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Abstract

This paper formulates a model embedding the key ideas from Ronald Coase’s famous
essay on the theory of the firm in a simple competitive equilibrium setting with an
arbitrary number of firms. The model studies the structure of production when trans-
action costs and diminishing returns to management are treated as given. In addition
to recovering Coase’s main insights as equilibrium conditions, the model yields many
new predictions on prices, firm boundaries and division of the value chain.
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1 Introduction

Reflecting on a conversation with an ex-Soviet official wishing to know who was in charge
of supplying bread to the city of London, Seabright (2010) observed that “there was noth-
ing naive about his question, because the answer ‘nobody is in charge’ is, when one thinks
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about it, astonishingly hard to believe.” Indeed, the ability of market forces to coordinate
many specialized activities and channel their collective output into the final goods de-
manded by consumers has fascinated economists for centuries. In considering this phe-
nomenon in his celebrated essay on the nature of the firm, Ronald Coase (1937) pushed
the analysis in a striking new direction: Given the efficiency of market coordination, com-
bined with the fact that planned interactions within firms can, at least in principle, also
be coordinated through the market, why, asked Coase, do firms exist at all? What need is
there for these “islands of conscious power in the ocean of unconscious cooperation”?1

These islands may be vast or small. For example, in 2011, Royal Dutch Shell operated
in over 80 countries, had annual revenue exceeding the GDP of 150 nations, and paid
its CEO 35 times more than the president of the United States. In the same year, the
total number of employees at Wal Mart exceeded the population of all but 4 US cities. In
addition to such giants, tens of millions of smaller firms operate around the world.2 What
accounts for the existence of the giant firms, and the multitude of smaller ones? What
forces shape their individual sizes and their distribution? And if the market provides an
efficient substitute for intra-firm coordination, then why are some CEO salaries measured
in tens of millions?

The modern approach to understanding these phenomena begins with Coase (1937), who
sought to provide a theory of the firm that was both realistic and tractable “by two of
the most powerful instruments of economic analysis developed by Marshall: the idea of
margin and that of substitution, together giving the idea of substitution at the margin.”
He argued that for firms to exist there must be costs associated with using the market (i.e.,
transaction costs), and that entrepreneurs and managers must be able to substitute away
from the market by coordinating production at a lower cost within the firm. On the other
hand, since firms do not expand without limit, a countervailing force must be present.
Coase referred to this force as “diminishing returns to management.” The boundary of the
firm is then determined by the point at which the cost of organizing another productive
task within the firm is equal to the cost of acquiring a similar input through the market.

Subsequent to Coase’s analysis, many economists have expanded on and developed the
theory of the firm. Researchers have considered the effect of imperfect information, in-
centive and agency problems, incomplete contracts, property rights, decision rights, and
the microfoundations of transaction costs. Major contributions were made by Jensen and
Meckling (1976), Williamson (1979, 1981), Klein, Crawford and Alchian (1978), Gross-
man and Hart (1986), Hart and Moore (1990), Holmstrom and Milgrom (1994), Grossman
and Helpman (2002) and many others. These studies have been immensely valuable in
building an understanding of different attributes and functions of the firm. Up to date
surveys and references can be found in Aghion and Holden (2011) and Bresnahan and

1This phrase from Coase’s essay is originally due to Robertson (1923).
2Sources: United States Census Bureau and the Forbes Global 2000 List.
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Levin (2012).

In this paper our objective is different. Rather than extending or critiquing the underly-
ing ideas in Coase’s theory, our aim is to show that Coase’s basic framework has a great
deal more to give. We begin by embedding the essential features of his verbal analysis in
a competitive model with transaction costs and an arbitrary number of firms. By fram-
ing the choice problem of firms recursively, we reduce the model to a single functional
equation for equilibrium prices. We prove that this functional equation has a unique so-
lution, and that this solution identifies a well-defined disintegration of the value chain
coordinated through the price system. The model recovers Coase’s original insights on
the boundaries of individual firms in the form of equations derived from first order con-
ditions. More importantly, it also allows us to study the implications of Coase’s ideas for
the structure of production along the value chain, as determined by the interactions be-
tween the choices of individual firms and the equilibrium set of prices. These interactions
result in a set of additional predictions regarding the relationship between upstream and
downstream firms, the equilibrium impact of transaction and management costs and the
distribution of firms.

The first version of our model involves sequential production over a continuum of tasks.
Economists have used this structure to address a variety of questions. Recent examples
include Grossman and Rossi-Hansberg (2008, 2012), Costinot (2009), Antràs and Chor
(2011) and Costinot, Vogel and Wang (2011). Perhaps the most similar to our paper is
Costinot, Vogel and Wang (2011), which studies global supply chains. Their model is
nonetheless different in that firms are heterogeneous, and that the production processes
is affected by “mistakes.” In our model mistakes are absent, firms are ex ante identical,
and all ex post heterogeneity is generated as part of the equilibrium. In addition, our ana-
lytical techniques, based on recursive subdivision of tasks, give us a very detailed picture
of prices over the continuum, and allow us to consider such extensions as production
with multiple upstream partners (section 4).

The rest of the paper is structured as follows. Section 2 describes the model. The equi-
librium is analyzed in section 3. Section 4 considers possible extensions, while section 5
looks at implications and predictions. Section 6 concludes.

2 The Model

Following Coase (1937), our focus is supply side and partial equilibrium. To start the
analysis we consider a single good that is produced through the sequential completion of
a large number of tasks. (More complex production structures are treated in section 4.)
In order to provide a sharper marginal analysis, we model the processing stages as a
continuum from zero to one. For example, at stage 0.9 the good is 90% complete.
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0 1t1

processed by firm 1subcontracted by firm 1 to firm 2

0 t1t2

subcontracted by 2 to 3 processed by firm 2

0 t2

processed by firm 3

Figure 1: Disintegration of the value chain

t3 t0t1t2

Stage 1: contract formation from downstream to upstream

Stage 2: production from upstream to downstream

Figure 2: Contracts and Production

2.1 The Production Chain

The processing stages are indexed by t ∈ [0, 1], with t = 0 indicating that no tasks have
been undertaken and t = 1 indicating that production of one unit of the good is complete.
Allocation of tasks between firms is determined by subcontracting. The subcontracting
scheme is illustrated in figure 1. In this example, firm 1 receives a contract to sell one
unit of the completed good to a final buyer. Firm 1 then forms a contract with firm 2
to purchase the good at processing stage t1. Firm 2 repeats this procedure, forming a
contract with firm 3 to purchase the good at stage t2. In the example in figure 1, firm 3
decides to complete the chain, selecting t3 = 0.

Figure 1 already suggests the recursive nature of the decision problem for each firm. In
choosing how many processing stages to subcontract, each successive firm will face es-
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t3 = 0 t0 = 1t1t2

`3 `2 `1

firm 1firm 2firm 3

`n = in-house production of firm n

tn = vertical boundary of firm n

Figure 3: Notation

sentially the same decision problem as the firm above it in the chain, with the only dif-
ference being that the decision space is a subinterval of the decision space for the firm
above it. Figure 2 emphasizes the fact that contracts evolve backwards from 1 down to 0
(downstream to upstream), and production then unfolds in the opposite direction. In the
present example, firm 3 completes processing stages from t3 = 0 up to t2 and transfers
the good to firm 2. Firm 2 then processes from t2 up to t1 and transfers the good to firm
1, who processes from t1 to 1 and delivers the completed good to the final buyer. Figure 3
serves to clarify notation. The amount of in-house production carried out by firm n is
denoted by `n. Despite the continuum formulation of the model, we will also refer to `n
as the “number” of tasks carried out by firm n.

2.2 Management and Transaction Costs

We represent the cost of carrying out ` tasks in-house by c(`), where 0 ≤ ` ≤ 1 and
c(0) = 0. One of the fundamental forces in Coase’s theory of the firm is “diminish-
ing returns to management” (Coase, 1937, p. 395). In what follows, diminishing returns
to management is incorporated by assuming that c is strictly convex, implying that av-
erage cost per task rises with the quantity of tasks performed in-house. For modeling
purposes it is not necessary to specify the mechanisms behind diminishing returns to
management. However, for the sake of concreteness it might be helpful to think of tasks
as being performed by specialized workers, and consider the costs associated with coor-
dinating workers specialized in different tasks (see Becker and Murphy, 1992). Section 5
provides a detailed discussion.3

3In our model the cost of carrying out ` tasks ` = s− t depends only on the difference s− t rather than s
directly. In other words, all tasks are homogeneous. Extensions might consider other cases, such as where
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Diminishing returns to management favors sourcing inputs externally over in-house pro-
duction. Absent a countervailing force, the “equilibrium” size of firms may be infintesi-
mally small. In Coase’s analysis, the countervailing force is provided by market transac-
tion costs. Section 5 gives a detailed discussion of transaction costs. One example is the
cost of negotiating, monitoring and enforcing contracts with suppliers (think of complete
but costly contracts). For now we follow Arrow (1969) by simply regarding transaction
costs as a wedge between the buyer’s and seller’s prices. As will be shown in section 4.1,
it matters little from a qualitative perspective whether the transaction cost is borne by the
buyer, the seller or both. Hence we assume that the cost is borne only by the buyer. In
particular, when the partially processed good is purchased at price p, the buyer’s total
outlay is equal to δp with δ > 1. The transaction cost (δ− 1)p is paid to agents outside
the model.

Collect all assumptions on δ and c together, we assume that δ > 1 and c is strictly convex
and continuously differentiable with c(0) = 0, c′(0) > 0 and δc′(0) ≤ c′(1). The last two
conditions are only mildly restrictive and yield tight characterizations of the equilibrium.
Since c is convex and c′(0) > 0, the function c is strictly increasing.

2.3 Profit Maximization

We assume that all firms are ex ante identical and act as price takers. Contracts are com-
plete, information is perfect, and active firms are surrounded by an infinite number of
competitive firms ready to step in on either the buyer or the seller side should it be prof-
itable to do so. There are no fixed costs or barriers to entry. As a result, no holdup occurs
in our model.

Let p(t) represent the price of the good completed up to stage t. (In particular, p(1) is the
price of the final completed good.) To begin the process of determining prices, consider a
firm who enters a contract to supply the good at stage s ∈ (0, 1], and purchase the good
at stage t ≤ s. The firm undertakes the remaining ` = s− t tasks in house, and its total
costs are given by the sum of its processing costs c(s− t) and the gross input cost δp(t).
Recalling that transaction costs are paid only by the buyer, profits are p(s) − c(s − t) −
δp(t). If t is chosen to minimize costs, then profits become

π(s) = p(s)−min
t≤s
{δp(t) + c(s− t)}. (1)

Here and below, the restriction 0 ≤ t in the minimum is understood.

upstream tasks are more routine and hence cheaper. Here our interest is in equilibrium prices and choices
of firms in the base case where tasks are ex-ante identical.
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3 Equilibrium

The model can now be closed by a zero profit and boundary condition. This section
describes equilibrium prices and the resulting vertical production structure.

3.1 Equilibrium Prices

Competition forces firm profits to zero, implying that π(s) in (1) equals zero for all s ∈
(0, 1]. This places a restriction on p(s) for s ∈ (0, 1]. The remaining value p(0) can be
regarded as the revenue of firms that supply the initial inputs to production. We impose
a zero profits condition in this sector as well, implying that p(0) is equal to the cost of
producing these inputs. To simplify notation, we assume that this cost is zero, and hence
the boundary condition is p(0) = 0. Formally, we say that a function p : [0, 1] → R+

satisfies the equilibrium price equation if both p(0) = 0 and

p(s) = inf
t≤s
{δp(t) + c(s− t)} for all s ∈ [0, 1]. (2)

Evidently the zero function is a solution to the equilibrium price equation. A nonzero
solution p∗ to the equilibrium price equation is called an equilibrium price function. Ex-
istence of an equilibrium price function can be established via the Knaster-Tarski fixed
point theorem. To see this, let P be the set of functions p from [0, 1] to R such that
c′(0)s ≤ p(s) ≤ c(s) for all 0 ≤ s ≤ 1, and let T be the operator defined over p ∈P by

Tp(s) = inf
t≤s
{δp(t) + c(s− t)} for all s ∈ [0, 1]. (3)

It is not hard to verify that T maps P into itself (see lemma 7.1 in section 7.2). As c′(0)
is assumed to be strictly positive, no element of P is the zero function, and hence any
fixed point of T is a (nontrivial) equilibrium price function. While T is not a contraction
mapping in any obvious metric, it is monotone increasing on P (i.e., order preserving)
when P is endowed with the usual partial order (p ≤ q if p(s) ≤ q(s) for all s) because if
p ≤ q, then for any s ∈ [0, 1] we have inft≤s {δp(t) + c(s− t)} ≤ inft≤s {δq(t) + c(s− t)},
and hence Tp(s) ≤ Tq(s). Since P is a complete lattice, the Knaster-Tarski fixed point
theorem ensures the existence of a fixed point in P .

Although the proceeding argument yields existence of an equilibrium price function p∗,
we also wish to know whether the solution is unique over some suitable class of functions,
what properties it possesses, and if numerical methods can be found to compute it in a
consistent fashion. An equally important question is whether or not, given the solution,
production is actually realized. In particular, given the pricing function, it is conceivable
that, in the manner of Zeno’s paradox, the backwards contracting problem never termi-
nates. For example, if firm i implements `i = 2−i tasks for all i, then the (n + 1)-th firm
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contracts at stage tn = 1 − ∑n
i=1 `i = 2−n. Since this value is always strictly positive,

no termination occurs in finite time. Such behavior must be ruled out in order to verify
existence of a realistic equilibrium.

Regarding the set P , the upper and lower bound functions s 7→ c(s) and s 7→ c′(0)s
defining P have a natural interpretation as representing prices when transaction costs are
very high and very low respectively. Regarding the upper bound function, it is intuitive
that if δ is very large, then transaction costs will be prohibitively expensive and a single
firm will implement the whole process in-house. Their cost at stage s will be c(s). Given
zero profits this is equal to the price p(s). Thus, the upper bound function represents the
price when transaction costs are very large and only one firm operates. On the other hand,
as δ ↓ 1, strict positivity of c will cause the number of firms to increase without limit, and
the amount of in-house production ` at each firm will decrease to zero. Average costs at
each firm will be c(`)/`→ c′(0), and the price at stage s will be the integral c′(0)s. Hence
the lower bound function represents the price when transaction costs are arbitrarily low.

3.2 Properties of the Solution

Our first result on properties of the solution establishes uniqueness of the equilibrium
price function given the two primitives c and δ, and shows that the price function is
always strictly convex and continuously differentiable. (Here and below, proofs are de-
ferred until section 7.) In the statement of the next theorem, P0 is defined to be the set of
functions in P that are convex and K-Lipschitz for K := c′(1).4 Also, given an equilib-
rium price function p∗, we let the optimal choices be defined by

t∗(s) := arg min
t≤s

{δp∗(t) + c(s− t)} and `∗(s) := s− t∗(s), (4)

For example, `∗(s) is the optimal amount of in-house production for a firm that is con-
tracted to deliver the good at stage s.

Theorem 3.1. The equilibrium pricing equation has a unique solution in P0. The solution p∗ is
strictly convex, strictly increasing and continuously differentiable, with

(p∗)′(s) = c′(`∗(s)) for all s ∈ (0, 1). (5)

Moreover, the functions t∗ and `∗ are well-defined and single-valued on [0, 1]. Both are increasing
and K-Lipschitz with K := 1.

The first order condition for (4) is

δ(p∗)′(t∗(s)) = c′(s− t∗(s)). (6)

4F : X → R is called K-Lipschitz if |F(a)− F(b)| ≤ K|a− b| for any a, b ∈ X.
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Figure 4: Equilibrium price functions when c(x) = eθx − 1

Equation (6) is a restatement of the fundamental marginal condition derived verbally by
Coase (1937). It gives the point t∗(s) at which the marginal cost of in-house production is
equal to the cost of market acquisition. This condition determines the upstream boundary
of the firm. Thus, the “firm will tend to expand until the costs of organizing an extra
transaction within the firm become equal to the costs of carrying out the same transaction
by means of an exchange on the open market. . . ” (Coase 1937, p. 395).

The real benefit of representing Coase’s theory mathematically is that it allows us to state
more. For example, combining (6) with the envelope condition (5) gives an “Euler” equa-
tion of the form

δc′(`∗(t∗(s))) = c′(`∗(s)). (7)

While (6) is a marginal condition for decisions within firms, (7) connects relative costs
between any two adjacent firms. It predicts that marginal in-house production cost at a
given firm is equal to that of its upstream partner multiplied by gross transaction cost.

A fast, globally convergent algorithm for computing p∗ is provided in section 7.1. Two
equilibrium price functions are shown in figure 4. For both we set c(x) = eθx− 1 with θ =
10. The dashed line corresponds to δ = 1.05, while the solid line is for δ = 1.15. The strict
convexity of p∗ is evident in the figure. This strict convexity is caused not only by strictly
diminishing returns to management, but also by positive transaction costs. Intuitively,
if transaction costs are zero (i.e., δ = 1), then p∗(s) = c′(0)s (see the last paragraph of
section 3.1), which is only weakly convex. Strict convexity arises because the presence of
transaction costs prevents firms from eliminating diminishing returns to management by
infinite subdivision of tasks across firms. More generally, higher transaction costs cause
more curvature in p∗ for given c, as is evident in figure 4.
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3.3 Structure of Production

Given the pricing function p∗, the equilibrium structure of the vertical production chain
introduced in figures 1–3 is determined recursively: Firm 1 receives the order for the
final good at price p∗(1). Letting t∗ be as defined in (4), firm 1 subcontracts to firm 2 at
t1 := t∗(1), firm 2 subcontracts to firm 3 at t2 := t∗(t1), and, in general, firm n subcontracts
to firm n + 1 at

tn := t∗(tn−1) with t0 = 1. (8)

The states t1, t2, . . . constitute the vertical boundaries of the firms. (For completeness we
set t0 := 1. See figure 3.) In-house production by firm n is given by `n := tn−1 − tn.
Figure 5 shows computed firm boundaries {tn} represented by vertical bars. The cost
function is the same as in figure 4, while transaction costs are δ = 1.02 (top) and δ =
1.20 (bottom). The sequence {`n} is the distance between adjacent vertical bars in fig-
ure 5, with n increasing from right to left. Notice that higher transaction costs lead to a
smaller number of larger firms. Note also that, using the definition of `n and (7) we have
δc′(`n+1) = c′(`n). The following result is fundamental:

Theorem 3.2. The production process always completes with a finite number of firms.

Theorem 3.2 is understood to mean that if c and δ are taken as given and {tn} is the
sequence defined by (8), then there exists an N∗ ∈ N such that tN∗ = 0.5 The integer N∗

represents the equilibrium number of firms.

As suggested by figures 4 and 5, when transaction costs rise, prices rise and the equilib-
rium number of firms decreases. To state this formally, let δa and δb be in (1, ∞), let p∗a be
the equilibrium price function for δa, let N∗a be the equilibrium number of firms, and let
p∗b and N∗b be defined analogously.

Proposition 3.1. If δa ≤ δb, then p∗a ≤ p∗b pointwise on [0, 1] and N∗a ≥ N∗b .

The inverse relationship between transaction costs and N∗ can also be seen in the follow-
ing example, which treats a specific cost function.

Example 3.1. Let c(x) = eθx − 1 with θ > 0. Since c′′(x)/c′(x) = θ, this parameter
represents curvature, and hence diminishing returns to management. From the condition
δc′(`n+1) = c′(`n) we obtain the recursion `n+1 = `n − ln δ/θ, relating the amount of in-
house production by neighboring firms in terms of the two primitives δ and θ. Using this
equation, the constraint ∑N∗

n=1 `n = 1 and some algebra, we can show that the equilibrium
number of firms is

N∗ = b
(

1 +
√

1 + 8θ/ ln δ
)

/2c. (9)

5Alternatively, N∗ := inf{N ∈ N : (t∗)N(1) = 0}.
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Figure 5: Firm boundaries for δ = 1.02 (top) and δ = 1.20 (bottom)

A proof is given in lemma 7.10 below. Here bac is the largest integer less than or equal
to a. As expected, the number of firms is increasing in θ (more rapid diminishing returns
to management implies a larger number of relatively small firms, and greater use of the
market) and decreasing in δ (see figure 5).

Let vn := p∗(tn−1)− p∗(tn), the value added of firm n. The next results on prices and the
structure of production follow from theorems 3.1 and 3.2.

Proposition 3.2. p∗(1) = ∑N∗
i=1 δi−1c(`i).

Proposition 3.3. `n+1 ≤ `n and vn+1 ≤ vn for all n in 1, . . . , N∗ − 1.

Proposition 3.2 confirms that in equilibrium the price of the final good is the sum of costs
incurred. Proposition 3.3 is more significant. It states that the number of tasks performed
in-house is larger the further downstream the firm is in the value chain (as can be seen
in figure 5), and the same is true for the amount of value added each firm contributes to
the final value of the good. The increase in in-house production as we move downstream
is due to the fact that the value of the good increases as more processing stages are com-
pleted, and with this increase comes a proportional rise in transaction costs (intuitively,
more valuable goods entail more costly contracts). As a result, downstream firms face
higher transaction costs. To economize on these costs they produce more in-house. The
second inequality in proposition 3.3 follows from the first and convexity of p∗.
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Proposition 3.3 indicates that, although firms are ex-ante identical, in equilibrium they
will organize into a nondegenerate distribution, with firm size measured by value added
increasing from upstream to downstream. The shape of the distribution of firm sizes de-
pends on the primitives c and δ. Typically it is right-skewed. The rank-size plot for firm
size measured by value added is shown in figure 6. Each point corresponds to one firm
in the vertical structure generated by primitives c(x) = exp(x2) − 1 and δ = 1.00075.
In equilibrium there are 1402 firms. The vertical axis is the log of value added, and the
horizontal axis is the log of firm rank by value added. (Firms are ranked from largest to
smallest in terms of value added.) The rank-size distribution shows significant curvature,
although it is almost linear for smaller firms. (In fact, for these parameters, a linear re-
gression of the data restricted to the smallest decile of firms has a very close fit and slope
of -1.02. A slope of -1 corresponds to Zipf’s law.)

4 Extensions

4.1 Alternative Costs

Until now we have assumed that the transaction cost is borne entirely by the buyer, while
claiming that this assumption costs little in terms of generality. To see why, suppose
instead that the transaction cost is borne by both the buyer and the seller in some given
proportions. (For example, the cost of drafting and negotiating contracts might be borne
by both sides of the transaction.) In particular, suppose as before that when the buyer
purchases the good at price p(t) her total outlay is δp(t) with δ > 1, and suppose in
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addition that the revenue net of contract costs received by the seller is γp(t) for some γ ∈
(0, 1). The profit function in section 2.3 then becomes π(s, t) = γp(s)− c(s− t)− δp(t).
Minimizing over t ≤ s and setting profits to zero yields

p(s) = min
t≤s

{
δ

γ
p(t) +

c(s− t)
γ

}
. (10)

This equation has the same form as (2). Since δ/γ > 1 and c/γ inherits from c all the
properties of the cost function stated in section 2.2, the preceding results go through, and
qualitative properties of the solution are the same.

4.2 Multiple Partners

So far we have assumed that production is linearly sequential, and firms contract with
only one parter. In reality, most vertically integrated firms have multiple upstream part-
ners. For example, in 2004 Toyota group had 168 direct parts suppliers. These primary
suppliers themselves had 5,437 direct suppliers, and in turn these secondary suppliers
had 41,703 tertiary suppliers (Tsuji, 2004).

As a result of our solution strategy based on recursive subdivision of tasks, our model
can easily be generalized to include multiple upstream partners. To begin, consider the
tree in figure 7. As before, firm n choose an interval `n of tasks to perform in-house, and
subcontracts the remainder. In this case, however, each downstream firm subcontracts to
two upstream partners. We can also consider more general cases, where each downstream
firm subcontracts has k upstream partners. If a firm contracts to supply the good at stage
s, chooses a quantity ` ≤ s to produce in-house, and then divides the remainder s − `
equally across k upstream partners, then profits will be given by revenue p(s) minus
input costs δ k p((s− `)/k) minus in-house production costs c(`). That is,

π(s, `) = p(s)− δ k p((s− `)/k)− c(`).

Setting profits to zero, letting t := s− ` and minimizing with respect to t yields the func-
tional equation

p(s) = inf
t≤s
{δ k p(t/k) + c(s− t)}.

This equation is an immediate generalization of (2). Similar techniques can be employed
to show the existence and uniqueness of a solution p∗, to compute p∗, and to compute
from p∗ the optimal choices of firms and the resulting distribution of firms.

Figure 8 shows the results of these computations for k = 3 under two parameterizations.
In these networks, each node represents a firm, and the node size is proportional to the
value added of that firm. As with the k = 1 case, downstream firms (i.e., firms towards
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the center of the network) have greater value added. In figure 8 the nonlinear relation-
ship between transaction costs and the number of firms is visible. A small reduction in
transaction costs increases the number of firms from 121 to 364.

5 Discussion

It is easy to ignore the role of transaction costs when modeling production. They are
typically small relative to input costs, and tend to create the kinds of frictions that make
for awkward modeling. In this connection, our model helps to illustrate how transaction
costs can be modeled in a tractable way, and, more importantly, how these small costs
combine to have large effects that are fundamental in determining the structure and over-
all cost of production. The reason is that for a fine division of the value chain or large
production network combining many firms, these small costs are incurred many times,
and hence the impact of small changes is first order. This first order effect can be seen in
the exponential terms in the expression p∗(1) = ∑N∗

i=1 δi−1c(`i) given in proposition 3.2,
and in the comparison of production networks shown in figure 8. As a numerical exam-
ple, a simple computation using our model shows that if c(x) = exp(x2)− 1 and δ = 1.01,
then a 1% rise in δ leads to a 40% fall in the number of firms and a 90% increase in the
price of the final good.6

How large are transaction costs in practice? It turns out that the size varies widely
across industries and countries. For example, Gabre-Madhin (2001) found in a study of

6It is worth noting that the expression p∗(1) = ∑N∗
i=1 δi−1c(`i) does not in fact imply that prices are

exponential in δ. The reason is that when δ changes firms reoptimize, leading to a change in the sequence
{`i}. In particular, higher transaction costs are mitigated by a reduction in the number of firms.

14



δ = 1.010 δ = 1.009

Figure 8: Production network with c(x) = ex − 1 and k = 3

Ethiopian grain markets that the cost of searching for prices in terms of opportunity cost
of labor and working capital amounted to 19% of trader costs. In modern grain markets
linked by computers, the cost of discovering spot prices is much lower. Similarly, while
some industries find transportation costs low enough to form widely dispersed produc-
tion networks, for other producers these costs may be prohibitive. For example, BBC
News reported that in Mogadishu in November 2004, a 50km drive from the airstrip to
the city involved passing seven checkpoints, each run by a different militia, and at each
of these “border crossings” all lorries had to pay a fee ranging from $3 to $300, depending
on the value of the goods being carried.7 In such settings, simple production networks
with fewer transactions will be favored over larger ones and productivity will be lower.

The size of transaction costs in developing economies was a major concern of North
(1993), who, preempting growth theory’s current preoccupation with institutions as a
fundamental source of cross-country variation in productivity, highlighted the fact that
transaction costs were a function of institutions and social norms, that these institutions
and norms varied greatly across countries, and that the impact of transaction costs on
production could be extremely large. In his words, “it is the exchanges that don’t occur
because of the high cost of transacting (and therefore producing) that are the real un-
derlying source of poverty of third world economies” (North, 1993, p. 11). Whether this
claim is true or not, it seems very likely that transaction costs in developing economies
are a major impediment to the development of complex production networks, and to the

7Reported by Joseph Winter on BBC News, 17th Nov. 2004.
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adoption of modern technologies that require such networks.

On a theoretical level, recognition of the systemic impact of transaction costs dates back
to Adam Smith (1776). Smith famously argued that the division of labor is limited by the
extent of the market. Pushing the analysis further, he also noted that the extent of the
market is itself limited by transportation costs (Smith, 1776, p. 31). This was an early ac-
knowledgment of the fundamental role played by transaction costs in limiting the special-
ization and the division of labor. Smith’s insights in this direction have been extended by
authors such as Houthakker (1956), Yang and Ng (1993) and Becker and Murphy (2002).
Our model is clearly connected, although the modeling techniques are very different and
the focus is on division of tasks across firms.

The most commonly cited transaction costs include transportation and transaction fees,
search, bargaining and information costs, costs of assessing credit worthiness and relia-
bility, and the costs associated with negotiating, writing, monitoring and enforcing con-
tracts. Discussion of these different costs can be found in references such as Coase (1937),
Williamson (1979, 1981), Arrow (1969) and North (1993). Both Coase and North empha-
sized contracts as a major component of transaction costs (see, e.g., North, 1993, p. 6).
Costly contracts fit naturally with Coase’s theory of the firm (and our model) because
their burden can be substantially reduced by vertical integration (albeit at the expense of
incurring other kinds of costs).

Overall, the predictions of our model vis-a-vis transaction costs are broadly consistent
with empirical and case studies in the literature. For example, Sandefur (2010) noted
that the dramatic market reforms that occurred in Ghana in the 1980’s were followed by a
significant fall in average firm size as measured by employment, from 19 to 9 in the fifteen
years from 1987. The reforms (market deregulation, enforcement of contracts and stricter
penalties for bribe extraction) all suggest a reduction in transaction costs. While Sandefur
presented this contraction in firm sizes as a puzzle, in our model it is a prediction (see,
e.g., figures 5 and 8). A similar fall in average firm size following market reforms was
reported in Slovenia (Polanec, 2004).

Besides transaction costs, the other fundamental force in Coase’s theory of the firm is
diminishing returns to management. Our model sets the processing stages as the contin-
uum [0, 1], but on an intuitive level we can think of a discrete and finite number of stages,
and imagine that progressing from one stage to the next involves a unique task carried
out by a specialized worker. The cost of implementing and coordinating such tasks tends
to grow at rate greater than proportional to the number of tasks. This problem was em-
phasized by Robinson (1934) and Hayek (1945), who highlighted the difficulty of utilizing
knowledge not held in its totality by any one individual (unless that same knowledge is
coordinated through the market via prices). An excellent discussion on the cost of coordi-
nating specialized works is given in Becker and Murphy (1992), who cite communication
problems, increased conflict in larger teams, opportunistic behavior, principal-agent con-
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flicts, free-riding and general management costs associated with coordination. Becker
and Murphy (1992) argue that this cost is a more important determinant of the division
of labor than the extent of the market.8

In our model, the rate at which internal coordination costs grow depends on the degree
of convexity or curvature of c. This curvature is parameterized as θ in example 3.1. A de-
crease in curvature leads at the industry level to fewer transactions and a smaller number
of larger firms. The reason is that the market and prices become relatively more expensive
as a means of coordinating production. Such predictions are hard to confirm empirically,
since many innovations that change internal coordination costs (e.g, computer networks)
will tend to affect transaction costs as well (through lower search costs and so on). On the
other hand, some major management innovations have reduced the cost of coordinating
specialists without affecting transaction costs. Examples include moving assembly lines
and the multi-divisional firm structure. As expected, such innovations have tended to
spur the growth of larger firms. A classic reference on management innovations and their
affect on industry structure is Chandler (1997).

An interesting prediction of our model is the differences between upstream and down-
stream firms in equilibrium. Our model predicts that downstream firms will be larger
both in the sense that they implement a larger number of tasks in house and they pro-
vide greater value added (proposition 3.3). This prediction needs to be interpreted with
caution, since our model relates to the production of a single unit of a single good, and in-
cludes no discussion of industry equilibrium, horizontal integration or likely differences
between upstream and downstream firms in terms of fixed costs or capital requirements.
Careful study of our prediction would require firm level data and the ability to control
for these differences. Nevertheless, it is interesting to look at preliminary findings based
on industry level data.

To this end, figure 9 compares value added against downstreamness. Data is taken from
the 2002 Bureau of Economic Analysis input-output tables and the NBER CES data set.
The points in the figure correspond to 173 individual industries that match directly in
the IO and CES data sets. The horizontal axis shows downstreamness as calculated from
the index developed by Fally (2012) and Antràs et al. (2012).9 The vertical axis measures
value added per plant. (While data on value added per firm would be more useful, such
information is not available in these data sets.) Although the data is noisy, it shows the

8Other important references on coordination costs include Simon (1947), Arrow (1974, 1975), Williamson
(1975), Lucas (1978), Blau and Meyer (1987), Demsetz (1988), Geanakopolis and Milgrom (1991), Rasmusen
and Zenger (1990), Bolton and Dewatripont (1994), Holmstrom and Milgrom (1994), McAfee and McMillan
(1995) and Garicano (2000).

9Fally (2012) calculates Ni, the total number of sequential stages required for production of good i (in his
study, “good” and “industry” are identified), and Di, the number of remaining stages before reaching final
demand. Our measure of downstreamness is Ni/(Ni + Di − 1).
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Figure 9: Plant value added by downstreamness

positive correlation between these variables that is essentially consistent with the predic-
tion in our model.

Table 1 is also constructed from the input-output tables to address the relationship be-
tween downstreamness and value added, although the methodology is different. The
table shows data for the 4 most downstream industries in the table (results for other in-
dustries are similar). Each row of the table traces back the value added at every produc-
tion stage associated with one dollar of spending on the industry in question. Stage 0
is value added by the industry itself. Stage 1 is the maximum of the value added by all
of the direct input industries, and stage 2 is the maximum of the value added by all of
the direct inputs to these inputs. For example, if the algorithm that computed the values
along one row of the table was applied to either of the production networks in figure 8,
the stage 0 value would be the size of the central node (recall that node size measures
share of value added in the network), the stage 1 value would be the maximum of the
size of the three nodes in the first ring of immediate subcontractors, and the stage 2 value
would be the maximum of the size of the 9 nodes in the next ring. As with figure 9, we
find that value added is increasing with downstreamness.

Industry stage 0 stage 1 stage 2
Automobile 0.2346 0.1353 0.0201
Light truck 0.2113 0.1377 0.0205
Nonupholstered furniture 0.4736 0.0319 0.0101
Upholstered furniture 0.3891 0.0423 0.0099

Table 1: Maximum value added by stage
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6 Conclusion

This paper proposed a mathematical formulation of Coase’s (1937) theory of the firm
that permits investigation not just of firm boundaries but also of the vertical structure of
production across the industry within a competitive equilibrium setting. By developing
a new methodology based on recursive subdivision of tasks combined with fixed point
theory, we proved existence of the equilibrium price function, and showed it to be unique,
convex and differentiable. We showed that the optimal actions of firms given this price
function are unique, well-defined and continuous. We provided a consistent algorithm
for computing equilibrium prices and actions. We derived a first order condition that
corresponds to the key marginal condition determining firm boundaries stated verbally
by Coase (1937), and added an “Euler” equation relating costs of adjacent firms. We ana-
lyzed the structure of production, showing that the equilibrium number of firms is finite,
and that value added and the number of tasks performed in-house are increasing from
upstream to downstream. We investigated the distribution of firms, and the relationship
between diminishing returns to management, transaction costs and the properties of the
vertical production chain. Some extensions to the model were considered, including pro-
duction networks with multiple upstream partners.

There paper opens many avenues for future research. The techniques developed in the
paper are likely to have applications to other fields, such as offshoring by multinationals,
or division of labor with transaction costs, failure probabilities or other frictions. In ad-
dition, the model presented above was a baseline model in all dimensions, with perfect
competition, perfect information, identical firms and identical tasks, and these assump-
tions can potentially be weakened. The effect of altering contract structures could also
be investigated, as could the various possibilities for determining upstream partners in
section 4.2. On the technical side, the operator T in (3) merits further investigation. It
may turn out to be a contraction if the metric is well chosen, or have connections to more
common operators or optimization problems. Such analysis might further improve the
algorithms for computing prices and actions and lead to additional insights. Finally, the
model has a number of testable implications that require investigation.

7 Appendix: Computation and Remaining Proofs

7.1 Computation

To compute an approximation to the equilibrium pricing function for given δ and c, one
possibility is to take a function in P and iterate with T. However, in practice we can
only approximate the iterates, and, since T is not a contraction mapping convergence is
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problematic. On the other hand, as we now show, there is a fast, non-iterative alternative
that is guaranteed to converge.

Algorithm 1 Construction of p from G = {0, h, 2h, 3h, . . . , 1}
p(0)← 0
s← h
while s ≤ 1 do

evaluate p(s) via equation (11)
define p on [0, s] by linear interpolation of p(0), p(h), p(2h), . . . , p(s)
s← s + h

end while

Let G = {0, h, 2h, 3h, . . . , 1} for fixed h. Given G, we define our approximation p to p∗

via the recursive procedure in algorithm 1. In the fourth line, the evaluation of p(s) is by
setting

p(s) = min
t≤s−h

{δp(t) + c(s− t)}. (11)

In line five, the linear interpolation is piecewise linear interpolation of grid points 0, h, 2h, . . . , s
and values p(0), p(h), p(2h), . . . , p(s).

The procedure can be implemented because the minimization step on the right-hand side
of (11), which is used to compute p(s), only evaluates p on [0, s − h], and the values of
p on this set are determined by previous iterations of the loop. Once the value p(s) has
been computed, the following line extends p from [0, s− h] to the new interval [0, s]. The
process repeats. Once the algorithm completes, the resulting function p is defined on all
of [0, 1] and satisfies p(0) = 0 and (11) for all s ∈ G with s > 0.

Now consider a sequence of grids {Gn}, and the corresponding functions {pn} defined
by algorithm 1. Let Gn = {0, hn, 2hn, . . . , 1} with hn = 2−n. In this setting we have the
following result, the proof which is given in section 7.3.

Theorem 7.1. The sequence {pn} converges uniformly to p∗.

In the proof we show that {pn} is monotone decreasing in n. Thus, the limiting function
p̄ := limn pn exists in P . We show that pn converges to p̄ uniformly, and p̄ solves the
equilibrium pricing equation. In view of the uniqueness result in theorem 3.1, we then
have p̄ = p∗ and pn → p∗ uniformly.10

10Notice that these computational arguments provide a constructive proof of the existence of an equilib-
rium pricing function.
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7.2 Proofs from Section 3

Lemma 7.1. The operator T defined in (3) maps P into itself.

Proof. Let p be an arbitrary element of P . To see that Tp(s) ≤ c(s) for all s ∈ [0, 1], fix s ∈
[0, 1] and observe that, since p ∈P implies p(0) = 0, the definition of T implies Tp(s) ≤
δp(0) + c(s + 0) = c(s). Next we check that Tp(s) ≥ c′(0)s for all s ∈ [0, 1]. Picking any
such s and using the assumption that p ∈P , we have Tp(s) ≥ inft≤s{δc′(0)t + c(s− t)}.
By δ > 1 and convexity of c, we have δc′(0)t + c(s − t) ≥ c′(0)t + c(s − t) ≥ c′(0)t +
c′(0)(s− t) = c′(0)s. Therefore Tp(s) ≥ inft≤s c′(0)s = c′(0)s.

By the conditions in section 2.2 and the intermediate value theorem, there exists an s̄ ∈
(0, 1] such that c′(s̄) = δc′(0). Regarding s̄ we have the following lemma, which states
that the best action for a firm subcontracting at s ≤ s̄ is to start from stage t = 0.

Lemma 7.2. If p ∈P , then s ≤ s̄ if and only if inft≤s {δp(t) + c(s− t)} = c(s).

Proof. First suppose that s ≤ s̄. Seeking a contradiction, suppose there exists a t ∈ (0, s]
such that δp(t) + c(s− t) < c(s). Since p ∈ P we have p(t) ≥ c′(0)t and hence δp(t) ≥
δc′(0)t = c′(s̄)t. Since s ≤ s̄, this implies that δp(t) ≥ c′(s)t. Combining these inequalities
gives c′(s)t + c(s− t) < c(s), contradicting convexity of c.

Now suppose that inft≤s {δp(t) + c(s− t)} = c(s). We claim that s ≤ s̄, or, equivalently
c′(s) ≤ δc′(0). To see that this is so, observe that since p ∈ P we have p(t) ≤ c(t), and
hence

c(s) ≤ {δp(t) + c(s− t)} ≤ {δc(t) + c(s− t)}, ∀ t ≤ s.

∴
c(s)− c(s− t)

t
≤ δc(t)

t
∀ t ≤ s.

Taking the limit gives c′(s) ≤ δc′(0).

Lemma 7.3. The set P0 defined in theorem 3.1 is nonempty, convex and compact in b[0, 1], the
Banach space of bounded, real-valued functions on [0, 1] endowed with the supremum norm.

Proof. Regarding convexity of P0, it is straightforward to check that the convex combina-
tion of any two convex functions in b[0, 1] is again convex, and the convex combination
of any two K-Lipschitz functions in b[0, 1], is again K-Lipschitz. Evidently the convex
combination of two functions in P0 is bounded above by s 7→ c(s) and bounded below
by s 7→ c′(0)s. It follows that P0 is a convex subset of b[0, 1]. Regarding compactness of
P0, the fact that P0 has compact closure in b[0, 1] follows immediately from the Arzelà-
Ascoli theorem.11 Hence P0 will be seen to be compact if we can show that it is closed.

11The Arzelà-Ascoli theorem implies that P0 has compact closure in the space of continuous functions
on [0, 1], but this property implies the same for P0 as a subset of b[0, 1].
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Closedness of P0 in b[0, 1] is readily apparent, since uniform limits preserve convexity,
the K-Lipschitz property and the bounds defining P .

Lemma 7.4. Let p ∈P0 and define

tp(s) := arg min
t≤s

{δp(t) + c(s− t)} and `p(s) := s− tp(s). (12)

Let s1 and s2 be two points with 0 < s1 ≤ s2 ≤ 1. The following statements are true:

1. Both tp(s1) and `p(s1) are well defined and single-valued.
2. tp(s1) ≤ tp(s2) and tp(s2)− tp(s1) ≤ s2 − s1.
3. `p(s1) ≤ `p(s2) and `p(s2)− `p(s1) ≤ s2 − s1.

Proof. Since t 7→ δp(t) + c(s1− t) is continuous and strictly convex (by convexity of p and
strict convexity of c), and since [0, s1] is compact, existence and uniqueness of tp(s1) and
`p(s1) must hold.

Next we show that tp(s1) ≤ tp(s2). To simplify notation, let ti := tp(si). Suppose instead
that t1 > t2. We aim to show that, in this case,

δp(t1) + c(s2 − t1) < δp(t2) + c(s2 − t2), (13)

which contradicts the definition of t2.12

To establish (13), observe that t1 is optimal at s1 and t2 < t1, so

δp(t1) + c(s1 − t1) < δp(t2) + c(s1 − t2).

∴ δp(t1) + c(s2 − t1) < δp(t2) + c(s1 − t2) + c(s2 − t1)− c(s1 − t1).

Given that c is strictly convex and t2 < t1, we have

c(s2 − t1)− c(s1 − t1) < c(s2 − t2)− c(s1 − t2).

Combining this with the last inequality yields (13).

Next we shown that `1 ≤ `2, where `1 := `p(s1) and `2 := `p(s2). In other words,
`i = arg min`≤si

{δp(si − `) + c(`)}. The argument is similar to that for tp, but this time
using convexity of p instead of c. To induce the contradiction, we suppose that `2 < `1.
As a result, we have 0 ≤ `2 < `1 ≤ s1, and hence `2 was available when `1 was chosen.
Therefore,

δp(s1 − `1) + c(`1) < δp(s1 − `2) + c(`2),

12Note that t1 < s1 ≤ s2, so t1 is available when t2 is chosen.
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where the strict inequality is due to the fact that minimizers are unique. Rearranging and
adding δp(s2 − `1) to both sides gives

δp(s2 − `1) + c(`1) < δp(s2 − `1)− δp(s1 − `1) + δp(s1 − `2) + c(`2).

Given that p is convex and `2 < `1, we have

p(s2 − `1)− p(s1 − `1) ≤ p(s2 − `2)− p(s1 − `2).

Combining this with the last inequality, we obtain

δp(s2 − `1) + c(`1) < δp(s2 − `2) + c(`2),

contradicting optimality of `2.13

To complete the proof of lemma 7.4, we also need to show that tp(s2)− tp(s1) ≤ s2 − s1,
and similarly for `. Starting with the first case, we have

tp(s2)− tp(s1) = s2 − `p(s2)− s1 + `p(s1) = s2 − s1 + `p(s1)− `p(s2).

As shown above, `p(s1) ≤ `p(s2), so tp(s2)− tp(s1) ≤ s2− s1, as was to be shown. Finally,
the corresponding proof for `p is obtained in the same way, by reversing the roles of tp
and `p. This concludes the proof of lemma 7.4.

Lemma 7.5. Let p ∈ P0, let `p be as defined in (12), and let s̄ be the point in (0, 1] defined in
lemma 7.2. If s ≥ s̄, then `p(s) ≥ s̄. If s > 0, then `p(s) > 0.

Proof. By lemma 7.4, `p is increasing, and hence if s̄ ≤ s ≤ 1, then `p(s) ≥ `p(s̄) =
s̄− tp(s̄) = s̄. By lemma 7.2, if 0 < s ≤ s̄, then `p(s) = s− tp(s) = s > 0.

Lemma 7.6. If p ∈P0, then Tp is differentiable on (0, 1) with (Tp)′ = c′ ◦ `p.

Proof. Fix p ∈ P and let tp be as in (12). Fix s0 ∈ (0, 1). By Benveniste and Scheinkman
(1979), to show that Tp is differentiable at s0 it suffices to exhibit an open neighbor-
hood U 3 s0 and a function w : U → R such that w is convex, differentiable, satisfies
w(s0) = Tp(s0) and dominates Tp on U. To exhibit such a function, observe that in view
of lemma 7.5, we have tp(s0) < s0. Now choose an open neighborhood U of s0 such that
tp(s0) < s for every s ∈ U. On U, define

w(s) := δp(tp(s0)) + c(s− tp(s0)).

Clearly w is convex and differentiable on U, and satisfies w(s0) = Tp(s0). To see that
w(s) ≥ Tp(s) when s ∈ U, observe that if s ∈ U then 0 ≤ tp(s0) ≤ s, and

Tp(s) = min
t≤s
{δp(t) + c(s− t)} ≤ δp(tp(s0)) + c(s− tp(s0)) = w(s).

As a result, Tp is differentiable at s0 with (Tp)′(s0) = w′(s0) = c′(`p(s0)).

13Note that 0 ≤ `1 ≤ s1 ≤ s2, so `1 is available when `2 is chosen.
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Lemma 7.7. If p ∈P0, then Tp is strictly convex.

Proof. To see this, pick any 0 ≤ s1 < s2 ≤ 1 and any λ ∈ (0, 1). Let

ti := arg min
t≤si

{δp(t) + c(si − t)} for i = 1, 2,

and t3 := λt1 + (1− λ)t2. It is easy to check that 0 ≤ t3 ≤ λs1 + (1− λ)s2, and hence

Tp(λs1 + (1− λ)s2) ≤ δp(t3) + c(λs1 + (1− λ)s2 − t3).

The right-hand side expands out to

δp[λt1 + (1− λ)t2] + c[λs1 − λt1 + (1− λ)s2 + (1− λ)t2].

Using convexity of p and strict convexity of c, we obtain

Tp(λs1 + (1− λ)s2) < λTp(s1) + (1− λ)Tp(s2).

In other words, Tp is strictly convex.

Lemma 7.8. The operator T maps P0 into itself.

Proof. Let p ∈ P0. That Tp satisfies the bounds c′(0)s ≤ p(s) ≤ c(s) was proved in
lemma 7.1. That Tp is convex was shown in lemma 7.7. Finally, Tp is K-Lipschitz for K :=
c′(1) because, by lemma 7.6 and convexity of c, we have (Tp)′(s) ≤ c′(`p(s)) ≤ c′(1). The
c′(1)-Lipschitz property now follows immediately from the mean value theorem.

Lemma 7.9. The operator T is continuous as a mapping from b[0, 1] to itself.

Proof. That T maps b[0, 1] into itself is trivial to prove. To see continuity of the mapping,
observe that for f and g in b[0, 1] we have | inf f − inf g| ≤ sup | f − g|, and hence, for any
given s ∈ [0, 1] and p, q ∈ b[0, 1],

| inf
t≤s
{δp(t) + c(s− t)} − inf

t≤s
{δq(t) + c(s− t)}| ≤ δ sup

t≤s
|p− q| ≤ δ sup

t∈[0,1]
|p− q|.

∴ |Tp(s)− Tq(s)| ≤ δ sup
t∈[0,1]

|p− q|.

Taking the supremum of the left hand side over s, we see that T is δ-Lipschitz as a map-
ping from b[0, 1] to itself. Since every Lipschitz continuous function is continuous, we
conclude that T is a continuous self mapping on b[0, 1].
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It was shown in section 3 that an equilibrium price function exists. The proof used Tarski’s
fixed point theorem. We now claim that p has a Lipschitz continuous and convex fixed
point. The simplest way to do this is to apply a fixed point theorem to T as a mapping
from P0 to itself. Since P0 is not a complete lattice, we use Schauder’s fixed point theo-
rem instead. (Of course, this makes the earlier application of Tarski’s fixed point theorem
redundant, but the proof of Tarski’s fixed point theorem is simpler, and this is the reason
we chose to include it as well.)

Proposition 7.1. The operator T has a fixed point in P0.

Proof. In lemma 7.9 we saw that T is a continuous self mapping on b[0, 1]. Moreover, P0
is a nonempty convex compact subset of b[0, 1] (lemma 7.3), and T maps P0 into itself
(lemma 7.8). Schauder’s fixed point theorem now implies that T has a fixed point in
P0.

Proposition 7.2. The operator T has at most one fixed point in P0.

Proof. Let p and q be two fixed points of T in P0. The proof is by induction. First we show
that there exist an k ∈ N such that p and q agree on the interval [0, 1/k]. Next we show
that if n ∈ N, n < k and p and q agree on [0, n/k], then they also agree on [0, (n + 1)/k].
It follows that p and q agree on all of [0, 1].

To begin, let s̄ be as defined in lemma 7.2. Let k be chosen such that 1/k ≤ s̄. Observe that
if s ≤ 1/k, then p(s) = q(s), because, in light of the definition of s̄, if s ≤ s̄, then

p(s) = min
t≤s
{δp(t) + c(s− t)} = c(s) = min

t≤s
{δq(t) + c(s− t)} = q(s).

Turning to the induction step, let n < k and suppose that p = q on [0, n/k]. Fix s ∈
[0, (n + 1)/k]. We claim that p(s) = q(s). To see this, first suppose that s ≤ s̄. In that case
p(s) = q(s) = c(s) as shown above. Suppose instead that s > s̄. In that case, lemma 7.5
and the definition of k yield `p(s) ≥ `p(s̄) = s̄ ≥ 1/k. Therefore tp(s) = s − `p(s) ≤
s− 1/k ≤ (n + 1)/k− 1/k = n/k. Exactly the same argument holds for q as well, so we
have tp(s) ≤ n/k and tq(s) ≤ n/k. This tells us that when computing the optimal action
t for either p or q, we can restrict attention to minimizing over [0, n/k]. Moreover, by the
induction hypothesis, p and q agree on [0, n/k], This leads to our conclusion:

p(s) = min
t≤n/k

{δp(t) + c(s− t)} = min
t≤n/k

{δq(t) + c(s− t)} = q(s).

The proof of uniqueness is complete.

Proof of theorem 3.1. Existence and uniqueness of an equilibrium price function p∗ in P0
follows from propositions 7.1 and 7.2. Since p∗ ∈ P0 and the image under T of any
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function in P0 is strictly convex (lemma 7.7), we see that Tp∗ is strictly convex. Since
p∗ = Tp∗, the function p∗ itself is strictly convex. A similar argument combined with
lemma 7.6 shows that p∗ is differentiable, and (p∗)′(s) = c′(`∗(s)). Since c′ is strictly pos-
itive on [0, 1], the last equality also shows that p∗ is strictly increasing. Moreover, since `∗

is Lipschitz continuous (lemma 7.4) and c is assumed to be continuously differentiable,
the equation (p∗)′(s) = c′(`∗(s)) implies that p∗ is not only differentiable but also contin-
uously differentiable. Finally, the claims in theorem 3.1 regarding t∗ and `∗ are immediate
from lemma 7.4.

Proof of theorem 3.2. In view of lemma 7.2 we have `∗(s) = s and hence t∗(s) = 0 when-
ever s ≤ s̄, so it suffices to prove that tn ≤ s̄ for some n. This must be the case because `∗

is increasing, and hence the amount of in-house production by a firm contracting at s ≥ s̄
satisfies `∗(s) ≥ `∗(s̄) = s̄ > 0. In other words, for firms contracting above s̄, each takes a
step of length at least s̄. In particular, tn ≤ 1− ns̄.

Lemma 7.10. If c(x) = eθx − 1, then the equilibrium number of firms is given by (9).

Proof of lemma 7.10. Let N = N∗ be the equilibrium number of firms and let r := ln(δ)/θ.
From δc′(`n+1) = c′(`n) we obtain `n+1 = `n − r, and hence `1 = `n + (n − 1)r. It is
easy to check that when c(x) = eθx − 1, the constant s̄ in lemma 7.15 is equal to r. Hence
0 < `N ≤ r. Therefore (N − 1)r < `1 ≤ Nr. From ∑N

n=1 `n = 1 and `1 = `n + (n− 1)r it
can be shown that N`1 − N(N − 1)r/2 = 1. Some straightforward algebra now yields

1
2

(
−1 +

√
1 + 8/r

)
< N ≤ 1

2

(
1 +
√

1 + 8/r
)

.

The expression for N = N∗ in (9) now follows.

Proof of proposition 3.2. This follows from the recursion p∗(tn) = δp∗(tn+1) + c(`n+1) and
the fact that p(tN) = p(0) = 0.

Proof of proposition 3.3. By theorem 3.1, the function `∗ is increasing. By construction tn ≤
tn−1, and hence `n+1 = `∗(tn) ≤ `∗(tn−1) = `n. Thus part 1 holds. Part 2 follows from
part 1 and convexity of p∗.

Proof of proposition 3.1. We begin with the claim that p∗a ≤ p∗b . To construct the proof, let
G = {0, h, 2h, . . . 1} be a fixed grid, and, for i = 1, 2, let pi be the approximation generated
by algorithm 1 and parameter δi. We claim that pa ≤ pb. The proof is by induction.
First, observe that by (15) we have pa(h) = pb(h) = c(h). Given that the functions are
constructed by linear approximation between grid points, it follows that pa ≤ pb on [0, h].
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Thus it remains to show that if j ∈ N and pa ≤ pb on [0, jh], then pa ≤ pb on [0, (j + 1)h].
To see this, observe that if the induction hypothesis is true, then

pa((j + 1)h) = min
t≤jh
{δa pa(t) + c((j + 1)h− t)}

≤ min
t≤jh
{δb pb(t) + c((j + 1)h− t)} = pb((j + 1)h).

Thus pa ≤ pb on [0, (j + 1)h] as claimed.

Now let h = hn = 2−n, and let pa = pn
a and pb = pn

b . We have shown that pn
a ≤ pn

b . By
theorem 7.1 we have pn

i → p∗i . Since pointwise inequalities are preserved under limits, it
follows that p∗a ≤ p∗b .

As the next step of the proof, we first show that the number of tasks carried out by the
most upstream firm decreases when δ increases from δa to δb. Let `a

i be the number of task
carried out by firm i when δ = δa, and let `b

i be defined analogously. Let N = N∗a . Seeking
a contradiction, suppose that `b

N > `a
N. In that case, convexity of c and (7) imply that

c′(`b
N−1) = δbc′(`b

N) > δac′(`a
N) = c′(`a

N−1).

Hence `b
N−1 > `a

N−1. Continuing in this way, we obtain `b
i > `a

i for i = 1, . . . , N. But then
∑N

i=1 `
b
i > ∑N

i=1 `
a
i = 1. Contradiction.

Now we can turn to the claim that N∗b ≤ N∗a . As before, let N = N∗a , the equilibrium
number of firms when δ = δa. If `b

N = 0, then the number of firms at δb is less than
N = N∗a and we are done. Suppose instead that `b

N > 0. In view of lemma 7.2, we have
δac′(0) ≥ c′(`a

N). Moreover, we have just shown that `a
N ≥ `b

N. Combining these two
inequalities and using δb > δa, we have δbc′(0) ≥ c′(`b

N). Applying lemma 7.2 again, we
see that the N-th firm completes the good, and hence N∗b = N∗a .

7.3 Proof of Theorem 7.1

To begin the proof of theorem 7.1, suppose first that G is the fixed grid 0, h, 2h, . . . , 1, and
p is the function defined in algorithm 1.

Lemma 7.11. The function p is convex on [0, 1].

Proof. Since p is piecewise linear, it suffices to show that for any consecutive s0, s1, s2 in G
we have p(s2)− p(s1) ≥ p(s1)− p(s0). Equivalently,

p(s1) ≤
1
2
{p(s0) + p(s2)}. (14)
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We prove this first for s0 = 0, and then proceed by induction. When s0 = 0, we have
s1 = h and s2 = 2h, and (14) reduces to the claim that 2p(h) ≤ p(2h). To verify this,
observe first that

p(h) = min
0≤t≤0

{δp(t) + c(h− t)} = c(h), (15)

while
p(2h) = min

t≤h
{δp(t) + c(2h− t)}.

On [0, h], p(t) is defined by linear interpolation between p(0) and p(h) = c(h), so in
particular p(t) = c(h)(t/h). Since c is convex, we then have

p(2h) ≥ min
0≤t≤h

{c(h)(t/h) + c(2h− t)} = 2c(h) = 2p(h).

We have now confirmed that p is convex on [0, 2h]. The next step is to show that if q is
convex on [0, s1], then q is convex on [0, s2] = [0, s1 + h]. To verify this, we only need to
check that (14) holds when q is convex on [0, s1].

To see check (14), let ti be an optimal choice corresponding to si, in the sense that ti is a
minimizer of {δp(t) + c(si − t)} over 0 ≤ t ≤ si − h. Note that, by the definition of ti,

t3 :=
1
2
(t0 + t2) ≤

1
2
(s0 − h + s2 − h) = s1 − h.

As a result, t3 was available when t1 was chosen, and we have

p(s1) ≤ δp(t3) + c(s1 − t3).

Using convexity of p on [0, s1] and the fact that t0 and t2 are both less than s1, we have

p(t3) = p(t0/2 + t2/2) ≤ p(t0) + p(t2)

2
.

Using convexity of c, we have

c(s1 − t∗) = c
(

s0 − t0

2
+

s2 − t2

2

)
≤ c(s0 − t0) + c(s2 − t2)

2
.

Combining the last three inequalities, we obtain

p(s1) ≤
1
2
[{δp(t0) + c(s0 − t0)}+ {δp(t2) + c(s2 − t2)}] =

1
2
[p(s0) + p(s2)] .

In other words, (14) is valid. Convexity is now proved.

Given s ∈ [0, 1], let t(s) is a minimizer of δp(t) + c(s − t) over [0, s − h], and let `(s) =
s− t(s).

28



Lemma 7.12. Let s1 and s2 be any two points in Gn with 0 < s1 ≤ s2. The following statements
are true:

1. Both t(s1) and `(s1) are well defined and unique.

2. t(s1) ≤ t(s2) and t(s2)− t(s1) ≤ s2 − s1.

3. `(s1) ≤ `(s2) and `(s2)− `(s1) ≤ s2 − s1.

The proof is almost identical to that of lemma 7.4 and hence omitted.

Lemma 7.13. The function p is monotone increasing on [0, 1].

Proof. Since p is defined by linear interpolation, it is enough to show that p(s1) ≤ p(s2)
for consecutive grid points s1 and s2 = s1 + h. The proof is by induction. Evidently the
claim is true for s1 = 0, because p(0) = 0. So now let s1 be an arbitrary point in G, and
suppose that p is monotone increasing on [0, s1]. We need to show that p(s1) ≤ p(s2). To
see that this is the case, observe that

p(si) = δp(t(si)) + c(`(si)).

By monotonicity of t and `, we have `(s1) ≤ `(s2) and t(s1) ≤ t(s2). Moreover, c is
monotone increasing, p is monotone increasing on [0, s1], and, by definition, t(s2) ≤ s1.
Putting these facts together, we obtain δp(t(s1)) + c(`(s1)) ≤ δp(t(s2)) + c(`(s2)). Hence,
p(s1) ≤ p(s2), as was to be shown.

Lemma 7.14. For all s ∈ [0, 1] we have p(s) ≥ c′(0)s.

Proof. For s = 0 the result is obvious, so suppose that s > 0. Let σ ≤ min{s, h}. Using this
inequality, convexity of p and c, and the fact that p(h) = c(h), we obtain c′(0) ≤ c(h)/h =
p(h)/h = p(σ)/σ ≤ p(s)/s.

Lemma 7.15. Let s ∈ G. If c′(s) ≤ δc′(0), then t(s) = 0.

Proof. Let s ∈ G with c′(s) ≤ δc′(0). The value t(s) uniquely solves min0≤t≤s−h{δp(t) +
c(s− t)}. This solution is zero if c(s) < δp(t) + c(s− t) when 0 < t ≤ s− h, or, equiva-
lently,

c(s)− c(s− t)
t

<
δp(t)

t
when 0 < t ≤ s− h.

This inequality is valid, because, by strict convexity of c, the assumption c′(s) ≤ δc′(0)
and lemma 7.14,

c(s)− c(s− t)
t

< c′(s) ≤ c′(0) ≤ δp(t)
t

for all t with 0 < t ≤ s.
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For the remainder of this section, we adopt the setting of theorem 7.1. In particular, we
consider a sequence of grids {Gn} Gn = {0, hn, 2hn, . . . , 1} with hn = 2−n. The corre-
sponding functions are denoted by {pn}.

Lemma 7.16. The sequence {pn}∞
n=1 is pointwise monotone decreasing.

Proof. Fix n ∈ N. The claim is that pn+1(s) ≤ pn(s) for all s ∈ [0, 1]. Let s1 and s2 = s1 + hn
be two consecutive points in Gn, and suppose that pn+1 ≤ pn on [0, s1]. We claim that
pn+1(s2) ≤ pn(s2) also holds. This is sufficient for pn+1(s) ≤ pn(s) on [s1, s2], given that
(i) pn(s) is a linear interpolation from s1 to s2, (ii) pn+1 is a linear interpolation from s1 to
s′ := (s1 + s2)/2 and then s′ to s2, and (iii) pn+1 is convex.

To show that pn+1(s2) ≤ pn(s2), recall that, by the induction hypothesis, we have pn+1 ≤
pn on [0, s1]. It follows that

pn+1(s2) = min
t≤s′
{δpn+1(t) + c(s2 − t)}

≤ min
t≤s1
{δpn+1(t) + c(s2 − t)}

≤ min
t≤s1
{δpn(t) + c(s2 − t)}

= pn(s2),

as was to be shown.

Lemma 7.17. The sequence {qn}∞
n=1 is uniformly bounded and equicontinuous.

Proof. The statement that {pn}∞
n=1 is uniformly bounded means that there exists a con-

stant M independent of n with sup0≤s≤1 |pn(s)| ≤ M. This is clearly true because, on
one hand, pn is nonnegative (see, e.g., lemma 7.14), and on the other hand, since {pn}
is monotone decreasing (lemma 7.16) and each pn is increasing (lemma 7.13), we have
pn(s) ≤ p1(1) for all s and n.

It remains to show that {pn}∞
n=1 is equicontinuous. Given that pn is increasing and convex

(lemma 7.11), a sufficient condition for equicontinuity is

∃M, K ∈ N s.t.
pn(1)− pn(1− hn)

hn
≤ K for all n ≥ M (16)

(In other words, the slope of the function pn over the last two grid points is bounded
independent of n. Note that the bound in (16) only has to be checked for n greater than
some finite M, because finite families of continuous functions on compact sets are always
equicontinuous.) In what follows, we simplify notation dropping the n subscript attached
to G, p, h, t and ` (t and ` being the functions described in lemma 7.12).
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To begin the proof, first observe that if s ∈ G, then

p(s)− p(s− h) ≤ δ{p(t(s))− p(t(s− h))}+ c′(1)h, (17)

as follows the fact that, by lemma 7.12 and convexity of c,

c(`(s))− c(`(s− h)) ≤ c′(1){`(s)− `(s− h)} ≤ c′(1){s− (s− h)} = c′(1)h

It is also the case that if s ∈ G and σ(s) := inf{r ∈ G : r ≥ t(s)}, then

p(t(s))− p(t(s− h)) ≤ p(σ(s))− p(σ(s)− h) (18)

This inequality follows from lemma 7.12, which tells us that t(s)− t(s− h) ≤ s− (s− h) =
h, or t(s − h) ≥ t(s) − h. Hence, applying monotonicity and convexity of p, we have
p(t(s)) − p(t(s − h)) ≤ p(t(s)) − p(t(s) − h) ≤ p(σ(s)) − p(σ(s) − h), which is (18).
Combining (17) and (18), we obtain the recursion

p(s)− p(s− h) ≤ δ{q(σ(s))− q(σ(s)− h)}+ c′(1)h. (19)

In particular, if we define sj := σj(1) = σ ◦ σ ◦ · · · ◦ σ(1), then, from (19),

p(sj)− p(sj − h) ≤ δ{p(sj+1)− p(sj+1 − h)}+ c′(1)h. (20)

Now let s̄ be the s ∈ (0, 1] that satisfies c′(s) = δc′(0). The significance of s̄ is that, in view
of lemma 7.15, we have `(s̄) = s̄, and t(s̄) = 0. Moreover, since ` is increasing, if sj ≥ s̄,
then `(sj) ≥ s̄. As a consequence, provided that sj ≥ s̄, we have

sj+1 ≤ t(sj) + h = sj − `(sj) + h ≤ sj − s̄ + h.

Starting at s0 = 1 and iterating on this inequality, we obtain

sj ≤ 1− j(s̄− h) (21)

Recall that h = hn in fact depends on n, but s̄ does not (see lemma 7.15). It follows
that there exists an M ∈ N such that s̄ − hM > 0. Applying (21), we can then take J
independent of n with sJ = 0. Iterating backwards on (20) starting at s0 = 1, we have

p(1)− p(1− h) ≤ δJ{p(sJ)− p(sJ − h)}+ c′(1)h
J

∑
i=1

δi = c′(1)h
J

∑
i=1

δi.

Dividing through by h gives (16), and equicontinuity is established.

Since {pn}∞
n=1 is monotonically decreasing and bounded below by zero, the function p̄ :=

limn→∞ pn is well-defined.
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Lemma 7.18. The function p̄ is continuous, and {pn}∞
n=1 converges to p̄ uniformly.

Proof. Lemma 7.17 and the Arzelà -Ascoli theorem imply that {pn}∞
n=1 has a uniformly

convergent subsequence. Since {pn}∞
n=1 is monotone decreasing and converges pointwise

to p̄, the entire sequence converges uniformly to p̄. Since continuity is preserved under
uniform limits, the function p̄ is continuous.

Theorem 7.2. The function p̄ is a solution to the equilibrium price equation (2).

Proof. Evidently p̄(0) = 0. In view of lemma 7.14, p̄ is not the zero function (i.e., non-
trivial). It remains only to show that (2) holds. Since both p̄ and c are continuous, the
left-hand side and right-hand side of (2) are both continuous in s (the right-hand side by
the theorem of the maximum). Since continuous functions that agree on a dense subset of
(0, 1] must agree everywhere on (0, 1] it suffices to show that (2) holds for all s > 0 in the
dyadic rationals ∪nGn. We now fix such s ∈ ∪nGn and show that (2) holds.

Since s ∈ ∪nGn, there exists an N1 ∈ N such that s ∈ Gn whenever n ≥ N1. For such n we
have s ∈ Gn and s > 0, implying that (11) holds. In particular,

pn(s) = min
t≤s−hn

{δpn(t) + c(s− t)},

and hence
p̄(s) = lim

n→∞
pn(s) = lim

n→∞
min

t≤s−hn
{δpn(t) + c(s− t)}.

It is therefore sufficient for the theorem to establish that this expression agrees with the
right-hand side of (2). In other words, we aim to show that

lim
n→∞

min
t≤s−hn

{δpn(t) + c(s− t)} = min
t≤s
{δ p̄(t) + c(s− t)}. (22)

Here the left-hand side is the limit of pn(s), which is monotonically decreasing. Regarding
the right-hand side, we write g(t) = δ p̄(t) + c(s− t). Fixing ε > 0, the problem is then to
show that

∃N ∈ N s.t. n ≥ N =⇒ min
t≤s−hn

{δpn(t) + c(s− t)} < min
t≤s

g(t) + ε. (23)

Since pn → p̄ uniformly, we choose N2 ∈ N such that n ≥ N2 implies supx(pn(x) −
p̄(x)) < ε/2. For such n, we have

min
t≤s−hn

{δpn(t) + c(s− t)} ≤ min
t≤s−hn

{δp(t) + ε/2 + c(s− t)}.

To summarize,

n ≥ max{N1, N2} =⇒ min
t≤s−hn

{δpn(t) + c(s− t)} ≤ min
t≤s−hn

g(t) + ε/2.
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Since g is continuous on [0, s] and hn ↓ 0, we can choose an N3 such that

n ≥ N3 =⇒ min
t≤s−hn

g(t) ≤ min
t≤s

g(t) + ε/2.

Combining these last two inequalities, we have established that (23) holds when N :=
max{N1, N2, N3}.
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