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Abstract

A bootstrap method is proposed for the Anderson-Rubin test and the J test for overidentifying

restrictions in linear instrumental variable models with many instruments. We show the bootstrap

validity of these test statistics when the number of instruments increases at the same rate as the

sample size. Moreover, since it has been shown in the literature to be valid when the number of

instruments is small, the bootstrap technique is practically robust to the numerosity of the moment

conditions. A small-scale Monte Carlo experiment shows that our procedure has outstanding small

sample performance compared with some existing asymptotic procedures.
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1 Introduction

The conventional asymptotic theory often provide a poor approximation of the finite sam-

ple distribution of instrumental variable estimators and test statistics. Examples are with

weak instruments(e.g., Staiger and Stock(1997)[17], Stock and Wright(2000)[18]) or many

instruments(e.g., Morimune(1983)[14], Bekker(1994)[4], Chao and Swanson(2005)[5], An-

drews and Stock(2007)[3], Hansen et al.,(2008)[10], Anatolyev and Gospodinov(2011)[1]).

And these problems have recently received considerable attention in the econometric lit-

erature.

However, despite the large literature on estimation in the presence of many (and possi-

bly weak) instruments, the behavior of the tests for parameter and overidentifying restric-

tions has not been fully investigated. Andrews and Stock(2007)[3] derives the asymptotic

distributions of some parameter and specification tests in models with moderately many

instruments. But in their paper, the number of instruments grows much more slowly

relative to the sample size. In contrast, Anatolyev and Gospodinov(2011)[1] argue that

to obtain a good asymptotic approximation, one has to acknowledge the numerosity of

instruments via a many instruments assumption of Bekker(1994)[4]. They also propose

a modification of the Anderson-Rubin statistic and J statistic so that these tests can be

robust to many instruments. However, the empirical size distortion of these modified tests

tends to increase when the number of instruments becomes a nontrivial fraction of the

sample size.

Instead of doing modification of the AR and J tests, we propose in this paper to

bootstrap them directly and show the bootstrap validity of these test statistics under

many instruments asymptotics of Bekker(1994)[4]. Furthermore, this bootstrap procedure

is easy to implement in practice because it does not require an a priori choice of asymptotic

framework, i.e., it is valid under both fixed and many instruments asymptotics. Monte

Carlo simulations show that the bootstrap techniques provide a more reliable method to

approximate the null distribution of the test statistics.

The remainder of the paper is organized as follows. Section 2 introduces the basic

framework and the test statistics. The main results are established and discussed in

Section 3. Section 4 presents Monte Carlo simulation results for the size properties of our

bootstrap procedure in finite samples. Section 5 concludes. All proofs are relegated to

the Appendix.

2 Model, Assumption and Statistics

We consider a standard linear instrumental variable regression given by

yi = X ′iβ + εi

2



for i = 1, ..., n, where yi is the scalar outcome variable and Xi is the k × 1 vector of

regressors that is possibly correlated with the unobservable error term εi. Let Zi be a

l× 1 vector of instruments, which we treat as deterministic, where k ≤ l < n. We also let

PZ = Z(Z ′Z)−1Z ′ and MZ = In − PZ , where In is an identity matrix with dimension n.

We further assume that

Xi = π′Zi + vi

where π is the l× k matrix of parameters whose value may depend on n as well as l. The

model can be written in matrix form as

y = Xβ + ε (1)

X = Zπ + v (2)

where y = (y1, ..., yn)′ is n × 1, X = (x1, ..., xn)′ is n × k, Z = (z1, ..., zn)′ is n × l,

ε = (ε1, ..., εn)′ is n × 1 and v = (v1, ..., vn)′ is n × k. In this paper, we consider the case

when k, the dimension of β, is small relative to n, but l is large and comparable to n.

The model and the data are assumed to satisfy the following conditions.

Assumption 1. The errors ηi = (εi, v
′
i)
′ are i.i.d. for i = 1, ..., n with mean zero and

positive definite variance matrix Σ =

(
σεε σ′vε
σvε Σvv

)
. εi and vi have finite fourth moments.

Assumption 2. As n→∞, λn = l/n→ λ, where 0 < λ < 1.

Assumption 2 adopts the many instruments asymptotic framework of Bekker(1994)[4]

when the number of instruments is a nontrivial fraction of the sample size.

Following Anatolyev and Gospodinov(2011)[1], we also assume the following condition

for the instruments.

Assumption 3. Under the asymptotics of Assumption 2, n−1
∑n

i=1 |z′i(Z ′Z)−1zi−λ| →
0.

As discussed in their paper, Assumption 3 requires that (almost) all diagonal elements

of the projection matrix PZ converge to λ (under standard or moderately many instru-

ments asymptotics they converge to zero). And the validity of Assumption 3 follows from

the literature on large dimensional covariance matrices(Silverstein(1995)[16]) in the case

that Z are i.i.d. both across rows and columns, possibly after a rotating transformation,

and have finite fourth moments. The i.i.d. requirement can be relaxed at the expense of

existence of higher order moments.

Assumption 4. Xi has finite fourth moment.
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Assumption 5. π′Z ′Zπ/n→ Q, where Q is a positive definite matrix.

Assumption 5 implies that the information accumulation by adding new instruments

is limited and thus bounded even with l → ∞. Note that this condition allows for

moderately weak instruments though not as weak as the case considered by Chao and

Swanson(2005)[5] or Hansen et al.(2008)[10].

We proceed to introduce the test statistics to be studied in this paper. In the literaure,

statistics to test the hypothese H0 : β = β0 have been developped whose limiting distribu-

tion under H0 does not depend on the value of π, see e.g. Anderson and Rubin(1949)[2],

Kleibergen(2002)[11] and Moreira(2003)[12]. Therefore, these test statistics are able to

provide correct asymptotic size no matter the instrument Z is strong or weak. However,

these test statistics are not robust to many instruments. For example, the Anderson-

Rubin(AR) test statistic takes the following form

AR = (n− l) ε
′
0PZε0
ε′0MZε0

(3)

where ε0 = y−Xβ0 is a vector of null restricted error. Under H0 : β = β0 and conventional

fixed instruments asymptotics(when l does not grow with the sample size), its limiting

distribution is χ2(l). However, the limiting distribution changes when the number of

instruments increases with the sample size. Particularly, in the framework of moderately

many instruments(when l3/n→ 0 as l, n→∞), Andrews and Stock(2007)[3] show that

√
l

(
AR

l
− 1

)
⇒dP N(0, 2)

Moreover, Anatolyev and Gospodinov(2011)[1] show that under the many instruments

assumption of Bekker(1994)[4].

√
l

(
AR

l
− 1

)
⇒dP N(0, 2/(1− λ)) (4)

and they proposed a modified test statistic based on equation (4). However, as can be

found out in the results of their simulation and also in ours, this asymptotic approximation

can become less reliable when l becomes an important fraction of the sample size.

We then turn to the J statistic. The standard J test statistic (Sargan, 1958) is defined

as

J =
ε̂′PZ ε̂

σ̂εε
(5)

where ε̂ = y −Xβ̂ is the residual vector and σ̂εε = ε̂′ε̂/n. Let β̂2SLS = (X ′PZX)−1X ′PZy

denote the two-stage least square (2SLS) estimator. It is well known that under the null
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of correct moment restriction Hm : E[εiZi] = 0, the standard asymptotic theory gives

β̂2SLS − β = OP (1/
√
n). And for the J statistic based on β̂2SLS, we have

J ⇒dP χ
2(l − k) (6)

as n → ∞. When l → ∞, however, β̂2SLS is no longer a consistent estimator of β. The

right hand side of (6) diverges and the asymptotic distribution of J is not well-defined.

In order to solve this problem, Anatolyev and Gospodinov(2011)[1] have proposed

modified versions of the J testd statistic. The modified J tests are constructed such

that under many instruments asymptotics, their asymptotic distributions under the null

hypothesis are standard normal. Moreover, It turns out that the choice of β̂ is not

important for the asymptotic behavior of these modified test statistics as long as its rate

of convergence is not slower than
√
n under many instruments. More precisely, Anatolyev

and Gospodinov(2001)[1] show that as long as the β̂ satisfies
√
n(β̂ − β) = OP (1) under

many instruments asymptotics, we can obtain

√
l

(
J

l
− 1

)
⇒dP N(0, 2(1− λ)) (7)

However, similar to the AR test, the simulation results in Anatolyev and Gospodinov(2011)[1]

show that the modified J test statistic can have serious size distortion when the number

of instruments becomes an important fraction of the sample size(e.g., l/n=0.5). Note that

similar ratios of number of moment conditions to sample size often arise in empirical ap-

plications such as linear asset pricing models of large portfolios and estimating structual

macroeconomic models by matching impulse response functions. Therefore, we think it

necessary to propose a many-instruments robust inference approach that can deliver more

reliable finite sample performance.

3 Bootstrap Validity under Many Instruments Asymptotics

Instead of modifying the test statistics, we propose to bootstrap the AR and J statistics

even when the number of instruments is large, and we show the bootstrap validity under

many instruments asymptotics of Bekker(1994) [4] . In this paper, we shall consider the

residual based i.i.d. bootstrap, and our bootstrap procedure for the Anderson-Rubin test

statistic is carried out as follows:

Step 1: Given β̂, consistent estimator of β, the residuals from the equation (1) are

obtained as:

ε̂ = y −Xβ̂

As to the choice of β̂, estimators that are consistent under both conventional fixed instru-

ments asymptotics and many instruments asymptotics can be used. (eg., LIML estimator
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or Bias-corrected two stage least square estimator, see Newey(2004)[15] for more dis-

cussions.) Particularly, the Bias-corrected two stage least square estimator(β̂B2SLS, say)

takes the following form:

β̂B2SLS =
(
X
′
PZX − λnX

′
X
)−1 (

X
′
PZy − λnX

′
y
)

(8)

where λn = l/n. We will use this Bias-corrected two stage least square estimator in both

mathematical proof and numerical experiments below. But one can extend the results

easily to the case of LIML estimator.

Step 2: The residuals are re-centered to yield ε̃, then ε∗ are drawn from the empirical

distribution function of ε̃.

Step 3: Our bootstrap version of Anderson-Rubin statistic takes the following form:

AR∗ = (n− l) ε
∗′PZε

∗

ε∗′MZε∗
(9)

Step 4: Repeat Steps 1-3 B times, and obtain the empirical distribution of the B test

statistics of AR∗. This empirical distribution is used to approximate the finite sample

distribution of AR under H0.

Step 5: Let AR∗α be the α percentile of the bootstrap distribution from Step 4. We

will reject the null hypothesis at significance level α if the observed AR > AR∗α.

Note that for the AR test, there is no need to generate the bootstrap resample

({X∗, y∗}, say). To see why, suppose we set

y∗ = X∗β0 + ε∗

where X∗ is generated from some resampling scheme for X, and we generate y∗ under

H0 : β = β0. But the resulting bootstrap version of the AR statistic will take exactly the

same form as equation (9).

The following theorem shows the bootstrap validity of AR statistic under many instru-

ments asymptotics.

THEOREM 1. Suppose Assumptions 1-5 holds. Then,

supx∈R

∣∣∣∣P ∗(√l(AR∗l − 1

)
≤ x

)
− P

(√
l

(
AR

l
− 1

)
≤ x

)∣∣∣∣→p 0

where P ∗ denotes the probability measure induced by the i.i.d. bootstrap.

Proof. See the Appendix.

In the literature, several authors have considered improving the finite sample per-

formance of the AR statistic and other identification robust statistics by using bootstrap

technique(e.g., Davidson and Mackinnon(2008)[6], Moreira, Porter and Suarez(2009)[13]).
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And they show that it is valid to bootstrap the AR test under the conventional fixed in-

struments asymptotics; Theorem 1 extends their result to many instruments case.

In practice, it is difficult to decide when we should use the fixed instruments asymp-

totics and when we should use the many instruments asymptotics. However, this decision

is not necessary for the bootstrap approach since the actual procedure will be the same

in both cases. For example, suppose we generate B=99 times bootstrap samples, and

construct {√
l

(
AR∗1
l
− 1

)
, ...,
√
l

(
AR∗99
l
− 1

)}
as their bootstrap validity has been shown in Theorem 1. Sorting all 100 statistics,{√

l

(
AR

l
− 1

)
,
√
l

(
AR∗1
l
− 1

)
, ...,
√
l

(
AR∗99
l
− 1

)}
for a 5 percent nominal level test, we shall reject H0 : β = β0 if

√
l
(
AR
l
− 1
)

is among the

5 largest ones. But this is equivalent to reject H0 if AR is one of the 5 largest statistics

in {AR,AR∗1, ..., AR∗99}, which is exactly the same the procedure as used in Davidson and

MacKinnon(2008)[6] and Moreira, Porter and Suarez(2009)[13] for the fixed instruments

case. Therefore, the bootstrap technique is robust to the numerosity of the instruments

in the sense that it is valid for both few and many instruments.

The bootstrap procedure for the J test is a little bit more complicated than that of the

AR test because we will use both equation (1) and equation (2) to generate the residuals.

Step 1: The residuals are obtained as:

ε̂ = y −Xβ̂

v̂ = X − Zπ̂

where π̂ = (Z ′Z)−1Z ′X.

Step 2: The residuals are re-centered to yield {ε̃, ṽ}, then {ε∗, v∗} are drawn from the

empirical distribution function of {ε̃, ṽ}.
Step 3: Next, we set

y∗ = X∗β̂ + ε∗

X∗ = Zπ̂ + v∗

Step 4: Obtain the bootstrap residual ε̂∗ = y∗ −X∗β̂∗, where β̂∗ is the estimate of β̂

using the bootstrap sample {X∗, y∗}. Then use the bootstrap residual ε̂∗ to construct the

test statistic

J∗ =
ε̂∗
′
PZ ε̂

∗

σ̂∗εε

where σ̂∗εε = ε̂∗
′
ε̂∗/n.
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Step 5: Repeat Steps 1-4 B times, and obtain the empirical distribution of the B

test statistics of J∗. This empirical distribution is used to approximate the finite sample

distribution of J under the null hypothesis.

Step 6: Let J∗α be the α percentile of the bootstrap distribution from Step 5. We will

reject the null hypothesis at significance level α if the observed J > J∗α.

And the bootstrap validity of J statistic under many instruments asymptotics is shown

in Theorem 2.

THEOREM 2. Suppose Assumptions 1-5 holds. Then,

supx∈R

∣∣∣∣P ∗(√l(J∗l − 1

)
≤ x

)
− P

(√
l

(
J

l
− 1

)
≤ x

)∣∣∣∣→p 0

where P ∗ denotes the probability measure induced by the i.i.d. bootstrap.

4 Monte Carlo Simulation

To evaluate the finite-sample performance of the proposed bootstrap procedure, we con-

duct some Monte Carlo experiments. The design of the experiment is similar to that

considered by Hahn and Hausman(2002)[9] and Donald and Newey(2001) [7].

The simulation model is described by Eqs.(1) and (2). The n rows of [ε, v] are i.i.d.

with mean zero, unit variance and correlation ρ. The correlation coefficient ρ represents

the degree of endogeneity of X, and we consider in the simulation ρ = 0, 0.2, 0.5 and

0.8. We take the matrix of instruments, Z, to be distributed N (0, Il). And we consider

different strengths of identification by introducing R2
f = 0.01 and 0.2 for the theoretical

R2 of the first-stage regression. R2
f = 0.01 reflects relatively weak instruments whereas

R2
f = 0.2 reflects relatively strong instruments. We consider the sample size n = 100, and

the number of instruments l = 10, 30 and 50. For all the results, the number of replication

is 5000, and we generate B = 399 bootstrap resamples.

Table 1 and Table 2 report the empirical rejection frequency at 5 percent nominal level

of the conventional(AR), the modified version(ARAG) by Anatolyev and Gospodinov(2011)[1]

and the bootstrap version(ARBootstrap) of the AR test. Examining the results, we can find

that the conventional AR test seriously over-reject when the number of instruments is

large. The ARAG test performs better than the AR test, but it tends to over-reject for

l = 50. Our ARBootstrap test has coverage very close to the nominal level for all values of

ρ, l and R2
f .

Table 3 and Table 4 report the empirical rejection frequency at 5 percent nominal level

of the conventional(J), the modified version(JAG) by Anatolyev and Gospodinov(2011)[1]

and the bootstrap version(JBootstrap) of the J test. Interestingly, different from the AR test,
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the conventional J test tends to seriously under-reject when the number of instruments

is large. While the empirical size distortion of the JAG test is much smaller than that of

the J test, the overall performance of the JBootstrap test turns out to be the best among

the three.

5 Conclusions and Future Research

To summarize, we propose in this paper to bootstrap the standard AR and J tests of pa-

rameter and overidentifying restrictions in the presence of many instruments. The boot-

strap validity is shown under the many instruments asymptotics of Bekker(1994)[4]. A

small-scale Monte Carlo experiment shows that our bootstrap procedure has outstanding

small sample performance compared with some existing asymptotic procedures. Further-

more, in practice, this bootstrap procedure can be implemented no matter the number of

instruments is small or large. A currently undertaken extension is to show the bootstrap

validity of other identification robust statistics(e.g., Kleibergen(2002)[11]’s K statistic and

Moreira(2003)[12]’s CLR statistic) in the presence of many instruments. Another research

topic that may be interesting is to consider non-i.i.d environments that accommodate het-

eroskedasticity and serial correlation in the error terms.
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6 APPENDIX

Throughout this Appendix, for any bootstrap statistic T ∗ we write T ∗ →P ∗ 0 in probabil-

ity when limn→∞P [P ∗(|T ∗| > δ) > δ] = 0 for any δ > 0, i.e. P ∗(|T ∗| > δ) = oP (1). Also,

we say that T ∗ = OP ∗(n
λ) in probability if and only if ∀δ > 0, There exists a Mδ < ∞

such that limn→∞P [P ∗(|n−λT ∗| > Mδ) > δ] = 0, i.e. ∀δ > 0, There exists a Mδ < ∞
such that P ∗(|n−λT ∗| > Mδ) = oP (1). Finally, we write T ∗ ⇒dP∗ D in probability, for any

distribution D, when weak convergence under the bootstrap probability measure occurs

in a set with probability converging to one.

Following Anatolyev and Gospodinov(2011)[1], we also use throughout the proof that

0 ≤ z′i(Z
′Z)−1zi ≤ 1 for each i, that

1

n

n∑
i=1

z′i(Z
′Z)−1zi =

1

n
Tr

(
(Z ′Z)−1

n∑
i=1

ziz
′
i

)
=

1

n
Tr(Il) = λn

and that
1

n

n∑
i=1

(
z′i(Z

′Z)−1zi − λn
)2 ≤ 1

n

n∑
i=1

|z′i(Z ′Z)−1zi − λn|

because 0 ≤ z′i(Z
′Z)−1zi ≤ 1 and u2 ≤ |u| when 0 ≤ u ≤ 1.

Lemma 1 Suppose β̂ − β →P 0, E[ε4i ] < ∞, E ‖ Xi ‖4< ∞, then E∗(ε∗4i ) ≡ κ̃4 and

V ar∗[ε∗i ] ≡ σ̃εε are bounded in probability.

Proof.

(a) Let us start with κ̃4. Let ε̄ = 1
n

∑n
i=1 εi and X̄ = 1

n

∑n
i=1Xi. Using Minkowski and

Cauchy-Schwartz inequalities, we obtain

κ̃4 =
1

n

n∑
i=1

ε̃4i

=
1

n

n∑
i=1

(
εi − ε̄− (Xi − X̄)′(β̂ − β)

)4
≤ C1

{
1

n

n∑
i=1

(εi − ε̄)4 +
1

n

n∑
i=1

|(Xi − X̄)′(β̂ − β)|4
}

≤ C2

{
1

n

n∑
i=1

(εi − ε̄)4 + ‖ β̂ − β ‖4 1

n

n∑
i=1

‖ Xi − X̄ ‖4
}

for large enough constants C1 and C2.

Using the Minkowski inequality again, we get

1

n

n∑
i=1

‖ Xi − X̄ ‖4 ≤ C1

{
1

n

n∑
i=1

‖ Xi ‖4 + ‖ X̄ ‖4
}

→P C1

{
E ‖ Xi ‖4 + ‖ E[Xi] ‖4

}
11



using ‖ X̄ ‖→P‖ E[Xi] ‖≤ E ‖ Xi ‖≤ (E ‖ Xi ‖4)1/4 by Jensen’s inequality. Since

β̂ − β →P 0 and E[ε4i ] <∞, the term κ̃4 is bounded in probability.

(b) For σ̃εε, note that by our bootstrap DGP, E∗[ε∗i ] = 0. Therefore, to show σ̃εε =

OP (1), it suffices to show that 1
n

∑n
i=1 ε̃

2
i = OP (1). But this follows when we apply the

same arguments as for part (a). �

Lemma 2 and Lemma 3 are for the bootstrap validity of J statistic. we shall first

introduce some notations to be used in the Lemmas. By our i.i.d. bootstrap procedure,

E∗[v∗i ε
∗
i ] = 1

n

∑n
i=1 ṽiε̃i ≡ σ̃vε and E∗[v∗i v

∗′
i ] = 1

n

∑n
i=1 ṽiṽ

′
i ≡ Σ̃vv where σ̃vε is k × 1 and

Σ̃vv is k × k.

Lemma 2 If Assumption 1-5 are satisfied, then the following statements are true as

n→∞:

(a) v∗
′
PZε

∗/l = σ̃vε +OP ∗(1/
√
l), in probability;

(b) v∗
′
PZv

∗/l = Σ̃vv +OP ∗(1/
√
l), in probability;

(c) ε∗
′
PZε

∗/l = σ̃εε +OP ∗(1/
√
l), in probability;

(d) π̂′Z ′v∗/n = OP ∗(1/
√
n), in probability;

(e) π̂′Z ′ε∗/n = OP ∗(1/
√
n), in probability.

Proof.

To prove part(a), note that it suffices to prove that v∗(g)
′
PZε

∗/l = σ̃
(g)
vε +OP ∗(1/

√
l) as

n→∞, where v∗(g) denoted the gth column of v∗, so that v∗(g)
′
PZε

∗/l is the gth element

of v∗
′
PZε

∗/l, and where σ̃
(g)
vε denotes the gth element of σ̃vε, g = 1, ..., k.

From the bootstrap DGP, we can see that

E∗
[
v∗(g)

′
PZε

∗

l

]
=

1

l
E∗[Tr(v∗(g)

′
PZε

∗)] =
1

l
T r(PZE

∗[ε∗v∗(g)
′
])

=
σ̃
(g)
vε

l
T r(PZ) = σ̃(g)

vε

because E∗[ε∗i v
∗(g)
j ] = E∗[ε∗i ]E

∗[v
∗(g)
j ] = 0 for i 6= j by the property of i.i.d. bootstrap.
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Furthermore, note that

E∗
[
v∗(g)

′
PZε

∗

l
− σ̃(g)

vε

]2
=

1

l2

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

z′i(Z
′Z)−1zjz

′
k(Z

′Z)−1zlE
∗[v∗igε

∗
jv
∗
kgε
∗
l ]

−2σ̃
(g)
vε

l

n∑
i=1

n∑
j=1

z′i(Z
′Z)−1zjE

∗[v∗igε
∗
j ] + (σ̃(g)

vε )2

=
1

l2
E∗[v∗2ig ε

∗2
i ]

[
n∑
i=1

(z′i(Z
′Z)−1zi)

2

]
+

2

l2
Σ̃(g,g)
vv σ̃εε

[
n∑
i=2

i−1∑
j=1

(z′i(Z
′Z)−1zj)

2

]

+

{
2

l2
(σ̃(g)

vε )2

[
n∑
i=2

i−1∑
j=1

(
z′i(Z

′Z)−1ziz
′
j(Z

′Z)−1zj + (z′i(Z
′Z)−1zj)

2
)]
− (σ̃(g)

vε )2

}
≡ L1 + L2 + L3

The second equality follows from noting that E∗[v∗igε
∗
jv
∗
kgε
∗
l ] equals zero except in the case

where either (i = j = k = l) or (i = k, j = l) or (i = j, k = l) or (i = l, j = k) and from

using
∑n

i=1 z
′
i(Z
′Z)−1zi = l.

Let us first focus on L1. Note that

L1 =
1

l2
1

n

n∑
i=1

ṽ2ig ε̃
2
i

[
n∑
i=1

(
z′i(Z

′Z)−1zi
)2]

≤ 1

l2

(
1

n

n∑
i=1

ṽ4ig

)1/2(
1

n

n∑
i=1

ε̃4i

)1/2 [ n∑
i=1

(
z′i(Z

′Z)−1zi
)2]

≤ 1

l

(
1

n

n∑
i=1

ṽ4ig

)1/2(
1

n

n∑
i=1

ε̃4i

)1/2

= OP

(
1

l

)
where the first inequality follows from the Cauchy-Schwartz inequality, and the second

inequality follows from using
∑n

i=1 (z′i(Z
′Z)−1zi)

2 ≤
∑n

i=1 z
′
i(Z
′Z)−1zi = l. The last

equality follows from using the same arguments as in Lemma 1.

Next, for L2, we have

L2 ≤
Σ̃

(g,g)
vv σ̃εε
l2

[
n∑
i=1

(
z′i(Z

′Z)−1zi
)2

+ 2
n∑
i=2

i−1∑
j=1

(z′i(Z
′Z)−1zj)

2

]

=
Σ̃

(g,g)
vv σ̃εε
l

= OP

(
1

l

)
because

n∑
i=1

(
z′i(Z

′Z)−1zi
)2

+ 2
n∑
i=2

i−1∑
j=1

(z′i(Z
′Z)−1zj)

2 = Tr(P ′ZPZ) = Tr(PZ) = l

13



given that PZ is symmetric and idempotent.

Finally, for L3, we note that

|L3| =

∣∣∣∣∣(σ̃(g)
vε )2

l2

[
(Tr(PZ))2 + Tr(P ′ZPZ)− 2

n∑
i=1

(z′i(Z
′Z)−1zi)

2

]
− (σ̃(g)

vε )2

∣∣∣∣∣
=

∣∣∣∣∣(σ̃(g)
vε )2

l2

(
l2 + l − 2

n∑
i=1

(z′i(Z
′Z)−1zi)

2

)
− (σ̃(g)

vε )2

∣∣∣∣∣
=

∣∣∣∣∣(σ̃(g)
vε )2

l2

(
l − 2

n∑
i=1

(
z′i(Z

′Z)−1zi
)2)∣∣∣∣∣

≤ (σ̃
(g)
vε )2

l
+

2(σ̃
(g)
vε )2

∑n
i=1 z

′
i(Z
′Z)−1zi

l2
= OP

(
1

l

)
Therefore, E∗

[
v∗(g)

′
PZε

∗

l
− σ̃(g)

vε

]2
= OP (1/l).

But, for any T ∗ such that V ar∗[T ∗] = OP (1/l), by the Tchebychev’s inequality, we

have for any δ > 0 and any fixed Mδ > 0,

P ∗(|
√
lT ∗ |> Mδ) ≤

1

M2
δ

V ar∗(
√
lT ∗) =

1

M2
δ

OP (1),

Also, by the definition of OP (1), for δ, there exists a M
′

δ <∞ such that

lim
n→∞

P (| OP (1) |> M
′

δ) = 0.

If we take Mδ =

√
M
′
δ

δ
, i.e. M2

δ =
M
′
δ

δ
, then,

lim
n→∞

P (| 1

M2
δ

OP (1) |> δ) = lim
n→∞

P (
δ

M
′
δ

| OP (1) |> δ)

= lim
n→∞

P (| OP (1) |> M
′

δ) = 0.

These results show that P ∗(|
√
lT ∗ |> Mδ) = oP (1), i.e. T ∗ = OP ∗(1/

√
l) by the defini-

tions at the beginning of the Appendix.

Therefore it follows that v∗(g)
′
PZε

∗/l− σ̃(g)
vε = OP ∗(1/

√
l), as required. This proves part

(a). Parts (b) and (c) follow from proof similar to that of part (a).

The proof for parts (d) and (e) are similar, so we will only prove (d). To proceed, note

that by the properties of Expectation and Trace operator,

E∗
[
‖ v
∗′Zπ̂

n
‖2
]

= E∗
[
Tr

(
π̂′Z ′v∗v∗

′
Zπ̂

n2

)]
= Tr(Σ̃vv)E

∗
[
Tr(π̂′Z ′Zπ̂)

n2

]
=

1

n
Tr(Σ̃vv)Tr

(
π̂′Z ′Zπ̂

n

)
14



Using π̂ = (Z ′Z)−1Z ′X, we have

π̂′Z ′Zπ̂

n
=
π′Z ′Zπ

n
+
v′Zπ

n
+
π′Z ′v

n
+
v′PZv

n
= Q+ λnΣvv + oP (1) = OP (1)

Therefore

E∗
[
‖ v
∗′Zπ̂

n
‖2
]

=
1

n
OP (1)OP (1) = OP

(
1

n

)
because Σ̃vv is bounded in probability. It follows that π̂′Z ′v∗/n = OP ∗(1/

√
n). �

We proceed to show the results for β̂∗B2SLS.

Lemma 3 Suppose that Assumptions 1-5 hold, then

β̂∗B2SLS − β̂B2SLS = OP ∗

(
1√
n

)
Proof.

By the definition of Bias-corrected 2SLS estimator, we have

β̂∗B2SLS − β̂B2SLS =

(
X∗

′
PZX

∗

n
− λnX

∗′X∗

n

)−1(
X∗

′
PZε

∗

n
− λnX

∗′ε∗

n

)
For the denominator, we have

X∗
′
PZX

∗

n
− λnX

∗′X∗

n

=
π̂′Z ′Zπ̂

n
+
π̂′Z ′v∗

n
+
v∗
′
Z ′π̂

n
+
v∗
′
PZv

∗

n
− λn

(
π̂′Z ′Zπ̂

n
+
π̂′Z ′v∗

n
+
v∗
′
Z ′π̂

n
+
v∗
′
v∗

n

)
= (1− λn)

π̂′Z ′Zπ̂

n
+ (1− λn)

(
π̂′Z ′v∗

n
+
v∗
′
Z ′π̂

n

)
+
v∗
′
PZv

∗

n
− λn

v∗
′
v∗

n

Note that π̂′Z ′v∗/n = OP ∗(1/
√
n) by Lemma 2. Also note that

v∗
′
PZv

∗

n
= λn

v∗
′
PZv

∗

l

= λn

{
Σ̃vv +OP ∗

(
1√
l

)}
= λnΣ̃vv +OP ∗

(√
l

n

)
where the second equality follows from Lemma 2. Analogously, we have

λn
v∗
′
v∗

n
= λnΣ̃vv +OP ∗

(
1√
n

)

Hence,

X∗
′
PZX

∗

n
− λn

X∗
′
X∗

n
= (1− λn)

π̂′Z ′Zπ̂

n
+ λnΣ̃vv − λnΣ̃vv + oP ∗(1)

= (1− λn)Q+ (1− λn)

(
π̂′Z ′Zπ̂

n
−Q

)
+ oP ∗(1)

= (1− λn)Q+ (1− λn)λnΣvv + oP ∗(1) ≥ C(Q+ λnΣvv)
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for some C > 0, where the last inequality holds in the positive semidefinite sense with

probability approaching 1 in probability. It then follows that(
X∗

′
PZX

∗

n
− λn

X∗
′
X∗

n

)−1
= OP ∗(1)

Similarly,

X∗
′
PZε

∗

n
− λn

X∗
′
ε∗

n
= (1− λn)

π̂′Z ′ε∗

n
+
v∗
′
PZε

∗

n
− λn

v∗
′
ε∗

n

= OP ∗

(
1√
n

)
+ λnσ̃vε +OP ∗

(√
l

n

)
− λnσ̃vε +OP ∗

(
1√
n

)
= OP ∗

(
1√
n

)
by Lemma 2. Therefore, β̂∗B2SLS − β̂B2SLS = OP ∗(1)OP ∗

(
1√
n

)
= OP ∗

(
1√
n

)
, as required.

�

PROOF OF THEOREM 1

To proceed, let us consider the order of

J∗0
l
≡ ε∗

′
PZε

∗

lσ̃εε

E∗
[
J∗0
l
− 1

]
=

1

σ̃εε
E∗
[
Tr(ε∗

′
Z(Z ′Z)−1Z ′ε∗)

]
− 1

=
1

σ̃εε
Tr((Z ′Z)−1Z ′E∗[ε∗ε∗

′
]Z)− 1

where E∗ denotes the expectation under P ∗. Note that by the definition of i.i.d bootstrap,

E∗[ε∗i ε
∗
j ] = E∗[ε∗i ]E

∗[ε∗j ] = 0

for i 6= j. Therefore,

E∗
[
J∗0
l
− 1

]
=

1

σ̃εε
Tr((Z ′Z)−1Z ′(σ̃εεIn)Z)− 1

=
1

l
T r(Il)− 1 = 0

and

J∗0
l
− 1 =

1

l

n∑
i=1

n∑
j=1

z′i(Z
′Z)−1zj

ε∗i ε
∗
j

σ̃εε
− 1

=
1

l

n∑
i=1

z′i(Z
′Z)−1zi

(
ε∗2i
σ̃εε,
− 1

)
+

1

l

∑
i 6=j

z′i(Z
′Z)−1zj

ε∗i ε
∗
j

σ̃εε

≡ A∗1 + A∗2

A∗1 and A∗2 are uncorrelated under P ∗.
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Then, we proceed to calculate the variance of A∗1 and A∗2 under P ∗,

V ar∗ [A∗1] = V ar∗

[
1

l

n∑
i=1

z′i(Z
′Z)−1zi

(
ε∗2i
σ̃εε
− 1

)]

=
1

l2

n∑
i=1

(
z′i(Z

′Z)−1zi
)2
V ar∗

[
ε∗2i
σ̃εε

]
=

1

l2

n∑
i=1

(
z′i(Z

′Z)−1zi
)2( κ̃4

(σ̃εε)2
− 1

)
≤ n

l2

(
κ̃4

(σ̃εε)2
− 1

)
= OP

(
1

l

)
using 0 ≤ zi(Z

′Z)−1zi ≤ 1 for each i and the results in Lemma 1.

V ar∗[A∗2] = V ar∗

[
1

l

∑
i 6=j

z′i(Z
′Z)−1zj

ε∗i ε
∗
j

σ̃εε

]

=
1

l2
E∗

[∑
i 6=j

∑
k 6=l

z′i(Z
′Z)−1zjz

′
k(Z

′Z)−1zl
ε∗i ε
∗
j

σ̃εε

ε∗kε
∗
l

σ̃εε

]

=
2

l2

∑
i 6=j

(z′i(Z
′Z)−1zj)

2

=
2

l2

n∑
i=1

z′i(Z
′Z)−1

(
n∑

j=1,j 6=i

zjz
′
j

)
(Z ′Z)−1zi

=
2

l2

n∑
i=1

(
z′i(Z

′Z)−1zi − (z′i(Z
′Z)−1zi)

2
)
≤ 2

l2
n = O

(
1

l

)
Thus, the variance of A∗1 and A∗2 under P ∗ is of order OP (1/l), therefore

J∗0
l
− 1 = OP ∗

(
1√
l

)
Then, let us consider the order of ε∗

′
ε∗

nσ̃εε
− 1.

E∗
[
ε∗
′
ε∗

nσ̃εε
− 1

]
=

1

nσ̃εε
E∗

[
n∑
i=1

ε∗2i

]
− 1 = 0

V ar∗
[
ε∗
′
ε∗

nσ̃εε
− 1

]
=

1

n2(σ̃εε)2
V ar∗

[
n∑
i=1

ε∗2i

]
=

1

n(σ̃εε)2
(E∗[ε∗4i ]− (E∗[ε∗2i ])2)

=
1

n(σ̃εε)2
(κ̃4 − (σ̃εε)

2) = OP

(
1

n

)
= OP

(
1

l

)
17



Therefore
ε∗
′
ε∗

nσ̃εε
− 1 = OP ∗

(
1√
l

)

Then, we rewrite AR∗ in the following form:

AR∗

l
= (1− λn)

(
ε∗
′
ε∗

nσ̃εε
− λn

J∗0
l

)−1
J∗0
l

(10)

Note that(
ε∗
′
ε∗

nσ̃εε
− λn

J∗0
l

)−1
=

[(
ε∗
′
ε∗

nσ̃εε
− 1

)
− λn

(
J∗0
l
− 1

)
+ (1− λn)

]−1
= (1− λn)−1 − (1− λn)−2

[(
ε∗
′
ε∗

nσ̃εε
− 1

)
− λn

(
J∗0
l
− 1

)]
+OP ∗

(
1

l

)
because ε∗

′
ε∗

nσ̃εε
− 1 and

J∗0
l
− 1 are of order OP ∗

(
1/
√
l
)

. Putting this into equation(11), we

obtain

AR∗

l
= (1− λn)

[
(1− λn)−1 − (1− λn)−2

[(
ε∗
′
ε∗

nσ̃εε
− 1

)
− λn

(
J∗0
l
− 1

)]]
J∗0
l

+OP ∗

(
1

l

)
=

(
J∗0
l
− 1

)
+ 1− (1− λn)−1

[(
ε∗
′
ε∗

nσ̃εε
− 1

)
− λn

(
J∗0
l
− 1

)]
+OP ∗

(
1

l

)
from which we get

(1− λn)

(
AR∗

l
− 1

)
=

(
J∗0
l
− 1

)
−
(
ε∗
′
ε∗

nσ̃εε
− 1

)
+OP ∗

(
1

l

)

Thus, up to an oP ∗(1) remainder,

(1− λn)
√
l

(
AR∗

l
− 1

)
=
√
l

{(
J∗0
l
− 1

)
−
(
ε∗
′
ε∗

nσ̃εε
− 1

)}
=

1√
l

n∑
i=1

(z′i(Z
′Z)−1zi − λn)

(
ε∗2i
σ̃εε
− 1

)
+

1√
l

∑
i 6=j

z′i(Z
′Z)−1zj

ε∗i ε
∗
j

σ̃εε

≡ B∗1 +B∗2

Exactly as before, we compute the variance of B∗1 under P ∗, which yields:

V ar∗[B∗1 ] = V ar∗

[
1√
l

n∑
i=1

(z′i(Z
′Z)−1zi − λn)

(
ε∗2i
σ̃εε
− 1

)]

=
1

l

n∑
i=1

(z′i(Z
′Z)−1zi − λn)2

(
κ̃4

(σ̃εε)2
− 1

)
≤ 1

λn

1

n

n∑
i=1

|z′i(Z ′Z)−1zi − λn|
(

κ̃4
(σ̃εε)2

− 1

)
→P 0

18



using Assumption 3. Therefore, B∗1 = oP ∗(1).

For B∗2 , we check the conditions for the Central Limit Theorem by Kelejian and

Prucha(2001, Thm.1)[8]. Let ξ∗i,n ≡ ε∗i /
√
σ̃εε. It is easy to see that E∗[ξ∗i,n] = 0, and

ξ∗1,n, ..., ξ
∗
n,n are independent (conditional on the data). Therefore, Assumption 1 of this

CLT is satisfied. Assumption 2 of this CLT is satisfied for aij,n ≡ 1√
n
z′i(Z

′Z)−1zj, as has

been shown in Anatolyev and Gospodinov(2011)[1](Page 439). Finally, for Assumption

3, sup1≤i≤n,n≥1E
∗[|ξ∗i,n|2+δ] has to be bounded in probability for some δ > 0, but this has

been shown in Lemma 1.

Then, we proceed to calculate the variance of B∗2 under P ∗:

V ar∗[B∗2 ] = V ar∗

[
1√
l

∑
i 6=j

z′i(Z
′Z)−1zj

ε∗i ε
∗
j

σ̃εε

]

=
2

l

n∑
i=1

(
z′i(Z

′Z)−1zi − (z′i(Z
′Z)−1zi)

2
)

=
2

λn

(
(1− 2λn)

1

n

n∑
i=1

z′i(Z
′Z)−1zi + λ2n −

1

n

n∑
i=1

(z′i(Z
′Z)−1zi − λn)2

)
→ 2(1− λ)

using Assumption 3.

Therefore, we obtain that

(1− λn)
√
l

(
AR∗

l
− 1

)
⇒dP∗ N(0, 2(1− λ))

in probability, and⇒dP∗ denotes weak convergence under the bootstrap probability mea-

sure.

The result follows by Polya’s Theorem, given that the normal distribution is everywhere

continuous. �

PROOF OF THEOREM 2

For J∗, first note that by the results in Lemma 1 and Lemma 2,

ε̂∗
′
PZ ε̂

∗

lσ̃εε
=

(
ε∗ −X∗(β̂∗B2SLS − β̂B2SLS)

)′
PZ

(
ε∗ −X∗(β̂∗B2SLS − β̂B2SLS)

)
lσ̃εε

=
J∗0
l
− 2(β̂∗B2SLS − β̂B2SLS)′

X∗
′
PZε

∗

lσ̃εε
+

(β̂∗B2SLS − β̂B2SLS)′X∗
′
PZX

∗(β̂∗B2SLS − β̂B2SLS)

lσ̃εε

For the third term, we can see from the results in Lemma 2 and Lemma 3 that

X∗
′
PZX

∗

lσ̃εε
=

1

λn

(
π̂′Z ′Zπ̂ + π̂′Z ′v∗ + v∗

′
Zπ̂ + v∗

′
PZv

∗)
nσ̃εε

=
1

λnσ̃εε

(
Q+ λnΣvv + oP (1) +OP ∗

(
1√
n

)
+ λnΣ̃vv +OP ∗

(
1√
l

))
= OP ∗(1)
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Therefore,
ε̂∗
′
PZ ε̂

∗

lσ̃εε
=
J∗0
l
− 2(β̂∗B2SLS − β̂B2SLS)′

X∗
′
PZε

∗

lσ̃εε
+OP ∗

(
1

l

)
(11)

using the result that β̂∗B2LS − β̂B2SLS = OP ∗

(
1√
n

)
= OP ∗

(
1√
l

)
. Analogously,

σ̂∗εε
σ̃εε
− 1 =

(
ε∗ −X∗(β̂∗B2SLS − β̂B2SLS)

)′ (
ε∗ −X∗(β̂∗B2SLS − β̂B2SLS)

)
nσ̃εε

− 1 (12)

=

(
ε∗
′
ε∗

nσ̃εε
− 1

)
− 2(β̂∗B2SLS − β̂B2SLS)′λn

X∗
′
ε∗

lσ̃εε
+OP ∗

(
1

l

)
(13)

by the results in Lemma 2 and Lemma 3.

Next, we rewrite J∗ in the following form

J∗

l
− 1 =

(
ε̂∗
′
PZ ε̂

∗

lσ̃εε
− 1

)
σ̃εε
σ̂∗εε

+

(
σ̃εε
σ̂∗εε
− 1

)
(14)

=

(
ε̂∗
′
PZ ε̂

∗

lσ̃εε
− 1

)(
1 +OP ∗

(
1√
l

))
+

(
σ̃εε
σ̂∗εε
− 1

)
(15)

Note that
σ̃εε
σ̂∗εε

=

(
1 +

(
σ̂∗εε
σ̃εε
− 1

))−1
= 1−

(
σ̂∗εε
σ̃εε
− 1

)
+ oP ∗

(
1√
l

)
(16)

Putting the results in eqs (11), (13), (15) and (16) together, we obtain

J∗

l
−1 =

(
J∗0
l
− 1

)
−
(
ε∗
′
ε∗

nσ̃εε
− 1

)
− 2

λnσ̃εε
(β̂∗B2SLS−β̂B2SLS)′

X∗
′
(PZ − λnI)ε∗

n
+oP ∗

(
1√
l

)

Now, let us consider the order of the third term

X∗
′
(PZ − λnI)ε∗

σ̃εεn
=
π̂′Z ′(PZ − λnI)ε∗

σ̃εεn
+
v∗
′
(PZ − λnI)ε∗

σ̃εεn

E∗
[
π̂′Z ′(PZ − λnI)ε∗

σ̃εεn

]
=

π̂′Z ′(PZ − λnI)E∗ [ε∗]

σ̃εεn
= 0

V ar∗
[
π̂′Z ′(PZ − λI)ε∗

σ̃εεn

]
= (1− λn)2

π̂′Z ′Zπ̂

n2
= OP

(
1

n

)
by Assumption 5. Therefore, π̂′Z ′(PZ − λI)ε∗/(σ̃εεn) is OP ∗(

1√
n
). For the second part,

note that

E∗
[
v∗
′
(PZ − λnI)ε∗

nσ̃εε

]
= E∗

[
v∗
′
PZε

∗

nσ̃εε

]
− λnE∗

[
v∗
′
ε∗

nσ̃εε

]
=

Tr
(
PZE

∗[ε∗
′
v∗]
)

n
− λnE∗

[
v∗
′
ε∗

nσ̃εε

]
= λn

σ̃vε
σ̃εε
− λn

σ̃vε
σ̃εε

= 0
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And along the lines of Newey(2004, proof of Lemma 1), one can see that its variance under

P ∗ is OP (1/n), which leads to the conclusion that X∗
′
(PZ − λnI)ε∗/(σ̃εεn) = OP ∗(1/

√
n).

Thus up to an oP ∗(1) remainder,

√
l

(
J∗

l
− 1

)
=
√
l

{(
J∗0
l
− 1

)
−
(
ε∗
′
ε∗

nσ̃εε
− 1

)}
=

1√
l

n∑
i=1

(z′i(Z
′Z)−1zi − λn)

(
ε∗2i
σ̃εε
− 1

)
+

1√
l

∑
i 6=j

z′i(Z
′Z)−1zj

ε∗i ε
∗
j

σ̃εε

≡ B∗1 +B∗2

and using the same arguments as in the case of AR∗, we obtain that

√
l

(
J∗

l
− 1

)
⇒dP∗ N(0, 2(1− λ))

in probability.

Finally, the result follows by Polya’s Theorem, given that the normal distribution is

everywhere continuous. �
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Table 1. Empirical rejection frequency at 0.05 nominal level of the AR tests, Rf = 0.01.

ρ=0 l=10 l=30 l=50

AR 0.0648 0.0912 0.143

ARAG 0.0564 0.0606 0.0672

ARBootstrap 0.0492 0.0492 0.0462

ρ=0.2 l=10 l=30 l=50

AR 0.0644 0.0952 0.149

ARAG 0.0552 0.0636 0.0736

ARBootstrap 0.0462 0.0488 0.0522

ρ=0.5 l=10 l=30 l=50

AR 0.0666 0.0956 0.1496

ARAG 0.057 0.061 0.0734

ARBootstrap 0.0512 0.0488 0.0532

ρ=0.8 l=10 l=30 l=50

AR 0.0706 0.0984 0.148

ARAG 0.0606 0.068 0.0698

ARBootstrap 0.0542 0.0544 0.053

Table 2. Empirical rejection frequency at 0.05 nominal level of the AR tests, Rf = 0.2.

ρ=0 l=10 l=30 l=50

AR 0.0664 0.0988 0.1408

ARAG 0.0582 0.0646 0.0698

ARBootstrap 0.0532 0.0534 0.0486

ρ=0.2 l=10 l=30 l=50

AR 0.0654 0.1038 0.1478

ARAG 0.0566 0.0652 0.07

ARBootstrap 0.0504 0.05 0.0464

ρ=0.5 l=10 l=30 l=50

AR 0.0666 0.0978 0.1532

ARAG 0.0568 0.063 0.072

ARBootstrap 0.0516 0.0514 0.0514

ρ=0.8 l=10 l=30 l=50

AR 0.0636 0.1012 0.145

ARAG 0.053 0.0654 0.0736

ARBootstrap 0.0476 0.054 0.05

Note. AR, ARAG and ARBootstrap denote the conventional AR test , the modified AR test proposed in

Anatolyev and Gospodinov(2011), and the Bootstrapping AR test proposed in this paper, respectively.
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Table 3. Empirical rejection frequency at 0.05 nominal level of the J tests, Rf = 0.01.

ρ=0 l=10 l=30 l=50

J 0.0206 0.0078 0.0022

JAG 0.0264 0.0208 0.0214

JBootstrap 0.037 0.0262 0.0262

ρ=0.2 l=10 l=30 l=50

J 0.0236 0.0094 0.003

JAG 0.0298 0.0238 0.0218

JBootstrap 0.0396 0.0288 0.0246

ρ=0.5 l=10 l=30 l=50

J 0.0232 0.0086 0.0016

JAG 0.03 0.0234 0.023

JBootstrap 0.0418 0.0282 0.0284

ρ=0.8 l=10 l=30 l=50

J 0.039 0.0128 0.0032

JAG 0.047 0.0318 0.0258

JBootstrap 0.0632 0.0398 0.0326

Table 4. Empirical rejection frequency at 0.05 nominal level of the J tests, Rf = 0.2.

ρ=0 l=10 l=30 l=50

J 0.0452 0.0138 0.0016

JAG 0.0398 0.0318 0.031

JBootstrap 0.0452 0.0378 0.0342

ρ=0.2 l=10 l=30 l=50

J 0.0302 0.011 0.0028

JAG 0.0366 0.0324 0.025

JBootstrap 0.0408 0.0354 0.0288

ρ=0.5 l=10 l=30 l=50

J 0.0448 0.0204 0.00302

JAG 0.054 0.0458 0.0356

JBootstrap 0.0564 0.0478 0.0388

ρ=0.8 l=10 l=30 l=50

J 0.051 0.043 0.0178

JAG 0.0598 0.0764 0.0744

JBootstrap 0.056 0.0714 0.0794

Note. J , JAG and JBootstrap denote the conventional J test , the modified J test proposed in Anatolyev

and Gospodinov(2011), and the Bootstrapping J test proposed in this paper, respectively.
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