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Abstract 

 

This paper estimates a long memory volatility model for 16 agricultural commodity futures 

returns from different futures markets, namely corn, oats, soybeans, soybean meal, soybean 

oil, wheat, live cattle, cattle feeder, pork, cocoa, coffee, cotton, orange juice, Kansas City 

wheat, rubber, and palm oil. The class of fractional GARCH models, namely the FIGARCH 

model of Baillie et al. (1996), FIEGARCH model of Bollerslev and Mikkelsen (1996), and 

FIAPARCH model of Tse (1998), are modelled and compared with the GARCH model of 

Bollerslev (1986), EGARCH model of Nelson (1991), and APARCH model of Ding et al. 

(1993). The estimated d parameters, indicating long-term dependence, suggest that fractional 

integration is found in most of agricultural commodity futures returns series. In addition, the 

FIGARCH (1,d,1) and FIEGARCH(1,d,1) models are found to outperform their 

GARCH(1,1) and EGARCH(1,1) counterparts. 

 

Keywords: Long memory, agricultural commodity futures, fractional integration, 
asymmetric, conditional volatility. 

 

JEL: Q14, Q11, C22, C51. 
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1. Introduction 

Accurate modelling of volatility in asset returns is one of the major issues of concern in 

financial economics. Poon and Granger (2003) have mentioned that, even though volatility is 

not the same as risk, when it is interpreted as uncertainty it becomes a key input to many 

important financial applications, such as investment, portfolio construction, option pricing, 

hedging and risk management. Research on volatility models has focused on such different 

properties of the returns series as its time-varying conditional moments, volatility clustering, 

asymmetric patterns and long persistence, among others. 

 

Derivative markets, particularly commodity futures markets, have become more sophisticated 

since the Chicago Broad of Trade commenced futures trading in 1848. The futures price 

depends on the flow of information around the world. Small changes in prices could have 

tremendous effects on trading results across futures markets. This distinction implies that the 

futures market is more volatile and has high risk. This feature is also particularly important in 

the agricultural commodity futures market, where factors such as drought, natural disaster, 

deforestation, and debt default can have a major impact on demand and supply of 

commodities, and hence on the present and futures prices of the commodity.  

 

In modern time series modelling, following the seminal work of Engle (1982), a group of 

time series models named Autoregressive Conditional Heteroskedastity (ARCH), and later 

generalized by Bollerslev (1986) as Generalized Autoregressive Conditional Heteroskedastity 

(GARCH), has been used to model time-varying conditional volatility. The ARCH and 

GARCH models explain time series behaviour by allowing the conditional variance to evolve 

dynamically over time and to respond to previous price changes.  These models consider non-

linearity in the conditional mean equation, and are also able to explain volatility clustering 

and volatility persistence. A considerable empirical literature in commodity cash and futures 

markets has used a variety of GARCH models to estimate expected price and returns 

volatility.  

 

The GARCH model assumes that negative and positive shocks of equal magnitude have 

identical impacts on the conditional variance. In order to accommodate differential impacts 

on conditional variance between positive and negative shocks of equal magnitude, Glosten et 

al. (1992) proposed the asymmetric GARCH, or GJR model. As the positive and negative 
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shocks on conditional volatility, called leverage effect, are asymmetric, Nelson (1991) 

proposed the Exponential GARCH (EGARCH) model. 

 

In terms of volatility persistence, a GARCH model features an exponential decay in the 

autocorrelation of conditional variances. However, a shock in the volatility series seems to 

have very “long memory” and impacts on future volatility over a long horizon. Baillie et al. 

(2007) explained that the long memory refers to the presence of very slow hyperbolic decay 

in the autocorrelations and impulse response weights. Therefore, econometrically, the long 

memory is between the usual exponential rates of decay associated with the class of 

stationary and invertible ARMA models, and the alternative extreme of infinite persistence 

associated with integrated, unit root processes. Therefore, Baillie, Bollerslev and Mikkelsen 

(1996) (hereafter denoted BBM) proposed the FIGARCH(p,d,q) model, and Bollerslev and 

Mikkelsen (1996) proposed the FIEGARCH(p,d,q) model, where a full description of the 

properties of the process and the appropriate quasi-maximum likelihood estimation (QMLE) 

method can be found.   

 

Several previous papers have observed and provided application of fractional integrated 

models in many fields, namely stock returns (Bollerslev and Mikkelsen (1996), Degiannakis 

(2004) and Niguez%  (2007), Lux and Kaizoji (2007), Kang and Yoon (2007), Jefferis and 

Thupayagale (2008), Ruiz and Veiga (2008)); exchange rate (Baillie et al. (1996), Davidson 

(2004), and Conrad and Lamla (2007)) and inflation rate (Baillie et al. (2002)). However, in 

the literature to date, there have been few applications of the fractionally integrated GARCH 

class models to commodity futures markets. Barkoulas et al. (1997) examined the fractional 

structure of commodities spot prices, namely aluminum, cocoa, coffee, copper, rice and 

rubber. They found that some commodity spot price time series display a fractional structure, 

and the fractional orders vary among these commodities because the processes involved in 

the price movements of each commodity varies.  

 

Crato and Ray (2000) investigated long-term memory in the returns and volatility of 

commodity futures market, namely five currencies, twelve agricultural commodities, three 

metals and heating oil, and five currencies futures markets. They found that commodity 

futures volatilities are typically more persistent than currency futures volatilities. However, 

they do not explicitly estimate the FIGARCH model. Jin and Frechette (2004) examined the 
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presence of fractional integration in the volatility of fourteen agricultural futures prices series 

using data from 1970 to 2000. The results show that the volatility series exhibit strong long-

term dependence, which is an indicator of fractional integration. In addition, 

FIGARCH(1,d,1) performs significantly better than a traditional volatility model, 

GARCH(1,1), in modelling agricultural price volatility.  

 

Baillie et al. (2007) examined long memory in volatility properties of both daily and high-

frequency intraday futures returns for six important commodities. They found that the 

volatility processes were found to be accurately described by FIGARCH models, with 

statistically significant long memory parameter estimates.  

 

Recently, Hyun-Joung (2008) explored a long memory conditional volatility model on 

international grain markets, namely wheat, corn and soybeans, and compared the 

performance of the models in capturing dependence of the price volatility, and also 

emphasized suitability of the student-t density intended to account for non-normal, fat-tailed 

properties of the data. The empirical results showed that grain cash price volatilities exhibit 

long memory and that the memory is adequately modelled by a fractionally integrated 

process and implemented by FIGARCH models. In addition, the suitability of the FIGARCH 

models is under the student-t distribution and the competitiveness of the parsimonious 

FIGARCH(1,d,0) model. Therefore, it is desirable to use long memory conditional variance 

models for analysis of grain price volatility dynamics.  

 

The fractionally integrated multivariate conditional volatility model of Brunetti and Gilbert 

(2000) applied the univariate volatility (FIGARCH) model to multivariate GARCH models 

by estimating and testing cointegrated bivariate FIGARCH models using NYMEX and IPE 

crude oil markets. They found a common order of fractional integration for the two volatility 

process, and confirmed that they are fractionally cointegrated. An estimated error correction 

FIGARCH model indicated that the predominant adjustment is the IPE toward NYMEX.  

 

Coakley et al. (2008) explored the relationship between basis long memory and hedging 

effectiveness measures with error-correction and the multivariate GARCH (FIEC-BEKK) 

model, employing spot daily data and their corresponding futures contracts 1995-2005 for 

five commodities, namely soybeans, cocoa, heating oil, gold and live cattle. The results 
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presented a long memory component that should theoretically affect hedging effectiveness. 

Recently, Sephton (2009) reexamined the findings in Jin and Frechette (2004) and used the 

same dataset to provide evidence of fractional integration using the FIGARCH and 

FIAPGARCH models. The updated empirical results generally confirm the presence of long 

memory in conditional variances, with some commodity futures displaying significant 

leverage effects. 

 

The aims of the paper are to analyse agricultural commodity futures returns using several 

conditional volatility models, namely GARCH, EGARCH and APARCH, and fractionally 

integrated conditional volatility models, namely FIGARCH, FIEGARCH and FIAPARCH, as 

an extension of existing results. The paper differs from existing studies in three respects. 

First, due to changes in the financial and economic environment, such as the 2008-09 global 

financial crisis, an increasing number of market participants, product yield uncertainty, 

changes in the demand and supply position of agricultural commodities and growing 

international competition, agricultural commodity futures markets have matured considerably 

over the last decade. An extension in the sample period from 2000 to 2009, giving an 

additional 2,500 observations, is intended to allow a suitable analysis of these issues. 

 

Second, none of the preceding papers has used a variety of fractionally integrated GARCH 

models for purposes of comparison with conventional GARCH models. This paper estimates 

five fractionally integrated GARCH models, namely FIGARCH of Baillie et al. (1996), 

FIGARCH of Chung (1999), FIEGARCH of BBM (1996), FIAPGARCH of Ding, Granger 

and Engle (1993), and FIAPGACH of Tse (1998), and compares the estimates with 

conventional GARCH models. Four important agricultural commodity futures are considered, 

namely cotton, orange juice, and two tropical rain plants in palm oil and rubber. These 

agricultural commodity futures have not yet been examined using long memory models. The 

empirical findings in this paper should make a useful contribution to all agents involved in 

the sale, purchase and distribution of agricultural commodities, including related industries. 

 

This empirical analysis given below indicates that, on the basis of the EGARCH and 

APGARCH models, most agricultural commodity futures returns have asymmetric effects, 

with only a few displaying leverage effects. Thus, it would appear that the GARCH model is 

not appropriate for analyzing agricultural commodity futures returns. Moreover, evidence of 
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long memory is found for each agricultural commodity futures returns using both FIGARCH 

and FIAPGARCH of the BBM and Chung specifications. In addition, asymmetric and 

leverage effects are found for some agricultural commodities using FIEGARCH and 

FIAPGARCH, which suggests that the FIGARCH model is not appropriate for modelling 

agricultural commodity futures returns. 

 

The remainder of the paper is organized as follows. Section 2 discusses the methodological 

approach used in the paper. Section 3 describes the commodity futures prices time series. 

Section 4 presents the results from empirical modelling, and Section 5 provides some 

concluding comments. 

 

2. Econometric Models 

2.1 Univariate Conditional Volatility Models 

This section presents the volatility models in commodity futures returns, namely the GARCH 

model of Bollerslev (1986), EGARCH model of Nelson (1991) and APARCH model of Ding 

et al. (1993), and fractionally integrated conditional volatility models, namely FIGARCH 

model of Baillie et al. (1996), FIEGACH model of Bollerslev and Mikkelsen (1996), and 

FIAPARCH model of Tse (1998). 

 

Following Engle (1982), consider the time series, ( )1t t t ty E y ε−= + , where ( )1t tE y−  is the 

conditional expectation of ty  at time 1t −  and tε  is the associated error. The generalized 

autoregressive conditional heteroskedastity (GARCH) model of Bollerslev (1986) is given as 

follows: 

 t t thε η=      ,      (0,1)t Nη �                                                (1) 

( ) ( )2 2 2

1 1
− −

= =

= + + = + +∑ ∑
p q

t j t j j t j t t
j j

h h L Lω α ε β ω α ε β σ                            (2) 

where 0ω > , 0≥jα  and 0≥jβ  are sufficient conditions to ensure that the conditional 

variance 0th > , L is the lag operator, ( ) 2
1 2= + + +K p

pL L L Lα α α α  and 

( ) 2
1 2L L Lβ β β= + +K q

qLβ+ . In (2) the parameter jα   represents the ARCH effect, or the 

short-run persistence of shocks to returns, jβ  represents the GARCH effects, and ( )+j jα β  
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measures the persistence of the contribution of shocks to return i to long-run persistence. If 

the roots of ( ) ( )1⎡ ⎤− −⎣ ⎦L Lα β  and ( )1⎡ ⎤−⎣ ⎦Lβ  lie outside the unit circle, then { }2
tε  exhibits 

stability and covariance stationarity. The volatility shocks decay at a geometric rate. 

 

Equation (2) assumes that the conditional variance is a function of the magnitudes of the 

lagged residuals and not their sign, such that a positive shock ( )0tε >  has the same impact 

on the conditional variance as a negative shock ( )0tε <  of equal magnitude. In order to 

accommodate differential impacts on the conditional variance of positive and negative 

shocks, Glosten et al. (1992) proposed the asymmetric GARCH, or GJR model, as given by 

( )( ) 2

1 1
− − −

= =

= + + +∑ ∑
r s

t j j t j t j j t j
j j

h I hω α γ η ε β                                  (3) 

where  

0, 0
1, 0

it
it

it

I
ε
ε

≥⎧
= ⎨ <⎩

                                                           (4) 

is an indicator function to differentiate between positive and negative shocks. Bollerslev 

(1986) showed the necessary and sufficient condition for the second-order stationarity of 

GARCH is 
1 1

1
= =

+ <∑ ∑
r s

j j
j j

α β . For the GARCH(1,1) model, Nelson (1990) obtained the log-

moment condition for the strict stationary and ergodicity as ( )( )2
1 1log 0tE αη β+ < , which is 

important in deriving the statistical properties of the QMLE.  

  

In an alternative model that accommodates asymmetry between positive and negative shocks, 

and possibly also leverage, Nelson (1991) proposed the Exponential GARCH (EGARCH) 

model, interpreting as ARMA-type models for the logarithm of the conditional variance, 

namely:  

1 1 1

log log− − −
= = =

= + + +∑ ∑ ∑
p p q

t i t i i t i j t j
i i j

h hω α η γ η β .                               (4) 

In (4), −t iη  and −t iη  capture the size and sign effects, respectively, of the standardized 

shocks. Unlike the GARCH model, EGARCH in (4) uses the standardized residual rather 

than the unconditional shocks. As EGARCH also uses the logarithms of conditional 

volatility, there are no restrictions on the parameters in (4). As the standardized shocks have 
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finite moments, the moment conditional of (4) are straightforward. The distinctions between 

EGARCH and the previous two GARCH models are discussed in McAleer (2005) and 

McAleer et al. (2007) 

 

Alternatively, Bollerslev and Mikkelsen (1996) proposed expressing the EGARCH model as 

follows: 

( ) ( ) ( ) ( )12
1ln 1 1t tL L g zσ ω β α

−

−⎡ ⎤ ⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦ .                                 (5) 

The value of ( )tg z depends on several elements. Following Nelson (1991), in order to 

accommodate the asymmetric relation between returns and volatility changes, the value of 

( )tg z  must be a function of both the magnitude and sign of tz , which yields the function 

( )tg z  expressed as 

( ) {1 2

  

t t t t

sign effect magnitude effect

g z z z E zγ γ ⎡ ⎤= + −⎣ ⎦1442443
 .                                            (6) 

 

The parameter 1γ  captures the leverage effect. If 1 0γ < , the futures conditional variances will 

increase proportionally more as a result of a negative shock than for a positive shock of the 

same absolute magnitude.  

 

Ding, Granger and Engle (1993) proposed an asymmetric power GARCH (APARCH) model, 

whereby the power of the standard deviation, t
δσ , where 0>δ , is a parameter to be 

estimated. The APARCH(p,q) is definded as: 

( )
1 1

− − −
= =

= + − +∑ ∑
p q

t j t i i t i j t j
j j

δδ δσ ω α ε γ ε β σ                                      (7) 

and 1 1− < <iγ , ( )1,...,=i q . This model nests at least seven ARCH-type models, namely the 

ARCH model of Engle (1982), GARCH model of Bollerslev (1986), Taylor/Schwert 

GARCH in standard deviation of Taylor (1986) and Schwert (1990), GJR model of Glosten 

et al. (1993), TARCH of Zakoian (1994), NARCH of Higgins and Bera (1992), and log-

ARCH of Geweke (1986) and Pantula (1986). Following Ding et al. (1993), if 0>ω  and 

( )
1 1

1
p q

i i j
i j

E z z
δ

α γ β
= =

− + <∑ ∑ , a stationary solution for equation (7) exists and is given by 
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( )
( )

0

1 1
1

= =

=
− − +∑ ∑

t p q

i i j
i j

E
z z

δ

δ

ασ
α γ β

 

 

In order to estimate the parameters of model (1)-(7), maximum likelihood estimation is used 

with a joint normal distribution of tη . However, when the process for tη  does not follow a 

normal distribution, or when the conditional distribution is not known, the solution to 

maximizing the likelihood function is the quasi-MLE (QMLE) approach.  

 

2.2 Univariate fractional integrated conditional volatility models 

 

The long memory property can be defined through the properties of the autocorrelation 

function, which is defined as ( ) ( )1cov , vark t t tx x xρ −=  for integer lag k. A covariance 

stationary time series process is expected to have autocorrelations such that lim 0kk
ρ

→∞
= . Most 

of the well-known class of stationary and invertible time series processes have 

autocorrelations that decay at the relatively fast exponential rate, so that k
k mρ ≈ , where 

1m < , and this property is true, for example, for the well-known stationary and invertible 

ARMA(p,q) process. For long memory processes, the autocorrelations decay at an hyperbolic 

rate which is consistent with 2 1
1

d
k c kρ −≈  as k increases without limit, where 1c  is a constant 

and d is the long memory parameter.  

 

In applications, it often occurs that the estimated sum of parameters 1α  and 1β  in 

GARCH(1,1) is close to unity, that is 
1 1

1
= =

+ ≈∑ ∑
p q

i j
i j
α β , or for GARCH(p,q), the process 

exhibits strong persistence. If 
1 1

1
= =

+ <∑ ∑
p q

i j
i j

α β , the process ( )tε  is second-order stationary, 

and a shock to the conditional variance th  has a decaying impact on +t hh , when h increases, 

and is asymptotically negligible. However, if 
1 1

1
= =

+ ≥∑ ∑
p q

i j
i j

α β , the effect on +t hh  does not die 

out asymptotically.  
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This property is called persistence. Under the restriction 
1 1

1
= =

+ =∑ ∑
p q

i j
i j

α β , Engle and 

Bollerslev (1986) developed the integrated GARCH (IGARCH) model, meaning that current 

information remains of importance when forecasting the volatility for all horizons:  

( )( ) ( )21 1⎡ ⎤− = + −⎣ ⎦t tL L Lφ ε ω β υ                                         (8) 

where 2 2= −t t tυ ε σ  is the “innovation” in the conditional variance process or martingale 

difference process with respect to 2
tσ  or th , and has mean 0 and no serial correlation, 

( ) ( ) ( ) ( ) 11 1 −⎡ ⎤= − − −⎣ ⎦L L L Lφ α β , and all the roots of ( )Lφ  and ( )1⎡ ⎤−⎣ ⎦Lβ  lie outside the 

unit circle.  

 

However, volatility tends to change quite slowly over time and, as shown in Ding et al. 

(1993), the effects of a shock can take a considerable time to decay. Therefore, the distinction 

between I(0) and I(1) processes seems to be too restrictive. Indeed, the propagation of shock 

in an I(0) process shocks dies out at an exponential rate (so that it only captures short 

memory) and, for an I(1) process, the persistence of shocks is infinite and there is no mean 

reversion, whereas 0 1< <d  shocks die out at a slow hyperbolic rate. Baillie et al. (1996) 

introduced the fractionally integrated GARCH (FIGARCH) model in order to capture the 

long memory effect in volatility, allows a hyperbolic decay of the coefficient, jβ , which is 

positive, summable, and satisfies the unit root condition. This model mimics the ARFIMA 

framework of the conditional mean equation.  

 

The FIGARCH(p,d,q) process is defined as: 

( )( ) ( ){ }21 1− = + −d
t tL L Lφ ε ω β υ ,                                           (9) 

where all the roots of ( )Lφ  and ( ){ }1− Lβ  lie outside the unit circle. Analogously to (9), the 

FIGARCH process can be represented as: 

( ) ( ) ( )( ){ }
( )

1 1 21 1 1 1
∗

− −
⎡ ⎤ ⎡ ⎤= − + − − −⎣ ⎦ ⎣ ⎦1442443 1444442444443

d
t t

L

h L L L L
ω λ

ω β β φ ε  ,                       (10) 

or ( ) ( )2 2∗ ∗= + = +i
t i t th L Lω λ ε ω λ ε , when 0 1d< < . ( )1− dL , where 0 1d< < , is the 

fractional differencing operator, and its value depends on the decay rate of a shock to 

conditional volatility. It is also most conveniently expressed in term of the hypergeometric 
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function: 

( ) ( )
( ) ( )0

1
1

1 1

∞

=

Γ +
− =

Γ + Γ − +∑d k

k

d
L L

k d k
                                          (11) 

or            ( ) ( ) ( ) ( )( )2 3

0

1 11 1 1 1 2
2 6

∞

=

⎛ ⎞
− = − = − − − − − − −⎜ ⎟

⎝ ⎠
∑ K

d k

k

d
L L dL d d L d d d L

k
          (12) 

It is easy to show that 0>ω , 1 1
2

2
−

− ≤ ≤
ddβ φ  and ( )1 1 1 1

1
2
−⎛ ⎞− ≤ − +⎜ ⎟

⎝ ⎠
dd dφ β φ β  are 

sufficient to ensure that the conditional variance of the FIGARCH(1,d,1) is positive almost 

surely for all t. FIGARCH nests the GARCH model when d = 0, and the IGARCH model 

when d = 1. Approximate maximum likelihood estimates of the parameters of the 

FIGARCH(p,d,q) process in (9) can be obtained by QMLE. 

 

Chung (1999) argued that the method of parameterization of the FIGARCH model of Baillie 

et al. (1996) may have a specification problem, and underscores some drawbacks in the BBM 

model. There may be a structural problem in the BBM specification in parallel with the 

ARFIMA framework of the conditional mean equation, thereby leading to difficult 

interpretations of the estimated parameters. Indeed, the fractional differencing operator 

applies to the constant term in the mean equation (ARFIMA), while it does not do so in the 

variance equation (FIGARCH). Therefore, Chung (1999) redefines the FIGARCH model as: 

( )( ) ( ) ( ) ( )2 2 2 21 1⎡ ⎤− − = − −⎣ ⎦
d

t t tL L Lφ ε σ β ε σ ,                              (13) 

where 2σ  is the unconditional variance of tε . If we retain the same definition of ( )Lλ  as in 

(13), we can formulate the conditional variance as: 

( ) ( )( ){ }( )12 2 21 1 1
−

⎡ ⎤= + − − − −⎣ ⎦
d

t th L L Lσ β φ ε σ                            (14) 

or                                                     ( )( )2 2 2= + −t th Lσ λ ε σ .                                              (15) 

 

In order to accommodate asymmetries between positive and negative shocks, called the 

leverage effect, Bollerslev and Mikkelsen (1996) extend the FIGARCH process to 

FIEGARCH, to correspond with Nelson’s (1991) Exponential GARCH model to allow for 

asymmetry. The FIEGARCH(p,d,q) model is given as 

( ) ( ) ( ) ( ) ( )1
1ln 1 1− −
−⎡ ⎤= + − +⎣ ⎦

d
t th L L L g zω φ α ,                            (16)        
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where ( ) ⎡ ⎤= + −⎣ ⎦t t t tg z z z E zθ γ , the first term ( )tzθ  is the sign effect, and the second term 

( )t tz E zγ ⎡ ⎤−⎣ ⎦  is the magnitude effect. All the roots of ( )Lφ  and ( )Lλ  are an 

autoregressive polynomial and a moving average polynomial in the lag operator L and lie 

outside the unit circle, and both polynomials do not have a common root. When 0=d , the 

FIEGARCH(p,d,q) process reduces to EGARCH of Nelson (1991), and when 1d = , the 

process becomes integrated EGARCH (IEGARCH). Bollerslev and Mikkelson (1996) 

presented evidence on the efficiency of QMLE applied to estimate the parameters of the 

FIEGARCH process. 

 

Tse (1998) proposed a model which combines the fractionally integrated GARCH 

formulation of Baillie et al. (1996) with the asymmetric power ARCH specification of Ding, 

Granger and Engle (1993) (see Ling and McAleer (2002) for the theoretical properties of the 

model). This model increases the flexibility of the conditional variance specification by 

allowing: (a) an asymmetric response of volatility to positive and negative shocks; (b) the 

data to determine that power of returns for which the predictable structure in the volatility 

pattern is the strongest; and (c) long range volatility dependence. The FIAPARCH(p,d,q) 

model can be written as: 

( ) ( )( ){ }( )1
1 1 1

−
⎡ ⎤= + − − − −⎣ ⎦

d
t t tL L L

δδσ ω β φ ε γε ,                           (17) 

where γ  is the leverage coefficient, and δ  is the parameter for the power term that takes 

(finite) positive values. When 0=d , the FIAPARCH(p,d,q) process reduces to APARCH of 

Ding et al. (1993). When 0γ =  and 2δ = , the process in (13) reduces to the 

FIGARCH(p,d,q) specification, which includes Bollerslev’s (1986) model when d = 0, and 

the integrated specification when d = 1, as special cases. 

 

3. Data 

 

The data are daily synchronous closing futures prices of agricultural futures on different 

major US commodity futures markets, specifically, the Chicago Broad of Trade (CBOT) for 

corn, oats, soybeans, soybean meal, soybean oil and wheat; the Chicago Mercantile Exchange 

(CME) for cattle feeder, live cattle and pork, the New York Broad of Trade (NYBOT) for 

cocoa, cotton, coffee and orange juice, and Kansas City Broad of Trade (KCBOT) for wheat. 
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The 7,889 price observations from 4 January 1979 to 16 April 2009 are obtained from the 

DataStream database service.  

 

This paper also focuses on two important commodity futures prices of tropical rain plants, 

namely rubber (RSS3), trading on the Tokyo Stock Exchange (TOCOM), which 5,012 price 

observations started from 23 January 1990 to 8 April 2009, and palm oil, trading on the 

Malaysia Derivatives Exchange (MDEX), which 7,425 price observations started from 23 

October 1980 to 8 April 2009. These two commodity futures prices are expressed in local 

currencies and are obtained from Reuters. The returns of agricultural futures prices i of 

commodity j at time t in a continuous compound basis are calculated as ( ), , , 1logij t ij t ij tr P P −= , 

where ,ij tP  and , 1ij tP −  are the closing prices of the agricultural futures prices i of commodity j 

for day t  and 1−t , respectively.  

 

The descriptive statistics for the agricultural commodity futures returns series are 

summarized in Table 1. The sample mean is quite small, but the corresponding variance of 

returns is much higher. Surprisingly, 4 of 16 return series have negative average returns, 

namely cocoa, coffee, cotton and orange juice. The normal distribution has a skewness 

statistic equal to zero and a kurtosis statistic of 3, but these agricultural commodity futures 

returns have high kurtosis, suggesting the presence of fat tails, and 9 of 16 return series have 

negative skewness, signifying the series have a longer left tail (extreme loss) than  right tail 

(extreme gain). The Jarque-Bera (J-B) test Lagrange multiplier statistics of the agricultural 

commodity futures return series are statistically significant, thereby signifying that the 

distributions for these returns are not normal, which may be due partly to the presence of 

extreme observations. 

 

[Insert Table 1 here] 

 

Figures 1-2 present the plots of synchronous agricultural commodity futures returns. These 

indicate volatility clustering, or periods of high volatility followed by periods of tranquility, 

such that agricultural commodity futures returns fluctuate in a range smaller than under the 

normal distribution. However, there are some circumstances where agricultural commodity 

futures returns oscillate in a much wider scale that is permitted by a normal distribution. 
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[Insert Figures 1-2 here] 

 

The unit root test for all commodity futures returns are summarized in Table 2. All unit root 

tests are conducted with EViews 6 econometric software package. The Augmented Dickey-

Fuller (ADF) and Phillips-Perron (PP) tests were used to explore the existence of unit roots in 

the individual returns series. The ADF test accommodates serial correlation by specifying 

explicitly the structure of serial correlation in the error, but the PP test allows fairly mild 

assumptions that do not assume a specific type of serial correlation and heteroskedastity in 

the disturbances, and can have higher power than the ADF test under a wide range of 

circumstances. These results are checked by also performing the KPSS test. The null 

hypothesis of the ADF and PP tests is that the series have a unit root, while the null 

hypothesis of the KPSS test is that the series are stationary. 

 

In Table 2, based on the ADF and PP test results, the large negative values in all cases 

indicate rejection of the null hypothesis at the 1% level. In addition, based on the KPSS test, 

the results indicate that the null hypothesis is not rejected at the 1% level, such that all 

agricultural commodity futures returns series are stationary. 
 

[Insert Table 2 here] 

 

4. Empirical Results 

 

This section investigates a relevant framework of the conditional variance model through 

comparison among different specifications. The univariate conditional volatility model, 

namely the GARCH model of Bollerslev (1986), EGARCH model of Nelson (1991) and 

APARCH model of Ding et al. (1993), and fractionally integrated class of models, namely 

the FIGARCH model of Baillie et al. (1996), FIGARCH model of Chung (1999), 

FIEGARCH model of Bollerslev and Mikkelsen (1996), FIAPARCH model of Tse (1998), 

and FIAPARCH model of Chung (1996) with Gaussian errors, are estimated by QMLE, 

which allows for asymptotically valid inferences when the standardized innovations are not 

normally distributed. Corresponding estimates are obtained using the BFGS algorithm. The 

computations are performed using the Ox/G@RCH 4.2 econometrics software package of 

Laurent and Peters (2006). 
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[Insert Table 3 here] 

 

The univariate estimates of the conditional volatilities, GARCH(1,1), EGARCH(1,1) and 

APARCH(1,1) of each agricultural commodity futures returns are given in Tables 3 to 5. 

Their respective estimates and robust t-ratios of each parameters are presented including 

information criteria, namely AIC and SIC. Table 3 presents the estimates of the GARCH(1,1) 

models from equation (1) and (2) for commodity futures returns. The coefficients in the 

conditional variance equation are all significant, but with corn, cotton and wheat (Kansas 

City wheat), only in the long run. The details of the univariate estimates relating to the 

structural properties, namely the second moment and log-moment conditions, based on 

agricultural commodity futures returns, are available from the authors upon request. 

 

[Insert Table 4 here] 

 

Table 4 shows the estimates of the EGARCH(1,1) models from equations (5) and (6) for 

commodity futures returns. Most commodity futures returns show that the estimates of 2γ  are 

statistically significant, meaning that these returns have an asymmetric effect of negative and 

positive shocks on the conditional variance. Surprisingly, only for cattlef (cattle feeder) and 

pork are both estimates of 1γ  and 2γ  statistically significant, and 1 0γ < , indicating that the 

conditional variance has a leverage effect. However, for the remainder, namely cattle (live 

cattle), cotton, soybeans and soy bean oil), the estimates of 1γ  and 2γ  are not statistically 

significant, meaning that an asymmetric effect of negative and positive shocks on conditional 

variance is not present. Therefore, the GARCH model is preferred to EGARCH for live 

cattle, soybeans, soybean oil and palm oil. 

 

[Insert Table 5 here] 

 

Table 5 presents the estimates of the APARCH(1,1) model from equation (7) for agricultural 

commodity futures returns. The power ( )δ  term estimated for APARCH is statistically 

significant for each of these commodity futures returns, ranging from 0.700 for Chicago 

wheat to 1.779 for soybean oil. The asymmetric ( )γ  term in the APARCH(1,1) model is 
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statistically significant in 7 of 16 cases, whereas only 5 commodities, namely coffee, 

soybeans, soybean meal, soybean oil, and Kansas City wheat, has 0γ < , which means that 

these conditional volatilities have leverage effects. These results suggest that GARCH may 

not be appropriate for commodity futures returns. 

 

[Insert Table 6 here] 

 

The parameters estimated for the FIGARCH-BBM(1,1) and FIGARCH-Chung(1,1) models 

are summarized in Tables 6-7. Table 6 presents the estimated FIGARCH-BBM(1,1) from 

equation (9). The ARCH effects are statistically significant in 10 of 16 agricultural 

commodity futures returns, while the GARCH effects are statistically significant in 15 of 16 

agricultural commodity futures returns. However, the sum of the ARCH(1) and GARCH(1) 

effects is greater than one in 6 commodities, namely live cattle, cattle feeder, cocoa, coffee, 

corn and cotton, which indicates nonstationarity. The estimated d parameters in FIGARCH in 

all commodity futures returns lie between 0 and 1, indicating the stability of the process, but 

for cotton the estimated d parameter is not statically different from 0, so it reduces to the 

GARCH model. 

 

[Insert Table 7 here] 

 

The results for the FIGARCH-Chung model from equation (13) are reported in Table 7, and 

mirror those in Table 6. The GARCH effects are statistically significant for 15 of 16 

commodity futures returns, but the ARCH effects are statistically significant for 12 of 16 

commodity futures returns. There are 6 commodities, namely live cattle, cattle feeder, cocoa, 

coffee, corn and cotton, for which the sum of the ARCH(1) and GARCH(1) effects is greater 

than 1, indicating nonstationarity. However, the estimated d parameters in the FIGARCH-

Chung model in all agricultural commodity futures returns are statistically significant, and lie 

between 0 and 1, thereby indicating the stability of the process. Therefore, the FIGARCH-

Chung model is preferred to FIGARCH-BBM. 

 

[Insert Table 8 here] 

 

Table 8 presents the estimates of the FIEGARCH(1,1) model from equation (16). The 
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estimated 2γ  parameters are statistically significant in 9 of 16 agricultural commodity futures 

returns, meaning these returns have asymmetric effects of negative and positive shocks on the 

conditional variance. However, only for cattle feeder are both the estimates of 1γ  and 2γ  

statistically significant, and 1 0γ < , indicating that the conditional variance has a leverage 

effect. For the remainder, namely live cattle, coffee, cotton, soybeans, soybean oil, palm oil 

and rubber, the estimates of 1γ  and 2γ  are not statistically significant, such that an 

asymmetric effect of negative and positive shocks of equal magnitude on the conditional 

variance is not observed. Thus, for these agricultural commodity futures return series, the 

FIGARCH model is preferred to FIEGARCH. The estimated d parameters in FIEGARCH are 

statistically significant in 9 of 16 cases and lie between 0 and 1, thereby indicating the 

stability of the process. 

 

[Insert Tables 9 and 10 here] 

 

Tables 9 and 10 show the estimates of the FIAPARCH(1,1) model of Tse (1998) and 

FIAPARCH(1,1) model of Chung (1999), respectively. Table 9 presents the estimates of the 

FIAPARCH(1,1) model of Tse (1998) for agricultural commodity futures returns. The power 

parameter estimates ( )δ  of all agricultural commodity futures returns are statistically 

significant, and range from 0.570 for live cattle to 2.184 for orange juice. The asymmetric 

( )γ  term in the FIAPARCH(1,1) model is statistically significant in 9 of 16 cases, but only 6 

commodities, namely coffee, soybeans, soybean meal, soybean oil, Chicago wheat and 

Kansas City wheat, have 0γ < , so that these conditional volatilities have leverage effects. In 

addition, the estimated d for all agricultural commodity futures returns is statistically 

significant. Therefore, the FIGARCH model is not appropriate for modelling agricultural 

commodity futures returns.  

 

Table 10 presents the estimates of the FIAPARCH(1,1) model of Chung (1999) for 

agricultural commodity futures returns. The power parameter estimates ( )δ  of all agricultural 

commodity futures returns are statistically significant, and range from 0.570 for live cattle to 

2.184 for orange juice. The asymmetric ( )γ  term in the FIAPARCH(1,1) model is 

statistically significant in 7 of 16 cases, but only for 4 commodities, namely coffee, soybeans, 
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soybean oil, and Kansas City wheat, is 0γ < , so that these conditional volatilities have 

leverage effects. In addition, the estimated d parameters for all agricultural commodity 

futures returns are statistically significant, which leads to the same conclusion as 

FIAPARCH(1,1)-Chung, namely that FIGARCH is not appropriate for modelling commodity 

futures returns.  

 

5.  Concluding Remarks 

 

The paper estimated the long memory volatility model in 16 agricultural commodity futures 

returns from different futures markets, namely CBOT for corn, oats, soybeans, soybean meal, 

soybean oil and wheat; CME for live cattle, cattle feeder and pork; NBOT for cocoa, coffee, 

cotton, and orange juice; KCBT for wheat; TOCOM for rubber (RSS3); and MDEX for palm 

oil. The class of fractional GARCH models, namely FIGARCH of Baillie et al. (1996), 

FIEGACH of Bollerslev and Mikkelsen (1996), and FIAPARCH of Tse (1998), were 

estimated and compared with the GARCH model of Bollerslev (1986), EGARCH of Nelson 

(1991), and APARCH of Ding et al. (1993).  

 

The empirical results showed that, following the outcomes of the unit root tests, all 

agricultural commodity futures returns series were found to be stationary. The EGARCH 

(1,1) model out-performed GARCH(1,1), and the APARCH model was also preferred to 

GARCH(1,1). The robust t statistics of the estimated d parameters, indicating long term 

dependence, suggested evidence of fractional integration in most agricultural commodity 

futures markets. Consequently, the fractionally integrated models, namely FIGARCH(1,d,1) 

and FIEGARCH(1,d,1), performed significantly better than traditional conditional volatility 

models, such as GARCH(1,1) and EGARCH(1,1), for modelling agricultural commodity 

futures returns.  
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Table 1. Descriptive Statistics for Agricultural Commodity Futures Returns 
 

Commodity Mean Max Min S.D. Skewness Kurtosis Jarque-Bera 
cattlef 0.001 2.950 -2.610 0.408 -0.047 5.818 2613.18 
cattlel 0.002 3.962 -4.224 0.473 -0.392 10.139 16955.27 
cocoany -0.002 5.455 -5.435 0.843 0.086 6.168 3307.76 
coffee -0.0009 10.324 -8.337 0.994 0.164 10.908 20589.09 
corn 0.003 4.256 -9.403 0.649 -0.362 14.890 46640.28 
cotton -0.002 7.257 -32.538 0.785 -9.469 388.23 48891741 
oats 0.002 5.618 -8.693 0.867 0.030 8.557 10152.27 
orange -0.003 10.378 -6.001 0.800 0.592 15.693 53412.20 
pork 0.002 24.890 -14.843 1.111 3.606 76.760 1805221 
soybean 0.002 3.276 -5.391 0.627 -9.350 6.882 5114.587 
soymeal 0.003 3.855 -6.507 0.675 -0.330 7.819 7776.195 
soyoil 0.002 3.786 -3.912 0.672 0.093 4.981 1301.018 
wheatc 0.003 4.055 -6.949 0.717 -0.085 9.085 12179.78 
wheatk 0.003 3.776 -6.339 0.620 -0.171 9.189 12627.68 
palm 0.008 6.638 -7.359 0.781 0.031 11.503 22369.98 
rubber 0.005 8.580 -9.684 0.998 -0.547 11.176 14207.00 
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Table 2. Unit Root Tests for Returns 
 

Augmented Dicky-Fuller Phillip-Peron KPSS Commodity N C C&T N C C&T C C&T 
cattlef -85.464 -85.459 -85.454 -85.409 -85.404 -85.400 0.036 0.027 
cattlel -85.863 -85.858 -85.853 -85.820 -85.815 -85.810 0.011 0.012 
cocoany -88.423 -88.418 -88.435 -88.423 -88.418 -88.438 0.206 0.019 
coffee -88.719 -88.714 -88.709 -88.736 -88.730 -88.725 0.036 0.029 
corn -84.407 -84.404 -84.400 -84.394 -84.391 -84.387 0.057 0.039 
cotton -87.648 -87.643 -87.638 -87.640 -87.635 -87.630 0.020 0.015 
oats -84.353 -84.348 -84.343 -84.355 -84.351 -84.345 0.025 0.025 
orange -64.808 -64.805 -64.802 -87.357 -87.33 -87.348 0.035 0.028 
pork -84.964 -84.959 -84.954 -85.010 -85.005 -85.000 0.014 0.011 
soybean -88.635 -88.630 -88.629 -88.682 -88.677 -88.675 0.063 0.026 
soymeal -86.635 -86.631 -86.629 -86.637 -86.629 -86.626 0.049 0.024 
soyoil -87.113 -87.108 -87.106 -87.139 -87.134 -87.131 0.058 0.028 
wheatc -87.264 -87.259 -87.255 -87.353 -87.348 -87.345 0.051 0.032 
wheatk -84.906 -84.903 -84.899 -84.909 -84.906 -84.902 0.055 0.038 
palm -35.215 -35.221 -35.219 -84.210 -84.195 -84.191 0.023 0.022 
rubber -68.064 -68.060 -68.055 -68.043 -68.038 -68.033 0.073  0.052 
Note: All entries are significant at the 1% level. 
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Table 3. Estimated GARCH(1,1) Models 

Commodity ω  α  β  AIC SIC 
cattlef 0.001 

2.503 
0.029 
5.082 

0.967 
135.1 

0.919 0.917 

cattlel 0.001 
2.334 

0.009 
4.411 

0.988 
334.6 

1.287 1.285 

cocoa 0.004 
2.382 

0.027 
5.368 

0.969 
155.9 

2.427 2.425 

coffee 0.008 
2.566 

0.060 
6.275 

0.936 
91.10 

2.620 2.619 

corn 0.016 
1.029 

0.090 
1.263 

0.874 
8.702 

1.806 1.805 

cotton 0.112 
0.996 

0.022 
0.617 

0.801 
6.106 

2.351 2.350 

oats 0.052 
2.972 

0.124 
4.170 

0.815 
18.12 

2.451 2.450 

orange 0.004 
1.380 

0.044 
2.075 

0.953 
43.40 

2.280 2.278 

pork 0.016 
1.739 

0.136 
5.628 

0.877 
51.05 

2.875 2.874 

soybean 0.004 
4.085 

0.062 
10.95 

0.929 
146.9 

1.707 1.706 

soymeal 0.006 
2.985 

0.053 
7.478 

0.936 
101.3 

1.897 1.896 

soyoil 0.008 
3.736 

0.048 
6.625 

0.935 
85.83 

1.935 1.934 

wheatc 0.009 
1.805 

0.036 
3.281 

0.947 
48.51 

2.072 2.070 

wheatk 0.011 
0.664 

0.085 
0.960 

0.891 
7.306 

1.703 1.702 

palm 0.009 
3.626 

0.102 
8.824 

0.886 
66.72 

1.839 1.837 

rubber 0.035 
2.633 

0.110 
3.960 

0.861 
24.53 

1.686 1.685 

Notes: (1) The two entries for each parameter are their respective parameter estimates and robust t- ratios.  
            (2) Entries in bold are significant at the 5% level. 
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Table 4. Estimated EGARCH(1,1) Models 

Commodity ω  α  β  
1γ  2γ  AIC SIC 

cattlef -1.503 
-12.25 

0.028 
0.063 

0.993 
501.5 

-0.037 
-2.371 

0.051 
2.312 

0.903 0.901 

cattlel -1.117 
-4.969 

3.372 
0.678 

0.994 
296.4 

-0.002 
-0.564 

0.007 
0.852 

1.061 1.059 

cocoany 0.147 
0.753 

-0.078 
-0.204 

0.991 
339.8 

0.015 
1.404 

0.082 
2.394 

2.424 2.422 

coffee 0.909 
2.612 

-0.244 
-1.661 

0.989 
302.4 

0.042 
3.215 

0.188 
5.804 

2.290 2.288 

corn -0.542 
-3.806 

-0.616 
-5.060 

0.981 
165.5 

-0.029 
-0.880 

0.286 
3.192 

1.790 1.788 

cotton -0.432 
-3.004 

0.206 
0.156 

0.839 
4.973 

0.045 
0.561 

0.043 
1.141 

2.349 2.347 

oats -0.001 
-0.008 

-0.428 
-2.290 

0.965 
61.82 

-0.009 
-0.429 

0.257 
5.713 

2.440 2.439 

orange 0.415 
1.337 

-0.329 
-1.028 

0.986 
112.2 

-0.011 
-0.625 

0.163 
4.624 

2.272 2.270 

pork 0.519 
1.040 

0.240 
0.468 

0.992 
236.5 

-0.027 
-2.088 

0.086 
2.064 

2.735 2.734 

soybean -0.540 
-3.060 

1.435 
1.090 

0.987 
336.3 

0.011 
1.716 

0.059 
1.832 

1.701 1.699 

soymeal -0.417 
-2.781 

-0.027 
-0.092 

0.984 
230.9 

0.024 
2.586 

0.120 
3.336 

1.892 1.890 

soyoil -0.582 
-6.521 

1.184 
0.780 

0.982 
185.8 

0.007 
0.991 

0.050 
1.466 

1.939 1.937 

wheatc -0.421 
-3.221 

-0.410 
-1.907 

0.983 
128.7 

0.028 
0.988 

0.159 
3.302 

2.058 2.056 

wheatk -0.657 
-5.355 

-0.457 
-3.794 

0.979 
126.2 

0.057 
2.655 

0.238 
5.799 

1.687 1.685 

palm -0.054 
-0.324 

0.248 
0.903 

0.974 
169.2 

0.010 
1.403 

0.169 
4.833 

1.847 1.845 

rubber 0.343 
1.938 

-0.583 
-6.038 

0.971 
85.46 

0.001 
0.018 

0.387 
6.549 

1.680 1.678 

Notes: (1) The two entries for each parameter are their respective parameter estimates and robust t- ratios.  
            (2) Entries in bold are significant at the 5% level. 
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Table 5. Estimated APARCH(1,1) Models 

Commodity ω  α  β  γ  δ  AIC SIC 
cattlef 0.002 

2.362 
0.027 
4.276 

0.972 
160.6 

0.624 
4.953 

1.176 
8.747 

0.903 0.901 

cattlel 0.003 
1.563 

0.016 
3.605 

0.983 
161.3 

0.337 
1.544 

0.936 
6.264 

1.063 1.062 

cocoany 0.005 
2.442 

0.037 
6.695 

0.965 
163.0 

-0.090 
-1.028 

1.245 
7.124 

2.423 2.421 

coffee 0.010 
2.806 

0.071 
6.776 

0.935 
94.03 

-0.159 
-2.627 

1.427 
10.10 

2.615 2.613 

corn 0.017 
1.852 

0.080 
2.176 

0.914 
20.99 

0.158 
1.514 

1.095 
4.737 

1.794 1.792 

cotton 0.002 
1.133 

0.033 
4.773 

0.974 
122.5 

-0.130 
-0.633 

1.021 
4.221 

1.967 1.965 

oats 0.045 
2.899 

0.108 
4.560 

0.869 
25.43 

0.049 
0.748 

1.032 
9.013 

2.440 2.439 

orange 0.008 
1.425 

0.058 
2.466 

0.950 
44.09 

0.068 
0.641 

1.202 
6.630 

2.272 2.2707 

pork 0.006 
1.636 

0.070 
5.849 

0.945 
113.4 

0.444 
3.518 

0.858 
12.04 

2.825 2.824 

soybean 0.006 
3.700 

0.071 
10.75 

0.935 
162.6 

-0.186 
-3.487 

1.240 
7.972 

1.701 1.699 

soymeal 0.010 
3.479 

0.061 
7.960 

0.941 
112.4 

-0.226 
-2.758 

1.039 
6.768 

1.889 1.888 

soyoil 0.008 
3.543 

0.049 
6.549 

0.939 
81.92 

-0.127 
-2.814 

1.779 
10.34 

1.935 1.933 

wheatc 0.014 
2.869 

0.051 
5.665 

0.945 
82.52 

-0.200 
-1.779 

0.700 
5.667 

2.055 2.053 

wheatk 0.012 
2.814 

0.073 
5.053 

0.925 
52.11 

-0.223 
-2.621 

1.074 
7.527 

1.687 1.685 

palm 0.010 
3.720 

0.106 
8.975 

0.890 
69.52 

-0.057 
-1.574 

1.780 
11.09 

1.838 1.836 

rubber 0.037 
2.941 

0.117 
4.777 

0.870 
28.75 

-0.015 
-0.220 

1.507 
7.973 

1.685 1.684 

Notes: (1) The two entries for each parameter are their respective parameter estimates and robust t- ratios.  
            (2) Entries in bold are significant at the 5% level 
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Table 6. Estimated FIGARCH(1,1)-BBM Models 

Commodity ω  d α  β  AIC SIC 
cattlef 0.008 

2.866 
0.317 
8.382 

0.383 
7.048 

0.648 
10.16 

0.9172 0.916 

cattlel 0.025 
2.771 

0.186 
5.887 

0.526 
5.062 

0.681 
7.428 

1.293 1.291 

cocoany 0.008 
2.866 

0.317 
8.382 

0.383 
7.048 

0.648 
10.16 

0.917 0.916 

coffee 0.019 
3.204 

0.431 
7.607 

0.404 
7.822 

0.716 
16.40 

2.611 2.609 

corn 0.031 
1.916 

0.278 
5.865 

0.452 
2.310 

0.555 
2.892 

1.791 1.789 

cotton 0.085 
1.489 

-0.009 
-0.723 

0.874 
9.280 

0.849 
7.167 

2.351 2.350 

oats 0.085 
1.798 

0.283 
6.228 

0.191 
0.686 

0.321 
1.108 

2.440 2.439 

orange 0.057 
2.300 

0.295 
8.201 

0.226 
1.259 

0.439 
2.450 

2.269 2.267 

pork 0.035 
3.229 

0.935 
12.99 

-0.119 
-1.981 

0.817 
21.66 

2.867 2.866 

soybean 0.003 
2.683 

0.982 
11.36 

-0.014 
-0.222 

0.924 
34.93 

1.709 1.708 

soymeal 0.019 
2.031 

0.375 
4.903 

0.338 
4.841 

0.631 
5.719 

1.898 1.897 

soyoil 0.023 
3.958 

0.344 
9.458 

0.276 
7.788 

0.592 
12.93 

1.932 1.931 

wheatc 0.060 
2.054 

0.216 
5.171 

0.402 
2.630 

0.533 
3.347 

2.068 2.066 

wheatk 0.038 
2.639 

0.309 
5.378 

0.153 
1.006 

0.342 
2.634 

1.693 1.691 

palm 0.025 
2.961 

0.451 
7.399 

0.074 
0.860 

0.419 
3.411 

1.835 1.834 

rubber 0.052 
1.666 

0.335 
4.345 

0.471 
2.463 

0.600 
3.063 

1.677 1.676 

Notes: (1) The two entries for each parameter are their respective parameter estimates and robust t- ratios.  
            (2) Entries in bold are significant at the 5% level. 
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Table 7. Estimated FIGARCH(1,1)-Chung Models 

Commodity ω  d α  β  AIC SIC 
cattlef 0.177 

4.886 
0.341 
7.784 

0.373 
7.009 

0.661 
10.09 

0.918 0.917 

cattlel 0.229 
8.738 

0.194 
5.603 

0.521 
4.965 

0.683 
7.369 

1.294 1.293 

cocoany 0.713 
5.801 

0.340 
8.789 

0.405 
9.284 

0.696 
15.63 

2.429 2.427 

coffee 0.753 
2.374 

0.402 
8.556 

0.417 
8.338 

0.701 
15.80 

2.611 2.609 

corn 0.423 
4.566 

0.251 
6.872 

0.465 
2.300 

0.554 
2.845 

1.792 1.790 

cotton 0.452 
3.680 

0.387 
12.73 

0.359 
10.10 

0.714 
21.33 

1.985 1.984 

oats 0.815 
5.644 

0.259 
6.752 

0.189 
0.612 

0.304 
0.953 

2.441 2.440 

orange 0.579 
4.572 

0.271 
9.713 

0.232 
1.246 

0.427 
2.265 

2.270 2.270 

pork 1.949 
2.290 

0.483 
9.418 

0.245 
4.970 

0.673 
14.34 

2.717 2.716 

soybean 0.490 
2.875 

0.472 
7.383 

0.233 
5.852 

0.665 
8.618 

1.711 1.710 

soymeal 0.426 
4.573 

0.341 
6.086 

0.343 
4.663 

0.607 
6.094 

1.899 1.898 

soyoil 0.466 
5.327 

0.344 
10.11 

0.277 
8.007 

0.593 
13.16 

1.932 1.931 

wheatc 0.517 
7.706 

0.207 
5.272 

0.401 
2.545 

0.526 
3.194 

2.068 2.067 

wheatk 0.354 
3.743 

0.259 
8.001 

0.167 
1.090 

0.318 
2.165 

1.694 1.693 

palm 1.024 
1.972 

0.449 
9.195 

0.083 
1.020 

0.425 
3.928 

1.836 1.834 

rubber 1.112 
3.082 

0.310 
5.927 

0.486 
2.390 

0.599 
2.995 

1.678 1.677 

Notes: (1) The two entries for each parameter are their respective parameter estimates and robust t- ratios.  
            (2) Entries in bold are significant at the 5% level. 
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Table 8. Estimated FIEGARCH(1,1) Models 

Commodity ω  d α  β  
1γ  2γ  AIC SIC 

cattlef -1.115 
-6.773 

0.671 
12.08 

0.199 
0.273 

0.594 
3.440 

-0.036 
-2.179 

0.041 
2.054 

0.897 0.896 

cattlel -0.749 
-3.099 

0.712 
7.814 

2.348 
1.252 

-0.871 
-8.347 

-0.019 
-1.044 

0.033 
1.361 

1.268 1.266 

cocoany 0.157 
0.904 

0.102 
0.305 

-0.264 
-0.428 

0.986 
44.32 

0.015 
1.386 

0.082 
2.412 

2.425 2.422 

coffee 0.967 
3.828 

0.329 
3.622 

-0.641 
-5.960 

0.946 
28.95 

0.041 
2.953 

0.200 
6.074 

2.613 2.612 

corn -0.302 
-1.373 

0.236 
2.238 

-0.794 
-8.174 

0.958 
40.68 

-0.031 
-0.902 

0.306 
3.438 

1.791 1.790 

cotton -0.439 
-3.396 

0.086 
0.259 

2.979 
1.558 

-0.261 
-0.798 

0.057 
1.438 

0.063 
1.347 

2.343 2.341 

oats 0.372 
1.821 

0.361 
3.877 

-0.348 
-0.600 

0.749 
2.501 

-0.010 
-0.456 

0.262 
5.408 

2.435 2.433 

orange 0.719 
3.034 

0.473 
10.82 

0.202 
0.336 

0.532 
4.882 

-0.0001 
-0.014 

0.150 
3.784 

2.263 2.262 

pork 0.590 
1.325 

0.301 
2.052 

-0.326 
-0.999 

0.967 
52.04 

-0.027 
1.904 

0.088 
2.026 

2.734 2.733 

soybean -0.409 
-2.024 

0.195 
1.836 

0.785 
0.721 

0.969 
66.44 

0.011 
1.701 

0.056 
1.781 

1.701 1.699 

soymeal -0.179 
-0.586 

0.300 
1.387 

-0.363 
-1.376 

0.937 
15.18 

0.028 
2.552 

0.119 
3.078 

1.893 1.891 

soyoil -0.283 
-1.863 

0.454 
7.069 

0.859 
0.624 

0.827 
15.01 

0.007 
1.085 

0.045 
1.449 

1.936 1.934 

wheatc -0.298 
-2.103 

0.254 
1.967 

-0.666 
-4.007 

0.949 
26.73 

0.037 
1.513 

0.166 
3.562 

2.057 2.055 

wheatk -0.420 
-2.394 

0.398 
5.843 

-0.295 
-0.619 

0.685 
3.003 

0.060 
2.835 

0.242 
5.762 

1.683 1.681 

palm -0.207 
-1.050 

-0.226 
-2.284 

0.966 
1.905 

0.992 
181.0 

0.008 
1.153 

0.160 
4.323 

1.845 1.844 

rubber 0.873 
2.368 

0.321 
2.737 

-0.771 
-9.088 

0.921 
23.89 

0.0001 
0.005 

0.386 
6.538 

1.678 1.676 

Notes: (1) The two entries for each parameter are their respective parameter estimates and robust t- ratios.  
            (2) Entries in bold are significant at the 5% level. 
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Table 9. Estimated FIAPARCH(1,1)-BBM Models 

Commodity ω  d α  β  γ  δ  AIC SIC 
cattlef 0.023 

2.163 
0.302 
3.141 

0.367 
6.439 

0.632 
9.932 

0.605 
3.202 

1.438 
5.574 

0.904 0.902 

cattlel 0.105 
3.575 

0.282 
5.968 

0.343 
6.794 

0.633 
9.319 

0.532 
3.236 

0.570 
2.666 

1.269 1.268 

cocoany 0.044 
3.433 

0.487 
2.317 

0.329 
3.226 

0.764 
6.631 

-0.139 
-1.621 

1.441 
2.427 

2.427 2.425 

coffee 0.016 
1.431 

0.405 
5.897 

0.405 
6.663 

0.696 
14.78 

-0.132 
-2.385 

2.042 
14.31 

2.609 2.607 

corn 0.051 
1.957 

0.414 
5.685 

0.378 
2.756 

0.626 
4.862 

0.079 
0.795 

1.422 
4.603 

1.787 1.785 

cotton 0.288 
2.849 

0.342 
9.604 

0.333 
8.016 

0.625 
16.41 

0.049 
0.774 

2.092 
24.29 

1.920 1.918 

oats 0.129 
3.155 

0.406 
6.810 

0.246 
2.168 

0.510 
3.831 

0.030 
0.366 

1.105 
8.080 

2.432 2.430 

orange 0.041 
1.415 

0.260 
5.016 

0.206 
0.9544 

0.387 
1.681 

0.034 
0.413 

2.184 
8.244 

2.269 2.267 

pork 1.197 
1.398 

0.385 
5.705 

0.225 
2.548 

0.605 
4.757 

0.771 
3.255 

1.605 
17.34 

2.846 2.844 

soybean 0.009 
2.355 

0.943 
16.78 

-0.002 
-0.059 

0.910 
45.53 

-0.189 
-3.487 

1.326 
5.955 

1.700 1.698 

soymeal 0.007 
1.760 

1.062 
15.55 

-0.039 
-0.772 

0.957 
47.86 

-0.221 
-2.476 

1.088 
5.124 

1.889 1.888 

soyoil 0.483 
3.151 

0.339 
10.19 

0.295 
8.113 

0.601 
13.91 

-0.134 
-2.752 

1.940 
22.75 

1.930 1.928 

wheatc 0.071 
3.354 

0.417 
5.543 

0.379 
5.924 

0.707 
9.658 

-0.281 
-2.305 

0.866 
4.950 

2.056 2.054 

wheatk 0.059 
2.529 

0.380 
6.148 

0.275 
1.818 

0.535 
3.019 

-0.252 
-3.300 

1.397 
7.279 

1.682 1.680 

palm 0.029 
2.611 

0.463 
7.587 

0.087 
1.098 

0.448 
3.803 

-0.055 
-1.504 

1.917 
17.45 

1.835 1.833 

rubber 0.063 
2.309 

0.430 
2.914 

0.445 
3.865 

0.667 
4.619 

-0.021 
-0.282 

1.707 
5.942 

1.677 1.675 

Notes: (1) The two entries for each parameter are their respective parameter estimates and robust t- ratios.  
            (2) Entries in bold are significant at the 5% level 
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Table 10. Estimated FIAPARCH(1,1)-Chung Models 

Commodity ω  d α  β  γ  δ  AIC SIC 
cattlef 0.428 

4.844 
0.297 
9.006 

0.369 
9.125 

0.629 
13.61 

0.604 
4.719 

1.434 
15.14 

0.903 0.901 

cattlel 0.738 
5.080 

0.187 
6.670 

0.361 
5.371 

0.540 
7.315 

0.867 
2.727 

1.071 
11.21 

1.272 1.271 

cocoany 0.735 
3.984 

0.342 
8.679 

0.399 
9.713 

0.696 
16.40 

-0.100 
-1.475 

1.977 
22.29 

2.428 2.426 

coffee 0.612 
1.796 

0.394 
7.953 

0.415 
7.770 

0.693 
14.62 

-0.129 
-2.334 

2.036 
26.45 

2.608 2.606 

corn 0.416 
2.646 

0.254 
6.456 

0.410 
2.122 

0.506 
2.770 

0.080 
0.947 

2.004 
14.38 

1.791 1.789 

cotton 0.289 
2.849 

0.341 
9.604 

0.333 
8.016 

0.625 
16.41 

0.049 
0.774 

2.092 
24.29 

1.920 1.918 

oats 0.850 
2.722 

0.264 
7.394 

0.133 
0.520 

0.271 
1.032 

0.118 
1.595 

1.961 
14.71 

2.440 2.438 

orange 0.247 
2.232 

0.237 
7.340 

0.189 
0.798 

0.350 
1.444 

0.052 
0.670 

2.239 
20.58 

2.267 2.265 

pork 1.197 
1.398 

0.385 
5.705 

0.225 
2.548 

0.605 
4.757 

0.771 
3.255 

1.605 
17.34 

2.846 2.844 

soybean 0.495 
2.478 

0.487 
8.227 

0.242 
7.835 

0.699 
12.23 

-0.196 
-3.672 

1.943 
26.02 

1.707 1.705 

soymeal 0.422 
2.821 

0.354 
6.844 

0.348 
5.817 

0.631 
7.847 

-0.147 
-1.906 

1.964 
19.05 

1.897 1.895 

soyoil 0.483 
3.151 

0.339 
10.19 

0.295 
8.113 

0.601 
13.91 

-0.134 
-2.752 

1.940 
22.75 

1.931 1.929 

wheatc 0.785 
4.331 

0.235 
6.732 

0.526 
5.958 

0.670 
7.911 

-0.383 
-1.785 

1.591 
14.88 

2.064 2.061 

wheatk 0.180 
1.875 

0.212 
6.443 

0.238 
1.103 

0.355 
1.674 

-0.346 
-3.389 

2.024 
17.29 

1.685 1.682 

palm 1.058 
1.883 

0.443 
9.618 

0.088 
1.094 

0.428 
4.027 

-0.053 
-1.471 

1.962 
23.26 

1.836 1.834 

rubber 1.058 
2.161 

0.310 
5.355 

0.492 
2.255 

0.604 
2.761 

-0.038 
-0.595 

2.034 
15.82 

1.678 1.676 

Notes: (1) The two entries for each parameter are their respective parameter estimates and robust t- ratios.  
           (2) Entries in bold are significant at the 5% level. 
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Figure 1. Logarithm of Daily Agricultural Commodity Futures Returns 
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Figure 2. Logarithm of Daily Agricultural Commodity Futures Returns  
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