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Abstract

We relax the Kajii and Morris (1997a) notion of equilibrium ro-
bustness by allowing approximate equilibria when information in a
game becomes incomplete. The new notion is termed �approximate
robustness�. The approximately robust equilibrium correspondence
turns out to be upper hemicontinuous, unlike the (exactly) robust
equilibrium correspondence. Another distinction comes to light when
we show that, as a corollary of upper hemicontinuity, approximately
robust equilibria exist in all zero-sum games. Thus, although approx-
imate robustness is only a small variation of the original notion, it is
strictly weaker than the latter, and its adoption enriches the domain
of games for which robust equilibria exist.
JEL Classi�cation Number : C72.
Keywords: incomplete information, robustness, Bayesian Nash equi-

librium, "-equilibrium, upper hemicontinuity, zero-sum games.

1 Introduction

Kajii and Morris (1997a) �henceforth KM �proposed a re�nement of Nash
equilibrium, based on the idea that an equilibrium should not change much
if the information in a game becomes incomplete to a certain degree. More
precisely, given a complete information game g, a game with incomplete
information is considered to be �close�to g if the sets of players and actions
are the same as in g, and, with high probability, each player knows that his
payo¤s are given by g (though there need not be common or approximate
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common knowledge of payo¤s). A Nash equilibrium of g is said to be robust
to incomplete information if every incomplete information game su¢ ciently
close to g possesses a Bayesian-Nash equilibrium such that both equilibria
induce similar distributions over actions.
KMmotivated their concept of robustness by pointing out that an analyst

who wishes to model some strategic environment as a complete information
game (that describes the environment correctly with high probability) is un-
likely to be aware of the �ne details of the true information structure, which
the players know and take into account in their strategic decisions. �If it is
guaranteed that the analyst�s prediction based on the complete information
game is not qualitatively di¤erent from some equilibrium of the real incom-
plete information game being played, then the analyst will be justi�ed in
ignoring subtle informational complications.�(KM, p. 1283)
We echo this motivation, and shall keep the above notion of �closeness�to

g. We shall however relax the assumption that equilibrium behavior in close
incomplete information games is exact, by allowing approximate Bayesian
Nash equilibria. Given " � 0; we say that a Nash equilibrium of g is "-robust
to incomplete information if every incomplete information game su¢ ciently
close to g possesses a Bayesian-Nash (interim) "-equilibrium such that both
equilibria induce similar action distributions.
The concept of robustness of KM is obviously identical to our notion when

we take " = 0; i.e., our 0-robustness is just the KM-robustness. For " > 0,
the notion of "-robustness is less demanding. However, "-robustness may also
imply implausible behavior in nearby incomplete information games, where
players may consistently "-deviate from their best responses, no matter how
close the incomplete information games are to g: This is what the following
de�nition is set to rule out. We say that a Nash equilibrium is approximately
robust to incomplete information if it is "-robust for any " > 0.
Our notion of approximate robustness constitutes a mild and natural ex-

tension of KM-robustness. Unlike KM, we do allow players to make small
mistakes � slight deviations from their best responses � in incomplete in-
formation games that are close to g, in approximating the behavior in a
Nash equilibrium of g. But, to keep the spirit of exactness set forth in
KM, the de�nition of approximate robustness requires that these mistakes
become vanishingly small as the incomplete information games "converge"
to g. Thus, the analyst in the KM story will still do well by choosing an
approximately robust equilibrium (henceforth, ARE) in the complete infor-
mation game g, as this prediction is quite justi�able �in the real incomplete
information game close to g players do not need to depart from rationality
beyond some practically negligible bound, if at all, to arrive at the predicted
action distribution.
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Part of the conceptual appeal of approximate robustness lies in the fact
that the set of ARE is well behaved. The main result of this paper, Theorem
2, shows that the correspondence which maps each complete information
game to the (possibly empty) set of its ARE is upper hemicontinuous. Since
the robustness embodies the continuity with respect to information, it goes
without saying that the additional, implied, aspect of continuity, with respect
to the base complete information game, provides an important support for the
notion of approximate robustness. In contrast, the KM-robust equilibrium
correspondence is not upper hemicontinuous, as we will show in Section 5.
The upper hemicontinuity of the ARE correspondence has an immediate

application. It implies that, if the set of ARE is non-empty for a class of
games, then the set is non-empty for the closure of that class. We use this
fact to show, in Corollary 3, that every zero-sum game possesses an ARE.
The claim does not hold for KM-robust equilibria (henceforth, KM-RE) �a
zero-sum game may not have a KM-RE (as we will show in Section 5) unless
there is a unique saddle point (which is then a KM-RE by Proposition 3.2 in
KM).
Since there are games that possess an ARE but not a KM-RE, a fortiori

approximate robustness is strictly weaker than KM-robustness, despite an a
priori similarity of the two notions. This weakness stresses another useful
aspect of approximate robustness �adopting it as an alternative to the KM
notion has the e¤ect of strictly extending the domain of games in which a
robust equilibrium exists.1

Our paper is organized as follows. The basic notations pertaining to
games of complete and incomplete information are presented in Section 2.
Section 3 introduces our notions of "-robustness and approximate robustness.
Section 4 contains our main result on upper hemicontinuity of the ARE
correspondence (Theorem 2), supplemented by Corollary 3 that establishes
existence ARE in all zero-sum games. Finally, Section 5 considers an example
of a 4� 4 zero-sum game, which shows simultaneously that the existence of
an ARE does not guarantee the existence of a KM-RE, and that the KM-RE
correspondence is not upper hemicontinuous.

1Such an extension is a much needed step, as there are open sets of games without
KM-RE (see, e.g., KM, Oyama and Takahashi (2011)), and there are only limited KM-RE
existence results (see, e.g., KM, Ui (2001), Morris and Ui (2005)).
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2 Preliminaries

2.1 Complete Information Games

We follow the notation of KM as close as possible for ease of comparison.
Throughout the analysis we �x a �nite set of players I = f1; 2; :::; Ig and a
�nite set Ai of actions for each player i 2 I. Denote by A := �i2IAi the
set of players�action pro�les. We shall denote �j 6=iAj by A�i and a generic
element of A�i by a�i. Similar conventions will be used whenever they are
clear from the context. A complete information game is given by an I-tuple
g = (gi)i2I ; where gi : A ! R is the payo¤ function of player i for each
i 2 I.
For a given �nite set B; denote by�(B) the simplex of probability vectors

on B, i.e.,

�(B) �
(
(s (b))b2B 2 RB+ j

X
b2B

s (b) = 1

)
:

An element of �(Ai) is referred to as a mixed action for player i and that of
�(A) as an action distribution. The distance between two action distribu-
tions is measured by the sup norm: thus, for any �; �0 2 �(A) we write

k�� �0k � max
a2A

j� (a)� �0 (a)j : (1)

An action distribution, � 2 �(A), is a correlated equilibrium of a game g
if, for all i 2 I and ai; a0i 2 Ai,X

a�i2A�i

gi (ai; a�i)� (ai; a�i) �
X

a�i2A�i

gi (a
0
i; a�i)� (ai; a�i) :

An action distribution � is a Nash equilibrium of g if it is a correlated equi-
librium, and is a product distribution induced by a mixed action pro�le, i.e.,
for all a 2 A,

� (a) = �
i2I
�i (ai) ; (2)

where �i 2 �(Ai) is the marginal distribution of � on Ai. Whenever conve-
nient, a Nash equilibrium � will be represented by the mixed action pro�le
(�1; :::; �I) : Denote by NE (g) the set of Nash equilibria of g.

2.2 Incomplete Information Games

In line with KM, we now extend the de�nition of a game to allow uncertainty
and incomplete information.
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The underlying uncertainty in an incomplete information game is de-
scribed by a probability space (
; P ) ; where 
 is a countable2 set of states
of nature; and P is a countably additive probability measure on 
 which is
the common prior belief of the players about the actual state of nature: The
information of player i is given by a (possibly in�nite) partition Qi of 
:
The payo¤s to player i are determined by a state dependent payo¤ function,
ui : A�
! R. The incomplete information game with the above attributes
will be denoted by U =

�

; P; fQigi2I ; fuigi2I

	
.

Given ! 2 
; denote by Qi (!) the unique element of Qi that contains
!; if ! is the actual state of nature, player i only knows that the realized
state belongs to Qi (!) : We will henceforth assume3 that every informa-
tion set of every player is possible, i.e., that P (Qi (!)) > 0 for all i 2 I
and ! 2 
. Under this assumption the conditional probability of state !
given information set Qi (!), written P (!jQi (!)), is well-de�ned by the rule
P (!jQi (!)) = P (!)

P [Qi(!)]
.

A (behavioral) strategy of player i is a Qi-measurable function �i : 
 !
�(Ai); �i (aij!) will denote the probability that player i chooses action ai
given !: A strategy pro�le is a function � = (�i)i2I where �i is a strategy
of player i. We denote by � (aj!) the probability that action pro�le a =
(� � � ; ai; � � � ) is chosen given ! under �; i.e., � (aj!) =

Q
i2I �i (aij!). Write

Xi for the set of strategies for player i, and X for the set of all the strategy
pro�les. Also denote by X�i the set of strategy pro�les of players other than
player i, and write ��i for (�j)j 6=i.
Abusing notation, we extend the domain of each ui to mixed strategies

and thus write ui (� (!) ; !) for
P
a2A
ui (a; !)� (aj!). When ! 2 
 occurs, the

interim payo¤ of strategy pro�le � to player i is given by the conditional
expectation

Ui (�j!) �
X

!2Qi(!)

X
a2A
ui (a; !)� (aj!)P [!jQi (!)] ; (3)

and the ex ante (expected) payo¤ is then
P
!2

Ui (�j!)P (!) ; which can also

be written as
P
!2

ui (� (!) ; !)P (!).

Thus far our setup has been identical to that of KM. We now extend the
scope of KM by considering approximate, and not just exact, equilibria in
incomplete information games. For " � 0 a strategy pro�le �̂ 2 X is an

2The countability assumption is made to avoid measure theoretic complications, just
as in KM.

3This simplifying assumption is also made in KM.
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(interim) Bayesian "-Nash equilibrium of U (henceforth, "-BE for short) if,
for every player i, for all �i 2 Xi and for all ! 2 
,

Ui (�̂j!) � Ui (�i; �̂�ij!)� " (4)

Denote by BE" (U) the set of all "-BE of U :
Notice that the slack " is chosen uniformly across the states of nature,

and so the notion of "-BE is much stronger than what one might regard as an
�ex ante�"-equilibrium. By the principle of dynamic optimization, a 0-BE
is just the standard Bayesian Nash equilibrium of U (BE for short).
An action distribution, �̂ 2 �(A), is an "-BE equilibrium action dis-

tribution of U if there exists a �̂ 2 BE" (U) which induces �̂; that is,
�̂ (a) =

P
!2


�̂ (aj!)P (!) for every � 2 A.

3 Approximate Robustness

Following KM, an incomplete information game U is deemed close to a com-
plete information game g if the payo¤ structure under U is equal to g with
high probability. Formally, for a given incomplete information game U we
de�ne for every i 2 I:


i (U ; g) � f! : ui (a; !0) = gi (a) for all a 2 A, !0 2 Qi (!)g ; (5)

and set 
 (U ; g) � \i
i (U ; g). An incomplete information game U is said to
be a �-elaboration of a complete information game g if P (
 (U ; g)) = 1� �.
The following de�nition extends the KM notion of informational robust-

ness in that it does not require the BE in elaborations to be exact:4

De�nition 1 Given a complete information game g and " � 0; an action
distribution � is "-robust to incomplete information in g ("-RE for short),
if for any � > 0, there exists � > 0 with the following property: any �-
elaboration U of g with 0 � � � � possesses an "-BE action distribution
� such that with k�� �k � � . An action distribution � is approximately
robust to incomplete information if it is "-robust for any " > 0.

Notice that if � is "-robust to incomplete information, it must be an
"-Nash equilibrium5 of g (as follows from De�nition 1 by considering the

4One could de�ne a weaker concept by restricting elaborations to canonical elabora-
tions, as in Kajii and Morris (1997b) and Ui (2001). It will become clear that all the
results and comments we report in this paper remain valid for the weaker notion. It is
however an open question whether this is a strictly weaker notion.

5For " � 0; a product distribution � 2 �(A) is an "-Nash equilibrium of g if for each
i 2 I, �i is an "-best response of i to ��i:
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degenerate 0-elaboration of g with j
j = 1). Thus an approximately robust
action distribution is necessarily a Nash equilibrium of g, and we will refer
to it as an approximately robust equilibrium (ARE for short) from now on.
The set of ARE in the game g is denoted by ARE (g) :
As was said, our notions of "- and approximate robustness extend the

de�nition of robustness introduced in KM, that considers only exact (0-)BE
equilibria in elaborations. Thus the Nash equilibria which are KM-robust
are precisely the 0-robust action distributions. It follows from the de�nition
that any KM-robust action distribution is approximately robust, and thus
the set of KM-robust equilibria (KM-RE for short) is a subset of ARE (g).
Given the conceptual closeness of requirements that the notions of KM-

robustness and approximate robustness impose on equilibria, one might con-
jecture that the sets of KM-RE and ARE coincide. It turns out, however,
that approximate robustness is a strictly weaker notion. It will be shown in
Section 5, where we construct a game g in which there is no KM-RE, but
ARE (g) 6= �.

4 Results

4.1 Upper Hemicontinuity of the ARECorrespondence

We shall show that the approximate robustness exhibits a desirable conti-
nuity property: the correspondence which maps each complete information
game into the set of approximate robust equilibria is upper hemicontinu-
ous. Interestingly enough, the analogous correspondence which maps a game
into the set of its KM-robust equilibria is not upper hemicontinuous, as we
elaborate in Section 5.
Formally, endow the set of all complete information games � with the

metric d�; given by

d� (g; g
0) � max

i2N
max
a2A

jgi (a)� g0i (a)j

for every g; g0 2 �: Note that the Nash equilibrium correspondence, g 7!
NE (g) is upper-hemicontinuous with this metric. The next result shows
that its sub-correspondence, the ARE correspondence g 7! ARE (g) ; is also
upper hemicontinuous on �:

Theorem 2 Let
�
gk
	1
k=1

� � and assume that, for each k, there exists
�k 2 ARE

�
gk
�
: If the limits g � limk!1 g

k and � � limk!1 �
k exist, then

� 2 ARE (g) :
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Proof. According to De�nition 1, we must establish "-robustness of � for
an arbitrarily chosen " > 0. To this end, �x any � > 0. Since the games
and the action distributions are convergent, there exists k � 1 such that the
complete information game g � gk and its ARE � � �k satisfy

k��� �k < �

2
; d� (g; g) <

"

4
: (6)

For any 0 � � and any �-elaboration U =
�

; P; fQigi2I ; fuigi2I

	
of g;

denote by �U =
�

; P; fQigi2I ; f�uigi2I

	
the incomplete information game

where, for every a 2 A, ! 2 
 and i 2 I,

ui (!; a) �
�

gi (a) ; if ! 2 
i (U ; g) ;
ui (!; a) ; otherwise.

(7)

That is, �U is obtained by replacing gi with �gi whenever player i knows (in
U) that his payo¤ is given by gi. Clearly, �U is a �-elaboration of the game �g,
and we shall call it a �-elaboration of �g induced by U for later reference.
Note that the second inequality in (6) implies via (7) and (3) that for any

strategy pro�le �, ��Ui (�j!)� �Ui (�j!)
�� < "

4
(8)

for every i 2 I; at every ! 2 
; where Ui and �Ui are the interim payo¤s of
i in U and �U , respectively, de�ned as in (3). Combining (8) with (4) in the
de�nition of "-BE, it is readily con�rmed that every "

2
-BE strategy pro�le �̂

of �U is also an "-BE of U ; that is,

BE "
2

�
�U
�
� BE" (U) : (9)

Recall that �� is approximately robust in �g by assumption, and in particu-
lar it is "

2
-robust in �g. So there exists 0 < � such that for any 0 � � � �; any

induced �-elaboration �U of g possesses some b� �U 2 BE "
2

�
�U
�
which induces

an action distribution b� �U such that
kb� �U � �k � �

2
: (10)

Now, for any �-elaboration U of g with 0 � � � ��, consider the induced
elaboration �U , and �̂ �U 2 BE "

2

�
�U
�
; b� �U 2 �(A) as above. By (9) we haveb� �U 2 BE" (U) ; and by the �rst inequality in (6), and (10), also

kb� �U � �k � �: (11)

Since �� as above can be found for any � > 0; we conclude that � is "-
robust in the game g. And, since " > 0 was chosen arbitrarily, � is in fact
approximately robust, as we claimed.
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4.2 Existence of ARE in Zero-Sum Games

An immediate consequence of the upper hemicontinuity property established
in Theorem 2 is that if the set of ARE is non-empty for a class of games,
then the set is non-empty for the closure of the class. Here we apply this
observation to show the existence of ARE in all zero-sum (two-player) games,
i.e., games g with I = 2 and g2 = �g1 :

Corollary 3 If g is a zero-sum two-player game, then ARE (g) 6= �:

Proof. By Bohnenblust et al (1950), a complete information zero-sum game
has a unique pair of optimal mixed actions (and thus a unique Nash equi-
librium) for a generic6 payo¤ matrix of player 1. By Proposition 3.2 in KM
and the discussion following it, this unique Nash equilibrium is a KM-RE:
Thus, given a zero-sum game g, there exists a sequence

�
gk
	1
k=1

of zero-
sum games such that limk!1 g

k = g, and, for each k � 1; the game gk has a
KM-RE (which is in particular an ARE). A limit point of those ARE must
belong to ARE (g) by Theorem 2, and thus we have ARE (g) 6= �.

5 Approximate Robustness is weaker than KM-
robustness

We now present an example of a zero-sum two player game g that does not
possess a KM-RE. Together with Corollary 3, this fact demonstrates that
the notion of approximate robustness is strictly weaker than the notion of
KM-robustness. Moreover, as at least some Nash equilibria in g are limit
points of KM-RE in nearby games (by the proof of Corollary 2), the non-
existence of KM-RE also implies that the KM-RE correspondence is not
upper hemicontinuous. This stands in contrast to the upper hemicontinuity
of the ARE correspondence g 7! ARE (g) that was established in Theorem
2.
Consider a zero-sum two player game g; in which both players have four

actions; and the payo¤s of player 1 are given by the following matrix (where
an action of player 1 (resp., 2) is represented by a choice of row (resp.,

6I.e., the claim holds for all payo¤matrices in some dense and open (w.r.t. the Euclid-
ean topolgy) subset of the space of all real-valued

��A1��� ��A2�� matrices.
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column)):
c1 c2 c3 c4

r1 1 �1 0 0
r2 �1 1 0 0
r3 0 0 1 �1
r4 0 0 �1 1

: (12)

Note that, if players�choices are con�ned to either the �rst two rows/columns,
or the last two rows/columns, then they play the matching pennies game.
Any strategy which selects the �rst two rows/columns with equal probability,
and the last two rows/columns with equal probability is a mixed equilibrium
strategy.
We shall verify below that this game has no KM-RE. We do so by con-

structing two elaboration sequences, both of which approach the game g,
such that each elaboration has a unique BE (we will establish this by em-
ploying the standard contagion argument). But it will then become clear
that the (uniquely determined) action distributions induced by the BE con-
verge to di¤erent limits in the two sequences, which implies that no action
distribution can be a KM-RE.
For the �rst sequence, �x 0 < � < 1: In what follows we describe a

2�-elaboration U� =
�

; P; fQigi2I ; fuigi2I

	
of game g. Let


 = f(k; k) j k 2 Z+g [ f(k + 1; k) j k 2 Z+g;

and assume that each player i can discern only the ith coordinate in each
state (t1; t2) 2 
; i.e., that

Q1 ((t1; t2)) = ft1g � fmax(t1 � 1; 0); t1g

and
Q2 ((t1; t2)) = ft2; t2 + 1g � ft2g :

Furthermore, let

P (f(k; k)g) = � (1� �)2k and P (f(k + 1; k)g) = � (1� �)2k+1

for all k � 0: The following table illustrates the information structure and
the prior.
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t2 = 0 t2 = 1 t2 = 2 ::: t2 = k � 1 t2 = k :::
t1 = 0 �

t1 = 1 � (1� �) � (1� �)2
t1 = 2 � (1� �)3 � (1� �)4
...

...
. . .

t1 = k � (1� �)2k�1 � (1� �)2k

t1 = k + 1 � (1� �)2k+1 :::
...

. . .

:

The state-dependent payo¤ functions (ui)i=1;2 are determined by the follow-
ing rule: (i) if t1 > 0; then the pure action payo¤s are given by the game g
in (12); (ii) if t1 = 0; then the pure action payo¤s are given by the zero-sum
game ~g represented by the following payo¤ matrix:

c1 c2 c3 c4

r1 0 9 9 9
r2 1 9 9 9
r3 0 9 9 9
r4 0 9 9 9

: (13)

Claim 4 For every 0 < � < 1; elaboration U� has a unique BE (b�1; b�2) ;
where

b�1 �r2j (k;max(k � 1; 0))� = b�1 �r2j (k; k)� = b�2 �c1j (k; k)� = b�2 �c1j (k + 1; k)� = 1
(14)

if k � 0 is even, and

b�1 �r1j (k; k � 1)� = b�1 �r1j (k; k)� = b�2 �c2j (k; k)� = b�2 �c2j (k + 1; k)� = 1
(15)

if k � 0 is odd.

Proof. Consider a BE (b�1; b�2) of U�. Note that c1 is a dominant action for
player 2 conditional on t2 = 0; since the conditional probability of game ~g in
(13) being played is �

�+�(1��) =
1
2�� >

1
2
: Thus

b�2 �c1j (0; 0)� = b�2 �c1j (1; 0)� = 1: (16)

It follows that, at t1 = 0; player 1 knows that player 2 plays c1, and conse-
quently his unique best response is the pure action r2, since he also knows
that the game is given by ~g. Hence we have

b�1 �r2j(0; 0)� = 1: (17)
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The relations (16) and (17) thus establish (14) for k = 0:
Next, conditional on t1 = 1; player 1 knows that the game is given by

g. He believes that t2 = 0 with probability �(1��)
�(1��)+�(1��)2 =

1
2�� and that

t2 = 1 with the complementary probability 1��
2�� : Taking into account that c

1

is played by player 2 at t2 = 0 (as shown in (16)), the conditional expected
payo¤ of player 1 at t1 = 1 is given by the following matrix, where the
rows correspond to the possible actions of 1 given t1 = 1; and the columns
correspond to the possible actions of 2 given t2 = 1 :

c1 c2 c3 c4

r1 1 �
2��

1
2��

1
2��

r2 �1 � �
2�� � 1

2�� � 1
2��

r3 0 0 1��
2�� �1��

2��
r4 0 0 �1��

2��
1��
2��

: (18)

So no matter what player 2 plays at t2 = 1, action r1 is strictly dominant for
player 1 given t1 = 1; and hence it must be played in any BE. We have thus
shown that b�1 �r1j (1; 0)� = b�1 �r1j (1; 1))� = 1: (19)

Similarly at t2 = 1, using the fact that player 1�s BE action at t1 = 1
is r1 as shown in (19), and that player 2 attributes to t1 = 1 probability

�(1��)2

�(1��)2+�(1��)3 =
1
2�� , it can be shown that

b�2 �c1j (1; 1)� = b�2 �c1j (2; 1)� = 1: (20)

The relations (19) and (20) therefore establish (15) for k = 1:
The argument can be done iteratively to obtain (14) and (15) for all k > 1.

Next, consider another 2�-elaboration U 0� =
�

; P; fQigi2I ; fu0igi2I

	
, which

is identical to U� except for the payo¤ functions fu0igi2f1;2g given as follows:
(i) if t1 > 0; pure action payo¤s are given by the game g in (12); (ii) if t1 = 0;
pure action payo¤s are given by the zero-sum game g0 represented by the
following payo¤ matrix:

c1 c2 c3 c4
r1 9 9 9 0
r2 9 9 9 0
r3 9 9 9 1
r4 9 9 9 0

:

Then the following result can be established using arguments symmetric to
those in the proof of Claim 4:
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Claim 5 For every 0 < � < 1; elaboration U 0� has a unique BE (b�1; b�2) ;
where

b�1 �r3j (k;max(k � 1)) ; 0)� = b�1 �r3j (k; k)� = b�2 �c4j (k; k)� = b�2 �c4j (k + 1; k)� = 1
if k � 0 is even, and

b�1 �r4j (k; k � 1)� = b�1 �r4j (k; k)� = b�2 �c3j (k; k)� = b�2 �c3j (k + 1; k)� = 1
if k � 0 is odd.

It follows from the description of BE in Claim 4 that, when � ! 0; the
(uniquely determined) BE action distribution in U� converges to � 2 �(A) ;
which is the uniform distribution on the set fr1; r2g�fc1; c2g � A: Similarly,
from Claim 5, the BE action distribution in U 0� converges to �0 2 �(A) ; which
is the uniform distribution on the set fr3; r4g � fc3; c4g � A: The limits are
therefore distinct (in fact, supported on disjoint subsets of A), as we have
asserted, con�rming that there is no KM-RE in the game g.
To complete the discussion, we demonstrate that the game g does possess

ARE, as guaranteed by Corollary 3. In fact, the game has multiple ARE; for
instance, the following three equilibria of g are ARE:

(��1; �
�
2) =

�
(
1

2
;
1

2
; 0; 0); (

1

2
;
1

2
; 0; 0)

�
;

(���1 ; �
��
2 ) =

�
(0; 0;

1

2
;
1

2
); (0; 0;

1

2
;
1

2
)

�
;

(����1 ; ����2 ) =

�
(
1

4
;
1

4
;
1

4
;
1

4
); (
1

4
;
1

4
;
1

4
;
1

4
)

�
:

To see that (��1; �
�
2) is an ARE, notice that, for every " > 0; it is the unique

Nash equilibrium in the zero-sum game g� (") where the payo¤s of player 1
are given by the matrix

c1 c2 c3 c4
r1 1 �1 " "
r2 �1 1 " "
r3 �" �" 1 �1
r4 �" �" �1 1

:

Thus (��1; �
�
2) is in fact a KM-RE of g

� (") by Proposition 3.2 in KM, and
so it is an ARE a fortiori. Since lim"!0 g

� (") = g, Theorem 2 implies that
(��1; �

�
2) is an ARE of g. By a symmetric argument, it can be readily seen
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that (���1 ; �
��
2 ) is another ARE of g: Finally, to show that (�

���
1 ; ����2 ) is an

ARE, it su¢ ces to point out that it is the unique Nash equilibrium of the
zero-sum game g��� (") with the payo¤ matrix of player 1 given by

c1 c2 c3 c4
r1 1 + " �1 0 0
r2 �1 1 + " 0 0
r3 0 0 1 + " �1
r4 0 0 �1 1 + "

:

14



References

1. Bohnenblust, H.F., S. Karlin, and L. S. Shapley (1950). "Solutions of
discrete two-person games," Contributions to the theory of games (ed.
by H. W. Kuhn and A. W. Tucker), Princeton, Princeton University
Press.

2. Kajii, A., and S. Morris (1997a). "The Robustness of Equilibria to
Incomplete Information," Econometrica 65, pp. 1283-1309.

3. Kajii, A., and S. Morris (1997b) "Re�nements and Higher Order Be-
liefs: A Uni�ed Survey," Northwestern Math Center Discussion Paper
No. 1197

4. Morris, S., and T. Ui (2005). "Generalized Potentials and Robust Sets
of Equilibria," Journal of Economic Theory 124, pp. 45-78.

5. Oyama, D., and S. Takahashi (2011). "On the Relationship between
Robustness to Incomplete Information and Noise-Independent Selec-
tion in Global Games," Journal of Mathematical Economics 47 (6),
pp. 683-688.

6. Ui, T. (2001). "Robust Equilibria of Potential Games," Econometrica
69, pp. 1373-1380.

15


	表紙（差替-英）DP818.pdf
	Zero-sum-robustness1205121KIERDP.pdf



