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Abstract

This paper examines the asymmetric relationship between price and implied

volatility and the associated extreme quantile dependence using a linear and non-

linear quantile regression approach. Our goal is to demonstrate that the relationship

between the volatility and market return, as quanti�ed by Ordinary Least Square

(OLS) regression, is not uniform across the distribution of the volatility-price re-

turn pairs using quantile regressions. We examine the bivariate relationships of six

volatility-return pairs, namely: CBOE VIX and S&P 500, FTSE 100 Volatility and

FTSE 100, NASDAQ 100 Volatility (VXN) and NASDAQ, DAX Volatility (VDAX)

and DAX 30, CAC Volatility (VCAC) and CAC 40, and STOXX Volatility (VS-

TOXX) and STOXX. The assumption of a normal distribution in the return series

is not appropriate when the distribution is skewed, and hence OLS may not capture

a complete picture of the relationship. Quantile regression, on the other hand, can

be set up with various loss functions, both parametric and non-parametric (linear

case) and can be evaluated with skewed marginal-based copulas (for the non-linear

case), which is helpful in evaluating the non-normal and non-linear nature of the

relationship between price and volatility. In the empirical analysis we compare the

results from linear quantile regression (LQR) and copula based non-linear quantile
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regression known as copula quantile regression (CQR). The discussion of the prop-

erties of the volatility series and empirical �ndings in this paper have signi�cance for

portfolio optimization, hedging strategies, trading strategies and risk management,

in general.

Keywords: Return Volatility relationship, quantile regression, copula, copula quantile

regression, volatility index, tail dependence.

JEL Codes : C14, C58, G11,
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1 Introduction

The quanti�cation of the relationship between the changes in stock index returns and

changes in the associated volatility index serves is important given that it serves as the

basis for hedging. This relationship is mostly quanti�ed as being asymmetric (Badshah,

2012; Dennis, Mayhew and Stivers, 2006; Fleming, Ostdiek and Whaley, 1995; Giot,

2005; Hibbert, Daigler and Dupoyet, 2008; Low, 2004; Whaley, 2000; Wu, 2001). An

asymmetric relationship means that the negative change in the stock market has a higher

impact on the volatility index than a positive change, or vice-versa. The asymmetric

volatility-return relationship has been pointed out in two hypotheses, that is, the leverage

hypothesis (Black, 1976; Christie, 1982) and the volatility feedback hypothesis (Campbell

and Hentschel, 1992).

In a call/put option contract time to maturity and strike price form its basic char-

acteristics, the other inputs, namely risk free rate and dividend payout can be decided

easily (Black and Scholes, 1973). When pricing an option, the expected volatility over

the life of the option becomes a critical input, and it is also the only input which is not

directly observed by market participants. In an actively traded market, volatility can be

calculated by inverting the chosen option pricing formula for the observed market price

of the option. This volatility calculated by inverting the option pricing formula is known

as implied volatility. With an increasing focus on risk modelling in modern �nance, mod-

elling and predicting asset volatility, along with its dependence with the underlying asset

class has become an important research topic.

Any changes in volatility will likely lead to movements in stock market prices. For

example, an expected rise in volatility will lead to a decline in stock market prices. The

volatility indices are used for option pricing and hedging calculations, and their change

is re�ected in the corresponding stock markets. Financial risk is mostly composed of

rare or extreme events that result in high risk, and they reside in the tails of the return

distribution. In option pricing, rare or extreme events result in volatility skew patterns

(Liu, Pan and Wang, 2005).
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Figure 1: Time Series Plot VIX and S&P 500

Ordinary least squares regression (OLS) is the most widely used method for quanti-

fying a relationship between two classes of assets or return distributions in the �nance

literature. Figure 1 shows the logarithmic return series of VIX and S&P 500 stock indices

for the years 2008-2011. The time series plot shows that the VIX index changes according

to the changes in S&P 500. We employ two cases of quantile regression (linear and non-

linear) to evaluate the asymmetric volatility-return relationship between changes in the

volatility index (VIX, VFTSE,VXN, VDAX, VSTOXX and VCAC) and corresponding

stock index return series (S&P 500, FTSE 100, NASDAQ, DAX 30, STOXX and CAC

40). We focus on the daily asymmetric return-volatility relationship in this paper.

Giot (2005), Hibbert et al. (2008) and Low (2004) use OLS in their study of asym-

metric return-volatility relationships across implied volatility (IV) change distributions.

The construction of OLS means that it is �tted on the basis of deviations from the means

of the distributions concerned, and does not re�ect, given its concerned with averages,

the extreme quantile relationships. Badshah (2012) extends past studies using linear

quantile regerssion (LQR) to estimate the negative asymmetric return-volatility relation-

ship between stock index return (S&P 500, NASDAQ, DAX 30,STOXX ) and changes

in volatility index return (VIX, VXN, VDAX, VSTOXX) for lower and upper quantiles

which give negative and positive returns. Badshah (2012) found that negative returns

have higher impacts than positive returns using a linear quantile regression framework.

Kumar (2012) used LQR to examine the statistical properties of the volatility index of

India and its relationship with the Indian stock market.
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Figure 2: Q-Q Plots

Figure 2 gives the quantile-quantile plots for the data, and none of the data series

shows a good �t to normal distributions. When the data distribution is not normal, quan-

tile regression (QR) can provide more e�cient estimates for return-volatility relationships

(Badshah, 2012). QR can be used not only linearly but also for non-linear relationships

using Copula-based models. Badshah, (2012) used QR to investigate return-volatility

relationships focussed on the linear case. We extend this analysis, by considering the

non-linear aspects of the relationship using copula-based non-linear quantile regression

models, CQR.

The rest of the paper is as follows. In Section 2 we discuss linear quantile regression

LQR, followed by non-linear quantile regression using copula CQR in Section 3. In

Section 4 we describe the data sets together with the research design and methodology.

We discuss the results in Section 5 and conclude in Section 6.
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2 Quantile Regression

Regression analysis is undoubtedly the most widely used statistical technique in mar-

ket risk modelling; and has been applied in various contexts, such as factor models to

model returns or autocorrelated models to model volatility in time series. All these models

are based on regression analysis in combination with di�erent approaches and emphases.

A simple linear regression model can be written as:

Yit = αi + βiXit + εit, (1)

Equation (1) represents the dependent variable, Yit, as a linear function of one or

more independent variables, Xit, subject to a random `disturbance' or `error' term, εit

which is assumed to be i.i.d and independent of Xi.

A bivariate normal distribution is assumed to apply to both the dependent and in-

dependent variables in the case of simple linear regression. The regression estimates the

mean value of the dependent variable for given levels of the independent variables. For

this type of regression, where the focus is on the understanding of the central tendencies

in a data set, OLS is a very e�ective method. Nevertheless, OLS may lose its e�ectiveness

when we try to go beyond the mean value or towards the extremes of a data set (Allen,

Singh and Powell, 2010; Allen, Gerrans, Singh and Powell, 2009; Barnes and Hughes,

2002). Speci�cally, in the case of an unknown or arbitrary joint distribution (Xi, Yi),

OLS does not provide all the necessary information required to quantify the conditional

distribution of the dependent variable. As presented in our descriptive statistics (Section

4.1), the data set used in this analysis is not normal, and hence quantile regression may

be a better choice, particularly if we want to explore the relationships in the tails of the

two distributions.

Quantile Regression can be viewed as an extension of classical OLS (Koenker and

Bassett, 1978). In Quantile Regression, the estimation of the conditional mean by OLS is

extended to the similar estimation of an ensemble of models of various conditional quantile

functions for a data distribution. Quantile Regression can better quantify the conditional

distribution of (Y |X). The central special case is the median regression estimator that

minimises a sum of absolute errors. The estimates of remaining conditional quantile

functions are obtained by minimizing an asymmetrically weighted sum of absolute errors,

where the weights are the function of the quantile of interest. This makes Quantile

Regression a robust technique, even in the presence of outliers. Taken together the

ensemble of estimated conditional quantile functions of (Y |X) o�ers a more complete

view of the e�ect of covariates on the location, scale and shape of the distribution of the

response variable.

For parameter estimation in Quantile Regression, quantiles, as proposed by Koenker

and Bassett (1978), can be de�ned via an optimisation problem. To solve an OLS re-
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gression problem of �tting a line through a sample mean, the process is de�ned as the

solution to the problem of minimising the sum of squared residuals, in the same way the

median quantile (0.5%) in Quantile Regression is de�ned through the problem of min-

imising the sum of absolute residuals. The symmetrical piecewise linear absolute value

function assures the same number of observations above and below the median of the

distribution.

The other quantile values can be obtained by minimizing a sum of asymmetrically

weighted absolute residuals, thereby giving di�erent weights to positive and negative

residuals. Solving

minξεR
∑

ρτ (yi − ξ) (2)

where ρτ (�) is the tilted absolute value function, as shown in Figure 2.4, gives the τth

sample quantile with its solution. Taking the directional derivatives of the objective

function with respect to ξ (from left to right) shows that this problem yields the sample

quantile as its solution.

Figure 3: Quantile Regression ρ Function

After de�ning the unconditional quantiles as an optimisation problem, it is easy to

de�ne conditional quantiles similarly. Taking the least squares regression model, as a

base, for a random sample, y1, y2, . . . , yn, we solve

minµεR

n∑
i=1

(yi − µ)2 (3)

which gives the sample mean, an estimate of the unconditional population mean, EY.

Replacing the scalar, µ, by a parametric function µ(x, β), and then solving
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minµεRp

n∑
i=1

(yi − µ(xi, β))2 (4)

gives an estimate of the conditional expectation function E(Y|x).

Proceeding the same way for Quantile Regression, to obtain an estimate of the con-

ditional median function, the scalar ξ in the �rst equation is replaced by the parametric

function ξ(xt, β), and τ is set to 1/2 . Further insight into this robust regression technique

can be obtained from Koenker and Bassett's (2005) Quantile Regression monograph, or

as discussed by Alexander (2008).

Quantile regression has been applied frequently in research over the past decade in

various areas of econometric analysis, �nancial modelling and socio-economic research.

These studies include Buchinsky and Leslie (1997), who analyse changing US wage struc-

tures. Buchinsky and Hunt (1999) analyse earning mobility and factors a�ecting the

transmission of earnings across generations. Eide and Showanter (1998) study the e�ect

of school quality on education. Financial research work using quantile regression includes

Engle and Manganelli (2004) and Morillo (2000), quantifying Value-at-Risk (VaR) using

quantile regression and studying option pricing using Monte Carlo simulations. Barnes

and Hughes (2002) applied Quantile Regression to study the Capital Asset Pricing Model

(CAPM) in their work on cross sections of stock market returns. Chan and Lakonishok

(1992) applied Quantile Regression to robust measurement of size and book to market

e�ects. Gowlland, Xiao and Zeng (2009) investigate book to market e�ects beyond the

central tendency. Allen, Singh and Powell (2011) apply Quantile Regression to test appli-

cations of the Fama-French factor model in the DJIA 30 stocks, and explore the relative

merits of estimates of factor based risk factors across quantiles, as contrasted with OLS

estimates.

Other than Badshah (2012) and Kumar (2012), there is no prior work investigating the

return-volatility relationship between volatility indices and corresponding market indices

using quantile regression. We apply the LQR model to evaluate the return-volatility

relationship, and we also test the non-linear case of CQR to further examine the nature

of this important relationship.

3 Non-Linear Quantile Regression (CQR)

Bouyé and Salmon (2009) extended Koenker and Basset's (1978) idea of regression quan-

tiles, and introduced a general approach to non linear quantile regression modelling using

copula functions. Copula functions are used to de�ne the dependence structure between

the dependent and exogenous variables of interest. We �rst give a brief introduction to

copulas, followed by an introduction to the concept of CQR.
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3.1 Copula

Modelling the dependency structure within assets is a key issue in risk measurement. The

most common measure for dependency, correlation, loses its e�ect when a dependency

measure is required for distributions which are not normally distributed. Examples of

deviations from normality are the presence of kurtosis or fat tails and skewness in uni-

variate distributions. Deviations from normality also occur in multivariate distributions

given by asymmetric dependence, which suggests that assets show di�erent levels of cor-

relation during di�erent market conditions (Erb et al., 1994; Longin and Solnik, 2001;

Ang and Chen, 2002 and Patton, 2004). Modelling dependence with correlation is not

ine�cient when the distribution follows the strict assumptions of normality and con-

stant dependence across the quantiles. As it is well known in �nancial risk modelling,

that return distributions do not necessarily follow normal distributions across quantiles,

we need more sophisticated tools for modelling dependence than correlations. Copulas

provide one such measure.

The statistical tool which is used to model the underlying dependence structure of

a multivariate distribution is the copula function. The capability of a copula to model

and estimate multivariate distributions comes from Sklar's Theorem, according to which

each joint distribution can be decomposed into its marginal distributions and a copula C

responsible for the dependence structure. Here we de�ne a Copula using Sklar's Theorem,

along with some important types of copula, adapted from Franke, Härdle and Hafner

(2008).

A function C : [0, 1]d → [0, 1] is a d dimensional copula if it satis�es the following

conditions for every u = (u1, . . . , ud)
> ∈ [0, 1]d and j ∈ {1, . . . , d}:

1. if uj = 0 then C(u1, . . . , ud) = 0;

2. C(1, . . . , 1, uj, 1, . . . , 1) = uj;

3. for every υ = (υ1, . . . , υd)
> ∈ [0, 1]d, υj ≤ uj

VC(u, υ) ≥ 0

where VC(u, υ) is given by

2∑
i1=1

. . .
2∑

id=1

(−1)i1+...+idC(g1i1 , . . . , gdid).

Properties 1 and 3 state that copulae are grounded functions and that all d-dimensional

boxes with vertices in [0, 1]d have non-negative C-volume. The second Property shows

that the copulae have uniform marginal distributions.
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Sklar's Theorem

Consider a d-dimensional distribution function, F, with marginals F1 . . . , Fd. Then for

every x1, . . . , xd ∈ R, a copula, C can exist with

F (x1, . . . , xd) = C{F1(x1), . . . , Fd(xd)}. (5)

C is unique if F1 . . . , Fd are continuous. If F1, . . . , Fd, are distributions then the

function F is a joint distribution function with marginals F1, . . . , Fd.

For a joint distribution F with continuous marginals F1, . . . , Fd , for all u = (u1, . . . , ud)
> ∈

[0, 1]d, the unique copula C is given as:

C(u1, . . . , ud) = F{F−11 (u1), . . . , F
−1
d (ud)}. (6)

Copulae can be divided into two broad types, Elliptical Copulae-Gaussian Copula

and Student's t-Copula and Archimedean Copulae-Gumbel copula, Clayton copula and

Frank Copula .

Normal or Gaussian Copula

The copula derived from the n-dimensional multivariate and univariate standard normal

distribution functions, Φ and Φ, is called a normal or Gaussian copula. The normal

copula can be de�ned as

C(u1, . . . , un; Σ) = Φ
(
Φ−1(u1), . . . ,Φ

−1(un)
)
, (7)

where the correlation matrix and(Σ) is the parameter for the normal copula, and ui =

Fi(xi) is the marginal distribution function.

The normal copula density is given by:

c(u1, . . . , un; Σ) = |Σ|−1/2 exp

(
−1

2
ξ′(Σ−1 − I)ξ

)
(8)

where Σ is the correlation matrix, and|Σ| is its determinant. ξ = (ξ1, . . . , ξn)′, where ξi

is the ui quantile of the standard normal variable, Xi.

Figure 4 gives the density plot for a bivariate Gaussian copula with a correlation of

0.5. As shown in the �gure, the normal copula is a symmetric copula.

Student's t-Copula

Similar to the Gaussian copula, t-copulas model the dependence structure of multivariate

t-distributions. The parameters for the student t-copula are the correlation matrix and

degrees of freedom. Student t-copula shows symmetrical dependence, but is higher than
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Figure 4: Density of the Gaussian copula

those in the Gaussian copula, as shown in Figure-5. Alexander (2008) considers the

density functions and quantile functions of the student-t copula.

Figure 5: Density of t-copula
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Archimedean Copulae

Archimedean copulae is a family of copula which is built on a generator function, with

some restrictions. There can be various copulae in this family of copulae due to the

various generator functions available (see Nelson (1999)). For a generator function, φ,

the Archimedean copula can be de�ned as:

C(u1, . . . , un) = φ−1(φ(u1) + . . .+ φ(un)). (9)

The density function is given by

c(u1, . . . , un) = φ−1(φ(u1) + . . .+ φ(un))
n∏
i=1

φ′(ui). (10)

Clayton Copula

The Clayton copula, as introduced by Clayton (1978), has a generator function:

φ(u) = α−1(u−α − 1), α 6= 0. (11)

The inverse generator function is

φ−1(x) = (αx+ 1)−1/α.

With variation in parameter, α, the Clayton copulas capture a range of dependence.

The Clayton copula is particularly helpful in capturing positive lower tail dependence.

Figure 6 gives a density plot for the bivariate Clayton copula with α = 0.5. The asym-

metric lower tail dependence is evident from the �gure.

Like the Normal and Student-t copula, Archimedean copula can also be used for

CQR1. Here we use only Normal and Student-t copula for our analysis as they capture

both positive and negative dependence. The Clayton copula captures only positive lower

tail dependence and hence is omitted.

We will not discuss further the types of copula in detail, but refer the reader to Joe

(1997), Nelsen (1999), Alexander (2008) and Cheung (2009), who give a useful overview

of copula for �nancial practitioners. The quantile functions of the copulas used in the

CQR are reported in the following discussion of copula quantile regression. The quantile

function of the Clayton is also given for completeness.

3.2 Copula Quantile Regression (CQR)

Bouyé and Salmon (2009) discussed copula quantile regression in detail by highlighting

the properties of quantile curves. They also gave simple closed forms of the quantile

1The example of the Clayton copula with its quantile function is given in the next subsection.
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Figure 6: Density of Clayton copula

curve for major copula (normal, Student t, Joe-Clayton, and Frank) which are used

in the linear quantile regression model (Equation 5) to calculate non-linear regression

quantiles. Here we will give the closed form solution of the four copula quantile curves,

for the sake of brevity, (refer to the original paper by Bouyé and Salmon (2009) for a

detailed discussion). Alexander (2008) also gives a brief introduction of non-linear copula

based quantile regressions and provides some empirical examples.

The non-linear quantile regression model is formed by replacing the linear quantile

regression model (5) with the quantile curve of a copula. Every copula has a quantile

curve, which may be decomposed in an explicit manner.

If we have two marginals, FX(x) and FY (y), of x and y, with their estimated distri-

bution parameters, we can then de�ne a bivariate copula with certain parameters, θ.

Normal CQR

The bivariate normal copula has one parameter, the correlation %, and its quantile curve

can be written as:

y = F−1Y

[
Φ
(
%Φ−1(FX(x)) +

√
1− %2Φ−1(q)

)]
. (12)
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Student-t CQR

The Student-t copula has two parameters, the degrees of freedom, ν, and the correlation,

%. The quantile curve of the Student-t copula is given by:

y = F−1Y

[
tν

(
%t−1ν (FX(x)) +

√
(1− %2)(ν + 1)−1 (ν + t−1ν (FX(x))2)t−1ν+1(q)

)]
. (13)

Clayton CQR

Clayton copula is a member of the Archimedean Copula, with a generator function having

parameter, α. The quantile curve of the Clayton copula is given by:

y = F−1Y

[(
1+FX(x)−α

(
q−α/(1+α) − 1)

))−1/α]
. (14)

In order to evaluate non-linear quantile regressions using copula, for a given sample

{(xt, yt)}Tt=1, the q (or τ) quantile regression curve can be de�ned as yt = ξ(xt, q; θ̂q). The

parameters θ̂q are found by solving the following optimization problem:

minµεRp

∑
ρq(yt − ξ(xt, q;θ)). (15)

This optimization problem can be solved by using the Quantreg package of the sta-

tistical software R, after de�ning the copula using copula related packages.

In this paper, we use LQR and CQR with normal or Gaussian and Student-t copula

to evaluate the return-volatility relationship. We now discuss the data and methodology

implemented in the following section.

4 Data and Methodology

4.1 Description of Data

In the empirical analysis, we use daily price data for market and volatility indices of

six volatility-return pairs, namely, VIX and S&P 500, VFTSE and FTSE 100, VXN

and NASDAQ, VDAX and DAX 30, VCAC and CAC 40, and VSTOXX and STOXX.

We obtained daily prices from Datastream for a period of approximately 10 years, from

2/02/2001 to 31/12/2011. Daily percentage logarithmic returns are used for the analysis.

Table 1 gives the descriptive statistics for our data set. All the data series show excess

kurtosis indicating fat tails. The Jarque-Bera test statistics in Table 1 strongly reject the

presence of normal distributions in the series. Given the descriptive statistics, we can

conclude that all the return time series (for the market and volatility series) exhibit fat

tails and are not normally distributed. The ADF test statistics also reject the presence

of unit roots in the time series.
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4.2 Methodology

In the empirical analysis we evaluate the volatility-return relationship, which can be

represented by the following:

Vt = α + βRt + εt (16)

where Vt is the daily logarithmic return of the volatility index and Rt gives the daily log-

arithmic return of the market index. α, β and ε gives the intercept, the slope coe�cient,

which represents the degree of association, and the error term respectively.

We will use three regression techniques in this paper, the basic linear regression model

(estimated by OLS), linear quantile regression, and non-linear copula quantile regression,

to quantify the return-volatility relationship for the six return-volatility pairs. The rela-

tionship quanti�ed by OLS is around the mean of the distribution, and hence does not

quantify the tail regions. In this paper, we examine if the relationship quanti�ed by the

quantile regressions are di�erent from OLS and if they are di�erent across the various

quantiles in the distribution.

The major results from the paper are discussed in the following section.

5 Discussion of the Results

5.1 Linear Regression-OLS

We �rst evaluate the volatility-return relationship using OLS. As mentioned before, OLS

gives the relationship around the mean of the distribution and hence omits the extreme

cases. These would be the circumstances when the market is either in crisis or when it is

performing exceptionally well. The relationship quanti�ed by OLS gives the relationship

between the average of the volatility and return series.
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Figure 7: OLS Regression for Volatility-Return Pairs

Figure 7 gives the plot of OLS regression �t for the actual volatility-return data. The

common observation in all the �gures is that the regression line runs through the mean

of the observations. As the regression line represents the mean behaviour, the estimated

values are around the mean of the distribution and, in the case of non-normality, is

not well suited to quantify relationships in the tails or other quantiles diverging from

mean. Table 2 gives the point estimates of the intercept and regression coe�cient for

all the volatility-return pairs. The values of the regression coe�cient indicate an inverse

volatility return relationship. These results con�rm the earlier work. The key issue is

whether the nature of this relationship changes across the quantiles of the distribution.

α P-value β P-value

VIX-S&P -0.0065 0.9325 -3.5147 0.0000
VFTSE-FTSE 0.0039 0.9646 -2.5387 0.0000
VXN-NASDAQ -0.0355 0.6419 -1.7651 0.0000
VDAX-DAX 0.0421 0.5862 -1.8059 0.0000
VCAC-CAC -0.0060 0.8304 -0.1549 0.0000
VSTOXX-STOXX -0.0011 0.9893 -2.1028 0.0000

Table 2: OLS Regression Results
All the estimatedβ values are signi�cant at the 1% level

5.2 Linear Quantile Regression (LQR)

In �nancial risk measurement, quanti�cation of the tails plays an important role in risk

modelling. OLS estimates quantify the relationship around the mean of the distribution,

but QR, on the other hand, can be used to quantify the relationship across various

quantiles. We use LQR to model the volatility-return relationship across the quantiles,
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and focus particularly on the lower quantiles, which represent large negative returns and

the risk in the market. We evaluate volatility-return relationships across seven quantiles

of interest q = {0.01, 0.05, 0.25, 0.5, 0.75, 0.95, 0.99} which include the median as well as

two extremes, the lower 1% and higher 99% quantiles.

Figure 8 gives the plots for the LQR coe�cient (β) for all the volatility-return pairs.

It is evident from the �gure that these coe�cients are di�erent across the quantiles, and

hence the relationship also changes.

(a) (b) (c)

(d) (e) (f)

Figure 8: Volatility-Return Coe�cient (β) Estimates Across Quantiles

Table 3 gives the estimates for the LQR model, with intercept, α, and slope coe�-

cient, β, which measures the dependence of volatility on market return. The estimated

dependence coe�cient (β) values are signi�cant across the quantiles, and are also not the

same. The results clearly indicate that the volatility-return relationship changes across

the quantiles and that they are also statistically signi�cant.
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Quantile Regression Estimates

α0.01 β0.01 α0.05 β0.05 α0.25 β0.25 α0.5 β0.5 α0.75 β0.75 α0.95 β0.95 α0.99 β0.99
VIX-S&P -9.92 -3.26 -5.72 -3.22 -2.31 -3.49 -0.09 -3.55 1.95 -3.62 6.59 -3.61 12.06 -3.71

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VFTSE-
FTSE

-11.87 -1.63 -6.84 -2.42 -2.63 -2.66 -0.15 -2.76 2.45 -2.86 7.51 -2.76 13.31 -2.26

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VXN-
NASDAQ

-9.75 -1.83 -6.07 -1.62 -2.28 -1.65 -0.16 -1.66 2.00 -1.77 6.90 -2.00 12.22 -1.90

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VDAX-DAX -10.12 -1.29 -5.96 -1.73 -2.43 -1.71 -0.06 -1.75 2.26 -1.85 6.56 -1.94 12.60 -1.89

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VCAC-CAC -4.48 -0.13 -2.23 -0.18 -0.72 -0.16 0.02 -0.15 0.71 -0.14 2.18 -0.15 4.10 -0.13

p-value 0.00 0.01 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00

VSTOXX-
STOXX

-9.62 -1.85 -6.44 -1.92 -2.58 -1.93 -0.15 -2.05 2.34 -2.15 6.86 -2.29 12.41 -2.14

p-value 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 3: LQR Results
A p-value of ≤ 0.05 shows signi�cance at the 5% level

5.3 Copula Quantile Regression (CQR)

LQR quanti�es a linear volatility-return relationship, but CQR can be used to quantify

this relationship in a non-linear framework. In CQR, the non linear volatility-return

relationship is quanti�ed by the copula quantile functions of the respective copula. We

use the Normal and Student-t copulae in the following analysis.

The marginals for the bivariate CQR are assumed to be the Student-t distribution.

The data are �rst transformed to marginals by �tting it to the standard Student-t dis-

tribution. The estimates are calculated using the Quantreg package in R.

Table 4 gives the % estimates for the seven quantiles for the Normal and Student-

t copulae. In most of the pairs, the negative dependence is greater for low and high

quantiles. The lower tail negative dependence is also higher than the upper tail negative

dependence.

Figure 9 plots the estimates for the Student-t CQR for all the volatility-return pairs

across the quantiles. The �gure shows that the estimates have an approximate inverted U

shape, except for VIX-S&P 500. The inverted U shape (higher dependence across tails)

is most prominent for the VCAC-CAC 40 pair.
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Normal CQR
%0.01 %0.05 %0.25 %0.5 %0.75 %0.95 %0.99

VIX-S&P -0.8645 -0.8913 -0.8861 -0.8916 -0.9099 -0.8696 -0.8602
VFTSE-FTSE -0.7735 -0.8114 -0.7925 -0.8137 -0.8287 -0.7891 -0.7497
VXN-NASDAQ -0.8066 -0.8164 -0.7647 -0.7045 -0.8047 -0.7831 -0.7718
VDAX-DAX -0.7584 -0.7937 -0.7322 -0.7106 -0.7841 -0.7785 -0.7479
VCAC-CAC -0.6915 -0.7755 -0.7067 -0.5631 -0.6759 -0.7691 -0.6970
VSTOXX-STOXX -0.8015 -0.8055 -0.7517 -0.7496 -0.8122 -0.7999 -0.7469

Student-t CQR
%0.01 %0.05 %0.25 %0.5 %0.75 %0.95 %0.99

VIX-S&P -0.8726 -0.8920 -0.8814 -0.8857 -0.9030 -0.8691 -0.8617
VFTSE-FTSE -0.7815 -0.8058 -0.7780 -0.7818 -0.8048 -0.7827 -0.7915
VXN-NASDAQ -0.8207 -0.8074 -0.7500 -0.6930 -0.7916 -0.7806 -0.7794
VDAX-DAX -0.7696 -0.8016 -0.7159 -0.6911 -0.7578 -0.7782 -0.7663
VCAC-CAC -0.7868 -0.7608 -0.6436 -0.4888 -0.5959 -0.7667 -0.7661
VSTOXX-STOXX -0.8190 -0.8065 -0.7404 -0.7322 -0.7990 -0.8027 -0.7458

Table 4: Normal and Student-t CQR Estimates
All the estimates in the table are statistically signi�cant.

Figure 9: Student-t CQR Estimates

Another point of the analysis is to see how well the estimates from LQR and CQR �t

the data. Figure 10 plots the LQR and CQR �tted values across the quantiles over the

marginal data. Figure 10(a) plots the VFTSE-FTSE pair �tted values estimated from

Normal CQR and LQR, and Figure 10(b) plots the VIX-S&P �tted values estimated

20



from the Student-t CQR and LQR. The �gures show that we can model the non-linear

relationship using copula in a quantile regression framework.

(a) VFTSE-FTSE Normal CQR

(b) VIX-S&P Student-t CQR

Figure 10: Fitted Values from CQR and LQR
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6 Conclusion

The empirical analysis in this paper demonstrated the application of both linear and

non-linear quantile regression models. We used LQR and CQR to model the inverse

volatility-return relationship for six volatility-return pairs. The paper focussed on the

use of copula to model non-linear quantile regression relationships which facilitate the

quanti�cation of bivariate non-linear correlation within the quantiles of the distribution.

Linear regression quanti�es the relationship between dependent and exogenous variables

around the mean of the distribution, and hence does not quantify the relationship for the

quantiles across the distribution. Quantile regression is a very useful tool for quantifying

the relationship across various quantiles of a distribution.

The tails of the return distribution are of immense interest in �nancial risk modelling,

as they represent the risk associated with the asset or the �nancial instrument. The

volatility-return relationship and its quanti�cation have great importance for hedging, as

the change in volatility leads to changes in market prices. In this analysis we used OLS

to quantify the linear volatility-return relationship around the mean, which as quanti�ed

by LQR, is not consistent for quantiles across the distribution. CQR is yet another

useful tool for quantifying non-linear bivariate relationships across quantiles. The analysis

conducted in this paper demonstrated that CQR better �ts the actual data than LQR as

it is capable of capturing non-linearities in the nature of the volatility-return relationship.

The results from this analysis also support the existence of an asymmetric volatility-return

relationship for the majority of the index pairs.

The empirical analysis of this paper has signi�cance for hedging, portfolio manage-

ment and risk modelling, in general. The empirical analysis can be extended further by

including more copula models, such as the Frank copula and Joe-Clayton copula, amongst

others, in the CQR model.
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