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Does wage setting exhibit strategic complementarity and produce multiple equilib-
ria? This study constructs a discrete-time New Keynesian model in which the timing
of individual wage adjustments is endogenous. I explore steady-state equilibrium of the
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parameter values, complementarity in wage setting is weak and multiple equilibria
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1 Introduction

Nominal wages change in a staggered way: infrequently and with the timing of adjustments

not completely synchronized. The resulting variation in relative wages is considered a ma-

jor welfare cost of nominal wage stickiness in the New Keynesian literature (e.g., Erceg,

Henderson, and Levin (2000)). Nonetheless, individual wage adjustments have not been

comprehensively analyzed. While empirical studies provide evidence that macroeconomic

conditions a¤ect the frequency of wage changes and thereby suggest state dependency in

wage setting, existing New Keynesian models typically assume time-dependent wage setting

(e.g., Taylor (1980); Calvo (1983)) and �x the timing of wage adjustments exogenously.1

With the aim of better understanding wage adjustments and their consequences, the

present study constructs a New Keynesian model in which the timing of wage adjustments

is endogenous. The multiplicity of equilibria is a natural concern under state-dependent

wage setting. For price setting, the uniqueness of equilibrium in New Keynesian models

is known to depend on a time horizon. Speci�cally, for an essentially static environment

similar to Blanchard and Kiyotaki (1987), Ball and Romer (1991) argue that price setting is

characterized by strategic complementarity and multiple equilibria often exist. By contrast,

for the seminal dynamic state-dependent pricing model by Dotsey, King, andWolman (1999),

John and Wolman (2004, 2008) �nd that multiple equilibria do not arise under empirically

plausible parameterization.2 However, these results may not carry over to wage setting. As

Huang and Liu (2002) point out in a time-dependent setting model, households�incentive

to stabilize their relative wage is typically stronger than �rms�incentive to stabilize their

relative price.3 Hence, the nonuniqueness of equilibrium might be a more serious problem

1Taylor (1999) reviews studies for several countries and concludes that the frequency of wage adjustments
increases with the rate of in�ation. According to Daly, Hobijn, and Lucking (2012) and Daly and Hobijn
(2014), nominal wage stickiness rises in recessions in the United States.

2The Dotsey, King, and Wolman (1999) framework has been used for various analyses, such as the New
Keynesian Phillips curve (Bakhshi, Kahn, and Rudolf (2007)), optimal monetary policy (Nakov and Thomas
(2014)), short-run monetary transmission (Dotsey and King (2005, 2006)), the US in�ation (Klenow and
Kryvtsov (2008)), and exchange rate dynamics (Landry (2009, 2010)).

3This result provides an explanation for the common �nding (e.g., Huang and Liu (2002); Christiano,
Eichenbaum, and Evans (2005)) that in a New Keynesian model with time-dependent setting, nominal wage
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for wage setting than for price setting and analysis of state-dependent wage setting is thus

of interest.

I investigate the possibility of multiple equilibria in a dynamic New Keynesian model

with state-dependent wage setting. The wage-setting side of the model is based on Taka-

hashi (2017). As in Blanchard and Kiyotaki (1987) and Erceg, Henderson, and Levin (2000),

households supply a di¤erentiated labor service and set the wage rate for their labor. House-

holds endogenously determine when to adjust their wage subject to a �xed wage-setting

cost. Like �rms�price-setting costs in the Dotsey, King, and Wolman (1999) model, the

wage-setting costs are stochastic and heterogeneous across households, leading to staggered

wage adjustments. Thus, the only di¤erence compared to a standard time-dependent wage-

setting model is that the timing of wage changes is endogenous. Furthermore, to make the

impact of state dependency in wage setting as transparent as possible, the present study

assumes perfect competition and �exible prices in the goods market.

Using analytical and numerical methods developed by John and Wolman (2004, 2008),

I examine the uniqueness of steady-state equilibrium in the state-dependent wage-setting

model. Under some restricted but empirically relevant parameterization, I �rst analytically

show that wage setting is characterized by weak complementarity and multiple equilibria

are unlikely to exist. Numerical analysis then shows that this result holds more broadly.

Furthermore, the uniqueness of steady-state equilibrium is robust to several extensions of

the baseline model.

While Blanchard and Kiyotaki (1987) analyze both price and wage setting, their model

is not fully dynamic. Dynamic state-dependent wage-setting models are scarce, compared

to dynamic state-dependent pricing models.4 Takahashi (2017) is the �rst study to analyze

state-dependent wage setting in a dynamic New Keynesian model. The model includes

stickiness generates larger short-run money nonneutrality than nominal price stickiness.
4Examples of state-dependent pricing models, other than the Dotsey, King, and Wolman (1999) model,

include those by Caplin and Spulber (1987), Caplin and Leahy (1991), Devereux and Siu (2007), Golosov
and Lucas (2007), Gertler and Leahy (2008), Nakamura and Steinsson (2010), Costain and Nakov (2011a,b),
and Midrigan (2011).
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various features and aggregate shocks similar to those in Christiano, Eichenbaum, and Evans

(2005) and Smets and Wouters (2007). Costain, Nakov, and Zarzalejos (2017) develop a

state-dependent wage-setting model with idiosyncratic shocks. Their model describes micro-

level wage adjustments more accurately than the Takahashi (2017) model. The main focus

of these prior two studies is the short-run implications of state-dependent wage setting, and

neither analyzes the uniqueness of steady-state equilibrium.5

The analysis herein closely follows the work by John and Wolman (2004, 2008) on the

Dotsey, King, and Wolman (1999) state-dependent pricing model. Relevant equations and

analytical results are similar for price and wage setting, although numerical results di¤er.

There are also important di¤erences between the present work and the prior studies. First,

a constant marginal disutility of labor is assumed in the analytical investigation of John and

Wolman (2004, 2008), whereas in what follows, the marginal disutility is allowed to increase

and individual labor hours can in�uence wage-setting decisions.

Second, in addition to the baseline case of perfect consumption insurance, the present

study analyzes a case with incomplete markets. By contrast, John and Wolman (2004, 2008)

assume a representative household and do not explore the role of �nancial markets. Exploring

the market incompleteness is important because the assumption of complete markets might

be too strong. Indeed, an increasing number of studies introduce imperfect risk sharing in

a New Keynesian framework (e.g., Braun and Nakajima (2012); Gornemann, Kuester, and

Nakajima (2016); Kaplan, Moll, and Violante (2017)). I show that imperfect consumption

insurance does not substantively a¤ect the uniqueness of steady-state equilibrium in the

dynamic state-dependent wage-setting model.

Third, while John and Wolman (2004, 2008) focus on in�ation, the present study also

considers de�ation. The Japanese experience motivates this analysis. The Japanese economy

experienced mild, but persistent de�ation from the mid-1990s to the mid-2010s and price

behavior has been analyzed in various studies (e.g., Weinstein and Broda (2008); Ueda,

5These prior studies examine the interaction between state-dependent price and wage setting, whereas
the present study assumes �exible prices and focuses on wage setting.
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Watanabe, and Watanabe (2018)).6 Analytically I show that a condition for the uniqueness

of steady-state equilibrium is milder under de�ation than under in�ation. Furthermore,

numerically, no evidence is found for multiple equilibria under de�ation.

The rest of the present paper is organized as follows. Section 2 describes the benchmark

state-dependent wage-setting model. Section 3 analytically explores the uniqueness of the

model�s steady-state equilibrium under particular parameter assumptions. Section 4 then

analyzes this issue numerically under less restrictive assumptions. Section 5 considers several

extensions of the benchmark model. Section 6 concludes.

2 Model

As in Takahashi (2017), I introduce �xed costs for wage adjustments in an otherwise standard

discrete-time New Keynesian model. Fixed wage-setting costs di¤er across households, evolve

independently over time, and follow a continuous distribution. Therefore, the timing of wage

adjustments, which is endogenous, di¤ers across households. The present study makes two

departures from Takahashi (2017). First, to focus on wage setting, perfect competition

and �exible prices in the goods market are assumed. Second, instead of labor costs as in

Takahashi (2017), wage-setting costs are included as utility costs.7

2.1 Central Bank

The central bank maintains a constant growth rate of money supply:

M s
t+1

M s
t

= �; (1)

6Other studies include Hirose (2014), Sudo, Ueda, Watanabe, and Watanabe (2018), and Watanabe and
Watanabe (2018).

7The speci�cation of utility costs is required for the analytical approach taken in Section 3. It is straight-
forward to include labor costs of wage adjustments in the numerical analysis in Section 4. See Section
5.3.
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where M s
t is the money supply and � > 1.

8

2.2 Labor Aggregator

As in Erceg, Henderson, and Levin (2000), a representative labor aggregator combines dif-

ferentiated labor services, nt(h); h 2 [0; 1], and all �rms hire composite labor from the

aggregator. The composite labor supplied by the aggregator is

N s
t =

�Z 1

0

nt(h)
��1
� dh

� �
��1

; (2)

where � > 1. Cost minimization by the labor aggregator implies that the demand for each

labor service is

ndt (h) =

�
Wt(h)

Wt

���
N s
t ; (3)

where Wt(h) is the nominal wage rate for type-h labor service and Wt is the aggregate wage

index, which is de�ned by

Wt =

�Z 1

0

Wt(h)
1��dh

� 1
1��

: (4)

2.3 Firms

A representative �rm (or perfectly competitive �rms) produces a single good using labor.

The production function is

Yt = N
d
t ; (5)

where Yt is output and Nd
t is labor input. The �rm maximizes its static pro�t. Prices are

�exible and the aggregate nominal price Pt equals Wt, which is the nominal marginal cost.

8Section 5.2 considers de�ation, � 2 (0; 1):
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2.4 Households

There is a continuum of households (measure one). Each household supplies a di¤erentiated

labor service nt(h), both of which are indexed by h 2 [0; 1]. Each household also sets the

wage rate for their labor as Wt(h): Wage changes incur a �xed utility cost �t(h), which is

drawn from a time-invariant continuous distribution G(�) with support [0; ��], �� <1. These

costs are independently and identically distributed over time and across households.

A household�s preference is represented by

E0

1X
t=0

�t
�
ct(h)

1��

1� � � �nst(h)� � �t(h)It(h)
�
; (6)

where � 2 [0; 1); � > 0; � > 0; � � 1; ct(h) is consumption, and nst(h) is hours worked.9 The

function It(h) takes the value 1 if the household resets its wage in the period and 0 otherwise.

As in a standard New Keynesian model, households have identical initial wealth and

access to perfect insurance for consumption. Thus, consumption is the same for all house-

holds, that is, ct(h) = Ct for all h; where Ct is aggregate consumption. Furthermore, money

demand is given by

ln
Md
t

Pt
= lnCt; (7)

where Md
t is the quantity of money demanded by households.

10

Let xt(h) � Wt(h)=Mt be the wage rate prevailing in the current period relative to the

current period�s money stock (Mt = M s
t = Md

t in equilibrium). Households supply labor

hours demanded ndt (h) as in (3), that is, n
s
t(h) = n

d
t (h). Given (3), current utility relating

to wage-setting decisions is

�(xt(h)) = �t
Wt(h)

Pt

�
Wt(h)

Wt

��"
N s
t � �

"�
Wt(h)

Wt

��"
N s
t

#�
= �t(xt(h)Ct)

1�"N s
t � �

�
(xt(h)Ct)

�"N s
t

��
; (8)

9A log consumption utility function is assumed for � = 1:
10Interest-elastic money demand is analyzed in Section 5.4.
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where �t is the marginal utility of consumption.

Households�wage-setting problem is described recursively as follows. Let V (xt�1(h); �t(h))

be the value function of households that carried over the last-period wage relative to the

money stock in that period, xt�1(h) =Wt�1(h)=Mt�1; and draw their adjustment cost in the

current period �t(h). Note that

V (xt�1(h); �t(h)) = max
�
V A(�t(h)); V

NA(xt�1(h))
	
: (9)

First, V A(�t(h)) is the value function of households when they adjust their wage in the

current period and satis�es

V A(�t(h)) = ��t(h) + max
xt

�
�(xt) + �E

�
V (xt; �t+1(h))

�	
: (10)

Households pay a �xed cost and set their wage to maximize the sum of current utility and

discounted expected utility. The optimal wage x�t is common to all adjusting households, as

per the standard time-dependent wage setting. Hence, the value of adjusting households is

independent of the wage set in the previous period xt�1(h) and depends only on the current

adjustment cost �t(h).

Second, V NA(xt�1(h)) is the value function of households when they keep their wage

constant compared to the last period and satis�es

V NA(xt�1(h)) =

�
�

�
xt�1(h)

�

�
+ �E

�
V

�
xt�1(h)

�
; �t+1(h)

���
: (11)

Since households keep their wage carried over from the last period, their current wage de-

creases relative to the current period�s money stock and becomes xt(h) = xt�1(h)=�. House-

holds earn current utility and expected discounted utility based on the decreased wage. The

value of non-adjusting households is independent of the current adjusting cost �t(h) and

depends only on the wage carried over from the last period xt�1(h).
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An important property of the model is that since adjusting households set the same wage,

at the start of any given period, a fraction �t;q of households charge x�t�q; q = 1; :::; Qt: The

number of wage vintages Qt and the wage distribution are endogenous. Since the in�ation

rate is positive and wage-setting costs are bounded, households eventually increase their

wage and hence Qt is �nite.

2.5 Equilibrium

I analyze the model�s steady-state equilibrium in which real variables are constant with a

constant in�ation rate that equals the money growth rate of �. Hereafter, time subscripts

are dropped for expository purposes. A steady-state competitive equilibrium satis�es the

following conditions.

1. Households�optimization:

V (x�1(h); �(h)); V
A(�(h)); and V NA(x�1(h)) satisfy (9), (10), and (11), respectively,

while x� is the associated optimal wage. Furthermore, (7) holds.

2. Firms�optimization:

The representative �rm maximizes its pro�t under the technology described in (5).

3. Labor aggregator�s optimization:

The representative labor aggregator chooses ndt (h) as in (2) and (3).

4. Goods market clearing: C = Y:

5. Money market clearing: M =M s =Md:

6. Labor market clearing: N = N s = Nd and n(h) = ns(h) = nd(h) for all h 2 [0; 1]:

7. Monetary policy:

The central bank conducts monetary policy as described in (1).
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8. Wage distribution:

The evolution of the wage distribution is consistent with households� wage-setting

decisions. Further, the distribution of wages (relative to money stock) is unchanged

over time.

3 Analytical Approach

This section analytically examines the uniqueness of steady-state equilibrium of the state-

dependent wage-setting model described in Section 2. The analysis here closely follows the

work of John andWolman (2004, 2008) with respect to the Dotsey, King, andWolman (1999)

state-dependent price-setting model.

Throughout the present paper, a focus is on a situation in which wages are �xed for

no more than two periods (Q = 2).11 Thus, households�wage setting is characterized by

two variables: � and x�. First, � is the (ex-ante) probability of wage changes in the current

period before the current wage-setting cost is drawn, when households adjusted their wage in

the previous period. Note that households certainly adjust their wage in the current period

if they did not do so in the previous period. Second, x� is the wage rate (relative to the

current money stock) set by adjusting households. Recall that adjusting households choose

the same wage.

Let v(�; s) be the value of an adjusting household that has a constant adjustment prob-

ability � and sets the associated optimal wage x�(�; s); under the aggregate state s. The

value v(�; s) is gross of the current �xed cost of wage adjustments and it satis�es

v(�; s) = �(x�(�; s); s) + ��
�
v(�; s)� E

�
�j� < G�1(�)

�	
+�(1� �)

�
�

�
x�(�; s)

�
; s

�
+ � [v(�; s)� E(�)]

�
: (12)

The �rst term is current utility. The other terms pertain to expected utility. The household

11John and Wolman (2004, 2008) also focus on a case in which prices are �xed for two periods at most.
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will adjust its wage in the next period again with probability �: In that case, the household

receives v(�; s), while the expected utility cost is E [�j� < G�1(�)] : The household will not

adjust its wage in the next period with probability (1 � �): In that case, the household

receives � (x�(�; s)=�) in the next period. Furthermore, the household will certainly adjust

its wage in the following period, which gives � [v(�; s)� E(�)] :

Rearranging (12) leads to

v(�; s) =
�(x�(�; s); s) + �(1� �)�

�
x�(�;s)
�
; s
�
� ��E [�j� < G�1(�)]� �2(1� �)E(�)

(1� �)[1 + �(1� �)] :

(13)

The present section assumes that �+��2+"(1��) = 0:12 Under the condition, the optimal

wage x� is independent of the aggregate state s and x�(�) = x�(�; s) for all s.

Lemma 1 Suppose that � +�� 2+ "(1� �) = 0: Given �; the optimal wage of an adjusting

household is

x�(�) =

�
"��

"� 1
1 + �(1� �)�"�
1 + �(1� �)�"�1

� 1
"(��1)+1

=

�
"��

"� 1g(�; �)
� 1

"(��1)+1

; (14)

where

g(�; �) � 1 + �(1� �)�"�
1 + �(1� �)�"�1 : (15)

Proof. See the Appendix.

If households do not care about the future (� = 0) or if they will certainly adjust their

wage in the next period (� = 1); then g(�; �)1=["(��1)+1] = 1, that is, in each period households

set the static optimal wage for the period W � = x�M = ["��=(" � 1)]1=["(��1)+1]M . When

� 2 [0; 1) and � 2 (0; 1),

1 < g(�; �)
1

"(��1)+1 <

�
1 + �"�

1 + �"�1

� 1
"(��1)+1

< �; (16)

12Note that � = � = 1, which is John and Wolman (2004, 2008)�s speci�cation, satis�es the condition.
The condition allows � > 1, which is important for wage setting.
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and adjusting households charge a wage that is between the static optimal wage for the

current period W � and that for the next period W �0 = x�M
0
= ["��=("� 1)]1=["(��1)+1]�M:13

Given the adjustment probability �, the optimal wage x�(�) is unique, but the optimal �

might not be unique. Hence, households might randomize their adjusting strategies. Further-

more, an asymmetric equilibrium in which di¤erent households pursue di¤erent strategies

could exist. For simplicity, I focus on a pure-strategy symmetric steady-state equilibrium, in

which all households choose the same constant adjusting probability and thereby the same

constant reset wage.

In such a pure-strategy symmetric steady-state equilibrium, the aggregate state s is

represented by the aggregate adjustment probability ��. As shown in the Appendix, aggregate

consumption is

C(��) =

�
"� 1
"��

� 1
"(��1)+1 r(��; 1)

1
"�1

g(��; �)
1

"(��1)+1
; (17)

where

r(�; �) =
1 + �(1� �)�"�1
1 + �(1� �) : (18)

Note also that N(��) = C(��) and �(��) = C(��)��: Hence, (8) can be written as

�(x�(�); s(��)) = �(��)(x�(�)C(��))1�"N(��)� �
�
(x�(�)C(��))�"N(��)

��
= C(��)(1�")�x�(�)�"�

�
x�(�)1�"+"� � �

�
; (19)

where � + � � 2 + "(1 � �) = 0 is imposed. Since (1 � ")� < 0 and x�(�)1�"+"� > �,

�(x�(�); s(��)) decreases with C(��). This feature is important for the following analysis.

Consider the best response of an individual household�s adjustment probability � to the

aggregate adjustment probability ��:

�(��) = argmax v(�; s(��)): (20)

13Note that g(�; �) decreases with � and increases with �. As �!1;
�
(1 + �"�)=(1 + �"�1)

�1=["(��1)+1] !
�:
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A pure-strategy symmetric steady-state equilibrium is a �xed point of the best-response

correspondence, and any �xed point of the best-response correspondence is a pure-strategy

symmetric steady-state equilibrium.

From the result of Lemma 1, (13) is rewritten as

v(�; s(��)) =
�SUM(�; ��)� CSUM(�)

1� � ; (21)

where

�SUM(�; ��) =
�(x�(�); s(��)) + �(1� �)�(x

�(�)
�
; s(��))

1 + �(1� �)

=

�
"� � "+ 1

"�

��
D(�; �)

D(��; �)�

�"�1�
r(�; �)

r(�; 1)

�
; (22)

CSUM(�) =
��E [�j� < G�1(�)] + �2(1� �)E(�)

1 + �(1� �) ; (23)

and

D(�; �) =

�
"� 1
"��

� 1
"(��1)+1 r(�; 1)

1
"�1

g(�; �)
1

"(��1)+1
: (24)

See the Appendix for the derivation of (22).

The following lemma characterizes D(�; �), which determines aggregate consumption

C(��) when � = ��, as shown in (17).

Lemma 2 (Lemma 2 of John and Wolman (2008)) For � 2 [0; 1], (i) when � is su¢ -

ciently small, @D(�; �)=@� < 0; (ii) when � is su¢ ciently large, there exists ~� in (0; 1) such

that @D(�; �)=@� < 0 for � < ~� and @D(�; �)=@� > 0 for � > ~�; (iii) when � is su¢ ciently

large, D(�; �) attains its maximum on [0; 1] at � = 1:

Proof. See the Appendix.

On the one hand, a higher � means more adjusting households. Since adjusting house-

holds charge a higher wage than non-adjusting households, an increase in � tends to in-

crease the wage (price) index, which lowers aggregate consumption. This is re�ected in

13



@r(�; 1)=@� < 0. On the other hand, an increase in � lowers g(�; �) (i.e., @g(�; �)=@� < 0)

and the reset wage. This works to lower the wage (price) index, which increases aggregate

consumption. When � is low, the �rst e¤ect dominates the second because households dis-

count the future highly and � does not substantially a¤ect the reset wage. When � is higher,

the sign of @D(�; �)=@� depends on the relative strengths of the two e¤ects. For su¢ ciently

large �, the contribution of the second e¤ect increases as � increases. Hence, the sign of

@D(�; �)=@� switches from negative to positive as � increases.14

Next, the best-response correspondence (20) is analyzed. Given ��, there could be multiple

local maxima for v(�; s(��)). Hence, determining the optimal � requires comparison between

local maxima. First, there could be one or multiple local maxima for � 2 (0; 1). As in John

and Wolman (2004, 2008), such local maxima are called the interior arm of the best-response

correspondence and they are de�ned for � 2 (0; 1) as

�int(��) =

�
� :

@v(�; s(��))

@�
= 0 and

@2v(�; s(��))

@�2
< 0

�
: (25)

Second, there could be a local maximum at � = 1, which occurs when @v(�; s(��))=@� > 0

at � = 1: As in John and Wolman (2004, 2008), the local maximum is called the �exible

arm of the best-response correspondence. Note that setting � = 0 or not adjusting a wage

under any realization of adjustment costs cannot be a global maximum. Hence, the case is

not considered below.

The following analysis considers a case whereby if �int(��) exists, �int(��) is unique for

�� 2 [0; 1]: Numerical analysis suggests that this is always the case.15 In such a case, the

best-response correspondence is de�ned as �(��) = �int(��) if v(�int(��); s(��)) � v(1; s(��))

and �(��) = 1 if v(1; s(��)) � v(�int(��); s(��)): The next lemma characterizes the interior

arm.
14For intermediate �, the sign of @D(�; �)=@� could switch from positive to negative as � increases.
15John and Wolman (2004, 2008) numerically show the same for the Dotsey, King, and Wolman (1999)

state-dependent pricing model. However, the �nding in the present study is not wholly obvious because the
relevant equations are di¤erent for price and wage setting. It could be fruitful for future research to examine
conditions under which a unique interior local maximum exists for v(�; s(��)).
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Lemma 3 (Lemma 3 of John and Wolman (2008)) (i) For small �, the interior arm

of the best-response correspondence exhibits complementarity everywhere; (ii) As � ! 1,

the interior arm of the best-response correspondence does not exhibit complementarity at any

�xed point; (iii) As � ! 1, the interior arm of the best-response correspondence has a unique

�xed point ��:

Proof. See the Appendix.

Complementarity means that an increase in the aggregate adjustment probability ��

leads to an increase in the individual adjustment probability �, which requires that the

marginal value of increasing � must increase with ��: Since the cost term CSUM(�) in

(21) is independent of ��; the marginal utility of increasing � must increase with �� or

@2�SUM(�; ��)=@�@�� > 0: The marginal utility of increasing � is

@�SUM(�; ��)

@�
=
�
h
�(x�(�); s(��))� �(x

�(�)
�
; s(��))

i
[1 + �(1� �)]2 : (26)

Consider su¢ ciently small �: As Lemma 2 (i) shows, an increase in �� decreases aggregate

consumption. Hence, as shown in (19), static utility increases in both the current and next

periods proportionally. Moreover, for small �, the reset wage is closer to the static optimal

wage for the current period, meaning that the numerator of (26) is positive. Thus, the

marginal utility of increasing � also increases with �� or @2�SUM(�; ��)=@�@�� > 0:

Now consider su¢ ciently large � close to 1: As Lemma 2 (ii) shows, for �� < ~�, an increase

in �� decreases aggregate consumption and increases static utility. Further, at a �xed point,

� is relatively low, too. Hence, the reset wage is closer to the static optimal wage for the

next period, meaning that the numerator of (26) is likely to be negative. Accordingly, the

marginal utility of increasing � is negative and decreasing in ��: That is, increasing �� makes

@�SUM(�; ��)=@� more negative. By contrast, for �� > ~�, an increase in �� increases aggregate

consumption and decreases static utility. Further, � is relatively high at a �xed point and

the reset wage is closer to the current static optimal wage, meaning that the numerator
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of (26) is likely to be positive. Thus, marginal utility is positive and decreasing in ��: In

summary, for � close to 1, it is likely that @2�SUM(�; ��)=@�@�� < 0 at a �xed point and the

interior arm of the best-response correspondence does not show complementarity. Although

it is possible that @2�SUM(�; ��)=@�@�� > 0, such a possibility disappears as � ! 1:

The discussion thus far shows that for su¢ ciently large �; multiple equilibria with sticky

wages (� < 1) are unlikely to exist. However, there could be two equilibria, one with sticky

wages and the other with �exible wages (� = 1). The next proposition gives the necessary

conditions for such multiple equilibria and the su¢ cient conditions for ruling them out.

Proposition 4 (Proposition 4 of John and Wolman (2008)) Let � be su¢ ciently large

such that the interior arm has a unique �xed point, denoted by ��. Let �̂ be as de�ned in (60)

in the Appendix. (i) As � ! 1, the necessary conditions for multiple equilibria are �� < �̂

and v(�int(�̂); s(�̂)) < v(1; s(�̂)); (ii) As � ! 1, multiple symmetric steady-state equilibria

are ruled out if

"� � "+ 1
"�

�
"� 1
"��

� ("�1)(1��)
"(��1)+1

8>><>>:
2664

�
1+�"�1

2

���
�
1+�"�

1+�"�1

�� �("�1)
"(��1)+1

3775�
2664
�
1+�"�1

2

��(��1)
�
1+�"�

1+�"�1

�� (��1)("�1)
"(��1)+1

3775
9>>=>>; > E(�)

(27)

or

E(�)� CSUM(�̂) >

"� � "+ 1
"�

�
"� 1
"��

� ("�1)(1��)
"(��1)+1

8>><>>:
h
1+(1��̂)�"�
1+(1��̂)�"�1

i �("�1)
"(��1)+1h

1+(1��̂)�"�1
1+(1��̂)

i� �

h
1+(1��̂)�"�
1+(1��̂)�"�1

i (��1)("�1)
"(��1)+1h

1+(1��̂)�"�1
1+(1��̂)

i��1
9>>=>>; : (28)

Proof. See the Appendix.

To obtain two equilibria, one with sticky wages and the other with �exible wages, the best-

response correspondence is the interior arm �rst, has a �xed point �� < 1, and thereafter

moves up to the �exible arm. As shown in the Appendix, as � ! 1, such an upward
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jump of the best-response correspondence is not possible when �� � �̂. Thus, the best-

response correspondence moves up at �� < �̂ and �� must be smaller than �̂: Note also that

v(��; s(��)) � v(1; s(��)) because �� is the optimum when �� = ��: To obtain an equilibrium

with �exible wages, v(�int(��); s(��)) < v(1; s(��)) must hold for some �� 2 [��; �̂): Since, as

shown in the Appendix, v(1; s(��)) increases with �� more rapidly than v(�int(��); s(��)) does

for �� 2 [��; �̂); a necessary condition for v(�int(��); s(��)) < v(1; s(��)) for �� 2 [��; �̂) is

v(��(�̂); s(�̂)) < v(1; s(�̂)).

The second part of the proposition gives conditions for ruling out multiple equilibria. The

�rst condition (27) implies that when adjustment costs are small, sticky wages cannot be an

equilibrium: the best response at �� = �� is � = 1 and thus �� is not an equilibrium. The

second condition (28) suggests that when adjustment costs are large, �exible wages cannot

be an equilibrium.

These two conditions rule out multiple equilibria for most long-run in�ation rates. For

the benchmark parameterization considered in Section 4, for example, multiple equilibria are

ruled out except when the annual in�ation rate is 1.19�1.67%. Note that these conditions

are su¢ cient but not necessary for ruling out multiple equilibria.

4 Numerical Approach

This section numerically analyzes steady-state equilibrium of the state-dependent wage-

setting model.

Benchmark parameter values are standard and determined as follows. One period in the

model is one quarter. The Frisch labor supply elasticity is 1: � = 2. The coe¢ cient of

relative risk aversion � is 2. The assumption made in Section 3 (i.e., �+��2+"(1��) = 0)

then implies that the elasticity of substitution for di¤erentiated labor services " is 2, which

lies in the range considered by Huang and Liu (2002). The disutility parameter � is 6.75, so

that households work for one-third of their time endowment (normalized to 1) under �exible
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Figure 1: Benchmark: discount factor.

wages.

As in Dotsey, King, and Wolman (1999), the inverse of the distribution of wage-setting

cost is, for z 2 [0; 1],

G�1(z) = ��
atan(bz � d�) + atan(d�)
atan(b� d�) + atan(d�) ; (29)

where b = 16 and d = 1 (see Figure 2 of Dotsey, King, and Wolman (1999)). The maximum

wage-setting cost �� is 0:0004; so that as shown below, some wages are �xed for exactly two

periods when the annual in�ation rate is around 2�4%, which is in line with recent experiences

in developed countries. The maximum wage-setting cost is relatively small: it is equivalent

to 0.013% of the equilibrium consumption in the model economy without wage-setting costs.

I start by analyzing how the number of steady-state equilibria depends on the discount

factor � and the in�ation rate �. For �, 99 values linearly spaced between 0.01 and 0.99

are considered. The typical calibration is � = 0:99, which implies that the real annual

interest rate is 4%. For �; 60 annual in�ation rates (�4) linearly spaced from 0.1% to 6%

are considered. In the U.S., the annual CPI in�ation rate has not exceeded 6% in the last

20 years.

The result is presented in Figure 1 and is consistent with the analytical result in Section

3. Multiple sticky-wage equilibria arise only when the discount factor is low. Speci�cally, this
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Figure 2: Benchmark: elasticity of substitution.

occurs in only one case: there are two sticky-wage equilibria when the discount factor � is 0:18

and the annual in�ation rate is 3.7% (�4 = 1:037): Recall that strategic complementarity

in wage setting is a necessary condition for such multiple equilibria, but not a su¢ cient

condition. For relatively low �, several cases lead to two equilibria, one with sticky wages

and the other with �exible wages, in the region between the unique sticky-wage equilibrium

and the unique �exible-wage equilibrium. However, such multiple equilibria disappear for

� > 0:75. Thus, steady-state equilibrium is unique when the discount factor takes a standard

value close to 1.

I next vary the elasticity of substitution for di¤erentiated labor " and the in�ation rate

�. For ", 41 values linearly spaced between 2 and 6, which is the range considered by Huang

and Liu (2002), are investigated. I keep other parameters unchanged from the baseline case

and � = 0:99:16 As shown in Figure 2, multiple equilibria do not exist for any case.

However, there is a case in which a pure-strategy symmetric steady-state equilibrium does

not exist, as found by John and Wolman (2004, 2008) for the Dotsey, King, and Wolman

(1999) model. The non-existence case occurs when the best-response correspondence jumps

down from the �exible arm to the interior arm: In Figure 2, it occurs when the elasticity

16See the Appendix for how the optimal wage and aggregate consumption are computed for a general case
in which the optimal wage depends on the aggregate adjustment probability.
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of substitution for di¤erentiated labor services " is 2.6 and the annual in�ation rate is 3.7%

(�4 = 1:037).

Note also that wages become more �exible as the elasticity of substitution for di¤erent

labor types " increases. When " is higher, individual labor hours change with the relative

wage more elastically. Hence, households choose to adjust their wage more frequently to

smooth their labor hours.17 The e¤ect is strong. When " = 21, which is the value used by

Christiano, Eichenbaum, and Evans (2005), for example, the maximum wage-setting cost

needs to be 0.039 (1.28% of consumption) if some wages are to be �xed for more than three

periods (9 months) for an annual in�ation rate of 2%.18 Hence, the cost must be more than

100 times larger than the benchmark case.

The distribution of wage-setting costs could also be important. Here I report the result

for a uniform distribution between 0 and �� = 0:0004. Other parameters inherit their original

value with � = 0:99: A uniform distribution implies a higher share of households drawing

an intermediate wage-setting cost compared to the benchmark distribution, and the impact

of state dependency in wage setting is expected to become stronger. However, as shown in

Figure 3, the number of steady-state equilibria is reasonably similar to the benchmark case

and multiple equilibria do not arise when the discount factor is close to 1. The uniqueness

of steady-state equilibrium is also found under other distributions for wage-setting costs.19

Lastly, a higher in�ation rate than the benchmark rate is examined. The maximum

wage-setting cost �� is increased 10-fold to 0:004, which is 0.13% of consumption. Other

parameters are �xed at their benchmark value. Figure 4 shows the result when the elasticity

of substitution for di¤erentiated labor " is 2. Figure 5 presents the result when the discount

factor � is 0.99. As shown, some prices are �xed for two periods even when the annual in�a-

17In a state-dependent wage-setting model similar to that herein, Takahashi (2017) �nds that an increase
in the elasticity of substitution for di¤erentiated labor services could reduce aggregate wage stickiness in
response to monetary shocks and thereby money nonneutrality. By contrast, in time-dependent wage-setting
models, a higher elasticity typically increases aggregate wage stickiness and short-run money nonneutrality
(e.g., Huang and Liu (2002)).
18Assuming the larger wage-setting cost, I �nd that the main result of the present study, the uniqueness

of steady-state equilibrium, holds even under high elasticity of substitution for di¤erentiated labor.
19These results are available upon request.
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Figure 3: Uniform distribution: elasticity of substitution.

Figure 4: High in�ation: discount factor.

tion rate exceeds 4% and multiple equilibria occur more frequently than in the benchmark

case. However, the main result of the present study is robust: multiple equilibria do not arise

when the discount factor � is high. When " = 2, for example, multiple equilibria disappear

for � � 0:85:

In summary, the substantial numerical analyses presented in this section support the

analytical results reported in Section 3. Multiple steady-state equilibria do not exist under

typical and empirically plausible parameter values in the dynamic state-dependent wage-

setting model.
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Figure 5: High in�ation: elasticity of substitution.

5 Extensions

This section considers several extensions of the benchmark model and con�rms that the

uniqueness of steady-state equilibrium in the state-dependent wage-setting model is robust.

5.1 Imperfect Consumption Insurance

Following most prior studies in the New Keynesian literature, the benchmark model assumes

perfect insurance for consumption. However, the presence of complete asset markets might

be too strong an assumption. Indeed, recent studies relax this assumption and analyze a New

Keynesian model with imperfect consumption insurance. As such, this subsection considers

imperfect risk sharing in the present state-dependent wage-setting model. Speci�cally, an

extreme situation is considered in which all households live hand to mouth and consume

their labor income in each period. Hence, both insurance markets and savings vehicles are

excluded.20

Since households consume their labor income each period, Pc(h) = W (h)n(h), where

20The benchmark model implicitly assumes that seigniorage revenue is returned to households in a lump-
sum way. The present case with incomplete markets assumes that the economy is cashless and that as in
Nakamura and Steinsson (2010), the central bank executes monetary policy by keeping the growth rate of
nominal GDP constant, interpreting Mt as nominal GDP. This avoids discussions on the redistribution of
seigniorage revenue.
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c(h) is consumption of type-h household. Current utility is then given by

�IM(x(h); s) =
c(h)1��

1� � � �ns(h)�

=

��
W (h)
W

�1�"
N

�1��
1� � � �

"�
W (h)

W

��"
N

#�

=

�
(x(h)C)1�"N

�1��
1� � � �

�
(x(h)C)�"N

��
: (30)

Let vIM(�; s) be the value of an adjusting household that has a constant adjustment

probability � and sets the associated optimal wage x�(�; s); under the aggregate state s.

The value is gross of the current adjustment cost and is written as

vIM(�; s) =
�IM(x�(�; s); s) + �(1� �)�IM

�
x�(�;s)
�
; s
�
� ��E [�j� < G�1(�)]� �2(1� �)E(�)

(1� �)[1 + �(1� �)] :

(31)

A numerical method is used to analyze the incomplete markets model because analytical

investigation is not possible.21 Utility �IM(x(h); s) in (30) and the value vIM(�; s) in (31)

are computed using the optimal wage and aggregate consumption; both of which are derived

in the Appendix. Parameter values are as per the baseline case and � = 0:99.

Figure 6 shows the number of steady-state equilibria for an annual in�ation rate �4 and

an elasticity of substitution for di¤erentiated labor services ". The main conclusion of the

present study is robust: multiple steady-state equilibria do not exist when the discount factor

is close to 1.

Note also that wages become more �exible under incomplete markets than under com-

plete markets. Under incomplete markets, not only do non-adjusting households work longer

than adjusting households, they also consume more. Meanwhile, because of the curvature of

21Like Lemma 1, it is possible to derive a condition that renders the optimal wage independent of aggregate
consumption. However, even when the discount factor is close to 1, the sign of the partial derivative of
aggregate consumption with respect to the aggregate adjustment probability depends on the in�ation rate
and parameters of the utility function.
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Figure 6: Incomplete markets: elasticity of substitution.

the utility function, households prefer to smooth consumption. Hence, households choose to

adjust their wage more frequently. As a result, imperfect consumption insurance increases

wage �exibility and lowers the threshold in�ation rate for the �exible-wage equilibrium rel-

ative to the benchmark model with complete asset markets.

5.2 De�ation

The analysis thus far has assumed a positive in�ation rate, � > 1. This is empirically justi-

�able because the average in�ation rate is positive in most countries, even though de�ation

occurs temporarily. One exception is Japan, where mild de�ation started in the mid-1990s

and continued until the mid-2010s. The CPI in�ation rate has become slightly positive in

recent years, but concern remains that de�ation could soon again follow. Motivated by the

Japanese experience, this subsection examines de�ation, � 2 (0; 1):

The analytical derivation for the in�ation case is carried over to the de�ation case and the

optimal wage is characterized as in Lemma 1. However, for � 2 (0; 1); households decrease
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their wage over time and for � 2 [0; 1) and � 2 (0; 1);

� <

�
1 + �"�

1 + �"�1

� 1
"(��1)+1

< g(�; �)
1

"(��1)+1 < 1:22 (32)

The de�ation case di¤ers from the in�ation case in terms of how increasing the aggregate

adjustment probability a¤ects aggregate consumption. Speci�cally, Lemma 2 is modi�ed as

follows.

Lemma 5 Suppose that � 2 (0; 1). For � 2 [0; 1] and � 2 [0; 1), @D(�; �)=@� > 0 and

D(�; �) attains its maximum on [0; 1] at � = 1:

Proof. See the Appendix.

On the one hand, a higher � means more adjusting households. Since under � 2 (0; 1);

adjusting households charge a lower wage than non-adjusting households, an increase in

� tends to decrease the wage (price) index, which increases aggregate consumption. This

is re�ected in @r(�; 1)=@� > 0. On the other hand, an increase in � raises g(�; �) (i.e.,

@g(�; �)=@� > 0) for � 2 (0; 1) and the reset wage. This tends to raise the wage (price)

index, which decreases aggregate consumption. Unlike the case of � > 1; the �rst e¤ect

always dominates the second for � 2 (0; 1). Therefore, @D(�; �)=@� > 0:

The property of the interior arm of the best-response correspondence is also altered. In

particular, Lemma 3 is modi�ed as follows.

Lemma 6 Suppose that � 2 (0; 1). For � 2 [0; 1), the interior arm of the best-response

correspondence does not exhibit complementarity anywhere and the interior arm of the best-

response correspondence has a unique �xed point ��:

Proof. See the Appendix.

While the Appendix provides the formal proof, (26) gives the intuition. As shown in

Lemma 5, @D(�; �)=@� > 0 for � 2 [0; 1) and � 2 [0; 1]. Hence, an increase in �� decreases
22Note that g(�; �) decreases with � and increases with � for � 2 (0; 1).
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static utility in the current and next periods proportionally. Further, unlike the case with

� > 1, the numerator of (26) is always positive: �(x�) � �(x�=�) > 0:23 That is, the reset

wage is closer to the static optimal wage in the current period than to the static optimal

wage in the next period. For � 2 (0; 1); households�wage (relative to money stock) is higher

and thus their labor hours are lower in the future period than in the current period, making

households put a smaller weight on the future period. Thus, @2�SUM(�; ��)=@�@�� < 0 and

the interior arm of the best-response correspondence does not exhibit complementarity. As

a result, there is a unique �xed point.

The analysis so far shows that multiple sticky-wage equilibria do not exist for any discount

factor � 2 [0; 1) under de�ation, � 2 (0; 1). However, two equilibria, one with sticky wages

and the other with �exible wages, might exist. The next proposition, which is a modi�cation

of Proposition 4, rules out such multiple equilibria.

Proposition 7 Suppose that � 2 (0; 1). Multiple equilibria are ruled out as � ! 1.

Proof. See the Appendix.

To obtain two equilibria, one with sticky wages and the other with �exible wages, the

best-response correspondence is the interior arm �rst, has a �xed point �� < 1, and thereafter

moves up to the �exible arm. As shown in the Appendix, such an upward jump of the best-

response correspondence is not possible as � ! 1. Note that while Lemmas 5 and 6 hold for

� 2 [0; 1); Proposition 7 requires � ! 1:

Numerical analysis con�rms these results. Parameter values are as per the benchmark

case. For the in�ation rate �, 60 annual in�ation rates from �6% to �0.1% are examined.

Figure 7 shows the result of varying the discount factor � and the in�ation rate � when the

elasticity of substitution for di¤erentiated labor services " is 2. First, consistent with the

23Note that �(x�)� �(x�=�) increases with x� and with g(�; �) = (1 + �"�)=(1 + �"�1),

sgn[�(x�)� �(x�=�)] = sgn[ "�
"� 1

1 + �"�

1 + �"�1
(1� �"�1)� (1� �"�)]:

It is straightforward to show that the right-hand side is positive for � 2 (0; 1).
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Figure 7: De�ation: discount factor.

Figure 8: De�ation: elasticity of substitution.

analytical result, multiple sticky-wage equilibria never arise. In addition, multiple equilibria,

one with sticky wages and the other with �exible wages, also do not exist for � 2 [0; 1), even

though it is proven analytically only for � ! 1. Hence, the unique equilibrium exists in

most cases, although a non-existence case also arises. As shown in Figure 8, the uniqueness

of equilibrium when � is close to 1 (� = 0:99) is robust to changing ":
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5.3 Labor Costs for Wage Adjustments

This subsection considers labor costs for wage changes, instead of utility costs as in the

benchmark model. Speci�cally, as in Takahashi (2017), each household uses composite labor

to adjust their wage. This leads to two changes. First, wage-setting costs need to be

evaluated, multiplying the marginal utility of consumption and the real wage (constant to

1). Hence, the cost term in (21) is no longer independent of the aggregate adjustment

probability. Second, some labor is used for wage changes. Thus, at the aggregate level,

consumption is equal to total labor minus labor used for wage adjustments. Because of the

two modi�cations, an analytical approach cannot be used for the model with labor wage-

setting costs.

Accordingly, the extended model is solved numerically. Parameter values are as per the

baseline model and � = 0:99: The maximum wage-setting cost �� is reset so that as in the

baseline model, it is equal to 0.013% of the equilibrium consumption in the model without

wage-setting costs.

Figure 9 shows how the number of steady-state equilibria varies with the in�ation rate �

and the elasticity of substitution for di¤erentiated labor service ". The result is reasonably

similar to that for the baseline model and multiple equilibria do not exist when the discount

factor � is close to 1.

5.4 Interest-Elastic Money Demand

The benchmark model assumes that money demand is independent of a nominal interest rate.

This subsection relaxes that assumption and instead assumes a positive interest elasticity of

money demand. Speci�cally, money demand is given by

ln
Md
t

Pt
= lnCt � �Rt; (33)
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Figure 9: Labor costs for wage changes: elasticity of substitution.

where � > 0 is the interest semi-elasticity of money demand and Rt is the net nominal

interest rate. At steady-state equilibrium, 1 +Rt = �=� and thus

xt(h) �
Wt(h)

Mt

=
Wt(h)e

�(���1)

WtCt
: (34)

Let vPE(�; s) be the value of an adjusting household that has a constant adjustment

probability � and sets the associated optimal wage x�(�; s); under the aggregate state s.

Note that

vPE(�; s) =
�PE(x�(�; s); s) + �(1� �)�PE

�
x�(�;s)
�
; s
�
� ��E [�j� < G�1(�)]� �2(1� �)E(�)

(1� �)[1 + �(1� �)] ;

(35)

with

�PE(xt(h); s) = �t

h
e��(

�
�
�1)xt(h)Ct

i1�"
Nt � �

�h
e��(

�
�
�1)xt(h)Ct

i�"
Nt

��
: (36)

Under the same assumption as the benchmark model, the optimal wage becomes inde-

pendent of the aggregate state s: Speci�cally, as shown in the Appendix, the optimal wage
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is given by

xPE�(�) = e�(
�
�
�1)
�
"��

"� 1
1 + �(1� �)�"�
1 + �(1� �)�"�1

� 1
"(��1)+1

= e�(
�
�
�1)
�
"��

"� 1g(�; �)
� 1

"(��1)+1

:

(37)

Recall that in the case of zero interest elasticity of money demand, the static optimal

wage is W � = x�M = ["��=(" � 1)]1=["(��1)+1]M . With positive interest elasticity of money

demand, M is e¤ectively multiplied by e�(�=��1), as are the static optimal wages for the

current and next periods. Hence, the reset wage is also multiplied by e�(�=��1):

As in the benchmark case, (35) is rewritten as

vPE(�; s(��)) =
�PESUM(�; ��)� CPESUM(�)

1� � ; (38)

where

�PESUM(�; ��) = e
�(���1)("�1)

�
"� � "+ 1

"�

��
DPE(�; �)

DPE(��; �)�

�"�1�
r(�; �)

r(�; 1)

�
; (39)

CPESUM(�) = CSUM(�); (40)

and

DPE(�; �) = e��(
�
�
�1)
�
"� 1
"��

� 1
"(��1)+1 r(�; 1)

1
"�1

g(�; �)
1

"(��1)+1
: (41)

See the Appendix for the derivation of (39).

It is straightforward to show that the arguments for the benchmark model can be applied

to the present case. Speci�cally, Lemma 2 and Lemma 3 hold without any modi�cations.

Hence, when the discount factor � is close to 1, it is unlikely that the interior arm of the best-

response correspondence shows complementarity at any �xed point and multiple sticky-wage

equilibria are unlikely to exist.

There is no change in the necessary conditions for multiple equilibria, one with sticky

wages and the other with �exible wages. However, the su¢ cient conditions for ruling out

30



such multiple equilibria are modi�ed. Speci�cally, those conditions become

e�(��1)�("�1)
�
"� � "+ 1

"�

��
"� 1
"��

� ("�1)(1��)
"(��1)+1

8>><>>:
2664

�
1+�"�1

2

���
�
1+�"�

1+�"�1

�� �("�1)
"(��1)+1

3775�
2664
�
1+�"�1

2

��(��1)
�
1+�"�

1+�"�1

�� (��1)("�1)
"(��1)+1

3775
9>>=>>; > E(�)

(42)

or

E(�)� CSUM(�̂) >

e�(��1)�("�1)
�
"� � "+ 1

"�

��
"� 1
"��

� ("�1)(1��)
"(��1)+1

8>><>>:
h
1+(1��̂)�"�
1+(1��̂)�"�1

i �("�1)
"(��1)+1h

1+(1��̂)�"�1
1+(1��̂)

i� �

h
1+(1��̂)�"�
1+(1��̂)�"�1

i (��1)("�1)
"(��1)+1h

1+(1��̂)�"�1
1+(1��̂)

i��1
9>>=>>; :

(43)

The positive interest elasticity of money demand renders (42) easier to satisfy than in the

benchmark case, whereas (43) becomes more di¢ cult to satisfy.

Next, a numerical method is used to analyze the uniqueness of steady-state equilibrium.

I set � = 4, so that as the annualized nominal interest rate increases by 1 percentage point,

real money demand decreases by 1% (Christiano, Eichenbaum, and Evans (2005)). Other

parameters are �xed at their benchmark values.

For � = 4, as � ! 1, multiple equilibria, one with sticky wages and the other with �exible

wages, are ruled out except when the annual in�ation rate is 1.14�1.57%. Even for � = 17:65,

which is the value used by Dotsey, King, and Wolman (1999), such multiple equilibria are

ruled out except when the annual in�ation rate is 1.00%�1.32%. Hence, multiple equilibria

are ruled out for most long-run in�ation rates. Recall that these conditions are su¢ cient,

not necessary, for eliminating multiple equilibria.

Figure 10 shows how the number of steady-state equilibria depends on the elasticity

of substitution for di¤erentiated labor " and the long-run in�ation rate � under � = 4
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Figure 10: Interest-elastic money demand: elasticity of substitution.

and � = 0:99. Multiple equilibria do not exist for any case. Thus, the main conclusion

of the present study is unchanged. More generally, the result is quite similar to that in

Figure 2. Consistent with recent experiences in most developed countries, � is relatively

low. Furthermore, � is close to 1, in line with the typical calibration for business-cycle

models. Hence, �=� is close to 1 and setting � > 0 does not change the model�s steady-state

equilibrium substantially.

6 Conclusion

Nominal wage stickiness is an important issue in macroeconomics. Indeed, New Keynesian

models, a modern framework for policy analysis, highlight welfare losses arising from stag-

gered wage adjustments. It is thus important to analyze how the timing of individual wage

adjustments is determined. However, most prior studies �x the timing of wage adjustments

exogenously. Toward addressing this gap, the present study constructs a New Keynesian

model with �xed costs for wage adjustments. The presence of �xed costs leads to infrequent

and endogenous individual wage adjustments. I then analyze and explore whether such

state-dependent wage setting generates multiple equilibria in the long run. Using analytical

and numerical approaches, I �nd that multiple steady-state equilibria are unlikely to exist
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in a reasonably calibrated dynamic New Keynesian model.

For future research, it would be interesting to conduct welfare analyses and to compare the

results with those under time-dependent wage setting. Furthermore, it is an open question

whether and how state dependency in wage setting in�uences equilibrium determinacy under

various short-run monetary policy rules. I leave these questions for future research.
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Appendix

Proof of Lemma 1

From (8),
@�(x)

@x
= (1� ")�x�"C1�"N + �"�x�"��1C�"�N � : (44)

Since adjusting households set x to maximize �(x) + �(1 � �)�(x=�), the optimal wage x�

satis�es

(1� ")�x��"C1�"N + �"�x��"��1C�"�N �

+�(1� �)[(1� ")�x��"C1�"N�"�1 + �"�x��"��1C�"�N ��"� ] = 0: (45)

Rearranging (45),

x�"(��1)+1 =
"��

"� 1
1 + �(1� �)�"�
1 + �(1� �)�"�1

C�"�N �

�C1�"N
: (46)

Note that � = C�� and N = C: Then, (46) is written as

x�"(��1)+1 =
"��

"� 1
1 + �(1� �)�"�
1 + �(1� �)�"�1C

�+��2+"(1��): (47)

Letting � + � � 2 + "(1� �) = 0 leads to (14).

Baseline Model

Consider a pure-strategy symmetric steady-state equilibrium. Let �� be the probability of

adjusting wages in the current period when households adjusted their wage in the last pe-

riod. Let �! be the fraction of adjusting households in the current period. Since households
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certainly adjust their wage in the current period when they did not do so in the last period,

(1� �!) + ���! = �! or �! = 1

2� ��: (48)

From (4),

W =

"
�!W �1�" + (1� �!)

�
W �

�

�1�"# 1
1�"

: (49)

From (7), M =M s =Md; and P = W; (49) can be written as

"
�!

�
W �

M

�1�"
+ (1� �!)

�
W �

M�

�1�"# 1
1�"

C = 1: (50)

By the de�nition of x� and (48),

"
1

2� �� (x
�(��))1�" +

1� ��
2� ��

�
x�(��)

�

�1�"# 1
1�"

C = 1: (51)

Using (47), 8><>:
1

2���
�
"��
"�1g(��; �)C

�+��2+"(1��)� 1�"
"(��1)+1

+1���
2���

�
"��
"�1g(��; �)C

�+��2+"(1��)� 1�"
"(��1)+1 �"�1

9>=>;
1

1�"

C = 1: (52)

Rearranging (52),

C
�+��1
"��"+1 =

�
"� 1
"��

� 1
"(��1)+1

h
1+(1���)�"�1
1+(1���)

i 1
"�1

g(��; �)
1

"(��1)+1
: (53)

Setting � + � � 2 + "(1� �) = 0 leads to (17).
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By (14), (17), and (19),

�SUM(�; ��) = x�(�)�"�C(s(��))(1�")�
�
x�(�)1�"+"� � �

�
+ �(1� �)�"�

�
x�(�)1�"+"��"�1�"� � �

�
1 + �(1� �)

=

�
"��

"� 1

�� "�
"(��1)+1

g(�; �)�
"�

"(��1)+1 r(��; 1)��
�
"��

"� 1

�� (1�")�
"(��1)+1

g(��; �)�
(1�")�

"(��1)+1�
"��
"�1g(�; �)� �

�
+ �(1� �)�"�

�
"��
"�1g(�; �)�

"�1�"� � �
�

1 + �(1� �)

=

�
"��

"� 1

�� �
"(��1)+1 1

r(��; 1)�g(�; �)
"�

"(��1)+1 g(��; �)
(1�")�

"(��1)+1�
"��

"� 1
g(�; �)[1 + �(1� �)�"�1]

1 + �(1� �) � �[1 + �(1� �)�
"� ]

1 + �(1� �)

�
=

�("� � "+ 1)
"� 1

�
"��

"� 1

�� �
"(��1)+1 g(�; �)r(�; �)

r(��; 1)�g(�; �)
"�

"(��1)+1 g(��; �)
(1�")�

"(��1)+1

=
�("� � "+ 1)

"� 1

�
"��

"� 1

�� �
"(��1)+1 g(�; �)

1�"
"(��1)+1 r(�; �)

g(��; �)
(1�")�

"(��1)+1 r(��; 1)�
: (54)

Rearranging (54) with (24) leads to (22).

Proof of Lemma 2

Note that

@D(�;�)
@�

D(�; �)
=

�
1

"� 1

�(" @r(�;�)
@�

r(�; �)
� ("� 1)
"(� � 1) + 1

@g(�;�)
@�

g(�; �)

#
�
 

@r(�;�)
@�

r(�; �)
�

@r(�;1)
@�

r(�; 1)

!)
; (55)

@r(�;�)
@�

r(�; �)
= � �(�"�1 � 1)

[1 + �(1� �)][1 + �(1� �)�"�1] ; (56)

@r(�;1)
@�

r(�; 1)
= � (�"�1 � 1)

[1 + (1� �)][1 + (1� �)�"�1] ; (57)

and
@g(�;�)
@�

g(�; �)
= � �(�"� � �"�1)

[1 + �(1� �)�"�1][1 + �(1� �)�"� ] : (58)
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With (56) and (58),

@r(�;�)
@�

r(�; �)
� ("� 1)
"(� � 1) + 1

@g(�;�)
@�

g(�; �)

=
("� 1)

"(� � 1) + 1
�(�"� � �"�1)

[1 + �(1� �)�"�1][1 + �(1� �)�"� ] �
�(�"�1 � 1)

[1 + �(1� �)][1 + �(1� �)�"�1]

= �

("�1)
"(��1)+1(�

"� � �"�1)[1 + �(1� �)]� (�"�1 � 1)[1 + �(1� �)�"� ]
[1 + �(1� �)][1 + �(1� �)�"�1][1 + �(1� �)�"� ]

= �
�(1� �)

h
("�1)

"(��1)+1(�
"� � �"�1)� (�"�1 � 1)�"�

i
+ ("�1)

"(��1)+1(�
"� � �"�1)� (�"�1 � 1)

[1 + �(1� �)][1 + �(1� �)�"�1][1 + �(1� �)�"� ]

=
�
h
(�"�1 � 1)�"� � ("�1)

"(��1)+1(�
"� � �"�1)

i
[1 + �(1� �)][1 + �(1� �)�"�1][1 + �(1� �)�"� ]" ("�1)

"(��1)+1(�
"� � �"�1)� (�"�1 � 1)

(�"�1 � 1)�"� � ("�1)
"(��1)+1(�

"� � �"�1)
� �(1� �)

#

=
�
h
(�"�1 � 1)�"� � ("�1)

"(��1)+1(�
"� � �"�1)

i
[1 + �(1� �)][1 + �(1� �)�"�1][1 + �(1� �)�"� ] [(1� �̂)� �(1� �)]; (59)

where

�̂ = 1�
("�1)

"(��1)+1(�
"� � �"�1)� (�"�1 � 1)

(�"�1 � 1)�"� � ("�1)
"(��1)+1(�

"� � �"�1)
: (60)

By contrast, with (56) and (57),

@r(�;�)
@�

r(�; �)
�

@r(�;1)
@�

r(�; 1)
=

(1� �)(�"�1 � 1)[1� �(1� �)2�"�1]
[1 + �(1� �)][1 + �(1� �)�"�1][1 + (1� �)][1 + (1� �)�"�1] : (61)

Substituting (59) and (61) into (55) leads to

@D(�;�)
@�

D(�; �)
=

�
1

"� 1

� ��"�1
h
(�"� � �"��"+1)� "�1

"��"+1(�
"��"+1 � 1)

i
[1 + �(1� �)][1 + �(1� �)�"�1][1 + �(1� �)�"� ] [(1� �̂)� �(1� �)]

�
�

1

"� 1

�
(1� �)(�"�1 � 1)[1� �(1� �)2�"�1]

[1 + �(1� �)][1 + �(1� �)�"�1][1 + (1� �)][1 + (1� �)�"�1] : (62)

(i) As � ! 0, the �rst term of (62) goes to 0. The second term goes to �1=(" � 1) �

(�"�1 � 1)= f[1 + (1� �)][1 + (1� �)�"�1]g. For � > 1, �"�1 � 1 > 0 and @D(�; �)=@� < 0
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for all � 2 [0; 1]:

(ii) Consider � = 1: The second term of (62) is 0. Note that (�"���"��"+1)�("�1)=["(��

1) + 1] � (�"��"+1 � 1) > 0 for all � > 0 but 1.24 Hence, @D(�; �)=@� < 0 for � < �̂ and

@D(�; �)=@� > 0 for � > �̂. Furthermore, the �rst and second terms of (62) are continuous

in �. Hence, when � is su¢ ciently close to 1, there exists ~� such that @D(�; �)=@� < 0 for

� < ~� and @D(�; �)=@� > 0 for � > ~�:

Note that �̂ 2 (0; 1). Let �̂ � 1�g(�)=f(�); where g(�) � ("�1)=("��"+1) �(�"��"+1�

1)� (1� 1=�"�1) and f(�) � �"� � �"��"+1 � ("� 1)=("� � "+ 1) � (�"��"+1 � 1): Note that

g(1) = f(1) = 0: Furthermore, f 0(�) = "�(�"��1 � �"��") and g0(�) = (" � 1)(�"��" � ��"):

Hence, f
0
(�) > 0 and g

0
(�) > 0 for � > 1 and f

0
(�) < 0 and g

0
(�) < 0 for � 2 (0; 1):

These results ensure that f(�) > 0 and g(�) > 0 for all � > 0 and �̂ 2 (0; 1) means

that f(�) > g(�). Let h(�) � f(�) � g(�) and h(1) = h
0
(1) = 0: Furthermore, h

00
(u) =

f
00
(u)� g00(u) = "�("� � 1)(�"��2 � �"��"�1) + "("� 1)(�"��"�1 � ��"�1): Hence, for � > 1,

h
00
(�) > 0, which implies that h

0
(�) > 0 and h(�) > 0: Thus, �̂ 2 (0; 1) and ~� 2 (0; 1) for

� > 1:

(iii) It is su¢ cient to show that D(1; �) > D(0; �) because, as given in (ii), for � suf-

�ciently close to 1, there exists ~� 2 (0; 1) such that @D(�; �)=@� < 0 for � < ~� and

@D(�; �)=@� > 0 for � > ~�. Note that

D(1; �) =

�
"� 1
"��

� 1
"(��1)+1 r(1; 1)

1
"�1

g(1; �)
1

"(��1)+1
=

�
"� 1
"��

� 1
"(��1)+1

(63)

and

D(0; �) =

�
"� 1
"��

� 1
"(��1)+1 r(0; 1)

1
"�1

g(0; �)
1

"(��1)+1
=

�
"� 1
"��

� 1
"(��1)+1

�
1+�"�1

2

� 1
"�1

�
1+��"�

1+��"�1

� 1
"��"+1

: (64)

24Let z(�) � (�"���"��"+1)�("�1)=("��"+1) �(�"��"+1�1) = (�"��1)�"�=("��"+1) �(�"��"+1�1):
Note that z(1) = 0 and z

0
(�) = "��"��1 � "��"��" = "�(�"��1 � �"��"): Hence, z0(�) < 0 for � 2 (0; 1) and

z0(�) > 0 for � > 1: Thus, z(�) > 0 for � > 0:
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Since D(�; �) is continuous in �, it is su¢ cient to show that D(1; 1) > D(0; 1), which is

equivalent to the following condition:

ln(1 + �"�) > �"� � "+ 1
"� 1 ln 2 +

"�

"� 1 ln(1 + �
"�1): (65)

Let m(�) � ln(1 + �"�) + ("� � " + 1)=(" � 1) � ln 2 � "�=(" � 1) � ln(1 + �"�1): Note that

m(1) = 0: Furthermore,

m0(�) =
"��"��1 + "��"�+"�2 � "��"�2 � "��"�+"�2

(1 + �"�)(1 + �"�1)

=
"�(�"��1 � �"�2)
(1 + �"�)(1 + �"�1)

: (66)

Since "� � 1 > " � 2, m0(�) > 0 for � > 1. Hence, m(�) > 0 for � > 1, which implies that

for su¢ ciently large �, D(1; �) > D(0; �) and D(�; �) attains its maximum at � = 1.

Proof of Lemma 3

Since (25) implies that @v(�int; s(��))=@� = 0, by the implicit function theorem,

@�int

@��
= �

@2v(�int;s(��))
@�@��

@2v(�int;s(��))
@�2

: (67)

By (25), the denominator of the right-hand side of (67) is negative. Hence,

sgn

�
@�int

@��

�
= sgn

�
@2v(�int; s(��))

@�@��

�
= sgn

�
@2�SUM(�

int; ��)

@�@��

�
; (68)

where (21) is used. Note also that by (22),

@�SUM(�; ��)

@�
= �SUM(�; ��)

"
("� 1)

@D(�;�)
@�

D(�; �)
+

@r(�;�)
@�

r(�; �)
�

@r(�;1)
@�

r(�; 1)

#
: (69)
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(i) By (55) and (59), (69) can be written as

@�SUM(�; ��)

@�
= �SUM(�; ��)

"
@r(�;�)
@�

r(�; �)
� "� 1
"(� � 1) + 1

@g(�;�)
@�

g(�; �)

#

= �SUM(�; ��)
�
h
(�"�1 � 1)�"� � ("�1)

"(��1)+1(�
"� � �"�1)

i
[1 + �(1� �)][1 + �(1� �)�"�1][1 + �(1� �)�"� ]

�[(1� �̂)� �(1� �)]: (70)

When � is su¢ ciently small, (1 � �̂) � �(1 � �) > 0 and @�SUM(�; ��)=@� > 0: Note

that �� appears only in �SUM(�; ��). As shown in Lemma 2 (i), when � is su¢ ciently

small, @D(��; �)=@� < 0. Furthermore, a decrease in D(��; �) or in aggregate consump-

tion C(��) increases �SUM(�; ��). Thus, @2�SUM(�; ��)=@�@�� > 0; and for su¢ ciently small

�, @�int=@�� > 0 and the interior arm of the best-response correspondence shows comple-

mentarity for �� 2 [0; 1]:

(ii)(iii) When � = 1, (69) implies that

@2�SUM(�; ��)

@�@��
= ("� 1)@�SUM(�; ��)

@��

@D(�;1)
@�

D(�; 1)
: (71)

Note that by (22)

@�SUM(�; ��)

@��
= ��("� 1)

D(��; �)

@D(��; �)

@�
�SUM(�; ��): (72)

Combining (71) and (72) leads to

@2�SUM(�; ��)

@�@��
= ��("� 1)

2�SUM(�; ��)

D(��; 1)D(�; 1)

�
@D(��; 1)

@�

@D(�; 1)

@�

�
: (73)

At a �xed point, �int = ��. Hence, @2�SUM(�; ��)=@�@�� < 0 at any �xed point. Hence,

@�int=@�� < 0 and the interior arm of the best-response correspondence does not show com-

plementarity at any �xed point.
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Next, consider � su¢ ciently close to 1. From (68), (70), and (72),

sgn

�
@�int

@��

�
= sgn

�
@�SUM(�

int; ��)

@��
[(1� �̂)� �(1� �int)]

�
= sgn

�
@D(��; �)

@�
(��� �int)

�
; (74)

where �� � [�̂� (1� �)] =�:

When � is su¢ ciently close to 1, according to Lemma 2 (ii), @D(��; �)=@� < 0 for �� < ~�

and @D(��; �)=@� > 0 for �� > ~�. Hence, @�int=@�� > 0 if �� < ~� and �int < �� or �� > ~�

and �int > ��. De�ne � � [min(��; ~�);max(��; ~�)] : Note that as � ! 1, � ! f;g because

~� ! �̂ and �� ! �̂. Let a �xed point be �� = �int = ��. For almost all cost distributions

G(�), �� =2 � because as � ! 1, � ! f;g: Hence, at a �xed point, @�int=@�� < 0: Since a

necessary condition for multiple equilibria is @�int=@�� > 0 at a �xed point, there should be

a unique �xed point.

Proof of Proposition 4

(i) I start by showing that a necessary condition for multiple equilibria is �� < �̂. Suppose

that �� � �̂. To obtain multiple equilibria, the best-response correspondence must jump up

from the interior arm to the �exible arm at �� 2 [��; 1]. However, this is not possible. First,

v(1; s(��)) � v(��; s(��)) because the best response is �� for �� = ��: Second, for �� 2 [��; 1],

v(1; s(��)) decreases with �� more rapidly than v(�int(��); s(��)) and therefore v(1; s(��)) <

v(�int(��); s(��)) for �� 2 [��; 1]; which implies that the best-response correspondence cannot

jump up. Hence, a �exible-wage equilibrium does not exist and multiple equilibria cannot

exist. The second point is shown as follows. For �� 2 [��; 1];

@v(1; s(��))

@��
=

1

1� �
@�SUM(1; ��)

@��

= ��("� 1)
1� �

�
D(1; �)

D(��; �)�

�"�1
r(1; �)

r(1; 1)

@D(��;�)
@�

D(��; �)
< 0; (75)
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whereas

@v(�int(��); s(��))

@��
=

1

1� �
@�SUM(�

int(��); ��)

@��

= ��("� 1)
1� �

�
D(�int(��); �)

D(��; �)�

�"�1
r(�int(��); �)

r(�int(��); 1)

@D(��;�)
@�

D(��; �)
< 0: (76)

Since � is su¢ ciently large, from Lemma 2 (iii),

D(�int(��); �) < D(1; �): (77)

Further, since r(�; �) < r(�; 1) for � 2 [0; 1);

r(�int(��); �)

r(�int(��); 1)
<
r(1; �)

r(1; 1)
= 1: (78)

By (77) and (78), ����@v(1; s(��))@��

���� > ����@v(�int(��); s(��))@��

���� : (79)

Thus, v(1; s(��)) < v(�int(��); s(��)) for �� 2 [��; 1]:

By contrast, suppose that �� < �̂. In this case, the best-response correspondence is

initially the interior arm and then moves up to the �exible arm at �� 2 [��; �̂): The rea-

son is that as shown above, when a discontinuity of the best-response correspondence oc-

curs at �� � �̂, the best-response correspondence must move down. A necessary condition

for an upward jump of the best-response correspondence at �� 2 [���; �̂) is v(1; s(��)) >

v(�int(��); s(��)) at �� 2 [��; �̂): At �� = ��, v(1; s(��)) � v(�int(��); s(��)): Both v(1; s(��))

and v(�int(��); s(��)) increase with �� for �� 2 [��; �̂) because @D(��; �)=@� < 0 for �� < �̂

and as � ! 1 (Lemma 2 (ii)). Further, because of (77) and (78), v(1; s(��)) increases more

rapidly than v(�int(��); s(��)) does. In other words, for �� 2 [0; �̂);

@v(1; s(��))

@��
>
@v(�int(��); s(��))

@��
: (80)
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Hence, a necessary condition for v(1; s(��)) > v(�int(��); s(��)) for �� 2 [��; �̂) is v(1; s(�̂)) >

v(�int(�̂); s(�̂)):

(ii) The �rst condition implies that

"� � "+ 1
"�

�
"� 1
"��

� ("�1)(1��)
"(��1)+1

8>><>>:
2664

�
1+�"�1

2

���
�
1+�"�

1+�"�1

�� �("�1)
"(��1)+1

3775�
2664
�
1+�"�1

2

��(��1)
�
1+�"�

1+�"�1

�� (��1)("�1)
"(��1)+1

3775
9>>=>>; > E(�)

=) "� � "+ 1
"�

"�
D(1; 1)

D(0; 1)�

�"�1
�
�
D(0; 1)

D(0; 1)�

�"�1#
> E(�)

=) "� � "+ 1
"�

"�
D(1; 1)

D(0; 1)�

�"�1
�
�
D(�int(0); 1)

D(0; 1)�

�"�1#

> CSUM(1)� CSUM(�int(0)); (81)

where D(�int(0); 1) < D(0; 1), E(�) = CSUM(1), and CSUM(�int(0)) > 0 are used from the

second to third lines: As � ! 1; r(�; �)=r(�; 1) ! 1. Hence, (81) implies that v(1; s(0)) >

v(�int(0); s(0)): Since, as shown in (i), v(1; s(��)) increases more rapidly in �� than v(�int(��); s(��))

does for �� 2 [0; �̂], v(1; s(��)) > v(��; s(��)), which implies that �� = �� is not the equilib-

rium. Hence, multiple equilibria are not possible.

The second condition implies that

E(�)� CSUM(�̂) >
"� � "+ 1

"�

�
"� 1
"��

� ("�1)(1��)
"(��1)+1

�

8>><>>:
h
1+(1��̂)�"�
1+(1��̂)�"�1

i �("�1)
"(��1)+1h

1+(1��̂)�"�1
1+(1��̂)

i� �

h
1+(1��̂)�"�
1+(1��̂)�"�1

i (��1)("�1)
"(��1)+1h

1+(1��̂)�"�1
1+(1��̂)

i��1
9>>=>>;

=) E(�)� CSUM(�̂) >
"� � "+ 1

"�

"�
D(1; 1)

D(�̂; 1)�

�"�1
�
�
D(�̂; 1)

D(�̂; 1)�

�"�1#

=) CSUM(1)� CSUM(�̂) > �SUM(1; �̂)� �SUM(�̂; �̂)

=) v(�̂; s(�̂)) > v(1; s(�̂))

=) v(�int(�̂); s(�̂)) > v(1; s(�̂)); (82)
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where the last condition holds because v(�int(�̂); s(�̂)) > v(�̂; s(�̂)): This violates a necessary

condition for multiple equilibria.

Imperfect Consumption Insurance

From (30),

@�IM(x)

@x
= (1� ")x("�1)��"C("�1)��"+1N1�� + ��"x�"(��1)�"�1C�"(��1)�"N � : (83)

Since adjusting households set x to maximize �IM(x)+�(1��)�IM(x=�), the optimal wage

x� satis�es

(1� ")x�("�1)��"C("�1)��"+1N1�� + ��"x��"(��1)�"�1C�"(��1)�"N �

+�(1� �)
�
(1� ")x�("�1)��"C("�1)��"+1N1���(1�")(��1) + ��"x��"(��1)�"�1C�"(��1)�"N ��"�

�
= 0:

(84)

Rearranging (84) with N = C leads to

xIM�"�+1+�("�1)�" =
"��

"� 1g
IM(�; �)C�(1�")�(��1)("�2); (85)

where

gIM(�; �) � 1 + �(1� �)�"�
1 + �(1� �)�(1�")(��1) : (86)

Putting (85) with � = �� into (51) leads to

8><>:
1

2���

h�
"��
"�1g

IM(��; �)C�(1�")�(��1)("�2)
� 1
"(��1)+1+�("�1)

i1�"
+1���
2���

h
1
�

�
"��
"�1g

IM(��; �)C�(1�")�(��1)("�2)
� 1
"(��1)+1+�("�1)

i1�"
9>=>;

1
1�"

C = 1: (87)
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Rearranging (87),

CIM
�+��1

"�+1+�("�1)�" =

�
"� 1
"��

� 1
"(��1)+1+�("�1)

h
1+�(1���)�"�1
1+�(1���)

i 1
"�1

gIM(��; �)
1

"(��1)+1+�("�1)
: (88)

Proof of Lemma 5

Consider (62). According to the proof for Lemma 2, for � 2 (0; 1), (�"� � �"��"+1) � (" �

1)=["(� � 1) + 1] � (�"��"+1� 1) > 0 and �̂ < 0. Hence, the �rst term of (62) is positive. The

second term is negative for � 2 (0; 1). Thus, for � 2 [0; 1] and � 2 [0; 1); @D(�; �)=@� > 0

and D(�; �) attains its maximum on [0; 1] at � = 1:

Proof of Lemma 6

Consider (70) for � 2 [0; 1). Since for � 2 (0; 1); (�"�1� 1)�"� � ("� 1)=["(�� 1)+1] � (�"� �

�"�1) > 0 and �̂ < 0, @�SUM(�; ��)=@� > 0: Further, as shown in Lemma 5, @D(��; �)=@� >

0. Recall that an increase in D(��; �) or in aggregate consumption C(��) reduces �SUM(�; ��).

Thus, for � 2 [0; 1), @2�SUM(�; ��)=@�@�� < 0 and @�int=@�� < 0, which implies that the

interior arm of the best-response correspondence does not show complementarity for all

�� 2 [0; 1] and it has a unique �xed point ��.

Proof of Proposition 7

To obtain multiple equilibria, the best-response correspondence needs to move up from the

interior arm to the �exible arm at �� 2 [��; 1]: Note that v(1; s(��)) � v(��; s(��)) because

the best response is �� at �� = ��: Meanwhile, D(�int(��); �) < D(1; �) by Lemma 5 and

as � ! 1; r(�int(��); �)=r(�int(��); 1) ! 1. Hence, as � ! 1, (79) holds, which implies that

v(1; s(��)) decreases with �� more rapidly than v(�int(��); s(��)). Thus, as � ! 1; v(1; s(��)) <

v(�int(��); s(��)) for �� 2 [��; 1] and the �exible-wage equilibrium does not exist.
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Interest-Elastic Money Demand

From (36),

@�PE(x)

@x
= (1� ")e��(

�
�
�1)(1�")�x�"C1�"N + �"�e�(

�
�
�1)"�x�"��1C�"�N � : (89)

Since adjusting households set x to maximize �PE(x)+�(1��)�PE(x=�), the optimal wage

x� satis�es

(1� ")e��(
�
�
�1)(1�")�x��"C1�"N + �"�e�(

�
�
�1)"�x��"��1C�"�N �

+�(1� �)
h
(1� ")e��(

�
�
�1)(1�")�x��"C1�"N�"�1 + �"�e�(

�
�
�1)"�x��"��1C�"�N ��"�

i
= 0:

(90)

Rearranging (90),

xPE�"(��1)+1 =
"��

"� 1
1 + �(1� �)�"�
1 + �(1� �)�"�1 e

�(���1)["(��1)+1] C
�"�N �

�C1�"N
: (91)

Note that � = C�� and C = N: Hence, (91) can be written as

xPE�"(��1)+1 =
"��

"� 1
1 + �(1� �)�"�
1 + �(1� �)�"�1 e

�(���1)["(��1)+1]C�+��2+"(1��): (92)

Letting � + � � 2 + "(1� �) = 0 leads to (37).

Putting (92) with � = �� into (51) leads to

8><>:
1

2���

h
e�(

�
�
�1) � "��

"�1g(��; �)C
�+��2+"(1��)� 1

"(��1)+1
i1�"

+1���
2���

h
1
�
e�(

�
�
�1) � "��

"�1g(��; �)C
�+��2+"(1��)� 1

"(��1)+1
i1�"

9>=>;
1

1�"

C = 1: (93)
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Rearranging (93),

CPE
�+��1
"��"+1 = e��(

�
�
�1)
�
"� 1
"��

� 1
"(��1)+1

h
1+�(1���)�"�1
1+�(1���)

i 1
"�1

g(��; �)
1

"(��1)+1
: (94)

Given (37) and (94),

�PESUM(�; ��) =
�PE(x�(�); s(��)) + �(1� �)�PE(x

�(�)
�
; s(��))

1 + �(1� �)

= xPE�(�)�"�CPE(��)(1�")�
�
�

�

���"�
8><>:

h
e��(

�
�
�1)["(��1)+1]xPE�(�)1�"+"� � �

i
+�(1� �)�"�

h
e��(

�
�
�1)["(��1)+1]xPE�(�)1�"+"��"�1�"� � �

i
9>=>;

1 + �(1� �)

= e��(
�
�
�1)(1�")�

�
"� 1
"��

� �
"(��1)+1

g(�; �)�
"�

"(��1)+1
r(��; 1)

(1�")�
"�1

g(��; �)
(1�")�

"(��1)+1�
"��
"�1g(�; �)� �

�
+ �(1� �)�"�

�
"��
"�1g(�; �)�

"�1�"� � �
�

1 + �(1� �)

= e��(
�
�
�1)(1�")�

�
"��

"� 1

�� �
"(��1)+1 1

r(��; 1)�g(�; �)
"�

"(��1)+1 g(��; �)
(1�")�

"(��1)+1�
"��

"� 1
g(�; �)[1 + �(1� �)�"�1]

1 + �(1� �) � �[1 + �(1� �)�
"� ]

1 + �(1� �)

�
= e��(

�
�
�1)(1�")� �("� � "+ 1)

"� 1

�
"��

"� 1

�� �
"(��1)+1 g(�; �)r(�; �)

r(��; 1)�g(�; �)
"�

"(��1)+1 g(��; �)
(1�")�

"(��1)+1

= e��(
�
�
�1)(1�")� �("� � "+ 1)

"� 1

�
"��

"� 1

�� �
"(��1)+1 g(�; �)

1�"
"(��1)+1 r(�; �)

g(��; �)
(1�")�

"(��1)+1 r(��; 1)�
: (95)

Rearranging (95) with (24) leads to (39).
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