ2 δ2 ϵ2
0.853855 −0.699724 −0.001258 0.221596 0.627338



18 HIDEHARU FUNAHASHI AND MASAAKI KIJIMA

 0

 5

 10

 15

 20

 50  60  70  80  90  100
-0.2

-0.16

-0.12

-0.08

-0.04

 0

 0.04

 0.08

 0.12

 0.16

 0.2

O
pt

io
n 

P
ri

ce

D
if

f

Strike

MC
WIC
Diff

Figure 4: Basket option prices for the calibrated parameters. MC and WIC indicate Monte Carlo sim-
ulation and our approximation results, respectively. The other parameters are set asrd(t) = 0.00977,
r1,f (t) = 0.0222, r2,f (t) = 0.04848, S1,0 = 77.54, S2,0 = 78.60, T = 3 andw1 = w2 = 0.5. The
correlation between them is set asρ = 0.5.

Figure 4 reports the prices of 3-year basket options computed from these parameters. In the
figure, MC and WIC indicate Monte Carlo simulation and our approximation results, respec-
tively. The other parameters are set asrd(t) = 0.00977, r1,f (t) = 0.0222, r2,f (t) = 0.04848,
S1,0 = 77.54, S2,0 = 78.60, andw1 = w2 = 0.5. The correlation between them is set as
ρ = 0.5.

From these figures, we observe that the accuracy of our approximation method is satisfactory
for the practical cases in the wide ranges of strikes and maturities.

5.3. Valuation of complex basket options.In this last subsection, we consider the valuation
of a fictitious, complex basket option that consists of 6 underlying assets. By complex, we mean
that the basket consists ofinhomogeneousunderlyings with different asset dynamics, different
weighting functions, and different correlation structures.

The asset dynamics are modeled by the SDE (4.1) with volatility functionsσi(x, t), i = 1, 2,
given in (5.2) and

σi(Si, t) =

{
σi, i = 3, 4,
σi/

√
Si, i = 5, 6,

with σ3 = 0.1, σ4 = 0.2, σ5 = 1 andσ6 = 2.3 The initial prices are assumed to beSi,0 = 100
for all i. The spot interest rater(t) is assumed to be a constant, sayr = 0.02.

3In order to keep the asset volatilities similar levels, we setσ3 = 0.1 andσ5 = 1, becauseS3,0 = S5,0 = 100
so thatσ3(S3,0, 0) = σ5(S5,0, 0) = 0.1. The same reasoning applies for assets4 and6.
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The weighting functions are assumed to be given by

wi,t =


0.1δ(T − t) (maturity price), i = 1, 4,

0.2
1

T2 − T1

1{T1≤t≤T2} (partial average), i = 2, 5,

0.2
η

1− e−ηT
e−η(T−t) (exponential weighting), i = 3, 6,

whereT denotes the maturity of the complex basket option and0 < T1 < T2 ≤ T . Then,r̄i,k(t)
defined in (4.4) become

r̄i,k(t) =



0.1ri,k(t)Si,0e
rT , i = 1, 4,

0.2ri,k(t)Si,0

(
erT2 − erT1

r(T2 − T1)
1{t<T1} +

erT2 − ert

r(T2 − T1)
1{T1≤t<T2}

)
, i = 2, 5,

0.2ri,k(t)Si,0

η
(
erT − e(r+η)t−ηT

)
(1− e−ηT )(r + η)

, i = 3, 6.

In this numerical example, we assume thatT = 3, T1 = 1, T2 = 2 andη = 0.95.
Finally, we assume that the correlations between the assets are given by

(ρjk) =


1 0.7 0.5 0.3 0.2 0.1
0.7 1 0.6 0.4 0.3 0.2
0.5 0.6 1 0.5 0.4 0.3
0.3 0.4 0.5 1 0.5 0.4
0.2 0.3 0.4 0.5 1 0.5
0.1 0.2 0.3 0.4 0.5 1

 .

Note that the correlation matrix needs to be positive definite.
The option prices calculated by our formula are compared with those calculated by Monte

Carlo simulation. The results are depicted in Figure 5. The CPU time to calculate our results
(WIC) was2.612 seconds for each case in average. Even such a complex basket product can be
evaluated reasonably fast.

We can see from Figure 5 that the errors of our approximation are very small even in this
complex setting. Hence, we conclude that our approximation formula is flexible enough for the
pricing of exotic basket derivatives.

6. CONCLUSION

In this paper, we propose an approximation method based on the chaos expansion approach
proposed by Funahashi and Kijima (2013) for the pricing of complex basket options such as
Asian basket options, which are known to be difficult to price both analytically and numer-
ically. Our approximation is not restricted to the case of geometric Brownian motions, and
can be applied to the multi-dimensional local volatility model. Also, it is possible to extend
our approach to include stochastic volatility models by following the idea of Funahashi (2012).
Through ample numerical examples, we show that the accuracy of our approximation remains
quite high even for the long maturity and/or the high volatility cases under various diffusion
models.

We note that differentiation calculated from the closed-form approximation provides a good
approximation for the option delta. Higher-order differentiation (maybe numerical) provides an
approximated gamma, and the other Greeks are evaluated similarly.

As future works, we will extend our approach to include stochastic volatility models that are
modeled by fractional Brownian motions as studied by Comte and Renault (1998). Applications
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Figure 5: Complex basket option prices that contains of 6 underlying assets. MC means the option
prices calculated by Monte Carlo simulation, while WIC indicates the approximate prices calculated by
the formula given in Theorem 4.2. The CPU time to calculate our results (WIC) was2.612 seconds for
each case in average.

for the valuation problems of other financial contingent claims such as barrier options are also
considered.

APPENDIX A. PROOF OFLEMMA 3.1

In this appendix, we approximate eachIi:m,n(t) by using the approximations (3.7) and (3.8).
The strategy is to neglect the terms of iterative integrals of higher than the third order. We
call such terms ‘higher terms”. The proof is similar to the one given by Funahashi and Kijima
(2013). However, we provide a concise proof for the reader’s convenience.

A.1. Approximation of Ii:1,1(t). By definition,Ii:1,1(t) = Ji,t(σ
(1)
i ) − Ji,t(σ

(0)
i ) and so, from

(3.7), we have

Ii:1,1(t) ≈
N∑
p=1

∫ t

0

∂pσ
(0)
i (u){S(1)

p,u − S(0)
p,u}dWi,u

+
1

2

N∑
p,q=1

∫ t

0

∂pqσ
(0)
i (u){S(1)

p,u − S(0)
p,u}{S(1)

q,u − S(0)
q,u}dWi,u.
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SinceS(0)
i,t = Fi(0, t) andS(1)

i,t is approximated by (3.6), by ignoring the higher terms, we obtain

Ii:1,1(t)(A.1)

≈
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)dWp,u

)
dWi,s

+
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ(0)
p (r)dWp,r

)
dWp,u

)
dWi,s

+
1

2

N∑
p,q=1

∫ t

0

∂pqσ
(0)
i (u)Fp(0, s)Fq(0, s)

(∫ s

0

σ(0)
p (u)dWp,u

)(∫ s

0

σ(0)
q (u)dWq,u

)
dWi,u.

Further, by Ito’s formula, we get

(∫ t

0

σ(0)
p (s)dWp,s

)(∫ t

0

σ(0)
q (s)dWq,s

)
=

∫ t

0

σ(0)
q (s)

(∫ t

0

σ(0)
p (s)dWp,u

)
dWq,s

+

∫ t

0

σ(0)
p (s)

(∫ t

0

σ(0)
q (s)dWq,u

)
dWp,s

+

∫ t

0

σ(0)
p (s)σ(0)

q (s)ds.(A.2)

Finally, substitution of (A.2) into (A.1) yields the result.

A.2. Approximation of Ii:1,2(t). By the definition of Hermite polynomials, we have

Ii:1,2(t) =
1

2

{(
J2
i,t(σ

(1)
i )− J2

i,t(σ
(0)
i )
)
−
(
∥σ(1)

i ∥2t − ∥σ(0)
i ∥2t

)}
≈ Ji,t(σ

(0)
i )

(
N∑
i=1

∫ t

0

∂pσ
(0)
i (u){S(1)

p,u − S(0)
p,u}dWp,u

)
− 1

2

(
∥σ(1)

i ∥2t − ∥σ(0)
i ∥2t

)
,

where we have used (3.7) for the approximation. Hence, sinceJi,t(σ
(0)
i ) =

∫ t

0
σ
(0)
i (u)dWu and

σ
(0)
i (t) = σi(S

(0)
t , t), S(0)

t = (F1(0, t), . . . , FN(0, t)), by ignoring the higher terms, we obtain

Ii:1,2(t) ≈
(∫ t

0

σ
(0)
i (s)dWi,s

)( N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)dWp,u

)
dWi,s

)

− 1

2

(
∥σ(1)

i ∥2t − ∥σ(0)
i ∥2t

)
,(A.3)

where we have applied (3.6) for the further approximation.
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Now, by Ito’s formula, the first term in (A.3) is rewritten as(∫ t

0

σ
(0)
i (s)dWi,s

)( N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)dWp,u

)
dWi,s

)

=
N∑
p=1

∫ t

0

σ
(0)
i (s)

(∫ s

0

∂pσ
(0)
p (u)Fp(0, u)

(∫ u

0

σ(0)
p (r)dWp,r

)
dWp,u

)
dWi,s

+
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ
(0)
i (u)dWi,u

)(∫ s

0

σ(0)
p (u)dWp,u

)
dWi,s

+
N∑
p=1

∫ t

0

σ
(0)
i (s)∂pσ

(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)dWp,u

)
ds.

On the other hand, the second term in (A.3) is approximated as

∥σ(1)
i ∥2t − ∥σ(0)

i ∥2t =

∫ t

0

{
(σ

(1)
i (s))2 − (σ

(0)
i (s))2

}
ds

≈ 2
N∑
p=1

∫ t

0

σ
(0)
i (u)∂pσ

(0)
i (u){S(1)

p,u − S(0)
p,u}ds,

by Taylor’s expansion aroundS(0)
t .

Similarly, we get

N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)dWp,u

)2

dWp,s

=
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ
(0)
i (r)dWi,r

)
dWp,u

)
dWi,s

+
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ
(0)
i (u)

(∫ u

0

σ(0)
p (r)dWp,r

)
dWi,u

)
dWi,s

+
N∑
p=1

∫ t

0

∂pσ
(0)
i (s)Fp(0, s)

(∫ s

0

σ(0)
p (u)σ

(0)
i (u)du

)
dWi,s.

Finally, we put these results together to obtain the approximation result forIi:1,2(t).

A.3. Approximation of Ii:2,1(t). By definition,Ii:2,1(t) = Ji,t(σ
(2)
i ) − Ji,t(σ

(1)
i ) and so, from

(3.7), we have

Ii:2,1(t) ≈
N∑
p=1

∫ t

0

∂pσ
(1)
i (u)(S(2)

p,u − S(1)
p,u)dWi,s.

SinceS(2)
i,u − S

(1)
i,u = Fi(0, t)Ii:1,1(t), and sinceIi:1,1(t) = Ji,t(σ

(1)
i )− Ji,t(σ

(0)
i ), we have

Ii:2,1(t) ≈
N∑
p=1

∫ t

0

∂pσ
(1)
i (u)Fp(0, t)Ii:1,1(t)dWi,s.
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Hence, from (A.1), by ignoring the higher terms, we obtain

Ii:2,1(t) ≈
N∑

p,q=1

∫ t

0

∂pσ
(1)
i (u)Fp(0, t)

(∫ t

0

∂qσ
(0)
p (s)Fq(0, s)

(∫ s

0

σ(0)
q (u)dWq,u

)
dWp,s

)
Wi,s.

Now, we apply Taylor’s expansion to∂pσ
(1)
i (t) aroundS(0)

t . It follows by ignoring the higher
terms again that

Ii:2,1(t) ≈
N∑

p,q,r=1

∫ t

0

{
∂pσ

(0)
i (u) + ∂ppσ

(0)
i (u){S(1)

r,u − S(0)
r,u}
}

×Fp(0, t)

(∫ t

0

∂qσ
(0)
p (s)Fq(0, s)

( ∫ s

0

σ(0)
q (u)dWq,u

)
dWp,s

)
Wi,s.

By applying (3.6) and ignoring the higher terms again, we finally get the result.

APPENDIX B. EXPLICIT FORMULAS OFaki,3(T )

From Theorem 3.1, the second term ofai,3(T ) is given by

a2i,3(T ) =
N∑
p=1

∫ T

0

wi,tFi(0, t)

∫ t

0

P 2
i:p(s)

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ(0)
p (r)dWp.r

)
dWp,u

)
dWi,sdt.

By changing the order of integration, we get

a2i,3(T ) =
N∑
p=1

∫ T

0

p̄3i:p(t, T )

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ(0)
p (r)dWp.r

)
dWp,u

)
dWi,s,

where

p̄3i:p(t, T ) := P 2
i:p(t)

∫ T

t

wi,sFi(0, s)ds.

Similarly, we obtain

a3i,3(T ) =
N∑
p=1

∫ T

0

s̄i(t, T )

(∫ s

0

P 2
i:p(u)

(∫ u

0

σ(0)
p (r)dWp,r

)
dWp,u

)
dWi,s,

a4i,3(T ) =
N∑
p=1

∫ T

0

p̄2i:p(t, T )

(∫ s

0

σ
(0)
i (u)

(∫ u

0

σ(0)
p (r)dWp,r

)
dWi,u

)
dWi,s,

a5i,3(T ) =
N∑
p=1

∫ T

0

p̄2i:p(t, T )

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ
(0)
i (r)dWi,r

)
dWp,u

)
dWi,s,

a6i,3(T ) =
N∑

p,q=1

∫ T

0

p̄2i:p(t, T )

(∫ s

0

P 2
p:q(s)

(∫ u

0

σ(0)
q (r)dWq,r

)
dWp,u

)
dWi,s

and

a7i,3(T ) =
N∑

p,q=1

∫ T

0

p̄4i:p,q(t, T )

(∫ s

0

σ(0)
p (u)

(∫ u

0

σ(0)
q (r)dWq.r

)
dWp,u

)
dWi,s.
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Here, we define

p̄4i:p,q(t, T ) := P 3
i:p,q(t)

∫ T

t

wi,sFi(0, s)ds.

APPENDIX C. FORMULAS FORCONDITIONAL EXPECTATIONS

LetW i
t , i = 1, . . . , 5, be standard Brownian motions with correlationdW i

tdW
j
t = ηi,jdt, and

let yi(x), i = 1, . . . , 5, be some deterministic functions. Moreover, letΣ :=
∫ T

0
y21(t)dt, and

denoteJT (y1) =
∫ T

0
y1(t)dW

1
t . In order to derive the conditional expectations of Lemma 3.2,

the following well-known results4 are sufficient:

(C.1) E
[ ∫ T

0

y3(t)

(∫ t

0

y2(s)dW
2
s

)
dW 3

t

∣∣∣∣JT (y1) = x

]
= v1

(
x2

Σ2
− 1

Σ

)
,

where

v1 =

∫ T

0

η1,3y3(t)y1(t)

(∫ t

0

η1,2y2(s)y1(s)ds

)
dt,

E
[ ∫ T

0

y4(t)

(∫ t

0

y3(s)

(∫ s

0

y2(u)dW
2
u

)
dW 3

s

)
dW 4

t

∣∣∣∣JT (y1) = x

]
(C.2)

= v2

(
x3

Σ3
− 3x

Σ2

)
,

where

v2 =

∫ T

0

η1,4y4(t)y1(t)

(∫ t

0

η1,3y3(s)y1(s)

(∫ s

0

η1,2y2(u)y1(u)du

)
ds

)
dt,

and

E
[(∫ T

0

y3(t)

(∫ t

0

y2(s)dW
2
s

)
dW 3

t

)(∫ T

0

y5(t)

(∫ t

0

y4(s)dW
2
s

)
dW 3

t

) ∣∣∣∣JT (y1) = x

]
= v3

(
x4

Σ4
− 6x2

Σ3
− 3

Σ2

)
+ v4

(
x2

Σ2
− 1

Σ

)
+ v5,(C.3)

4Formulas (C.1), (C.2) and (C.3) are one-dimensional versions of Lemma 2.1 in Takahashi (1999). See also
Yoshida (1992) for detailed discussions on the conditional expectations.
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where

v3 =

(∫ T

0

η1,3y3(t)y1(t)

(∫ t

0

η1,2y2(t)y1(t)ds

)
dt

)
×
(∫ T

0

η1,5y5(t)y1(t)

(∫ t

0

η1,4y4(t)y1(t)ds

)
dt

)
,

v4 =

∫ T

0

η1,3y3(t)y1(t)

(∫ t

0

η1,5y5(s)y1(s)

(∫ s

0

η2,4y4(u)y2(u)du

)
ds

)
dt

+

∫ T

0

η1,5y5(t)y1(t)

(∫ t

0

η1,3y1(s)y3(s)

(∫ s

0

η2,4y4(u)y2(u)du

)
ds

)
dt

+

∫ T

0

η1,3y3(t)y1(t)

(∫ t

0

η2,5y2(s)y5(s)

(∫ s

0

η1,4y4(u)y1(u)du

)
ds

)
dt

+

∫ T

0

η1,5y5(t)y1(t)

(∫ t

0

η3,4y3(s)y4(s)

(∫ s

0

η1,2y2(u)y1(u)du

)
ds

)
dt

+

{∫ T

0

η3,5y5(t)y3(t)

(∫ t

0

η1,2y2(s)y1(s)ds

)(∫ t

0

η1,4y4(s)y1(s)ds

)
dt

}
,

and

v5 =

∫ T

0

η3,5y5(t)y3(t)

(∫ t

0

η2,4y4(u)y2(u)du

)
dt.

Namely, for the conditional expectationE[a2(t)|a1(t) = x], sincea2(t) =
∑N

i=1 ai,2(T ) and

ai,2(T ) =

∫ T

0

s̄i(t, T )

(∫ t

0

σ
(0)
i (s)dWi,s

)
dWi,t

+
N∑
p=1

∫ T

0

p̄2i:p(t, T )

(∫ t

0

σ(0)
p (s)dWp,s

)
dWi,t,

we can apply (C.1) to calculateE
[ ∫ T

0
s̄i(t, T )

(∫ t

0
σ
(0)
p (s)dWp,s

)
dWi,t

∣∣∣∣a1(t) = x

]
. To this

end, we sety1(x) =
√
Λx, y2(x) = σ

(0)
p (x), y3(x) = s̄i(x, T ), and note that

η1,2 = dWp,tdŴt =
N∑
k=1

ρkp

(
p̄k,1(t)/

√
Λt

)
dt,

η1,3 = dWi,tdŴt =
N∑
k=1

ρik

(
p̄k,1(t)/

√
Λt

)
dt.

It follows that

E
[ ∫ T

0

s̄i(t, T )

(∫ t

0

σ(0)
p (s)dWp,s

)
dWi,t

∣∣∣∣a1(t) = x

]
= v1

(
x2

Σ2
− 1

Σ

)
,
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where

v1 =

∫ T

0

N∑
k=1

ρik

(
p̄k,1(t)/

√
Λt

)
s̄i(t, T )

√
Λt

(∫ t

0

N∑
l=1

ρlp

(
p̄k,1(s)/

√
Λs

)
σ(0)
p (s)

√
Λsds

)
dt

=
N∑

k,l=1

∫ T

0

ρikp̄k,1(t)s̄i(t, T )

(∫ t

0

ρlpp̄k,1(s)σ
(0)
p (s)ds

)
dt.

Other terms are similarly calculated.
The calculation of the conditional expectationsE[a3(t)|a1(t) = x] andE[a2(t)2|a1(t) = x]

are rather complicated and tedious, but straightforward. We omit the details. The detailed
results are available from the authors upon request.
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