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Abstract 

 
 

During the last 15 years, several Multivariate GARCH (MGARCH) models have 

appeared in the literature. Recent research has begun to examine MGARCH 

specifications in terms of their out-of-sample forecasting performance. We provide an 

empirical comparison of alternative MGARCH models, namely BEKK, DCC, 

Corrected DCC (cDCC), CCC, OGARCH Exponentially Weighted Moving Average, 

and covariance shrinking, using historical data for 89 US equities. We contribute to the 

literature in several directions. First, we consider a wide range of models, including the 

recent cDCC and covariance shrinking models. Second, we use a range of tests and 

approaches for direct and indirect model comparison, including the Model Confidence 

Set. Third, we examine how the robust model rankings are influenced by the cross-

sectional dimension of the problem. 

 
 
Keywords: Covariance forecasting, model confidence set, robust model ranking, 
MGARCH, robust model comparison. 
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1. Introduction 
 

Multivariate Volatility Models (MVM) have attracted considerable interest over the last 

decade. This may be associated with the increased availability of financial data, the 

increased computational powers of computers, and the fact that the finance industry has 

begun to realize the possible advantages of these models for optimal portfolio 

management and hedging strategies. 

The recent literature on the topic has moved from the introduction of new models to the 

efficient estimation of existing models. Among the most highly-cited topics are the 

“curse of dimensionality” and “feasible model estimation”. In fact, the feasibility of 

model estimation is now of central interest, with many studies proposing appropriate 

parameterizations of known models (Billio et al., 2006, Franses and Hafner, 2009, and 

Caporin and Paruolo, 2009, among others), or focusing on special estimation methods 

(Engle and Kelly, 2012, Engle et al., 2008, and Fan et al., 2007). 

A second strand of the literature has focused on the statistical or asymptotic properties 

of the models and of the proposed estimators (Comte and Liebermann, 2003, Ling and 

McAleer, 2003, McAleer et al., 2009, Engle et al., 2008, Aielli, 2011, Caporin and 

McAleer, 2011, Hafner and Preminger, 2009, and Francq and Zakoian, 2010). These 

studies have noted that only in special cases are the asymptotic properties known, and in 

some of them only under untestable moment restrictions, or under claimed though 

unstated regularity conditions (see Caporin and McAleer (2011) for a detailed 

discussion). 

Despite the theoretical properties typically being assumed under unstated and untestable 

regularity conditions, many proposed models have been used widely in empirical 

financial studies. Within this framework, a different problem arises: How can we 

compare and rank models characterized by different structures? Some research has 

recently appeared in the literature to tackle the problem, first at the univariate level 

(Hansen and Lunde, 2005, 2006), then for the evaluation of alternative covariance 

models (Engle and Colacito, 2006, Engle and Sheppard, 2008, Clements et al., 2009, 

Patton and Sheppard, 2009, and Laurent at al., 2009, 2010).  

These papers have presented limited comparisons across a small range of models. Engle 

and Colacito (2006) compare only the DCC model of Engle (2002) against a constant 
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correlation model, and in a datasets with a cross-sectional dimension equal to 2 (that is, 

two stock market or bond indices) or 34 (the same series as used in Cappiello et al., 

2006). Engle and Sheppard (2008) is quite an extensive study for the model considered, 

but use a single cross-sectional dimension (50 sector indices defined within the 

perimeter of the S&P 500 index). Patton and Sheppard (2009) is a theoretical 

contribution on the approaches to be used for the evaluation of covariance forecasts, so 

they do not include an empirical application (even with low cross-sectional dimensions) 

showing the arguments for and against the various methods. Clements et al. (2009) 

focus on dynamic correlation models, and present results for a cross-sectional 

dimension equal to 5 (five US-based future contracts). Laurent et al. (2009) focus on the 

consistency of multivariate loss functions, report an empirical example over three 

assets, and simulations for a bivariate case. Laurent et al. (2010) consider a moderately 

large set of models, but focus on a 10-asset example, and place emphasis on model 

accuracy against a DCC benchmark. Furthermore, all of the previous papers include the 

DCC model of Engle (2002), and are thereby exposed to the estimation (in)consistency 

problems discussed in Aielli (2011). 

The methods of comparison used in the previous contributions could be viewed as two 

large classes (see Patton and Sheppard (2009)), namely the direct and indirect 

evaluation of volatility forecasts. The first group includes the Mincer-Zarnowitz 

regression (Mincer and Zarnowitz, 1969), Diebold-Mariano test (Diebold and Mariano, 

1996, and West, 1996, 2006), Reality Check of White (2000), Superior Predictive 

Ability (SPA) test of Hansen (2005), and the Model Confidence Set (MCS) approach of 

Hansen et al. (2003, 2011). The second group includes approaches based on the 

comparison of loss functions adapted to the needs of covariance forecasts. This is the 

case, for instance, of asset allocation and risk management, where loss functions could 

be defined using global minimum variance portfolios returns, such as in Engle and 

Colacito (2006) and Patton and Sheppard (2009), or within a Value-at-Risk framework, 

as in Ferreira and Lopez (2005). 

The tests that compare directly the covariance forecasts fit the general framework of 

loss-function comparison, as discussed in Clements et al. (2009) and Patton and 

Sheppard (2009). The Diebold-Mariano and West approaches are valid for pairwise 

comparisons of the models, while the Reality Check and SPA require the identification 

4 
 



of a benchmark model, whereas MCS does not require a benchmark specification. 

Overall, the MCS approach seems to be preferred, and is the most appropriate as it 

provides a statistical test and a method for determining which models are statistically 

equivalent with respect to a given loss function. Despite the use of a bootstrap method 

for the evaluation of test statistic, MCS is computationally feasible, efficient and 

statistically robust. With respect to the indirect comparison of volatility forecasts, an 

interesting result has been shown in Clements et al. (2009), that illustrates how utility-

based loss functions (in particular, quadratic utilities) make the impact of the covariance 

model very modest. The approach of Engle and Colacito (2006) should provide 

interesting results, even for large cross-sectional dimensions. 

Working in a purely empirical setting, in this paper we contribute to the literature on 

covariance forecast evaluation in several ways. First, our selection of models to be 

compared differs from those of previous studies. Similar to the literature, we consider 

the CCC model of Bollerslev (1990), DCC model of Engle (2002), Scalar BEKK model 

with targeting of Ding and Engle (2002), the OGARCH model of Alexander (2001a,b), 

and the naïve Exponentially Weighted Moving Average approach. We complement this 

set by including the cDCC model of Aielli (2011), and the covariance shrinking 

approach of Ledoit and Wolf (2003, 2004).  

The introduction of the cDCC model allows evaluation of the impact of both the lack of 

consistency and the existence of bias in the estimated parameters of the DCC model of 

Engle (2002). Aielli (2011) showed that the bias depends on the persistence of the 

dynamic parameters in DCC. We are interested in evaluating if DCC could possibly be 

useful, regardless of its inconsistency. This fact is of interest as DCC has been proposed 

as a model with correlation targeting, whereas cDCC cannot be targeted, as discussed in 

Caporin and McAleer (2011). By including the covariance shrinking method, we 

evaluate its advantages in large cross-sectional dimensions. Covariance shrinking is 

computationally feasible and may also reduce the problems associated with the 

inversion of large covariance matrices, wherein inversion could be unstable due to the 

presence of small eigenvalues in the empirical covariances. Furthermore, the presence 

in the model set of the Scalar BEKK model allows a determination of whether the 

separate estimation of variances and correlations (typical of CCC- and DCC-type 

models) is to be preferred to the joint estimation of the entire covariance (as in BEKK-
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type models). Such an analysis could provide a confirmation of the result of Zumbach 

(2009) that shows evidence of a preference for covariance models with respect to 

variance and correlation specifications. 

Second, we use both the Model Confidence Set of Hansen et al. (2003, 2011), and the 

weighted likelihood ratio test of Amisano and Giacomini (2007). The latter uses loss-

function comparisons of equal predictive ability based on the log-scores. The test will 

be applied both in the direct evaluation of covariance forecasts and as an alternative to 

the Diebold-Mariano test. An advantage of the Amisano and Giacomini (2007) 

approach is that the test statistic is not a function of the true and unknown covariance 

matrix. As a result, the test is not affected by the estimation error implicit in the use of 

covariance proxies. The latter element will be further investigated on different loss 

functions by contrasting the results with a noisy proxy to those with a realized 

covariance proxy, with the purpose of extending the results of Hansen and Lunde (2005, 

2006), and completing those in Laurent at al. (2009, 2010). 

Third, we will evaluate and rank the alternative models over different cross-sectional 

dimensions, starting from five assets, and up to 89 assets, which we select from the 

S&P100 constituents (a similar dataset has been used in Engle et al., 2008). We will 

determine if the cross-sectional dimension has a role in determining the preference 

ordering across models. In other words, we will examine the robustness of the model 

rankings with respect to the cross-sectional dimension. 

It should be stressed that we are comparing alternative feasible models for the 

evaluation of conditional covariance and/or correlation matrices. The models we 

consider all belong to the GARCH and Dynamic Conditional Correlation families, 

thereby excluding Multivariate Stochastic Volatility models. From our perspective, 

these models, despite being theoretically appealing, suffer for the curse of 

dimensionality in a more significant way than do MGARCH specifications, and their 

estimation in large cross-sectional dimensions is likely to be even more complicated 

than the models considered in this paper. For surveys of Multivariate Stochastic 

Volatility models, see Asai et al. (2006), and Chib et al. (2009). 

Furthermore, we focus on extremely simple models (all are scalar representations), and 

follow the quasi-maximum likelihood estimation approach. We do not consider more 

complex parameterizations because the emphasis in the paper is on simplicity. We are 
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not interested in the determination of an optimal model or estimation method, but 

rather on baseline specifications, namely those that are the most common among 

practitioners, and try to verify if they are equivalent. Clearly, 89 assets is far from the 

traditional problem dimension of (very) large portfolio managers, but the analysis sheds 

some light on a comparison of model performance across an increasing number of 

assets. Finally, we stress that our focus is on the empirical application, and is not 

intended to provide a methodological contribution to the most appropriate methods for 

model comparison, which will be left for future research based on an extensive 

simulation analysis. 

Our results show that the use of a realized covariance proxy has a relevant impact on 

model rankings. Furthermore, the rankings are not greatly affected by the problem size, 

and they stabilize as the number of assets starts to increase. Across the models, some 

preference may go to the DCC-type and OGARCH-type specifications, while the naïve 

specifications are generally found to be underperforming. Finally, given the previous 

comment, we do not find a confirmation of Zumbach (2009) for a preference of 

covariance models compared with variance and correlation models. 

The paper proceeds as follows. Section 2 presents the model structure, briefly discusses 

the issue of covariance and correlation targeting, and shows the specifications to be 

estimated. Section 3 discusses the methods and approaches used to compare the models. 

Section 4 presents the dataset used and reports the empirical results. Section 5 gives 

some concluding comments. 

 

2. Feasible covariance and correlation models for large cross-sectional 

dimensions 
 

This section briefly introduces the models that will be compared in the empirical 

application. Let tx  denote a k-dimensional vector of financial variables (returns), tμ  

represent its conditional mean, and tε  the innovation vector. The following relation 

holds: , where (1| ~ 0,t
t t t tx I Dμ ε −− = Σ ) 1tI −  is the information set at time t-1, D(.) 

denotes a multivariate density, and tΣ  represents the covariance matrix that is 

determined conditionally on the information set at time t-1.  

7 
 



In the following, we do not consider the effects of different mean specifications. The 

mean is fixed at the sample mean determined over the same sample used for the 

estimation of the parameters. The mean could be based on a variety of time series or 

financial models, which are not the main concern of this paper. What is relevant is that, 

for each pair of covariance models that is compared, the mean models are identical. As 

a result, all forecast discrepancies are due to differences in the expected covariances, 

while all in-sample differences are due to differences in the estimated covariance 

models. We now list the models we consider in the empirical application. The model 

formulae can be found in the cited references or in the web appendix to this paper which 

will be made available upon request. 

 

2.1 Scalar BEKK 

We first consider the Scalar BEKK model with a targeting constraint (see Engle and 

Kroner, 1995; Ding and Engle, 2001; Caporin and McAleer, 2008, 2011). Scalar BEKK 

is estimated following a two-step approach, which is feasible even for very large cross-

sectional dimensions. We also consider a generalization of the Scalar BEKK model 

which includes asymmetry (ABEKK), namely the different impacts of shocks on 

conditional variances and covariances depending on the sign of shocks. This specification 

is identical to the Asymmetric VECH model adopted by Engle and Sheppard (2008). 

 

2.2 Variance and correlation models 

We will estimate three models based on a decomposition of the covariance matrices into 

variances and correlations. The first is the CCC model of Bollerslev (1990), with all the 

conditional variances following a simple GARCH(1,1) process without asymmetry in 

order to make the model directly directly comparable with Scalar BEKK. Second, we 

consider a CCC model where the variances follow the GJR(1,1) model of Glosten et al. 

(1993), thereby including asymmetry in the variances (we call this model CCC-GJR). 

As distinct from Laurent et al. (2010), we do not consider a wider set of univariate 

models, in order to avoid overfitting (it is difficult to have long memory over the entire 

set of series, or to have models with orders greater than 1 over all the assets). The model 

is estimated using a two-step approach, namely estimating the conditional variances on 
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each specific series, and then estimating the unconditional correlation matrix using the 

sample estimator over the standardized residuals.  

Engle (2002) and Tse and Tsui (2002) proposed two generalizations of the CCC model 

that allow for dynamic evolution of the correlations. We consider here the DCC model 

of Engle (2002), which is estimated with a three-stage approach, namely estimating the 

conditional variance parameters and filtering them, the correlation intercept in the 

second stage, and then, conditionally on the previous estimates, maximizing the 

conditional correlation log-likelihood with respect to the parameters driving the 

correlation dynamics. The introduction of a multi-step estimation method clearly 

reduces efficiency, as shown in Engle and Sheppard (2001), but makes the model 

feasible with large cross-sectional dimensions.  The DCC model theoretically includes 

targeting, as defined in Caporin and McAleer (2011), but only under assumptions which 

are analyzed and criticized in Aielli (2011). Similarly to the CCC, we consider two 

possible cases for DCC, first with GARCH(1,1) variances (DCC), and secondly with 

GJR (DCC-GJR). Furthermore, we allow for asymmetry in the correlation process, 

which is referred to as ADCC if the conditional variances follow a GARCH(1,1) 

process, or ADCC-GJR if we also include asymmetry in the conditional variances. 

Aielli (2011) shows that the second step of the DCC estimation method leads to 

inconsistency problems, thereby also affecting the consistency of the third step. In order 

to resolve this serious issue, Aielli (2011) introduces the cDCC model, which restores 

consistency, and suggests a feasible estimation method that is similar to the profile 

likelihood. We note that Aielli (2011) shows that the lack of consistency of the three-

step DCC estimator depends strictly on the persistence of the parameters driving the 

correlation dynamics and on the relevance of the innovations. Therefore, in this paper 

we will determine if the bias is relevant in practical applications as a commentary on the 

inconsistent estimates of the standard scalar DCC model. With a notation similar to that 

adopted for DCC, we label Aielli’s (2011) model as cDCC if the variances follow a 

GARCH(1,1) process and cDCC-GJR if the conditional variances include asymmetry. 

For the cDCC model, we do not consider asymmetry in the correlations as the model 

cannot be estimated using the approach proposed by Aielli (2011). As the main purpose 

of this paper is not the development of new models and estimation methods, we leave 

the development and analysis of the Asymmetric cDCC model for future research. 
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2.3 Factor GARCH 

Factor GARCH is a model class including two subgroups: in the first set, we have 

specifications where the factors are latent, such as in Engle et al. (1990) and Lanne and 

Saikkonen (2007); the second group includes models where the multivariate structure 

arises from linear combinations of univariate GARCH models, such as in Alexander 

(2001a, b), Vrontos et al. (2003), and van der Weide (2002). Further details on this 

model class can be found in Bauwens et al. (2006). As a competitor to BEKK and 

dynamic conditional correlation models, we consider here the OGARCH model of 

Alexander (2001a, b). We motivate the choice by the simplicity of the model compared 

with the alternative specifications mentioned above, which could also be influenced by 

the curse of dimensionality. The principal components could all follow either 

GARCH(1,1) processes (that is, OGARCH), or GJR processes (OGARCH-GJR).  

 

2.4 Naïve specifications 

The last two models considered are the Exponentially Weighted Moving Average 

(EWMA) model and the Covariance Shrinking approach of Ledoit and Wolf (2003, 

2004). For EWMA, contrary to standard practice, we estimate the smoothing parameter, 

as it requires limited computational effort. For covariance shrinking (SHR), we combine 

the sample covariance matrix with a constant correlation, as in Ledoit and Wolf (2004). 

 

3. Comparing competing covariance and correlation models 
 

We will present briefly the approaches to be used in comparing the models described in 

the previous section. Before moving to the methods, we introduce some notation. 

It is assumed that the models are to be compared using out-of-sample forecasts, where 

forecasts are made one period ahead and for an evaluation period from T+1 to T+h. 

Information to time T is used to estimate the various models and to produce the 

conditional forecasts for time T+1. The estimation sample is rolled forward, and 

information from time 2 to T+1 is used to forecast the covariance matrix for time T+2, 

and so on, to time T+h. In order to avoid any dependence on the mean dynamics, we fit 

the mean using its sample estimator across all models (the sample mean is estimated 
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with the same rolling approach). The one-step-ahead covariance forecasts for time T+i 

are denoted by , where m is the model index (m=1,2,…M). Note that, by 

construction, the forecasts are conditional on the information set at time T+i-1. The 

mean forecasts are denoted by 

ˆ m
T i+Σ

ˆT iμ + , and do not depend on the model. For simplicity, we 

suppress the conditioning information set from the forecast notation. We follow Patton 

and Sheppard (2009) and consider separately the direct and indirect evaluation methods. 

 

3.1 Direct model evaluation methods 

Within the first group, we include approaches based on the use of loss functions, 

namely the Diebold-Mariano test, the test proposed by Amisano and Giacomini (2007), 

and the MCS approach of Hansen et al. (2003 , 2011). 

Let us denote as  a loss function for time T+i and model l. Then, the test for equal 

predictive ability between two competing models corresponds to checking the null 
hypothesis of zero loss function differentials, 

,l T ilf +

0 : 0j l jlH E lf lf E LF⎡ ⎤ ⎡ ⎤− =⎣ ⎦ ⎣ ⎦ = , where l 

and j are two different model indices, 1
,1

h
j j T ii

lf h lf−
+=

= ∑ , and jl j lLF lf lf= − . In this 

setting, the test statistic is given as 

 

( )
(½ 0,1jl

jl a

jl

h LFt
Var hLF

= ⎯⎯→ )N ,       (1) 

 

where ( )jlVar hLF  is a heteroskedasticity and autocorrelation (HAC) consistent 

estimate of the asymptotic variance of jlhLF . If the null hypothesis of equal 
forecasting ability is rejected, the test statistic sign suggests model preference: positive 
(negative) values indicate a preference for the second (first) model as it is associated 
with smaller losses. 

We consider the two loss functions reported below: 

 

i) ( ) (, 2

1 ˆ ˆa m m
m T i T i T i T i T ilf vec vec

k+ + + +
⎛ ′= Σ −Σ Σ −Σ⎜
⎝ ⎠

% )+
⎞
⎟% ,     (2) 

ii) ( ) 1

,
ˆ ˆlogb m m

m T i T i T i T i T ilf e e
−

+ + + +
′= Σ + Σ + ,      (3) 
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where ˆT i T i T ie x μ+ += − +   (note that the observed time T+i return is used), and the time 

T+i true volatility is approximated by a proxy, T i+Σ% . In the empirical evaluation, we will 

use two different choices of the volatility proxy, T i+Σ% : a first possibility is given by the 

cross-product of mean forecast errors T ie + , so that T i T i T ie e+ + +
′Σ =% . However, this is a 

noisy proxy, as shown in Patton and Sheppard (2009) and Laurent et al. (2010), among 

others. Alternatively, we consider a realized covariance estimator. Within the class of 

possible approaches, we choose the Multivariate Realized Kernel of Barndorff-Nielsen 

et al. (2011), with data synchronized at the 5-minute frequency. For details on the 

estimator adopted, the interested reader should refer to Barndorff-Nielsen et al. (2008). 

The first function, equation (2), corresponds to the Mean Squared Error (MSE) loss 

adopted in the Diebold-Mariano test. The MSE loss function belongs to the class of loss 

functions defined in Patton and Sheppard (2009) that are robust to the noise in the 

volatility proxy used (see also Clements et al. (2009) and Laurent et al. (2009)). Patton 

and Sheppard (2009) also consider the QLIKE loss function of Patton (2011), but in the 

multivariate framework, the QLIKE loss function is infeasible when the volatility proxy 

is the cross-product of realized returns (see Laurent et al., 2009). 

The second loss function corresponds to minus the logarithmic scores, and makes the 

test statistic equivalent to the Amisano and Giacomini (2007) weighted likelihood ratio 

test when all points over the forecast horizon have identical weight. We stress that this 

loss function does not depend on a volatility proxy, and so is not exposed to the 

estimation error of the underlying and unknown true volatility. Furthermore, it evaluates 

the fit of all models by means of a Gaussian score measured using the mean forecast 

errors. As the mean forecasts are identical across models, the differences in the losses 

are solely due to differences across the covariance models. 

The previous tests permit a pairwise comparison of models. However, the test outcomes 

do not ensure either that an optimal model is clearly identified or that a clear model 

ordering is obtained. Furthermore, when dealing with multiple comparisons, as in this 

case, a Bonferroni bound correction is needed. For these reasons, we consider the Model 

Confidence Set approach, which performs a joint forecast comparison across all models. 

The MCS performs an iterative selection procedure, testing at step j the null hypothesis 
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of equal predicting ability of all models included in a set  (the starting set  

contains all the models) under a given loss function.  

lM 0M

The null hypothesis takes the form 
 

0 : 0,    , ,jl jl jlH E lf lf E LF j l j l⎡ ⎤ ⎡ ⎤− = = > ∀ ∈⎣ ⎦ ⎣ ⎦ lM ,     (4) 

 

where the notation is the same as in (1). In order to test the null hypothesis, we use the 

following two test statistics proposed by Hansen et al. (2003): 
 

( ), ½max jl
R j l

jl

LFt
Var LF

∈=
lM

,        (5) 

 

( )

2

½
, ,

jl
SQ

j l j l
jl

LFt
Var LF∈ >

⎛ ⎞
⎜ ⎟

= ⎜
⎜ ⎟
⎝ ⎠

∑
lM

⎟ ,       (6) 

 

where ( )jlVar LF  is a bootstrap estimate of the variance of jlLF , and the p-values of 

the test statistics are determined using a bootstrap approach. If the null hypothesis is 

rejected at a given confidence level, the worst performing model is excluded from the 

set (rejection is determined on the basis of bootstrap p-values under the null). Such a 

model is identified as follows: 
 

1½

arg max jl jlj
l l

j LF Var LF

−

∈
∈ ∈

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜= ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑l

l l

M
M M

⎟ ,     (7) 

 

where the variance is computed using a bootstrap method. In the empirical analysis 

given below, we will use the loss functions introduced in (2) and (3). 

 

3.2 Indirect model evaluation methods 

For the indirect evaluation of the multivariate models, we consider an asset allocation 

framework and compare the impact of model choice by contrasting the performances of 

specific portfolios. In this paper we focus on the equally weighted portfolio, denoted as 
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EW, which is not exposed to the asset return mean estimation error, and is superior to 

many other portfolios (see De Miguel et al. (2009)). Results for global minimum 

variance portfolio, with and without short selling constraints are included in the web 

appendix which is made available upon request. The weights of the equally weighted 

portfolio are , where 1  is a k-dimensional vector of unit elements. 

Furthermore, we then define the following quantities:  

1k −=w 1

(a) realized portfolio returns, , ,m
T i EW T iR x+ +′= w  1, 2,3... ,i h=  1, 2,3,...m M= ;  

(b) expected portfolio returns,  ,
ˆ ˆ ,m

T i EW T iR μ+ +′= w 1, 2,3... ,i h=  1, 2,3,...m M= ;  

(c) realized portfolio variances,  , ,m
T i EW T is + +′= Σw w% 1, 2,3... ,i h=  1, 2,3,...m M= ;  

(d) expected portfolio variances:  ,
ˆˆ ,m m

T i EW T is + +′= Σw w 1, 2,3... ,i h=  1, 2,3,...m M= . 

Note that the weights of the EW strategy are not a function of the model and, as a 

consequence, the realized and expected portfolio returns, and the realized portfolio 

variances will be independent of the model used to forecast the conditional covariances. 

A hat is used to identify expected quantities. We use “s” and not the Greek sigma 

squared to denote portfolio variances to avoid possible confusion with the asset 

variances. We do not follow Voev (2009), who considered the optimal weights obtained 

by the true and unknown covariance in the realized returns and variances (in our case, it 

would have been replaced by a proxy). In fact, that approach mixes the estimation error 

of the covariances with that of the portfolio weights, thereby adding a further source of 

uncertainty. In the quantities we consider, the only difference between the expected and 

realized quantities is given by the covariance matrix. 

Using the quantities listed above, we test the null hypothesis of equal predictive ability 

across pairs of models at the portfolio level by using the test statistic defined in (1) and 

the following loss functions: 
 

i)
 

( ) ( ) (2 11
, , , , , ,

1 1 ˆˆln
2 2

m
m EW T i T i EW T i EW T i EW T i EWlf s R R s )ˆm −

+ + + + += + − ,   (8) 

ii) ,       (9) ( 22
, , , ,ˆm m

m EW T i T i EW T i EWlf s s+ + += − )

iii) ( ) ( ) 13
, , , , ,ˆ ˆln m m m

m EW T i T i EW T i EW T i EWlf s s s
−

+ + + += + .     (10) 
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Note that we do not compare multivariate models indirectly by mean of utility-based 

loss functions because Clements et al. (2009) show that these functions make the impact 

of the models very limited, thereby reducing the possibility of detecting discrepancies 

across models. The loss functions in (8)-(10) are also used for the joint forecast 

comparison by means of the MCS approach. The loss functions in (9) and (10) are the 

univariate MSE and QLIKE loss functions (see Patton and Sheppard, 2009). 

Differently, equation (8) represents minus the logarithmic score when the mean and 

variances forecasts are made conditionally on time T+i-1. Note that the logarithmic 

score is evaluated at the true observed values at time T+i.  

Finally, in the indirect comparison, we could have also considered some of the model 

comparison approaches suggested in Engle and Colacito (2006). Those are not reported 

here but are available in the web appendix. 

 

4. Data description and selected models 
 

In order to compare the models presented in the previous sections, we have selected a 

dataset similar to that of Engle et al. (2009). We downloaded from Datastream the 

S&P100 constituents at the end of March 2009, and selected only those assets with total 

return indices available from the beginning of 1997 to the end of March 2009. The 

selected period contains 3194 daily returns. The list of the 89 selected stocks is reported 

in Appendix A. 

In estimating all of the models, we adopt a normal likelihood, which leads to Quasi 

Maximum Likelihood (QML) estimation. Despite the misspecification of the density, 

the use of a Gaussian density enables the multi-stage estimation approach for the CCC 

and DCC specifications. However, using a Student t density, by contrast, will not enable 

straightforward decomposition of the likelihood into the respective variance and 

correlation contributions. 

We consider two different examples, namely medium scale and large scale. In the 

medium scale example, we consider a subset comprising 15 of the 89 assets; for those 

15 assets, high frequency data are available at the 1 minute frequency (the list is 

included in Appendix A). In the medium scale example, the assets are ordered 

alphabetically, and we estimate the model for 5 to 15 assets. The medium scale 
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empirical application allows evaluation of the impact on the covariance proxy used. We 

compare the model rankings obtained when the proxy is the realized covariance with 

those obtained when the cross product of realized asset returns is used. 

Differently, in the large scale example, each model is estimated for 10, 15, 20, 25, 30, 

35, 40, 45, 50, 60, 70, 80 and 89 assets. In this second case, only daily data are 

available, so that the only possible covariance proxy is given by the cross product of the 

asset returns. As in the medium scale example, the assets are ordered alphabetically and, 

differently from the medium scale example, we will focus attention on the model 

comparison tools which are less sensitive to the noise in the covariance proxy. 

In both examples, we adopt a 1-day rolling approach. In order to avoid dependence of 

the model comparison procedures on the mean return forecasts, these are always fixed at 

the sample mean. Simple diagnostic procedures on the mean returns support our choice given 

the extremely limited evidence of mean dynamics. As a consequence, the results reported are 

not biased by the misspecification of the mean dynamics. All models for all problem 

dimensions are re-estimated daily, and are used to produce one-step-ahead forecasts.  

We consider two different out-of-sample evaluation periods. In the first, we focus on 

extreme market conditions and compare models for the period April 2008 – March 

2009, so that estimation is performed on the last ten years of data (about 2500 

observations). This could be considered as a model stress test to determine if more 

highly parameterized models are preferred to simpler or naïve specifications as they are 

not exposed to parameter uncertainty and instability. The second forecast evaluation 

period is for 2006, when the market was in a low volatility state and was trending 

upward, so that the estimation sample now comprises the last 9 years of data (about 

2350 observations). This second comparison allows testing of whether the model 

ranking might be affected by overall market conditions. In all empirical applications of 

the MCS, we consider block-bootstrap sampling schemes with 5,000 replications and 

blocks of size 5. The Model Confidence Set approach is available in the Matlab MFE toolbox 

of K. Sheppard, or in the Oxmetrics MULCOM package of P.R. Hansen and A. Lunde. 

We stress that the empirical evaluations reported below might depend on the selection 

of equities, or on their ordering. However, appropriate evaluations of these elements are 

infeasible as they would require estimation of all models on a large number of 

alternative asset orderings. We made a simple evaluation, not reported here, reverting 
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the asset ordering on the large scale example. The results obtained do not support the 

possible effects of the equities selection as the model preferences are essentially 

equivalent to those reported below. A possible symptom of the effect of asset ordering would 

have been a clear change in the model preference for increasing problem dimension. Such an 

effect might be more evident when a small number of assets is used. This is one reason which 

led us to focus on problem dimensions greater than or equal to 5 and 10 in the medium and large 

scale examples, respectively. Differently, in the medium case example, when the number 

of assets is reduced, the introduction of a single equity might influence the result. 

 

4.1 Medium scale example 
If we consider pairwise direct model comparisons, the Amisano-Giacomini test 

highlights the poor performances of the covariance shrinking approach for both of the 

out-of-sample periods. Furthermore, EWMA is the second worst model, better than 

covariance shrinking but worse than most other models. These results are only slightly 

influenced by the number of assets included in the evaluation. The Amisano-Giacomini 

test outcomes also suggest that the introduction of asymmetry in the variances or 

correlations induces some benefits only during the crisis period. In fact, in this second 

evaluation sample, models including asymmetry are generally preferred to those without 

asymmetry. On the contrary, during periods of low market volatility, models with 

asymmetry provide forecasts equivalent to those of models without asymmetry. Finally, 

dynamic conditional correlation specifications have statistically superior performances 

over constant conditional correlation models only during the crisis period. 

If we perform pairwise direct comparisons using the Diebold-Mariano test, the results 

are also influenced by the choice of the covariance proxy. In this case, the preference 

ordering across models is less evident, but we note that the impact of the noise in the 

covariance proxy is limited during the low market volatility period of 2006. In fact, the 

test outcomes are almost equivalent and show evidence of better performances of the 

dynamic and conditional correlation models compared with the other specifications. 

During the crisis period, the use of a noisy proxy influences the model ordering. Results 

obtained when the proxy is the cross product of realized returns are, for some model 

pairs, opposite to those provided by the test using the realized covariance. 

 

17 
 



 

Table 1: Model Confidence Set results for the 2006 evaluation period 
Number of variables 5 6 7 8 9 10 11 12 13 14 15 

Models – Loss function Amisano – Giacomini 
EWMA 0.16 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SHR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CCC 0.51 0.65 0.67 0.32 0.39 0.52 0.46 0.47 0.40 0.32 0.29 
DCC 0.74 0.65 0.67 0.72 0.72 0.97 0.91 1.00 1.00 1.00 1.00 
cDCC 0.51 0.65 0.71 0.32 0.39 0.52 0.46 0.47 0.40 0.32 0.29 
BEKK 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.47 0.40 0.32 0.29 

OGARCH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-CCC 0.51 0.53 0.61 0.29 0.34 0.24 0.33 0.39 0.40 0.27 0.23 
GJR-DCC 0.51 0.65 0.67 0.29 0.39 0.52 0.46 0.47 0.40 0.32 0.29 

GJR-ADCC 0.51 0.65 0.67 0.29 0.39 0.52 0.46 0.47 0.40 0.32 0.29 
GJR-cDCC 0.51 0.53 0.61 0.29 0.39 0.24 0.33 0.47 0.40 0.32 0.29 

ABEKK 0.76 0.65 0.67 0.29 0.39 0.24 0.33 0.06 0.02 0.06 0.06 
GJR-OGARCH 0.00 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

 Mean Squared Error (Diebold-Mariano) – Noisy Proxy 
EWMA 0.12 0.06 0.08 0.08 0.04 0.07 0.05 0.06 0.05 0.05 0.05 

SHR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CCC 0.34 0.29 0.80 0.69 0.59 0.64 0.05 0.06 0.05 0.05 0.05 
DCC 1.00 1.00 0.80 1.00 1.00 1.00 1.00 1.00 0.05 0.05 0.05 
cDCC 0.34 0.29 1.00 0.69 0.59 0.64 0.56 0.34 0.05 0.05 0.05 
BEKK 0.34 0.29 0.80 0.08 0.04 0.07 0.05 0.06 0.05 0.05 0.05 

OGARCH 0.12 0.06 0.08 0.08 0.04 0.07 0.05 0.03 0.05 0.05 0.04 
GJR-CCC 0.12 0.06 0.08 0.08 0.04 0.07 0.05 0.06 0.05 0.05 0.05 
GJR-DCC 0.12 0.06 0.08 0.08 0.04 0.07 0.05 0.06 0.05 0.05 0.05 

GJR-ADCC 0.34 0.29 0.80 0.69 0.93 0.98 0.90 0.95 1.00 1.00 1.00 
GJR-cDCC 0.12 0.06 0.08 0.08 0.04 0.07 0.05 0.06 0.05 0.05 0.05 

ABEKK 0.34 0.06 0.08 0.08 0.04 0.07 0.05 0.06 0.05 0.05 0.05 
GJR-OGARCH 0.12 0.06 0.08 0.08 0.04 0.07 0.05 0.06 0.05 0.05 0.05 

 Mean Squared Error (Diebold-Mariano) – Realized Covariance 
EWMA 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

SHR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CCC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
DCC 0.50 0.31 0.59 0.50 0.29 0.37 0.50 0.40 0.64 0.62 0.75 
cDCC 0.00 0.03 0.59 0.50 0.29 0.35 0.49 0.40 0.64 0.62 0.75 
BEKK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OGARCH 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-CCC 0.00 0.03 0.45 0.50 0.38 0.41 0.68 0.48 0.64 0.62 0.75 
GJR-DCC 0.00 0.03 0.07 0.05 0.12 0.18 0.17 0.12 0.22 0.09 0.04 

GJR-ADCC 0.00 0.03 0.30 0.30 0.29 0.35 0.49 0.40 0.64 0.62 0.73 
GJR-cDCC 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ABEKK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-OGARCH 0.50 0.03 0.01 0.00 0.29 0.37 0.99 0.00 0.00 0.09 0.92 

Note: Bold shaded p-values denote models included in the confidence set for each of the  
problem dimensions reported in the first row at the 1% confidence level. 
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In order to obtain a clearer picture of the model rankings, we move to the evaluation of 

the Model Confidence Set outcomes, which are reported in Tables 1 and 2. As the 

results for the two test statistics in (5) and (6) are substantially equivalent, we will refer 

in the following only to the test statistic in (5). With respect to the 2006 evaluation 

sample (Table 1), we note that the Amisano-Giacomini log-scores are basically 

excluding from the confidence set the EWMA, SHR and OGARCH models. 

Differently, under MSE loss, the use of a noisy covariance proxy makes most models 

equivalent (SHR excluded), while a realized covariance shows evidence of forecasting 

underperformance of the EWMA, SHR, BEKK models, OGARCH specifications and of 

GJR-cDCC. We also note that moving from 5 to 6 assets, the results are quite different, 

and seem to stabilize as the number of assets increases. 

Moving to Table 2, the crisis evaluation period, the results are somewhat similar for the 

Amisano-Giacomini log-scores, but with a much clearer preference for DCC models, in 

particular, for GJR-cDCC. On the contrary, using MSE loss, all the models are 

statistically equivalent when we use a noisy proxy, while some differences emerge (but 

only at the 5% confidence level) when using the realized covariance. In fact, at the 1% 

confidence level, both proxies lead to the same results. We might associate such an 

effect with the extreme volatility present in the market. Finally, for both sample periods, 

we also note that the introduction of asymmetry, either in the variances, or in the 

correlation or covariances, does not provide any improvements as the specifications 

with or without asymmetry are statistically equivalent. 

We now shift to the indirect model evaluation, where we use both the Amisano-

Giacomini log-scores and the MSE and QLIKE loss functions presented in Section 3. 

The evaluation of the outcomes of pairwise model comparisons does not lead to a clear 

picture of the model rankings, and we thus directly refer to the Model Confidence Set 

results. For MSE loss (see Table 3 for an example), we observe that the use of realized 

covariances plays a sensible role when the market volatility is not too high. In fact, in 

the left panels, all the models provide statistically equivalent forecasting performances, 

while in the right panel some preferences across models clearly emerge. 

Differently, when the market is experiencing turbulence, all the models perform badly 

in forecasting the covariances, and the outcome is essentially unaffected by the choice 

of the covariance proxy. Fortunately, such a result strongly depends on the loss function  
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Table 2: Model Confidence Set results for the crisis period (2008-2009) 

Number of variables 5 6 7 8 9 10 11 12 13 14 15 
Model – Loss function Amisano-Giacomini 

EWMA 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SHR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CCC 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
DCC 0.32 0.12 0.18 0.19 0.17 0.09 0.04 0.04 0.03 0.04 0.09 
cDCC 0.13 0.11 0.18 0.19 0.17 0.09 0.04 0.04 0.03 0.04 0.09 
BEKK 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OGARCH 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-CCC 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 
GJR-DCC 0.50 0.34 0.39 0.19 0.17 0.09 0.04 0.04 0.03 0.04 0.09 

GJR-ADCC 0.50 0.34 0.50 0.71 0.74 0.28 0.79 1.00 1.00 0.79 0.51 
GJR-cDCC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.77 1.00 1.00 

ABEKK 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-OGARCH 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Mean Squared Error (Diebold-Mariano) – Noisy Proxy 
EWMA 0.31 0.26 0.21 0.22 0.31 0.28 0.24 0.24 0.20 0.10 0.09 

SHR 0.05 0.04 0.04 0.05 0.04 0.04 0.04 0.03 0.04 0.03 0.03 
CCC 0.31 0.26 0.21 0.22 0.27 0.28 0.24 0.21 0.20 0.10 0.09 
DCC 0.31 0.26 0.21 0.22 0.27 0.28 0.24 0.21 0.20 0.10 0.09 
cDCC 0.31 0.26 0.21 0.22 0.27 0.28 0.24 0.21 0.20 0.10 0.09 
BEKK 0.31 0.26 0.21 0.22 0.27 0.28 0.24 0.21 0.20 0.10 0.09 

OGARCH 0.25 0.25 0.21 0.19 0.24 0.28 0.24 0.21 0.20 0.10 0.09 
GJR-CCC 0.31 0.26 0.21 0.22 0.27 0.28 0.24 0.21 0.20 0.10 0.09 
GJR-DCC 0.31 0.26 0.21 0.22 0.31 0.28 0.24 0.24 0.20 0.10 0.09 

GJR-ADCC 1.00 1.00 1.00 1.00 0.90 0.28 1.00 1.00 1.00 1.00 1.00 
GJR-cDCC 0.54 0.64 0.90 0.38 1.00 1.00 0.46 0.81 0.37 0.47 0.44 

ABEKK 0.31 0.26 0.21 0.22 0.27 0.28 0.24 0.21 0.20 0.10 0.09 
GJR-OGARCH 0.31 0.26 0.21 0.22 0.25 0.28 0.24 0.21 0.20 0.10 0.09 

 Mean Squared Error (Diebold-Mariano) – Realized Covariance 
EWMA 0.01 0.02 0.02 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 

SHR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
CCC 0.01 0.02 0.02 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 
DCC 0.01 0.02 0.02 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 
cDCC 0.01 0.02 0.02 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 
BEKK 0.02 0.04 0.07 0.06 0.23 0.21 0.23 0.37 0.54 0.25 0.36 

OGARCH 0.02 0.04 0.07 0.78 0.24 0.68 0.85 0.37 0.54 0.25 0.36 
GJR-CCC 0.02 0.03 0.02 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 
GJR-DCC 0.01 0.03 0.02 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 

GJR-ADCC 0.01 0.03 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04 
GJR-cDCC 0.01 0.02 0.02 0.01 0.02 0.03 0.03 0.03 0.03 0.04 0.04 

ABEKK 0.02 0.04 0.05 0.03 0.06 0.06 0.07 0.06 0.09 0.08 0.10 
GJR-OGARCH 0.02 0.04 0.07 0.78 0.24 0.40 0.46 0.37 0.54 0.08 0.10 

Note: Bold shaded p-values denote models included in the confidence set for each of the  
problem dimensions reported in the first row at the 1% confidence level. 
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Note: B lues e for eac pr  dim ions p  id ce levold shaded p-va denote mod ls included in the confidence set h of the oblem ens  re orted in the first row at the 1% conf en el. 

 Number of variables 5 6 7 8 9 10 11 12 13 14 15  5 6 7 8 9 10 11 12 13 14 15 
  Covariance proxy: returns cross-product  Covariance proxy: realized covariance 

EWMA 0.14 0.04 0.09 0.10 0.08 0.10 0.06 0.03 0.01 0.03 0.04  0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SHR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CCC 0.14 0.04 0.09 0.10 0.08 0.10 0.06 0.03 0.01 0.03 0.04  0.53 0.24 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
DCC 0.91 0.04 0.09 0.10 0.08 0.10 0.06 0.03 0.01 0.03 0.03  0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
cDCC 0.91 0.04 0.49 0.10 0.08 0.10 0.06 0.02 0.01 0.02 0.03  0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
BEKK 0.14 0.04 0.09 0.10 0.08 0.10 0.06 0.02 0.01 0.02 0.03  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
OGARCH 0.91 0.04 0.09 0.10 0.08 0.10 0.08 0.03 0.03 0.03 0.03  0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-CCC 0.14 0.04 0.59 0.62 0.46 0.48 0.08 0.41 0.42 0.48 0.54  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 
GJR-DCC 0.14 0.04 0.09 0.10 0.08 0.10 0.06 0.03 0.03 0.03 0.05  0.33 0.24 0.13 0.03 0.03 0.03 0.00 0.01 0.02 0.02 0.05 
GJR-ADCC 0.91 0.78 0.59 0.62 0.46 0.48 0.23 0.41 0.42 0.48 0.54  0.53 0.24 0.61 0.60 0.62 0.57 0.65 0.61 0.51 0.58 1.00 
GJR-cDCC 0.14 0.04 0.09 0.10 0.08 0.10 0.06 0.03 0.03 0.03 0.04  0.00 0.02 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.01 
ABEKK 0.14 0.04 0.09 0.10 0.08 0.10 0.06 0.02 0.01 0.02 0.03  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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GJR-OGARCH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00  0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 
  Covariance proxy: returns cross-product  Covariance proxy: realized covariance 

EWMA 0.19 0.28 0.25 0.17 0.30 0.41 0.24 0.34 0.40 0.50 0.52  0.02 0.08 0.17 0.18 0.08 0.25 0.08 0.03 0.08 0.08 0.06 
SHR 0.04 0.03 0.03 0.02 0.02 0.03 0.02 0.02 0.03 0.02 0.02  1.00 0.29 0.17 0.06 0.08 0.11 0.08 0.03 0.08 0.08 0.06 
CCC 0.30 0.28 0.23 0.14 0.26 0.26 0.21 0.20 0.18 0.15 0.17  0.07 0.78 0.54 0.18 0.35 0.42 0.35 0.34 0.08 0.36 0.33 
DCC 0.30 0.28 0.25 0.17 0.35 0.41 0.24 0.34 0.27 0.22 0.23  0.02 0.10 0.23 0.18 0.08 0.42 0.08 0.03 0.08 0.08 0.06 
cDCC 0.30 0.28 0.23 0.14 0.30 0.35 0.21 0.20 0.18 0.22 0.23  0.02 0.10 0.17 0.18 0.08 0.25 0.08 0.03 0.08 0.08 0.06 
BEKK 0.10 0.10 0.10 0.14 0.11 0.14 0.17 0.20 0.18 0.13 0.17  0.07 0.78 0.37 0.18 0.08 0.25 0.08 0.03 0.08 0.08 0.06 
OGARCH 0.30 0.28 0.25 0.17 0.35 0.41 0.24 0.34 0.40 0.50 0.52  0.02 0.08 0.17 0.18 0.08 0.25 0.08 0.03 0.08 0.08 0.06 
GJR-CCC 0.30 0.28 0.25 0.17 0.27 0.26 0.21 0.20 0.18 0.15 0.17  0.07 1.00 1.00 0.18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
GJR-DCC 0.30 0.28 0.25 0.17 0.35 0.41 0.24 0.34 0.27 0.22 0.23  0.02 0.10 0.23 0.77 0.35 0.61 0.86 0.34 0.75 0.36 0.33 
GJR-ADCC 0.41 0.32 0.25 0.17 0.45 0.41 0.24 0.34 0.40 0.50 0.52  0.02 0.10 0.23 1.00 0.35 0.42 0.86 0.66 0.92 0.36 0.33 
GJR-cDCC 0.41 0.32 0.25 0.17 0.45 0.41 0.24 0.34 0.40 0.49 0.45  0.02 0.08 0.17 0.18 0.08 0.42 0.08 0.03 0.08 0.08 0.06 
ABEKK 0.09 0.08 0.08 0.10 0.10 0.11 0.13 0.17 0.18 0.13 0.17  0.07 0.29 0.25 0.18 0.08 0.25 0.08 0.03 0.08 0.08 0.06 
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GJR-OGARCH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00  0.02 0.08 0.17 0.18 0.08 0.25 0.08 0.03 0.08 0.08 0.06 

Table 3: Model Confidence Set results for MSE loss under indirect model comparison for EW portfolios 

 



used. In fact, the QLIKE function shows evidence of a preference for some models, for 

both evaluation periods. 

If we combine the MCS outcomes over the two evaluation periods and the three loss 

functions, we can state the following (unreported results are available upon request): i) 

if we consider the Amisano-Giacomini log-scores, the preferred specifications are the 

ABEKK and GJR-OGARCH models; ii) there is an overall preference for asymmetric 

CCC and DCC specifications (including GJR-CCC, GJR-DCC and GJR-ADCC) under 

an equally weighted portfolio strategy. Overall, the most successful models seem to be 

GJR-OGARCH and GJR-ADCC, quite possibly due to their flexibility.  

We further stress that we focus on equally weighted strategies because alternative 

portfolio choices, such as global minimum variance portfolios, would require the 

estimation of portfolio weights. These are estimated as a non-linear function of the 

covariance forecasts and, by construction, are time-varying. This induces an increase in 

the variability across models and over time, which influences the results (those results 

emerge from the comparisons made with optimized portfolios which will be made 

available upon request, as well as the results based on the Engle and Colacito (2006) 

comparison approaches). As a consequence, we believe that the comparisons across EW 

portfolios are entirely relevant for an appropriate model evaluation as they are not 

affected by the estimation of the portfolio weights. 

In summary, with respect to the possible ways of performing a model comparison, on 

the basis of our empirical results, we suggest the use of MCS with the Amisano-

Giacomini log-scores as it does not depend on a covariance proxy. However, if a loss 

function based on a covariance proxy is preferred, we recommend the use of the QLIKE 

function. In both cases, the use of MCS of Hansen et al. (2003, 2011) is recommended. 

Furthermore, considering the elements discussed in the introduction, the following 

conclusions emerge. First, the introduction of better covariance proxies has a relevant 

impact if we consider the MSE and QLIKE loss functions, in particular, during low 

volatility periods. Second, the performances of the naïve models are not really 

satisfactory, and this result does not depend on the problem size. In addition, the 

rankings across models do not seem to be time varying. Therefore, on the basis of our 

empirical results, we would conclude that, with the exclusion of small dimensional 

systems, the model rankings are robust to the cross-sectional dimension. Third, if we 
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focus attention on the comparison between the DCC model of Engle (2002) and the 

cDCC model of Aielli (2011), our results favor the former. We link this outcome to the 

more complex estimation approach of the cDCC compared with DCC. Finally, in view 

of our empirical analyses, the results of Zumbach (2009) are only partially confirmed as 

the only covariance model which has relatively good performance is OGARCH. 

Differently, the preference for CCC and DCC-type specifications is more evident. 

 

4.2 Large scale example 
Given the results of the medium scale example, we focus now only on the Model 

Confidence Set results (the pairwise comparisons do not provide unambiguous results).  

In the direct comparison, the results of MCS for the Amisano-Giacomini log-scores are 

equivalent to those of the medium scale example: there is a preference for CCC and 

DCC-type models, in particular, during the crisis (see Table 4), and the impact of 

asymmetry is limited. In addition, the MSE loss outcomes are consistent with the 

previous results using a noisy proxy for the crisis period, in that all models are 

equivalent. During 2006, there is a preference for the EWMA, GJR-ADCC and GJR-

OGARCH models. The last two were included in the MCS of the medium scale 

example when the realized covariance was used as a covariance proxy. Even if the 

results cannot be verified (due to the absence of a realized covariance proxy for the 89 

assets), the outcome partially confirms the previous finding of a mild preference in large 

asset cross sections for the GJR-ADCC and GJR-OGARCH specifications. 

Moving to the indirect model evaluation, the Amisano-Giacomini log-score on EW 

portfolios indicates that the BEKK and OGARCH specifications are preferred, 

consistently with what was observed in the medium scale example in both evaluation 

periods. GJR-OGARCH is the preferred model during the crisis evaluation period, and 

the MCS includes also EWMA and OGARCH, but only at the 1% confidence level. The 

MSE and QLIKE loss functions have results that are similar to those observed with the 

noisy proxy in Section 4.1: most models are equivalent during 2008-2009, while there 

emerge some preference for the CCC, DCC and OGARCH models during 2006. In 

addition, the results change with respect to the portfolio strategy adopted, where the 

variability over time of the portfolio weights represents a potential source of noise. The 

unreported results are available upon request.  
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Table 4: Model Confidence Set results for the large scale example –  
Crisis evaluation period 

Number of 
variables 10 15 20 25 30 35 40 45 50 60 70 80 89 

Model 
Loss-function Amisano-Giacomini – Direct model comparison 

EWMA 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
SHR 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CCC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
DCC 0.20 0.11 0.02 0.02 0.01 0.01 0.04 0.03 0.02 0.04 0.05 0.04 0.01 
cDCC 0.20 1.00 1.00 1.00 0.88 0.01 0.04 0.03 0.06 0.05 0.05 0.04 0.01 
BEKK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OGARCH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-CCC 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-DCC 0.20 0.11 0.02 0.02 0.01 0.01 0.04 0.03 0.04 0.05 0.05 0.04 0.01 

GJR-ADCC 1.00 0.11 0.02 0.92 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
GJR-cDCC 0.20 0.11 0.02 0.02 0.03 0.01 0.04 0.03 0.06 0.05 0.05 0.04 0.01 

ABEKK 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-OGARCH 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Amisano-Giacomini – Indirect model comparison 
EWMA 0.04 0.07 0.07 0.03 0.04 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.03 

SHR 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
CCC 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
DCC 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
cDCC 0.04 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
BEKK 0.04 0.07 0.07 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

OGARCH 0.04 0.07 0.07 0.03 0.04 0.03 0.03 0.02 0.02 0.03 0.03 0.03 0.03 
GJR-CCC 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-DCC 0.04 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

GJR-ADCC 0.04 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-cDCC 0.04 0.07 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ABEKK 0.04 0.07 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
GJR-OGARCH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

Note: Bold shaded p-values denote models included in the confidence set for each of the problem  
dimensions reported in the first row at the 1% confidence level. 
 
 

Comparing the outcomes of the large scale example with those of the medium scale 

example, we find confirmation of the poor performances of the naïve models and of the 

stability of the rankings across problem dimension (at least with the sample of assets 

and for the evaluation periods considered here). 
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5. Concluding Remarks 
 

From an empirical perspective, Multivariate GARCH models suffer from the so-called 

“curse of dimensionality”. For this reason, several simple specifications are typically 

used, including the CCC, DCC, OGARCH and Scalar BEKK models. Naïve methods 

could also be used, such as EWMA or the Covariance Shrinking approach. However, 

few studies have considered a detailed out-of-sample comparison of all of these models. 

This paper has shed light on this topic, but the outcome is far from conclusive. By using 

alternative evaluation methods, including the direct and indirect approaches, pairwise 

and multivariate methodologies, realized covariance and noisy covariance proxies, and 

different out-of-sample evaluation periods, the results are mixed. 

Some useful results have emerged. The use of a realized covariance proxy is relevant as 

the rankings obtained with a noisy proxy can be quite different. This complements the 

findings of Hansen and Lunde (2005, 2006) and Laurent et al. (2010). The rankings 

seem not to be greatly affected by the problem size: apart from some variability for the 

smallest problem dimensions considered, by increasing the number of assets the model 

ranking stabilizes as if the impact of model estimation and specification errors (which 

should be increasing with the problem dimension) is not affecting the rankings. 

Furthermore, naïve approaches, such as the EWMA and covariance shrinking methods, 

underperform compared with the dynamic models. Less common outcomes suggest 

that, during periods of high volatility, most models provide statistically equivalent 

results, while some preference is given to DCC-type and GJR-OGARCH models. 

Across the methods considered, the MCS method of Hansen et al. (2003, 2011) leads to 

results that are easier to interpret, the Amisano-Giacomini (2007) log-score is not 

influenced by the noise in the covariance proxy, and the QLIKE loss function seems to 

be able to detect some model preferences, even in periods of high volatility. 

Overall, we do not find confirmation of the result of Zumbach (2009), which suggested 

a preference for covariance models. Furthermore, we provide evidence that naïve 

allocation strategies, such as EW, should be preferred as they are not influenced by the 

variability of the portfolio weights, which might have a role in the model rankings. 

Finally, it should be emphasized that the main message from the empirical analysis is 

that there is no optimal model. The best model must be chosen with respect to a sample 
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period and by using selection criteria that match the purpose of the analysis. Direct and 

indirect evaluations can provide markedly different results. This may be read as further 

confirmation of the truism that “all models are wrong, but some are more useful than 

others”, wherein usefulness may change over time and for different applications.  

As model rankings can change over time, and because alternative models are included 

in the MCS, this may provide a reasonable data-driven input for a forecast combination 

of MGARCH specifications. A possible approach would then follow the ideas of 

Amendola and Storti (2009), who propose a methodology for forecast combination, but 

restrict their attention to two standard MGARCH specifications. 

Additional research on the topic is needed, and should focus on the methodological 

approaches for model comparison, on the robustness of model rankings over different 

forecast horizons (longer that the one-day horizon used in this paper), and on the impact 

of estimating the portfolio weights. In order to be investigated thoroughly, such tasks 

would require the use of simulation-based approaches on a large cross-sectional 

dimension. We leave this computationally challenging topic for future research. 
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Appendix A: List of equities included in the empirical analysis 
 
The following is a list of the 89 companies whose stock total returns have been used in 
the empirical analysis of the paper for the large scale example: 
 
3M, ABBOTT LABORATORIES, ALCOA, ALLSTATE, ALTRIA GROUP, 
AMER.ELEC.PWR., AMERICAN EXPRESS, AMGEN, APPLE, AT&T, AVON 
PRODUCTS, BAKER HUGHES, BANK OF AMERICA, BANK OF NEW YORK MELLON, 
BAXTER INTL., BOEING, BRISTOL MYERS SQUIBB, BURL.NTHN.SANTA FE C, 
CAMPBELL SOUP, CAPITAL ONE FINL., CATERPILLAR, CHEVRON, CISCO 
SYSTEMS, CITIGROUP, COCA COLA, COLGATE-PALM., COMCAST 'A', 
CONOCOPHILLIPS, COSTCO WHOLESALE, CVS CAREMARK, DELL, DOW 
CHEMICAL, E I DU PONT DE NEMOURS, EMC, ENTERGY, EXELON, EXXON MOBIL, 
FEDEX, FORD MOTOR, GENERAL DYNAMICS, GENERAL ELECTRIC, GILEAD 
SCIENCES, HALLIBURTON, HEWLETT-PACKARD, HJ HEINZ, HOME DEPOT, 
HONEYWELL INTL., INTEL, INTERNATIONAL BUS.MCHS., JOHNSON & JOHNSON, 
JP MORGAN CHASE & CO., LOCKHEED MARTIN, LOWE'S COMPANIES, 
MCDONALDS, MEDTRONIC, MERCK & CO., MICROSOFT, MORGAN STANLEY, 
NATIONAL OILWELL VARCO, NIKE 'B', NORFOLK SOUTHERN, OCCIDENTAL PTL., 
ORACLE, PEPSICO, PFIZER, PROCTER & GAMBLE, QUALCOMM, RAYTHEON 'B', 
REGIONS FINL.NEW, SARA LEE, SCHERING-PLOUGH, SCHLUMBERGER, 
SOUTHERN, SPRINT NEXTEL, TARGET, TEXAS INSTS., TIME WARNER, UNITED 
TECHNOLOGIES, UNITEDHEALTH GP., US BANCORP, VERIZON 
COMMUNICATIONS, WAL MART STORES, WALGREEN, WALT DISNEY, WELLS 
FARGO & CO, WEYERHAEUSER, WILLIAMS COS., WYETH, XEROX 
 
 
The following is a list of the 15 companies whose total returns have been used in the 
empirical analysis of the paper for the medium scale example: 
 
AT&T , BANK OF AMERICA, BOEING, CATERPILLAR, CITIGROUP, FEDEX, 
HONEYWELL INTL., HEWLETT-PACKARD, INTERNATIONAL BUS.MCHS., JP 
MORGAN CHASE & CO., PEPSICO, PROCTER & GAMBLE, TEXAS INSTS., TIME 
WARNER, WELLS FARGO & CO 
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