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Abstract

Large cities with central location excessively export to smaller cities in close proximity.
Using Japanese inter-city trade data, we identify a substantial centrality bias: Exports from
central places to their hinterland are 40%-100% larger than predicted by gravity forces.
This upward bias stems from aggregating industries, which are hierarchically distributed
across large and small cities. Decomposing the centrality bias along the margins of our
data, we identify the extensive industry margin as the main driver behind this aggregation
bias. Relying on a theory-consistent decomposition of the aggregate gravity equation, we
also sort out the underlying theoretical channels that are responsible for the manifestation
of the centrality bias.
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1 Introduction

In this paper, we use highly disaggregated intra-national trade data from Japan to demonstrate

that large and centrally located cities (central places) excessively export to smaller cities in their

nearby economic hinterland. Building on Redding and Weinstein’s (2019) nested gravity frame-

work, we argue that this centrality bias in inter-city trade is an artifact of aggregating across

sectors whose spatial distribution obeys Christaller’s (1933) hierarchy principle for industries.

According to Christaller’s (1933) hierarchy principle for industries we expect all industries, that

are present in a city of a given size, to be also present in all cities of equal or larger size (cf. Mori,

Nishikimi, and Smith, 2008; Mori and Smith, 2011; Hsu, 2012; Schiff, 2015; Davis and Dingel,

2020). The hierarchical distribution of industries across cities and the specific grouping of cities

in space that both follow from this principle are the cornerstones of central place theory as first

developed by Christaller (1933) and Lösch (1940). In such a system of cities, industries that

are specific to a few central places are more likely to serve smaller cities with a limited industry

diversity in the central place’s hinterland. As a consequence, we find that central places export

to their hinterland across a wider and on average more export-oriented set of industries, which

is why in 2015 central places in Japan exported 40% to 100% more to their hinterland than

predicted by the aggregate gravity equation.

During the recent decade, the use of the structural gravity equation as a workhorse model

of the empirical trade literature (cf. Anderson, 2011; Head and Mayer, 2014) has expanded far

beyond its intellectual origins in the international trade literature (cf. Anderson, 1979; Anderson

and van Wincoop, 2003).1 A key decision for researchers estimating gravity equations based

on intra-national trade data is the level of aggregation.2 Redding and Weinstein (2019) show

how a log-linear aggregate gravity equation with a structural error term can be consistently

derived from aggregating sectoral gravity equations. Aggregate gravity estimations, that do not

account for this typically unobservable structural error term, suffer from aggregation bias and

should be regarded at best as log-linear approximations of the true underlying trade relationship

at the sectoral level. Taking into account a key prediction of central place theory (cf. Fujita,

Krugman, and Mori, 1999a; Tabuchi and Thisse, 2011; Hsu, 2012), we explore in this paper how

the structural error term in the aggregate gravity equation derived by Redding and Weinstein
1Many studies have adopted the gravity framework to analyze the pattern of intra-national trade. See Wolf

(2000); Hillberry and Hummels (2003); Millimet and Osang (2007); Coughlin and Novy (2013, 2016); Felbermayr
and Gröschl (2014) as well as Allen and Arkolakis (2014) for studies from the US; Combes, Lafourcade, and
Mayer (2005) and Briant, Combes, and Lafourcade (2010) for studies from France; Nitsch and Wolf (2013) as
well as Lameli, Nitsch, Südekum, and Wolf (2015) for studies from Germany; and Okubo (2004) as well as Wrona
(2018) for studies on Japan.

2See for example Hillberry (2002), Hillberry and Hummels (2008), Briant et al. (2010) and Coughlin and Novy
(2013, 2016).
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(2019) is shaped by the hierarchical distribution of industries in space.3

Following Mori, Smith, and Hsu (2020a), we apply a simple algorithm in the spirit of

Christaller (1933) to identify central places and their associated hinterland cities. The identifi-

cation of central places and their hinterland cities in a hierarchical city system is based on the

recursive spatial grouping of cities as a key-prediction of central place theory (cf. Fujita et al.,

1999a; Tabuchi and Thisse, 2011; Hsu, 2012).4 Using 1km×1km grid cell data on population

density in Japan, we identify cities as functional urban areas (cf. Dijkstra and Poelman, 2012;

Schmidheiny and Suedekum, 2015) approximated by the surrounding municipalities, which are

the smallest regional units for which micro-level shipment data is available. Highly disaggre-

gated shipment-level data from five waves of the Japanese Commodity Flow Survey (1995-2015),

is then used to explore the pattern of inter-city trade in Japan at an unprecedented level of

detail, which distinguishes between up to 191 different industries.

To explore how the hierarchical sorting of industries into central places and hinterland

cities affects the pattern of inter-city trade, we separately compute the residual diagnostics of

aggregate gravity estimations based on the classification of trading partners as central places

and/or hinterland cities. Exports from central places to their hinterland cities are associated

with larger average residuals than those to the hinterland cities of other central places, which

suggests that aggregate gravity estimations systematically underestimate the trade volume for

these city pairs. To capture this centrality bias more systematically, we include a set of central

place dummies in these aggregate gravity estimations, which take a value of one whenever an

origin city exports as a central place to one of its hinterland cities and a value of zero otherwise.

Across all five waves of Japan’s Commodity Flow Survey we find a large and significant centrality

bias, which translates into a percentage trade increase that ranges from 30% to 167%.5

In search for an explanation that rationalizes the systematic upward bias in aggregate ex-

ports from central places to their hinterland cities, we replicate our analysis at the much more

disaggregated industry level. Suppose the centrality bias results from the aggregation of in-
3International trade models, that provide micro-foundations for the structural gravity equation, typically

assume that all industries are present in all locations. Head and Mayer (2014) review various single-sector
models that provide micro-foundations for the structural gravity equation. Multi-sector extensions of Eaton
and Kortum’s (2002) Ricardian trade model and Krugman’s (1980) monopolistic competition framework, as
for example reviewed by Costinot and Rodríguez-Clare (2014, pp. 213-216), typically assume industries to be
active in all locations. Although the multi-sector version of the Armington trade model (cf. Anderson and van
Wincoop, 2004, p. 708) in principle is flexible enough to capture any kind of industry location pattern, there is
no endogenous mechanism, which tells us what kind of industry configuration we should expect.

4Tomer and Kane (2014) extend and modify the Freight Analysis Framework (FAF) (principally constructed
from the 2007 US Commodity Flow Survey) to measure a metropolitan area’s centrality based on an atheoretical
network approach, that uses information on the total number of connections weighted by their trade value.

5To rule out that the centrality bias is a statistical artifact, we scrutinize our main result by randomizing the
association of hinterland cities with central places. Reassuringly, we find that the point estimates for our central
place dummy in several ten thousand placebo regressions are almost always in the vicinity of zero and typically
statistically insignificant at commonly applied levels of significance.
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dustries that are hierarchically distributed across large and small cities. Then, sectoral gravity

estimates should exhibit no systematic upward bias in central places’ exports to their associated

hinterland cities. Reassuringly, we fail to identify a sizable and/or statistically significant cen-

trality bias in sectoral gravity estimations.6 City-pair-specific residual diagnostics, which are

based on the classification of trading partners as central places and/or hinterland cities confirm

this result: Average residuals for exports from central places to their hinterland cities are much

smaller than their counterparts from aggregate gravity estimations and typically close to zero.

Given that the centrality bias in inter-city trade is an artifact of sectoral aggregation, we

proceed by decomposing the bias along the margins of our data (cf. Hillberry and Hummels,

2008) and along the margins predicted by Redding and Weinstein’s (2019) aggregation theory.

Hillberry and Hummels’s (2008) data-driven decomposition approach exploits the high res-

olution of our shipment-level intra-national trade data. By decomposing aggregate trade flows

into a sum of shipments, it is possible to quantify the relative contributions of various extensive

and intensive margins in our data. Thereby it turns out that the extensive industry margin

is responsible for the by far largest contribution to the centrality bias: In accordance with

Christaller’s (1933) hierarchy principle for industries, we find that central places export rela-

tively more to their hinterland not because they send more shipments per industry or because

their shipments are more valuable, but because they export across a considerably wider range

of industries.

Complementary evidence comes from Redding and Weinstein’s (2019) theory-based decom-

position approach, according to which total bilateral trade can be deconstructed into five mul-

tiplicatively separable components. Four of them capture the sectoral variation in origin and

destination fixed effects as well as in observable and unobservable trade costs. The remaining

one is a Jensen-inequality correction term arising from the fact that the log of aggregate trade

is defined as the log of the sum of sectoral trade flows and not as the sum of log sectoral trade

flows. Our results suggest that all the five components systematically correlate with the cen-

trality bias in inter-city trade. To understand where these correlations come from, we examine

the average residuals obtained from aggregate gravity estimations, which regress each of these

five components on the standard set of gravity variables (excluding our central place dummies).

Average residuals are thereby computed separately for different origin-destination relationships

based on the classification of cities as central places or hinterland cities. The identified pattern

of city-pair-specific average residuals not only explains the observed correlations between the
6For our results, it thereby does not matter whether the sectoral analysis is based on the Ordinary Least

Squares (OLS) estimator or the Poisson Pseudo Maximum Likelihood (PPML) estimator (cf. Santos Silva and
Tenreyro, 2006; Correia, Guimarães, and Zylkin, 2020), which accounts for heteroscedasticity and zero trade
flows that are correlated with bilateral trade costs.
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five aggregate gravity components and the centrality bias in inter-city trade but also is com-

patible with Christaller’s (1933) hierarchy principle for industries. Quantitatively the largest

contribution to the centrality bias in inter-city trade stems from the sectoral variation in resid-

ual trade costs. This is compatible with a systematic selection of low-trade-cost industries into

central places, as predicted by Fujita et al. (1999a) and Hsu (2012). The second-largest contri-

bution stems from the Jensen-inequality correction term, which is compatible with a broader

industry diversity in central places as predicted by Christaller’s (1933) hierarchy principle.

Having identified and explained a sizable upward bias in the aggregate exports of Japanese

central places to cities in their hinterland, we conclude our analysis by demonstrating that a

similarly sized centrality bias also can be found in the intra-national trade between US cities.

Using data from the 2017 US Commodity Flow Survey, we show that by incorporating an

accordingly defined set of central place dummies, it is possible to account for the systematic

aggregation bias in the exports from central places to their hinterland.

Christaller’s (1933) and Lösch’s (1940) early contributions to central place theory have

spurred a growing theoretical literature on the implications that a pyramidic city system with

a hierarchical industry distribution has for the location of cities and industries as well as for

the flow of goods between these cities.7 While there exists a considerable amount of empirical

evidence on Christaller’s (1933) hierarchy principle for industries (cf. Mori et al., 2008; Mori and

Smith, 2011; Hsu, 2012; Schiff, 2015; Davis and Dingel, 2020) and on the spatial distribution

of cities (cf. Hsu, 2012; Mori et al., 2020a), little is known about how the predictions of central

place theory are reflected in the pattern of inter-city trade. By incorporating key predictions of

the latest generation of central place models (cf. Fujita et al., 1999a; Tabuchi and Thisse, 2011;

Hsu, 2012) into the nested-gravity framework of Redding and Weinstein (2019) this paper aims

at closing this important gap in the literature.

We also contribute to the gravity literature on the aggregation of trade flows across sectors

or regions (cf. Anderson and van Wincoop, 2004). An interesting dichotomy has emerged in

this literature: Intra-national trade data with a high geographical resolution is typically used

to study the effects of spatial aggregation (cf. Hillberry and Hummels, 2008; Briant et al.,

2010; Coughlin and Novy, 2013, 2016), whereas international trade statistics, based on detailed

product-level customs data, are used to study the effects of aggregating across products and/or

sectors (cf. Anderson and Neary, 2005; French, 2017; Redding and Weinstein, 2017, 2019).8

7Eaton and Lipsey (1976, 1982), Quinzii and Thisse (1990), Fujita et al. (1999a), Fujita, Krugman, and
Venables (1999b), Tabuchi and Thisse (2011), as well as Hsu (2012), and Hsu, Holmes, and Morgan (2014) have
developed different theoretical models to incorporate the basic ideas of Christaller’s (1933) and Lösch’s (1940)
central place theory. See Abdel-Rahman and Anas (2004), Berliant (2008), and Mori (2019) for recent reviews
of the theoretical central place literature.

8A notable exception is the paper of Hillberry (2002), which uses disaggregated data from the US Commod-
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With the sectoral composition of trade flows being specific to both the size and location of

origin cities, we emphasize the importance of sectoral heterogeneity across cities as a possible

cause of the aggregation bias in inter-city gravity estimations. Our results thereby resemble

those of Hummels and Klenow (2005), who show that the extensive goods margin accounts for

around 60% of the greater exports of larger countries. They conclude that none of the standard

international trade models reviewed in their study can explain all of the stylized facts they

found. In contrast, we argue that the centrality bias in inter-city trade is compatible with the

predictions of central place theory (cf. Fujita et al., 1999a; Hsu, 2012).

Our focus on Japan has several important reasons. The key advantage is the availability of

micro-level data on bilateral trade flows at a high sectoral and geographical resolution, which

distinguishes our work from earlier contributions focusing on trade between prefectures (cf.

Wrona, 2018) or regions (cf. Okubo, 2004). As the largest island economy in the world with one

of the lowest trade-to-GDP ratios among all OECD countries, Japan offers an ideal setting to

study the pattern of inter-city trade in isolation from the country’s international trade relation-

ships.9 It moreover is a well-known fact that Japan’s city and industry structure has proven to

be extremely resilient against historical shocks such as the bombing of Japanese cities during

WWII (cf. Davis and Weinstein, 2002, 2008). Because the multiplicity of spatial equilibria is a

unifying feature of all central place models (cf. Fujita and Krugman, 1995; Tabuchi and Thisse,

2011; Hsu, 2012), this evidence makes us confident that our results are not compromised by a

sudden and drastic reconfiguration of Japan’s city/industry system.

The remainder of this paper is organized as follows. Building upon the theoretical work

of Redding and Weinstein (2019), we argue in Section 2 that the structural error term in an

aggregate gravity equation, obtained from summing up sectoral gravity equations, is crucially

shaped by Christaller’s (1933) hierarchy principle for industries. In Section 3, we then introduce

our disaggregated intra-national trade data, that in the subsequent Section 4, is used to identify

a sizable upward bias in the aggregate exports from central places to their respective hinterland

cities. In search for an explanation that rationalizes this bias, we replicate in Section 5 our

analysis at the disaggregated sectoral level (cf. Subsection 5.1) before decomposing the centrality

bias in its various components (cf. Subsection 5.2). In Section 6 we then apply our methodology

to the US, where we identify a centrality bias that is comparable in magnitude to the one found

for Japan. Section 7 finally concludes.

ity Flow Survey to show that endogenous industry location patterns and the presence of zero observations in
commodity–level trade result in upward-biased border effect estimates.

9Due to its remote location and a business model which favors foreign direct investments over exporting,
Japan’s ratio of ex- or import to GDP is with 18% in 2015 one of the lowest among all OECD members and
significantly below the OECD average of 29% for ex- and 28% for imports. See also Lawrence (1987, 1991) and
Saxonhouse (1993) for earlier discussions on Japan’s exceptionally low export/import-to-GDP ratio.
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2 Theoretical Background

Following Redding and Weinstein (2019), we demonstrate that aggregate trade flows which are

obtained from the summation of sectoral gravity equations can be characterized through a log-

linear gravity equation with a structural error term. Since it is not possible to control for the

structural error term without observing the underlying sectoral trade flows, aggregate gravity

estimations are typically biased and should be interpreted at best as a log-linear approximation

of the true underlying trade relationship.

Redding and Weinstein’s (2019) aggregation approach is adopted with three minor adjust-

ments: (i.) Whereas intra-national trade flows typically cannot be observed in international

trade data, our highly disaggregated intra-national trade data allows us to observe trade within

and between cities. When aggregating from the sectoral to the aggregate level we therefore

include all intra-city trade flows. (ii.) Instead of using an Armington (1969) model as a micro-

foundation for the aggregation analysis, we focus on a setting with monopolistic competition

(cf. Krugman, 1980), that allows us to discuss the role of firm entry for the sectoral and the

aggregate trade pattern. (iii.) Finally, we allow the supply of a given sector in a certain location

to be zero when no firm in this sector has chosen to locate there (cf. Anderson and van Wincoop,

2004).

Let us consider a country that consists of a set of cities R indexed by d, o ∈ R with R ≡ |R|

as the number of cities, d as a mnemonic for destination, and o as a mnemonic for origin.

Preferences of the representative consumer in each destination are defined over consumption

indexes Qds for a set S of sectors indexed by s ∈ S with S ≡ |S| as the number of sectors

and s as a mnemonic for sector. The utility function is assumed to take the following constant

elasticity of substitution (CES) form

Ud =
[∑

s∈S
(ΦdsQds)

σ−1
σ

] σ
σ−1

, (1)

in which σ > 1 is the elasticity of substitution between sectors, and Φds > 0 is the taste of the

representative consumer in destination d for goods produced by sector s.

The consumption index Qds for destination d in sector s is defined over the consumption

qdos(ωos) of different varieties ωos ∈ Ωos in the variety set Ωos ⊆ R+ produced by sector s in

origin o. We assume that

Qds =

 ∑
o ∈ Rds


∫

ωos∈ Ωos

[ϕdosqdos(ωos)]
σs−1

σs dωos




σs
σs−1

(2)
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also takes the CES form with σs > 1 as the sector-specific elasticity of substitution between

varieties from different producers. Tastes of the representative consumer in destination d for

goods produced by origin o in sector s are captured by the multiplicatively separable term

ϕdos ≡ φdsφosφdos ≥ 0. We assume the mass of firms/varieties Mos ≡ |Ωos| in origin o and

sector s to be exogenously given and explicitly allow for the possibility that Ωos = ∅ is an

empty set because no firm in sector s finds it optimal to locate in o such that Mos = 0 (cf.

Anderson and van Wincoop, 2004). We refer to the set of origin cities from which destination

d imports commodities in sector s in positive amounts as Rds ⊆ R.

Assuming monopolistic competition at (symmetric) location-specific marginal costs cos and

sector-specific iceberg-type trade costs τdos allows us to solve for the sectoral gravity equation

ln xdos = γos + λds − (σs − 1) ln τdos + udos if Mos > 0, (3)

with γos as an origin-specific fixed effect in sector s, λds as a destination-specific fixed effect in

sector s, and udos as a stochastic error. The origin fixed effect γos = ln Mos+(1−σs){ln[σs/(σs−

1)] + ln cos − ln φos} controls for the number of firms Mos, the unit production costs cos, and

the common origin-sector component of tastes across all destinations φos. The destination fixed

effect λds = ln Xds + (σs − 1)(ln Pds + ln φds) controls for destination d’s expenditure Xds and

price index Pds in sector s as well as for the common destination-sector component of tastes

across all origins φds. The stochastic error term udos captures the idiosyncratic component of

tastes φdos that is specific to an individual origin-destination-sector observation. Importantly,

the sectoral gravity equation in Eq. (3) only holds if there is a positive supply by sector s in

origin o, i.e. Mos > 0.

Following Redding and Weinstein (2019), we demonstrate (in Appendix 8.1) that a log-linear

gravity equation for aggregate trade

ln Xdo = γo + λo − θ ln τdo + vdo (4)

can be derived by summing up the sectoral gravity equations from Eq. (3) across all sectors

s ∈ Sdo ⊆ S in which destination d imports from origin o. In the aggregate gravity equation

from Eq. (4) an origin-specific fixed effect γo and a destination-specific fixed effect λd control

for all origin-specific and all destination-specific variations, and aggregate bilateral trade cost

τdo enters with a constant elasticity θ. The typically unobservable structural error term

vdo = (Γdo − γo) + (Λdo − λd) − (Tdo − θ ln τdo) + Jdo + Udo (5)
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is the reason why aggregate gravity estimations are generally biased. Introducing Sdo ⊆ So

with Sdo = |Sdo| as the subset of sectors s across which destination d imports from origin o

and Rd ⊆ R with Rd = |Rd| as the subset of origins o that export to destination d we can

characterise the five components of the structural error term vdo as follows:

(i) bilateral variation in average sectoral origin fixed effects Γdo ≡ γ̄do − γ̄d for destination d

in which γ̄do ≡
∑

s∈Sdo
γos/Sdo and γ̄d ≡

∑
o∈Rd

γ̄do/Rd,

(ii) bilateral variation in average sectoral destination fixed effects Λdo ≡ λ̄do − λ̄d for origin o

in which λ̄do ≡
∑

s∈Sdo
λds/Sdo and λ̄d ≡

∑
o∈Rd

λ̄do/Rd,

(iii) bilateral variation in the average effect of sectoral trade costs Tdo ≡ t̄do − t̄d for the

destination-origin pair d×o, in which t̄do ≡
∑

s∈Sdo
(σs−1) ln τdos/Sdo and t̄d ≡

∑
o∈Rd

t̄do/Rd,

(iv) a Jensen’s inequality term Jdo ≡ ln Xd+ȳd−z̄do, in which ȳd = 1
Rd

∑
o∈Rd

1
Sdo

∑
s∈Sdo

ln Ydos

with Ydos ≡ xdos/
∑

j∈Rd

∑
r∈Sdo

xdjr and z̄do = 1
Sdo

∑
s∈Sdo

ln Zdos in which Zdos =

xdos/
∑

r∈Sdo
xdjr,

(v) an error term Udo ≡ ūdo − ūd in which ūdo ≡
∑

s∈Sdo
udos/Sdo and ūd ≡

∑
o∈Rd

ūdo/Rd.

From the definition of the structural error term in Eq. (5) it follows that the ability of the

aggregate gravity model in Eq. (4) to correctly predict aggregate bilateral trade flows crucially

depends on the composition of the set Sdo of sectors s across which destination city d imports

from origin city o. If different city pairs trade across vastly different set of sectors Sdo, and if

these sectors also differ in terms of their sectoral gravity components γos, λds, τdos, and udos

underlying Eq. (3), we would expect that an aggregate gravity model, that does not account

for the structural error term vdo, will mispredict the aggregate trade volume for at least some

city pairs.

In addition to the gravity components γos, λds, τdos, and udos, which naturally shape the

structural error term vdo, there also is a Jensen’s inequality correction term Jdo. This term

accounts for the fact that the absolute value of sectoral trade xdos and not the log of the

sectoral trade flow ln xdos from Eq. (3) are aggregated up to obtain the log-linear aggregate

gravity equation from Eq. (4).

In the following Subsection 2.1 we argue that the composition of the subsets of exporting

sectors s in origins o differs systematically between origin cities that are large and centrally lo-

cated and origin cities that are small and ubiquitously distributed. Aggregating over these vastly

different subsets of sectors therefore results in a structural error term vdo that systematically

differs between central places and hinterland cities as origin cities.

8



2.1 Central Places, Hinterlands, and Chistaller’s Hierarchy Principle

We proceed by showing that the size and composition of the subset Sdo of sectors s across which

destination d imports from o crucially depends on Christaller’s (1933) hierarchy principle for

industries, which systematically shapes the distribution of sectors across space. Endogenous

market entrance thereby results in a hierarchical industry structure, which stands in marked

contrast to the exogenously fixed distribution of industries in most international trade models.10

Building up on the early work of Christaller (1933) and Lösch (1940), several more recent

contributions (cf. Fujita et al., 1999a; Tabuchi and Thisse, 2011; Hsu, 2012) have shown how

to embed the key predictions of Christaller’s (1933) and Lösch’s (1940) central place theory

into different general equilibrium frameworks. Whereas in Fujita et al. (1999a); Tabuchi and

Thisse (2011) a hierarchical industry structure is derived from inter-sectoral differences in the

variable iceberg-type trade costs and the sector-specific elasticities of substitution, a similar

sorting of firms from different industries is established by Hsu (2012) under the assumption of

heterogeneous market entry fixed costs. To illustrate Christaller’s (1933) hierarchy principle for

industries we resort in the following paragraph to a simple and therefore illustrative numerical

example from Fujita et al. (1999a, Fig. 6, p. 237), which highlights some of the key predictions

of central place theory.

Fujita et al. (1999a) consider a multipolar agglomeration model with heterogeneous indus-

tries, in which a city not only gets larger by growing in scale but also by growing in scope (i.e.

by adding new industries). Agglomeration generates two types of cities: On the one hand, we

have a limited number of central places. These are large, centrally located cities of sufficient

size to not only attract ubiquitous industries, whose goods are costly to trade and therefore

optimally produced in close proximity to customers, but also some footloose industries, whose

goods are traded at low costs and which therefore prefer centrally located cities with a large

home market (cf. Krugman, 1980). On the other hand, there are many small cities in the hin-

terlands of central places, which due to their insufficient size and/or location only attract a

limited set of ubiquitous industries. In Figure 1, we depict a one dimensional space, in which

the location of cities are indicated by circles, and in which the number of industries in a given

city is proportional to the number of circles representing this city. Figure 1 also illustrates to

what Mori et al. (2020a) refer as the spatial grouping property of central place theory: Large
10Multi-sector extensions of Eaton and Kortum’s (2002) Ricardian trade model and Krugman’s (1980) mo-

nopolistic competition framework typically assume industries to be ubiquitously distributed (see Costinot and
Rodríguez-Clare (2014, pp. 213-216) for a recent summary of the literature). The multi-sector version of the
Armington trade model (cf. Anderson and van Wincoop, 2004, p. 708) is flexible enough to replicate arbitrary
patterns of industry location but does not provide theoretical guidance with respect to the underlying determi-
nants of the observed industry location pattern.
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Figure 1: Central Places and their Hinterlands in a Hierarchical City System

1st layer

2nd layer

3rd layer
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Note: Figure 1 illustrates the spatial distribution of cities in Fujita et al.’s (1999a) central place model.
Cities thereby are represented by circles with the number of circles being proportional to the number of
industries per city. Sorting cities into layers according to their industry diversity, we can identify central
places, which serve nearby hinterland cities at lower layers.

central places are surrounded by smaller hinterland cities, which means that they have to be

geographically more separated than under a random spatial distribution. Building on multi-

country evidence regarding the spacing out of central places provided by Mori et al. (2020a),

we later rely on this spatial grouping property to identify central places and their associated

hinterlands in Japan (see Subsection 4.1 below).

Sorting central places according to the range of their industries (indicated by the number of

circles around a city in Figure 1) results in a hierarchical city system with nested central places

and associated sets of hinterland cities as illustrated in Figure 1. The sorting of industries across

a total of three layers in Figure 1 thereby distinguishes between 1st-, 2nd-, and 3rd-layer cities,

which systematically differ in terms of their industry diversity. As a noticeable feature of the

pyramidic city system in Figure 1, we find the distribution of industries across cities to follow

a strict hierarchical pattern: All 3rd-layer industries can also be found in 2nd-layer cities, and

all 2rd-layer industries are also present in the 1st-layer city. Following Mori and Smith (2011),

we refer to this pattern as Christaller’s (1933) hierarchy principle for industries, expecting all

industries, which can be found in a city of a given size, to be also present in all cities of larger

size.

Several authors (cf. Mori et al., 2008; Mori and Smith, 2011; Hsu, 2012; Schiff, 2015) have
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accumulated supportive empirical evidence in favour of Christaller’s (1933) hierarchy principle

for industries. We contribute to this strand of the literature by highlighting the importance of

Christaller’s (1933) hierarchy principle for our specific application. More specifically, we propose

a simple three-step randomisation test: At first we compute the economy’s average hierarchy

share as a measure of how hierarchical industries are distributed across cities. In a second step

we then fix the number of industries in each city, randomising the allocation of industries across

cities. In the third and last step we compare the average hierarchy share with its counterfactual

counterparts, that are obtained from a randomised distribution of industries across cities.

For any two cities d and o we can define the hierarchy share Hdo as:

Hdo ≡ |Sd ∩ So|
min{Sd, So}

∈ [0, 1], (6)

with Sd as the set of industries in city d and Sd ≡ |Sd| as the corresponding number of industries

in this city. The hierarchy share takes a value of Hdo = 0 if there is zero overlap between the

sets of industries in d and o. If all industries, that are present in the smaller city, can also be

found in the larger city the hierarchy share takes its maximum value of Hdo = 1, which means

that Christaller’s (1933) hierarchy principle for industries holds without restrictions.

Aggregation across all cities d and o requires us to proceed in two steps. We first aggregate

across all cities d that host more industries than city o (i.e. Sd > So). City o’s average hierarchy

share Ho can then be computed as:

Ho = 1
Go

∑
d∈Go

Hdo with Go ≡ {d : Sd > So}, (7)

with Go ≡ |Go|. Given the definition of Ho we can finally compute the economy-wide average

hierarchy share H as a simple arithmetic mean H =
∑

o Ho/(R − 1) over all cities o, excluding

the city with the largest number of industries.

We begin by analysing the location of industries that we can infer from our highly disag-

gregated intra-national trade data for Japan (see Section 3 below for a detailed description).

Computing the average hierarchy shares Ho of cities o under the assumption that partner cities

d with a larger set of industries (i.e. Sd > So) possess a certain minimum number of indus-

tries S ∈ {10, 20, 30, 40, 50}, we find that observed average hierarchy shares always exceed their

counterfactual counterparts, and that in a one-sided statistical test their equality can be always

rejected at conventional levels of statistical significance. Instead of reporting the complete re-

sults (relegated to the Online Appendix), we focus here on an exemplary specification, assuming

that all partner cities have at least 30 industries. For 2015 the average hierarchy share based on
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a total of 188 observed industries can then be computed as H = 0.6266, taking a considerably

larger value than the maximum of the 1, 000 hierarchy shares obtained under randomisation

Ĥ = 0.2981.

To scrutinise this first results we rely on auxiliary data from the Economic Census for Busi-

ness Activity (cf. Statistical Bureau of Japan, 2016), which is used to reproduce our simple

three-step randomisation test at different levels of disaggregation in the Japanese Standard

Industry Classification (JSIC). Unlike our intra-national trade data, which is obtained from

surveying a representative sub-sample of Japanese firms over the course of three days, the 2016

Economic Census for Business Activity provides detailed information on the location and indus-

try classification of all 3, 856, 457 establishments that existed in Japan at the 1st of June 2016.

With the universe of Japanese firms being covered we can be sure that our hierarchy measure H

is not downward biased because missing information on industry location (particularly in small

cities) obscures the true extent to which industries are hierarchically distributed in Japan.

Figure 2: Testing for Christaller’s (1933) Hierarchy Principle for Industries
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Note: Figure 2 is based on the Economic Census for Business Activity (cf. Statistical Bureau of Japan,
2016), which covers all manufacturing establishments in Japan in 2016. The figure plots the observed
versus the counterfactual average hierarchy shares for different levels of disaggregation in the Japanese
Standard Industry Classification (JSIC) with the number of different industries in parenthesis.

In Figure 2 we plot the average hierarchy share H together with the maximum counterfactual

hierarchy share Ĥ selected from 1,000 randomised samples at different levels of disaggregation

in the Japanese Standard Industry Classification (JSIC). At the 2-digit level the JSIC only

distinguishes between 24 aggregate industries. Unsurprisingly, these 24 aggregate industries
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can be found almost everywhere, resulting in observed and counterfactual hierarchy shares

close to one. At lower levels of disaggregation we find that the observed average hierarchy

shares are always much larger than the counterfactual hierarchy shares that are obtained from

randomising the identity of industries across locations with a fixed number of industries.

Summing up the results of our simple hierarchy test, we find that the distribution of indus-

tries across cities of varying size follows a strongly hierarchical pattern that is compatible with

Christaller’s (1933) hierarchy principle for industries.

2.2 The Heterogeneous Extensive Margins of Sectoral Inter-city Trade

Having established Christaller’s (1933) hierarchy principle for industries, we are now exploring

the sector-specific patterns of inter-city trade that follow from this principle. For this purpose

we sort industries into 5 different bins according to the number of cities in which they can be

found in 2015. Specifically, we distinguish industries which are present in less than 10 cities, in

10 or more but less than 20 cities, in 20 or more but less than 40 cities, in 40 or more but less

than 80 cities, or in 80 or more cities. In Figure 3 we plot for each set of industries the (average)

extensive margin of inter-city trade (i.e. the average share of all destination cities importing

goods produced by these industry) over a total of 20 different distance intervals, that capture

the bilateral distance between origin and destination city.11

Figure 3 shows a clear ranking of industries, according to which industries that are located

in a limited number of cities are more likely to serve other markets than industries that can

be found across a wide range of cities. We moreover find that the extensive margin of trade is

declining in the distance to the destination city. For ubiquitous industries the extensive margin

of trade strongly declines in distance over the first 200-300 kilometers then flattening out at a

low level in the vicinity of zero. On the contrary, we find that the extensive margin of trade for

footloose industries appears to be much more resilient against increasing shipment distances.

Summarizing our findings from Figure 3, we can conclude that footloose industries tend to serve

a wider market area than their ubiquitously distributed counterparts.

It is worth noting that the differences in market areas between footloose and ubiquitous

industries in Figure 3 exactly match the predictions of the central place model by Hsu (2012).

In this model the combination of perfectly inelastic demand across an one-dimensional space

and Bertrand competition among a set of firms that differ in terms of their scale economies (i.e.

production fixed costs) gives rise to a hierarchical sorting of industries into cities. Industries with

high fixed costs require a larger (exclusive) market area to break even and therefore optimally
11To be classified as a potential destination for the goods produced by a specific origin city there must be at

least some demand for those goods in these cities (cf. Hillberry and Hummels, 2008).
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Figure 3: Heterogeneity in the Extensive Margins of Inter-city Trade at the Industry Level

q

q
q q q q q q q q q q q q q q q q q q

l

l
l l

l l l l l l l l l l l l l l l l

u

u
u u u u u u u u u

u u u
u u u u u u

r

r

r r
r r

r r
r r r r r r

r r r r
r

r

b

b

b b

b b b

b
b

b

b
b b

b b

b
b

b b b

b Industries in less than 10 cities
r Industries in more than 10 and less than 20 cities
u Industries in more than 20 and less than 40 cities
l Industries in more than 40 and less than 80 cities
q Industries in more than 80 cities

10%

20%

30%

40%

50%

500 km 1000 km 1500 km500 km 2000 km

Average share of
importing trading

partners

Distance

Note: Figure 3 is based on Japan’s National Commodity Flow Survey, and plots the average share of
importing trading partners in different industries against the distance between origin and destination city.

locate further apart than industries with lower fixed costs. As a consequence, we find that

industries which cluster in a small number of central places serve more cities over larger distances

than industries which can be found across a wider range of cities.

The existence of well-defined finite market areas is what distinguishes the central place

model of Hsu (2012) from Fujita et al.’s (1999a) central place model, in which each industry

irrespective of its location always serves all possible destination cities, and in which sectoral

trade flows only vary along the intensive margin (cf. Fujita et al., 1999a, Fig. 10, p. 244). The

variation along the intensive margin would of course also be reflected along the extensive margin,

if the iso-elastic demand model by Fujita et al. (1999a) is extended to allow for exporting fixed

costs.

Taking stock, we can conclude that Christaller’s (1933) hierarchy principle for industries

not only shapes the set of exporting industries across origin cities but also the extensive margin

of sectoral inter-city trade. Combining the theoretical insights from Redding and Weinstein’s

(2019) aggregation exercises with the predictions of central place theory (cf. Fujita et al., 1999a;

Hsu, 2012) therefore leads us to the conclusion that aggregate gravity estimations between cities

are prone to aggregation bias, and that the direction and magnitude of this aggregation bias

crucially depends on the central-place-to-hinterland relationship between origin and destination

cities.
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3 Data

Our main data source is Japan’s National Commodity Flow Survey [zenkoku kamotsu jun ryudo

chosa], which is compiled by the Ministry of Land, Infrastructure, Tourism and Transport

(MLIT). The commodity flow data comes in five waves, which have been collected in a five-year

interval from 1995 to 2015. The National Commodity Flow Survey provides detailed informa-

tion on establishment-level shipments between municipalities in Japan, among which we focus

on those located on the four main islands (Hokkaido, Honshu, Shikoku and Kyushu).12 The sur-

vey includes only manufacturing establishments with at least four employees. Establishments

are classified according to the Japanese Standard Industrial Classification (JSIC), which distin-

guishes between 24 two-digit manufacturing industries (22 two-digit manufacturing industries

in 1995 and 2000).13 In addition to the establishments’ two-digit industry classification we also

have detailed information on the shipped commodities, which are disaggregated into 9 basic

product categories and 85 sub-categories.

In line with the underlying central place theory (cf. Fujita et al., 1999a; Tabuchi and Thisse,

2011; Hsu, 2012) we focus on cities as the basic geographic unit of our analysis. Using highly

disaggregated grid data from the Japanese Population Census (cf. Figure 4), cities are con-

structed based on urban agglomerations (UAs), which are identified as contiguous and disjoint

sets of 1km×1km grid cells with at least 1,000 people per square kilometre and a total popu-

lation of at least 10,000 inhabitants.14 The 450 UAs, which we identify based on the Japanese

Population Census from 2015, are home to 77% of Japan’s total population and occupy 12% of

the country’s contiguous landmass. To aggregate individual shipments from the municipality

to the city level, we assign municipalities that overlap with one or multiple UAs to the UA

with the largest population share, calling the set of associated municipalities henceforth a city.
12Since our focus is on Japan’s internal trade, we drop all shipments designated for exporting. Due to its remote

location and a business model which favours foreign direct investments over exporting, Japan’s export to GDP
ratio is with 18% in 2015 one of the lowest among all OECD members and significantly below the OECD average
of 29%. See also Lawrence (1987, 1991) and Saxonhouse (1993) for earlier contributions discussing Japan’s low
export to GDP ratio.

13In 2015 a total of 14,620 or 7.0% of all 208,029 relevant manufacturing establishments were sampled. For the
earlier waves the number of sampled manufacturing establishments are 14,097 or 5.4% out of 263,052 in 2010;
13,684 or 4.7% out of 294,170 in 2005; 15,452 or 4.1% out of 373,108 in 2000; and 18,520 or 4.9% out of 378,167
in 1995. A more detailed discussion of our primary data, including the definition of industries and products, is
relegated to the Online Appendix.

14Our definition of an urban agglomeration (UA) follows Dijkstra and Poelman (2012, 2014), who propose
a harmonised definition of functional urban areas, which is applied by Schmidheiny and Suedekum (2015) to
identify European cities. To identify Japanese cities we prefer to use urban agglomerations (UAs) instead of
Urban Employment Areas (UEAs), which have been constructed by Kanemoto and Tokuoka (2002) to resemble
US metropolitan areas (MAs), and which are often used in the Japanese context. In the Online Appendix we
show that Kanemoto and Tokuoka’s (2002) definition of UEAs systematically overstates (understates) the size
of cities in the middle (at the lower end) of the city size distribution. Because the hierarchical distribution of
industries across cities is highly correlated with city size it is important to ensure that the size of cities is correctly
measured and that the total number of cities is not systematically underestimated because many small cities are
merged into a smaller number of larger medium-sized cities.
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Figure 4: Japanese Population Distribution for 2015

Note: Figure 4 is based on the Japanese Population Census, and depicts the spatial distribution of the
Japanese population in 2015 at the level of a 1km×1km grid cells. Comparable maps for 1995, 2000,
2005, and 2010 are reported in the Online Appendix.

Aggregating up our municipality-level shipment data to the city level leaves us with 400 cities in

2015 of which 292 cities export to at least ten other cities in our sample.15 Figure 5 illustrates

the definition of cities as basic unit of observation by showing how we narrow down our 450

urban agglomerations (Subfigure 5a) to 400 cities (Subfigure 5b).

One common drawback shared by most commodity flow surveys (cf. Wolf, 2000; Hillberry

and Hummels, 2003, 2008; Combes et al., 2005; Nitsch and Wolf, 2013) is the rather coarse

classification of commodities based on a limited number of industries, which stands in marked

contrast to the availability of high-resolution international trade data. To obtain a sufficiently

detailed industry classification, we combine the establishment-level industry classification (22 to

24 two-digit Japanese Standard Industrial Classification (JSIC) industries) with the shipment-

specific product codes (67 relevant subcategories). Not all of the 24 × 67 = 1608 feasible

combinations of industry and product code are relevant for our analysis.16 In order to exclude

outliers, we manually check each industry×product combination to see whether the recorded

shipments make sense to be recognized as an output of the sending establishment. In the same
15For the earlier waves of the survey we end up with a total of 291 cities in 2010; 307 cities in 2005; 310 cities

in 2000 and 347 cities in 1995.
16Some of the recorded shipments clearly are not representative for the establishments typical sales (e.g. a food

manufacture who is shipping a single automobile, probably selling off a former investment good).
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Figure 5: Definition of Cities as Basic Unit of Observation

(a) 450 Urban Agglomerations (b) 400 Cities

Note: Figure 5 is based on the Japanese Population Census, and depicts 450 urban agglomerations (left
panel), which are approximated by surrounding municipalities (right panel), resulting in a total of 400
cities. Comparable maps for 1995, 2000, 2005, and 2010 are reported in the Online Appendix.

way we also check whether certain product categories (e.g. 7022: “clothes and belongings”)

are too broadly defined, and therefore could be splitted into multiple sub-categories depending

on industry classification of the sending establishment (e.g. 403: “textile” versus 412: “leather

and leather products”). As a result of the data cleaning process we end up with 212 relevant

industry-product combinations for 2015. Since not all of these industry-product combinations

were traded in the three day period during which the National Commodity Flow Survey was

conducted, we end up with a total of 188 observed industry-product combinations for 2015.17

Our highly disaggregated inter-city trade data is complemented by information on real-road

distances between municipality pairs based on the distance along the road network obtained from

OpenStreetMap (as of July, 2017). The bilateral distance between each pair of municipalities

thereby is computed as the distance between the centroids of the most populated 1km×1km

cells in these municipalities.18 We approximate intra-municipality distance by the average line-

distance between a pair of locations on a circle with the area equal to the habitable area of

the municipality (cf. MIAC of Japan, 2015), which can be approximated by (128/45π)
√

a/π,

in which a is the habitable area of the municipality (cf. Combes et al., 2005). Following Head

and Mayer (2009), bilateral distance between city d and o is then computed as a trade-weighted
17In the Online Appendix we report the complete lists of all plausible industry-product combinations for 2010-

2015, 2005, and 1995-2000. There we also report the lists of industry-product combinations that we actually
observe across our samples. Of the 212 plausible industry-product combinations that we identify for 2010-2015
we observe 188 in 2015 and 186 in 2010. Of the 193 plausible industry-product combinations that we identify for
2005 we observe 191 in 2005. Of the 176 plausible industry-product combinations that we identify for 1995-2000
we observe 169 in 2000 and 167 in 1995.

18See also Mori, Smith, and Hsu (2020b) for the details of how to compute the road-distances using Open-
StreetMap.
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harmonic mean of the bilateral distances between all the municipalities that belong to city d

and o, respectively.19

4 Aggregation Bias in Inter-city Trade

How does the aggregation bias, that results from Christaller’s (1933) hierarchy principle for

industries, affect the pattern of inter-city trade? To answer this question we proceed in two

steps: In Subsection 4.1 we apply a simple theory-consistent algorithm in the spirit of Christaller

(1933), which has recently been proposed by Mori et al. (2020a) to identify central places and

their associated hinterlands. In the following Subsection 4.2 we then use this information to

quantify the upward bias in the exports from central places to their associated hinterland cities.

4.1 In Search for Central Places and their Hinterlands

In order to partition the set of cities in our sample into central places with associated hinterlands

(cf. Figure 1) we follow Mori et al. (2020a), who propose a simple and transparent classification

algorithm, which consistently captures the recursive spatial grouping of cities as a key-prediction

of central place theory (cf. Fujita et al., 1999a; Tabuchi and Thisse, 2011; Hsu, 2012). It is

required that each cell of a partition consists of the largest city (the central place) in that cell

and a set of smaller hinterland cities surrounding it. A spatial hierarchical structure emerges

because each cell can be further partitioned in a lower layer, in which each cell again has a

spatial grouping property.

Specifically, we are assuming a hierarchical city system with possibly many layers. For a

given number of cells (central places plus surrounding hinterland cities) at a certain layer there

exists a unique Voronoi K-partition (based on real-road distance) for each cell, that partitions

this cells into K > 1 sub-cells for a specified number of K lower-layer central places, which are

the largest K cities in this cell.20 By specifying the number of lower-layer central places per cell

K (in our case K = 3) together with a stopping rule, it is possible to construct the structure of

the hierarchical city system recursively. With the set of all cities in a country forming a unique

cell at the 1st layer the largest city (i.e. Tokyo) is always chosen as 1st-layer central place. The

2nd layer is a unique Voronoi K-partition with respect to the K largest cities in the country.

At the lth layer (l = 2, . . . , L), the Voronoi K-partition of each cell with respect to the largest
19See Rauch (2016) for a geometric analogy between gravity in physics and gravity in trade, which suggest that

distances between regions in empirical gravity estimations should be measured as weighted harmonic means over
pairwise distances of local economic activity (see Head and Mayer (2009) for a detailed review of the literature).

20While there exists a multitude of possibilities to construct a hierarchical city system, we follow Christaller
(1933), who originally assumed that the number K of lower-layer central places in each cell of a partition is the
same across all layers.
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Figure 6: 2nd- and 3rd-layer Central Places and their Hinterlands

(a) 2nd-layer Voronoi Partition (b) 3rd-layer Voronoi Partition

Note: Figure 6 depicts 2nd- and 3rd-layer Voronoi K-partitions for central places and associated hinter-
lands in Japan for 2015. Similar partitions are obtained for earlier waves (1995, 2000, 2005, and 2010)
of the National Commodity Flow Survey. We report these additional results in the Online Appendix.

K cities in the cell generates K cells at the (l + 1)th layer. Each cell is partitioned as long as it

contains at least K cities. Thus, the process eventually stops at the Lth layer if no cell contains

more than K cities.

Several aspects render Mori et al.’s (2020a) partition scheme particularly useful for our

application: Being defined in the spirit of Christaller (1933), the above classification algorithm

only requires a modest input of data, and in particular does not rely on the inter-city trade

data that we seek to analyze below (see Section 4). The ranking of cities in terms of population

size thereby can be justified through the high correlation between population size and industrial

diversity predicted throughout a wide class of central place models (cf. Christaller, 1933; Fujita

et al., 1999a; Tabuchi and Thisse, 2011; Hsu, 2012).21

Figure 6 depicts 2nd- and 3nd-layer Voronoi partitions, fixing the number of sub-cells on lower

layers to K = 3.22 At the 2nd layer in Subfigure 6a we distinguish partition cells (i.e. a central

place plus its hinterland) through different colors and explicitly label the respective central

place of each cell. 3rd-layer cells in the hinterland of 2nd-layer central places (cf. Subfigure 6b)

are colored in different shades of the color associated with their 2nd-layer central places from

Subfigure 6a.

Having identified a hierarchical city system with central places and associated hinterlands,

we are focusing in the following on the top five layers when exploring the pattern of inter-
21In 2016, the Spearman’s rank correlation between the population size and the number of industries located

in Japanese cities is 1.0 when all the 3-digit secondary and tertiary industries are included and 0.7320 if only
manufacturing industries are included (cf. Statistical Bureau of Japan, 2016).

222nd- and 3nd-layer Voronoi partitions for the years 1995-2010 are reported in the Online Appendix.
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city trade between these city types. In each layer we can thereby distinguish between up to

eight mutually exclusive trading relationships, which emerge from the combination of the two

possible origin categories: central place (CP) versus hinterland city (HC) with up to four possible

destination categories: central place (CP), other central place (OCP), hinterland city (HC) and

other hinterland city (OHC).

Table 1: Descriptive Analysis – Inter-City Trade

Descriptive Analysis – Inter-City Trade
Year: 2015
Measure: % of Trade Flows % of Trade Volume
Direction: Destination: Destination:
Partner City: CP: OCP: HC: OHC: All: CP: OCP: HC: OHC: All:
Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1st Layer:

CP: 0.0000 – 0.0159 – 0.0159 0.0788 – 0.0614 – 0.1402
Origin: HC: 0.0145 – 0.9696 – 0.9841 0.1219 – 0.7379 – 0.8598

All: 0.0145 – 0.9855 – 1.0000 0.2007 – 0.7993 – 1.0000

2nd Layer:
CP: 0.0001 0.0002 0.0160 0.0303 0.0467 0.2294 0.0652 0.0668 0.1016 0.4630

Origin: HC: 0.0148 0.0260 0.4864 0.4261 0.9533 0.1129 0.0988 0.2479 0.0774 0.5370

All: 0.0149 0.0262 0.5024 0.4564 1.0000 0.3423 0.1640 0.3147 0.1790 1.0000

3rd Layer:
CP: 0.0004 0.0029 0.0149 0.0839 0.1021 0.2494 0.1111 0.0452 0.1373 0.5430

Origin: HC: 0.0136 0.0753 0.2405 0.5685 0.8979 0.0654 0.1560 0.1270 0.1087 0.4570

All: 0.0140 0.0782 0.2554 0.6524 1.0000 0.3148 0.2671 0.1722 0.2460 1.0000

4th Layer:
CP: 0.0010 0.0219 0.0136 0.1627 0.1992 0.2693 0.1884 0.0259 0.1473 0.6310

Origin: HC: 0.0128 0.1589 0.1206 0.5083 0.8008 0.0361 0.1743 0.0731 0.0855 0.3690

All: 0.0138 0.1808 0.1342 0.6710 1.0000 0.3054 0.3627 0.0990 0.2328 1.0000

5th Layer:
CP: 0.0023 0.0842 0.0118 0.2343 0.3327 0.2831 0.2634 0.0132 0.1649 0.7247

Origin: HC: 0.0104 0.2314 0.0530 0.3726 0.6673 0.0127 0.1737 0.0407 0.0483 0.2753

All: 0.0127 0.3138 0.0648 0.6069 1.0000 0.2958 0.4371 0.0539 0.2132 1.0000

Notes: Abbreviations are defined as follows: central place (CP), other central place (OCP), hinterland city (HC) and
other hinterland city (OHC).

In Table 1 we use the 2015 wave of our inter-city trade data to report two different summary

measures, which are computed separately for the previously derived classifications of central

places and hinterlands at the 1st, 2nd, 3rd, 4th, and 5th layer.23 To understand how the pattern

of inter-city trade is shaped by Japan’s pyramidic city system with central places and associated

hinterlands we compute the frequency (i.e. the fraction of non-zero trade flows between city

pairs) as well as the trade shares (i.e. the share of bilateral in total trade) for all possible trading
23The results for the earlier waves from 1995 to 2010 closely resemble the findings in Table 1. We therefore

have relegated these additional results to the Online Appendix.
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relationships between central places and associated as well as unassociated hinterland cities.

Unsurprisingly, Table 1 confirms the overall importance of central places for the pattern of

inter-city trade. Tokyo as the 1st-layer central place accounts alone for roughly 14.0% of all

exports and 20.1% of all imports. At the 2nd layer Tokyo, Osaka, and Nagoya together are

responsible for 46.3% of all exports and 34.2% of all imports. Although 2nd-layer central places

exports to non-hinterland cities at twice the rate as they exports to their own hinterland cities

(3.0% versus 1.6%), we find that the total volume of exports to non-hinterland cities is less than

twice as large as the total export volume to hinterland cities (10.2% versus 6.7%). The same

picture consistently emerges throughout lower layers: At the 3rd layer a total of the 32 = 9

central places, although only responsible for 10.2% of the export incidence, account for 54.3%

of the export volume in 2015. At the same time, the other 45.7% of the export volume are made

up of the remaining 89.8% of the observed export flows. Although exporting to non-hinterland

cities is more than five times as common as exporting to hinterland cities (8.4% versus 1.5%)

we find that the total exports to non-hinterland cities are only three times as large as the total

exports to hinterland cities (13.7% versus 4.5%). At the 5th layer we find that 34 = 81 central

places account for one third of the export incidence but for almost three quarter of all trade

flows. And, although non-hinterland cities are about twenty times more likely to be an export

destination than hinterland cities, we find that the volume of exports to non-hinterland cities

exceeds the export volume to hinterland cities only by a factor of 12.5.

Taking stock, we not only have documented that central places are the largest exporters, but

also that they are disproportionately exporting to cities in their own hinterlands. Of course, it is

no surprise that central places export more to nearby cities in their own hinterlands than to far

away cities in the hinterlands of other central places. Using the gravity equation for aggregate

trade as the workhorse model of the empirical trade literature, we demonstrate in the following

that central places continue to have disproportionately large exports vis-à-vis the cities in their

hinterlands even when the trade-reducing effect of distance is explicitly taken into account.

4.2 Centrality Bias in Aggregate Inter-city Gravity Estimation

To see whether the hierarchical city system with central places and associated hinterlands from

Subsection 4.1 is associated with a systematic bias in aggregate gravity estimations, we start

out from a standard gravity model, regressing the bilateral trade volume (in logs) ln Xdo on the

trade cost function

ln τdo = βDIST × ln DISTdo + βHOME × HOMEdo + βISLAND × ISLANDdo, (8)
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and the complete set of origin- and destination-specific fixed effects. Following standard prac-

tice we control for average real-road distance between and within cities DISTdo to proxy for

geography as a barrier to trade and a “home bias” dummy HOMEdo ∈ {0, 1}, which assumes

a value of one for intra-city trade (i.e. d = o) and a value of zero otherwise, to an account

for non-linear distance effect (cf. Wolf, 2000; Hillberry and Hummels, 2003, 2008; Millimet and

Osang, 2007). To account for non-linearities in transportation costs due to Japan’s geography

as an archipelago (consisting of the four main islands Hokkaido, Honshu, Shikoku, and Kyushu),

we additionally control for intra-island trade by adding an island dummy ISLANDdo ∈ {0, 1},

which takes a value of one for intra-island trade and a value of zero otherwise. The first column

of Table 3 summarizes the estimation results, which in terms of magnitude and significance are

comparable to those found in the empirical trade literature (cf. Head and Mayer, 2014).

How large is the estimation bias, that results from not taking into account the structure

of Japan’s pyramidic city system captured by the structural error term vdo from Eq. (5)? To

answer this question we compute in the first step the residual diagnostics for the aggregate

gravity estimation from the first column of Table 3. If the pattern of inter-city trade is fully

explained by the usual trade cost vector from Eq. (8), we would not expect to find systematic

patterns when clustering the gravity residuals according to Japan’s hierarchical city system.

In order to asses the overall fit of the aggregate gravity equation as workhorse model of the

empirical trade literature in a systematic way, we report in Table 2 the residual diagnostics

for the ex- and imports of central places (CP) and their associated hinterland cities (HC). We

thereby distinguish between the same eight mutually exclusive trading relationships as in Table

1. For each category we then conduct a simple sign test, computing the share of trade flows for

which the structural gravity model underestimates the actual trade volume (indicated through

a positive residual Xdo − X̂do > 0). To quantify the resulting up- or downward bias that results

from over- or underestimation, we complement our simple sign test by also computing the mean

residual Xdo − X̂do for each category. According to Table 2 we systematically underestimate

the bilateral trade volume between central places and their associated hinterlands by relying

on the aggregate gravity equation. At each layer the share of underestimated trade flows

Xdo > X̂do between central places and their hinterland cities exceeds the respective share in

the overall sample. Accordingly, we find that central places’ average residual trade is positive,

when trading with their associated hinterlands but negative when trading with the hinterland

cities that belong to another central place at the same layer.24

24In accordance with central place theory we also underestimate the volume of trade among and within central
places (see Columns (1) and (2) as well as Columns (6) and (7) in Table 2). We interpret these findings with great
caution, because computations are based on a rather limited number of observations, and there is an overlap
between higher-layer hinterland cities and lower-layer central places.
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Table 2: In Search for Systematic Deviations from Structural Gravity

Residual Diagnostics
Year: 2015

Measure: Share of Xdo > X̂do Mean of Xdo − X̂do

Direction: Destination: Destination:
Partner City: CP: OCP: HC: OHC: All: CP: OCP: HC: OHC: All:
Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1st Layer:

CP: 0.0000 – 0.5938 – 0.5922 −0.6082 – 0.0016 – 0.0000
Origin: HC: 0.5442 – 0.5138 – 0.5143 0.0017 – 0.0000 – 0.0000

All: 0.5426 – 0.5151 – 0.5161 0.0000 – 0.0000 – 0.0000

2nd Layer:
CP: 0.3333 1.0000 0.6263 0.5504 0.5782 0.2371 1.7610 0.2310 −0.1375 0.0000

Origin: HC: 0.5882 0.5302 0.5178 0.5026 0.5124 0.1285 −0.0903 −0.0003 0.0015 0.0000

All: 0.5532 0.5302 0.5139 0.5026 0.5155 0.0000 −0.0903 0.0000 0.0015 0.0000

3rd Layer:
CP: 0.7778 0.9577 0.6778 0.5052 0.5443 1.2481 2.0498 0.4595 −0.1586 0.0000

Origin: HC: 0.5593 0.5063 0.5192 0.5089 0.5122 0.1278 −0.1089 −0.0099 0.0156 0.0000

All: 0.5296 0.5063 0.5141 0.5089 0.5155 0.0000 −0.1089 0.0000 0.0156 0.0000

4th Layer:
CP: 0.8400 0.7335 0.6900 0.4976 0.5384 1.2959 0.9613 0.5781 −0.1856 0.0000

Origin: HC: 0.5370 0.4884 0.5161 0.5143 0.5098 0.0834 −0.1474 0.0109 0.0414 0.0000

All: 0.5210 0.4884 0.5142 0.5143 0.5155 0.0000 −0.1474 0.0000 0.0414 0.0000

5th Layer:
CP: 0.8571 0.6091 0.6608 0.4877 0.5272 1.4628 0.3749 0.5334 −0.1761 0.0000

Origin: HC: 0.5913 0.4823 0.5016 0.5256 0.5097 0.3091 −0.1651 −0.0735 0.1043 0.0000

All: 0.5210 0.4823 0.5129 0.5256 0.5155 0.0000 −0.1651 0.0000 0.1043 0.0000
Notes: Abbreviations are defined as follows: central place (CP), other central place (OCP), hinterland city (HC) and
other hinterland city (OHC). Similar results are obtained for the 1995, 2000, 2005, and 2010 waves of the National Com-
modity Flow Survey. We report these additional results in the Online Appendix.

To highlight the upward bias in (residual) exports from central places to their respective

hinterlands we focus in Figure 7 on Tokyo as one of three 2nd-layer central places. The binned

scatter plot (cf. Stepner, 2013) in Figure 7 thereby captures the “spirit of gravity” (cf. Head

and Mayer, 2014, p. 134) by simultaneously taking into account size and distance effects.25

Conditional on the partner city’s size and the distance to Tokyo we find that Tokyo as a 2nd-

layer central place exports larger volumes to its respective hinterland cities (blue dots) than to

cities, that belong to the hinterlands of other central places at the same layer (red dots).

To quantify the estimation bias that results from not taking into account Japan’s hierar-

chical city system from Subsection 4.1 in a more comprehensive way we embed the pyramidic

city structure with multi-layer central places and associated hinterlands from Figure 6 into an

otherwise standard gravity estimation. To this end, we extend our trade cost function to include
25We focus on Tokyo as a central place at the 2nd layer because at the 1st-layer all other cities belong to

Tokyo’s hinterland. All 2nd-layer central place (i.e. Tokyo, Osaka, and Nagoya) have been excluded as possible
destination cities in Figure 7.
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Figure 7: Tokyo’s Exports to its own and other Hinterland Cities at the 2nd Layer
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Note: Figure 7 plots Tokyo’s aggregate exports normalized by the partner city’s total expenditure (in
logs) over the bilateral distance between Tokyo and its partner cities. To avoid clutter we have used a
binned scatter plot with 20 bins, which are based on a total of 382 observations. Similar figures can be
compiled based on the 1995, 2000, 2005, and 2010 waves of the National Commodity Flow Survey. We
report these additional figures in the Online Appendix.

not only the geographic controls: DISTdo, HOMEdo, and ISLANDdo (summarized by the trade

cost vector τij) but also the following set of indicator variables:

ln τ̃do =
5∑

l=2
βEXP_l × EXP_CP_HC_lLYdo (9)

which closely mimics the hierarchical structure of Japan’s poly-centric city system. To capture

the direct trading relationship between a central place and its economic hinterland, we intro-

duce the indicator variable EXP_CP_HC_lLYdo ∈ {0, 1}, which takes a value of one whenever

a central place at the lth-layer exports as origin city o to an associated hinterland city as desti-

nation d and a value of zero otherwise. Since central places from higher layers keep reappearing

at lower layers, we include the indicator variable EXP_CP_HC_lLYdo ∈ {0, 1} separately at

different layers (see Columns (2) to (5) of Table 3) and jointly with the indicator variables from

other layers (see Columns (6) to (8) of Table 3).

By definition there exists only a single 1st-layer central place (viz. Tokyo), whose hinterland

is formed by the sum of all other cities in Japan. Due to prefect multicollinearity of the indicator

variables EXP_CP_HC_1LYdo with the the respective exporter-specific fixed effect for Tokyo,

it is impossible to independently identify the parameter βEXP_1 at the 1st layer. We hence focus
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in our analysis only on lower layers (i.e. l ≥ 2) with multiple central places.

Table 3 summarizes the ordinary least squares (OLS) results from estimating a log-linearized

(aggregate) gravity equation with the complete set of origin- and destination-specific fixed effects

as predicted by Redding and Weinstein (2019). Throughout all specifications, we find a large

Table 3: Central Places, Hinterlands, and the Centrality Bias in Inter-city Trade

Dependent variable: Exports from origin city o to destination city d

Year: 2015
Model: OLS-FE
Specification: (1) (2) (3) (4) (5) (6) (7) (8)
CP → HC fixed effects:
Exports CP → HC (2nd layer) 0.3960∗∗∗ 0.1664 0.1715 0.1851

(.1449) (.1570) (.1569) (.1570)
Exports CP → HC (3rd layer) 0.5972∗∗∗ 0.5394∗∗∗ 0.3089∗∗ 0.3344∗∗

(.1310) (.1419) (.1549) (.1551)
Exports CP → HC (4th layer) 0.6990∗∗∗ 0.5418∗∗∗ 0.3628∗∗

(.1321) (.1460) (.1601)
Exports CP → HC (5th layer) 0.6224∗∗∗ 0.4196∗∗∗

(.1393) (.1537)
Controls:
ln Distancedo −0.8277∗∗∗ −0.8215∗∗∗ −0.8156∗∗∗ −0.8076∗∗∗ −0.8093∗∗∗ −0.8142∗∗∗ −0.8032∗∗∗ −0.7952∗∗∗

(.0187) (.0188) (.0188) (.0190) (.0191) (.0189) (.0191) (.0193)
Intra-city trade 0.7284∗∗∗ 0.7509∗∗∗ 0.7790∗∗∗ 0.8098∗∗∗ 0.8055∗∗∗ 0.7835∗∗∗ 0.8274∗∗∗ 0.8615∗∗∗

(.1411) (.1413) (.1414) (.1418) (.1421) (.1415) (.1420) (.1425)
Intra-island trade 0.1303∗∗ 0.1390∗∗∗ 0.1230∗∗ 0.1322∗∗∗ 0.1328∗∗∗ 0.1273∗∗ 0.1318∗∗∗ 0.1329∗∗∗

(.0507) (.0508) (.0507) (.0507) (.0507) (.0509) (.0509) (.0509)

Fixed effects:
Origin (o): 3 3 3 3 3 3 3 3

Destination (d): 3 3 3 3 3 3 3 3

Summary statistics:
Number of observations: 24, 203 24, 203 24, 203 24, 203 24, 203 24, 203 24, 203 24, 203
R2: 0.4226 0.4228 0.4231 0.4233 0.4231 0.4231 0.4235 0.4237

Notes: Fractal partition into central places and hinterlands allows for up to 3 central places in hinterlands of central
places at next higher layers. Robust standard errors; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Similar results are
obtained for the 1995, 2000, 2005, and 2010 waves of the National Commodity Flow Survey. We report these additional
results in the Online Appendix.

and statistically significant upward bias in the exports from central places to their associated

hinterlands at different layers. Across the Specifications (2) to (4) in Table 3 the central place

dummy thereby is associated with a substantial percentage increase in the bilateral trade volume

of 40% to 100%. When multiple central place dummies are simultaneously included at different

layers (Specifications (6) to (8) in Table 3), the trade-creating effect of the 2nd-layer central

place dummy becomes statistically insignificant and somewhat smaller. We attribute this result

to the multicoliniearity among the central place fixed effects from Eq. (9), which follows by

construction from the fractal structure of the hierarchical city system in Figure 6. Reassuringly,

we find that coefficients for exports from central places at the 3rd to 5th layer in the Specifications

(6) to (8) of Table 3 do not lose their statistical significance. The results for the waves 1995,

2000, 2005 and 2010 show exactly the same pattern as in Table 3: Across all waves and at

all layers we find a substantial and highly significant upward bias in the exports from central

places to their hinterlands, which translates in a percentage trade increase that falls into a
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ranges between 30% and 167%. We report these additional findings in the Online Appendix.

Having quantified the upward bias in exports from central places to their respective hinter-

lands, we are now scrutinizing the conditions under which we can expect to find a systematic

upward bias in the exports from central places to their hinterlands. We conduct two series

of placebo regressions: Under randomization scheme (a) from Table 4 we maintain the basic

hierarchical structure from Figure 6. Given the identified central places at each layer, we fix

the cell size (number of hinterland cities in each cell) and randomize the identity of hinterland

cities that are associated with a certain central place. Randomization scheme (b) from Table

4 follows Mori et al. (2020a), who obtain subcells at lower layers not as Voronoi K-partitions

but from a random partition holding the number of cells (K = 3) and the cell size fixed. Since

the largest K = 3 city in each cell are chosen as lower-layer central places their identity may

deviate from our baseline specification at all layers l > 2. Under both randomization schemes

we construct 10,000 counterfactual partitions up to the 5th layer.

From each hypothetical partition into central places and associated hinterland cities we can

then derive counterfactual central place dummies akin to EXP_CP_HC_lLYij ∈ {0, 1} from

Eq. (9). We implement these counterfactual central place dummies in otherwise standard OLS

gravity estimations, taking into account the trade cost vector ln τij = βDIST×ln DISTij +βHOME×

HOMEij +βISLAND ×ISLANDij , and imposing the full set of origin- and destination-specific fixed

effects.

When the association of hinterland cities with central places is randomized, we would not

expect to find the systematic upward bias from Table 3. Table 4 compares the outcomes of the

placebo regression to the baseline results from Table 3. Focusing on the specifications (2) to (5)

Table 4: Placebo Regressions with Randomized Assignment of Hinterlands

Randomized Hinterlands:
Year: 2015

Layer
Benchmark: Number of

Samples
Mean of
βrandom

EXP_CP

Significant Estimates at: Share of
βrandom

EXP_CP > βEXP_CPβEXP_CP S. E. p < 0.01h p < 0.05h p < 0.10h
Randomization scheme (a):

2 0.3960∗∗∗ (.1449) 10,000 -.0357 .0030 .0257 .0612 .0006
3 0.5972∗∗∗ (.1310) 10,000 -.0833 .0186 .0712 .1330 .0000
4 0.6990∗∗∗ (.1321) 10,000 -.0562 .0125 .0535 .1060 .0000
5 0.6224∗∗∗ (.1393) 10,000 -.1451 .0275 .1058 .1769 .0000

Randomization scheme (b):
2 0.3960∗∗∗ (.1449) 10,000 -.0121 .0030 .0210 .0560 .0000
3 0.5972∗∗∗ (.1310) 10,000 -.0315 .0070 .0540 .0950 .0000
4 0.6990∗∗∗ (.1321) 10,000 -.0467 .0130 .0540 .1080 .0000
5 0.6224∗∗∗ (.1393) 10,000 -.0518 .0120 .0570 .1000 .0000

Notes: Robust standard errors; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Similar results are obtained for the
1995, 2000, 2005, and 2010 waves of the National Commodity Flow Survey. We report these additional results in the
Online Appendix.

from Table 3, we find no systematic upward bias if the assignment of hinterland cities to central
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places is randomized. The vast majority of the estimated coefficients βrandom
EXP_CP are in the vicinity

of zero and typically statistically insignificant at the commonly applied significance levels of

α = 1%, α = 5%, and α = 10%. At a significance level of α = 1% only 0.3% to 2.75% of all

placebo regressions yield a positive and significant point estimate if randomization scheme (a) is

applied. At the same level of significance only 0.3% to 1.3% of the estimate coefficients are not

statistically indistinguishable from zero if randomization scheme (b) is applied. The fraction

of placebo regressions that deliver coefficients βrandom
EXP_CP, which exceed the baseline coefficients

βEXP_CP from Table 3 is almost always zero.26

Summing up our main results from this section, we have shown that exports of large and

centrally located cities (central places) to smaller cities in their nearby hinterland are system-

atically underestimated by an aggregate gravity estimation, that does not take into account

Christaller’s (1933) hierarchy principle for industries. The upward bias in aggregate exports of

central places to their respective hinterland cities is statistically significant and quantitatively

important, suggesting that exports are 40% to 100% larger than predicted by gravity forces

alone. In a series of placebo regressions, in which the assignment of hinterland cities to central

places is randomized, it is almost impossible to find comparable effects of similar magnitude.

5 Disaggregation and Decomposition

Having quantified the upward bias in aggregate exports from central places to their respective

hinterlands based on Japan’s pyramidic city system, we are now providing further evidence

that the unexpectedly high aggregate exports of central places are an artifact of the underlying

aggregation process (as explained in Section 2). We thereby proceed in two steps: In Subsection

5.1 we disaggregate our inter-city trade data to demonstrate that the centrality bias from Section

4 can not be detected in sectoral gravity estimations. In Subsection 5.2 we then apply two

alternative decomposition approaches to learn more about the channels that are responsible for

the emergence for the centrality bias from Section 4.

5.1 Disaggregation

To explain the centrality bias from Section 4 as an artifact of an aggregation process that

does not account for the hierarchical distribution of sectors across cities we follow Anderson

and van Wincoop (2004, p. 729), whose “obvious recommendation is to disaggregate.” Table

5 therefore repeats the residual diagnostics from Table 2 based on the results of a sector-
26Under randomization scheme (a) 6 out of 10,000 placebo regressions at the 2nd layer deliver point estimates

satisfying the condition βrandom
EXP_CP > βEXP_CP.
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level gravity estimation (cf. Column (1) of Table 6). To ensure comparability we use the

same trade cost vector as in Table 3 (controlling for the complete set of origin×sector- and

destination×sector-specific fixed effects) when estimating our baseline results in Table 6. The

results of the corresponding residual diagnostics are then reported in the exact same way as in

Table 2, where we distinguish between up to eight different origin/destination relationships.

Table 5: Residual Diagnostics at the Sectoral Level

Residual Diagnostics at the Sectoral Level
Year: 2015
Measure: Share of xdos > x̂dos Mean of xdos − x̂dos

Direction: Destination: Destination:
Partner City: CP: OCP: HC: OHC: All: CP: OCP: HC: OHC: All:
Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
1st Layer:

CP: 0.6154 – 0.5629 – 0.5642 0.1888 – −0.0048 – 0.0000
Origin: HC: 0.5467 – 0.5500 – 0.5498 −0.0111 – 0.0005 – 0.0000

All: 0.5506 – 0.5513 – 0.5512 0.0000 – 0.0000 – 0.0000

2nd Layer:
CP: 0.6422 0.7295 0.5746 0.5379 0.5635 0.4155 0.9443 0.0114 −0.1033 0.0000

Origin: HC: 0.5259 0.4938 0.5625 0.5386 0.5474 −0.1013 −0.1226 0.0104 0.0242 0.0000

All: 0.5328 0.4938 0.5534 0.5386 0.5512 0.0000 −0.1226 0.0000 0.0242 0.0000

3rd Layer:
CP: 0.6290 0.6342 0.5800 0.5344 0.5575 0.3548 0.4960 0.0196 −0.1078 0.0000

Origin: HC: 0.5204 0.4873 0.5737 0.5548 0.5482 −0.0599 −0.1689 0.0130 0.0534 0.0000

All: 0.5276 0.4873 0.5564 0.5548 0.5512 0.0000 −0.1689 0.0000 0.0534 0.0000

4th Layer:
CP: 0.6207 0.5741 0.5756 0.5357 0.5520 0.3152 0.1999 −0.0135 −0.0964 0.0000

Origin: HC: 0.5206 0.4877 0.5818 0.5781 0.5506 −0.0370 −0.1459 −0.0161 0.0999 0.0000

All: 0.5256 0.4877 0.5623 0.5781 0.5512 0.0000 −0.1459 0.0000 0.0999 0.0000

5th Layer:
CP: 0.6241 0.5488 0.5716 0.5488 0.5526 0.2817 0.0631 −0.0575 −0.0635 0.0000

Origin: HC: 0.5322 0.5039 0.5801 0.5883 0.5496 −0.0160 −0.0933 −0.0828 0.1186 0.0000

All: 0.5317 0.5039 0.5663 0.5883 0.5512 0.0000 −0.0933 0.0000 0.1186 0.0000
Notes: Abbreviations are defined as follows: central place (CP), other central place (OCP), hinterland city (HC) and
other hinterland city (OHC). Similar results are obtained for the 1995, 2000, 2005, and 2010 waves of the National Com-
modity Flow Survey. We report these additional results in the Online Appendix.

All indicators suggest that the sector-level gravity estimation outperforms the aggregate

gravity estimation in matching the pattern of Japan’s inter-city trade. While there is a 7.59

to 19.24 percentage point difference in the shares of underestimated trade flows (characterized

by Xdo > X̂do) for central places’ exports to associated versus unassociated hinterland cities

in Table 2 (Column (3) versus Column (4)), we find that in Table 5 the difference in these

shares (characterized by xdos > x̂dos) has declined to a range of 2.88 to 4.56 percentage points

(Column (3) versus Column (4) in Table 5). A similar picture emerges from the comparison

of the mean residuals: Mean residuals of central places’ trade in Table 2 are in a range from
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0.2310 to 0.5781 for exports to associated hinterland cities at different layers and in a range from

−0.1375 to −0.1856 for exports to unassociated hinterland cities at different layers (Column

(8) versus Column (9) in Table 2). In Table 5 the mean residuals of central places’ trade fall

into a much smaller range from 0.0114 to 0.0575 for exports to associated hinterland cities at

different layers and a range from −0.0635 to −0.1078 for exports to unassociated hinterland

cities at different layers (Column (8) versus Column (9) in Table 5).

Building up on the results from Table 5, which suggest that the previously identified central-

ity bias is indeed an artifact of an aggregation process that does not account for the hierarchical

distribution of sectors across cities, we proceed by re-estimating the gravity model, that lead

to the results in Table 3. We thereby include the same trade cost vector from Eq. (8) to-

gether with the central place dummies from Eq. (9), controlling for all origin×sector- and

destination×sector-specific variation though an accordingly specified set of fixed effects.

Table 6: Central Places, Hinterlands, and the Pattern of Sectoral Inter-city Trade

Dependent variable: Sector-level exports from origin city o to destination city d

Year: 2015
Model: OLS-FE
Specification: (1) (2) (3) (4) (5) (6) (7) (8)
CP → exporter fixed effects:
Exports CP → HC (2nd layer) 0.0286 0.0155 0.0117 0.0086

(.0664) (.0755) (.0758) (.0759)
Exports CP → HC (3rd layer) 0.0367 0.0287 0.0570 0.0521

(.0633) (.0718) (.0812) (.0815)
Exports CP → HC (4th layer) −0.0246 −0.0627 −0.0322

(.0729) (.0832) (.0942)
Exports CP → HC (5th layer) −0.1015 −0.0933

(.0867) (.1016)
Controls:
ln Distancedo −0.4341∗∗∗ −0.4314∗∗∗ −0.4308∗∗∗ −0.4360∗∗∗ −0.4385∗∗∗ −0.4300∗∗∗ −0.4327∗∗∗ −0.4351∗∗∗

(.0164) (.0166) (.0168) (.0168) (.0168) (.0168) (.0170) (.0172)
Intra-city trade 0.4427∗∗∗ 0.4530∗∗∗ 0.4557∗∗∗ 0.4353∗∗∗ 0.4245∗∗∗ 0.4585∗∗∗ 0.4484∗∗∗ 0.4380∗∗∗

(.1086) (.1085) (.1093) (.1105) (.1109) (.1090) (.1104) (.1113)
Intra-island trade 0.0500 0.0535 0.0516 0.0489 0.0487 0.0531 0.0510 0.0506

(.0445) (.0440) (.0445) (.0444) (.0445) (.0439) (.0439) (.0439)

Fixed effects:
Origin (o) × sector (s): 3 3 3 3 3 3 3 3

Destination (d) × sector (s): 3 3 3 3 3 3 3 3

Summary statistics:
Number of observations: 55, 785 55, 785 55, 785 55, 785 55, 785 55, 785 55, 785 55, 785
R2: 0.5802 0.5802 0.5802 0.5802 0.5802 0.5802 0.5802 0.5802

Notes: Fractal partition into central places and hinterlands allows for up to 3 central places in hinterlands of central
places at next higher layers. Robust standard errors clustered at the city-pair level; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05,
∗ p < 0.1. Similar results are obtained for the 1995, 2000, 2005, and 2010 waves of the National Commodity Flow Survey.
We report these additional results in the Online Appendix.

According to Table 6, which summarizes the estimation results, no centrality bias can be

detected in inter-city gravity estimations that are conducted at the sectoral and not at the

aggregate level. Throughout the Columns (2) to (6) from Table 6 we find that the coefficients

of the dummy variables, capturing exports from central places to their respective hinterlands,

are by magnitudes smaller than the ones of their counterparts in Table 3. At conventional levels
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of significance none of the considered dummy variables is statistically distinguishable from zero.

Exactly the same result is found when jointly including the central place dummies from various

layers (see Columns (6) to (8) of Table 6).

Interestingly, we find that the distance elasticities in Table 6 (which range from −0.4300 to

−0.4385), are much smaller in absolute magnitude than their counterparts in Table 3 (which

range from −0.7952 to −0.8277).27 To rationalize the observed difference in estimated distance

elasticities, we borrow from Hillberry and Hummels (2008, pp. 539-40), who attribute a similar

result to the underlying aggregation process.28 Because the probability of observing a shipment

at the sector level is declining in distance (cf. Figure 3), the aggregate volume of inter-city

trade is declining at the intensive margin within each sector and at the extensive margin as

the number of exporting sectors gets smaller over longer distances. As we aggregate across

sectors, variation at the extensive margin (presence or absence of sector-level shipments) sums

up to a continuous variable (total value of bilateral trade). The response of the aggregate trade

volume in Table 3 to increasing distances therefore is substantially larger than at the more

disaggregated sector-level in Table 6.

Note that the fixed effects estimator from Table 6 yields consistent parameter estimates if all

sectoral trade flows between origin cities o and destination cities d are positive (i.e. xdos > 0)

and if the stochastic error udos in Eq. (3) is orthogonal to the observed trade costs τdos.

To account for zero trade flows, which could be correlated with bilateral trade costs, and for

heteroscedasticity in our sectoral trade data (cf. Santos Silva and Tenreyro, 2006), we replicate

the results from Table 6 by using the Poisson Pseudo Maximum Likelihood estimator (PPML)

proposed by Correia et al. (2020), which allows us to estimate Eq. (3) in its multiplicative

form. We thereby include cities as origins for sectoral trade flows if they export to at least

one destination in this sector and as destinations for sectoral trade flows if they import in this

sector from at least one origin. Intra- and inter-city distances are computed consistently as

population-weighted harmonic means over the bilateral real-road distances between the sets

of municipalities of which the respective cities are comprised (cf. Head and Mayer, 2009). To

account for the systematic differences in the extensive margin of sectoral inter-city trade from

Figure 3 we allow the trade-reducing effect of distance to vary across the same five sector

categories as in Figure 3, where sectors are differentiated according to the number of origin

cities (≤ 10, 11 − 20, 21 − 40, 41 − 80, and > 80) in which they can be found.
27A similar pattern (with reversed sign) can be observed when comparing the coefficients on the intra-city

trade and intra-island trade dummies across Table 3 and 6. Since both of these controls can be thought of as
capturing discontinuous distance effects (i.e. the relative ease of trading over short distances), this finding can
be directly related to the observed difference in estimated distance elasticities.

28Instead of aggregating across sectors Hillberry and Hummels (2008) focused on aggregation across different
spatial units (3 digit versus 5 digit zip codes).
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We present the results of the PPML estimations in Table 7. Reassuringly, we find that

the dummies which have been included to capture the effect of exporting from a central place

to its hinterland cities are statistically indistinguishable from zero at conventional levels of

significance.

In line with Figure 3, we find that sectoral distance effects in Table 7 are quite heterogeneous

and by magnitudes larger than in Table 6. The difference in the (average) size of the distance

elasticities thereby can be explained through the inclusion of zeros, which disproportionately

are observed across larger shipment distances (see Figure 3). Heterogeneity in the estimated

distance elasticities from Table 7 can be explained by the fact that ubiquitous industries, that

can be found in many cities, have a rather low average probability of serving nearby destinations.

After a short distance (of approx. 200 km) this average probability falls to a remarkably low

level of less than 10%. Further increases in the bilateral distance beyond this 200 km threshold

then barely affect the already very small average export probability, resulting in comparatively

small distance elasticities for ubiquitous industries in Table 7.

Table 7: Central Places, Hinterlands, and the Pattern of Sectoral Inter-city Trade

Dependent variable: Sector-level exports from origin city o to destination city d

Year: 2015
Model: PPML-FE
Specification: (1) (2) (3) (4) (5) (6) (7) (8)
CP → exporter fixed effects:
Exports CP → HC (2nd layer) −0.1669 −0.2206 −0.2123 −0.2080

(.1334) (.1468) (.1469) (.1495)
Exports CP → HC (3rd layer) 0.0328 0.1463 0.0554 0.0583

(.1408) (.1543) (.1812) (.1811)
Exports CP → HC (4th layer) 0.2057 0.2254 0.1892

(.1504) (.1824) (.2170)
Exports CP → HC (5th layer) 0.2585 0.0991

(.1983) (.2493)
Controls:
ln Distancedo (sectors ≤ 10 origins) −1.2137∗∗∗ −1.2309∗∗∗ −1.2111∗∗∗ −1.2023∗∗∗ −1.2062∗∗∗ −1.2248∗∗∗ −1.2186∗∗∗ −1.2170∗∗∗

(.0939) (.0948) (.0938) (.0950) (.0948) (.0944) (.0951) (.0955)
ln Distancedo (sectors 11-20 origins) −1.0474∗∗∗ −1.0639∗∗∗ −1.0448∗∗∗ −1.0362∗∗∗ −1.0399∗∗∗ −1.0575∗∗∗ −1.0515∗∗∗ −1.0500∗∗∗

(.0523) (.0552) (.0532) (.0547) (.0539) (.0549) (.0561) (.0568)
ln Distancedo (sectors 21-40 origins) −1.0985∗∗∗ −1.1144∗∗∗ −1.0960∗∗∗ −1.0878∗∗∗ −1.0910∗∗∗ −1.1083∗∗∗ −1.1026∗∗∗ −1.1010∗∗∗

(.0569) (.0580) (.0578) (.0583) (.0581) (.0584) (.0588) (.0594)
ln Distancedo (sectors 41-80 origins) −0.9341∗∗∗ −0.9503∗∗∗ −0.9316∗∗∗ −0.9231∗∗∗ −0.9266∗∗∗ −0.9441∗∗∗ −0.9382∗∗∗ −0.9367∗∗∗

(.0420) (.0452) (.0434) (.0447) (.0440) (.0452) (.0463) (.0471)
ln Distancedo (sectors > 80 origins) −0.7409∗∗∗ −0.7571∗∗∗ −0.7382∗∗∗ −0.7297∗∗∗ −0.7333∗∗∗ −0.7506∗∗∗ −0.7447∗∗∗ −0.7432∗∗∗

(.0405) (.0403) (.0406) (.0429) (.0419) (.0404) (.0417) (.0420)
Intra-city trade −0.2829∗∗ −0.3524∗∗ −0.2739∗∗ −0.2468∗ −0.2621∗∗ −0.3347∗∗ −0.3165∗∗ −0.3124∗∗

(.1308) (.1434) (.1332) (.1393) (.1336) (.1423) (.1462) (.1467)
Intra-island trade −0.2003 −0.2187 −0.1985 −0.1953 −0.2035 −0.2164 −0.2148 −0.2163

(.1494) (.1513) (.1493) (.1500) (.1503) (.1512) (.1517) (.1522)

Fixed effects:
Origin (o) × sector (s): 3 3 3 3 3 3 3 3

Destination (d) × sector (s): 3 3 3 3 3 3 3 3

Summary statistics:
Number of observations: 924, 715 924, 715 924, 715 924, 715 924, 715 924, 715 924, 715 924, 715

Notes: Fractal partition into central places and hinterlands allows for up to 3 central places in hinterlands of central
places at next higher layers. Distance effects are allowed to differ across five sector categories (sectors present in ≤ 10,
11 − 20, 21 − 40, 41 − 80, and > 80 origin cities). Robust standard errors clustered at the city-pair level; significance: ∗∗∗

p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1. Similar results are obtained for the 1995, 2000, 2005, and 2010 waves of the National
Commodity Flow Survey. We report these additional results in the Online Appendix.
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In search for an explanation for the upward bias in the exports from central places to their

respective hinterland cities in aggregate gravity estimations we have replicated our analysis

from Section 4 at the much more disaggregated sectoral level. Unlike in the aggregate gravity

estimations from Section 4 no centrality bias can be identified at the sectoral level. We interpret

these results as suggestive evidence in favor of aggregation bias. Aggregate exports from central

places to their hinterland are systematically underestimated by aggregate gravity estimations

that ignore the structural error term which results from summing up sectoral gravity equations.

5.2 Decomposition

To gain a better understanding of how the aggregation of sectoral trade flows results in a spe-

cific upward bias in the aggregate exports from central places to their associated hinterland

cities we adopt two alternative decomposition approaches: Following Hillberry and Hummels

(2008) we first exploit the specific structure of our highly disaggregated transaction-level trade

data when decomposing aggregate trade flows along various extensive and intensive margins.

Complementing evidence then is obtained in a second step, when applying Redding and Wein-

stein’s (2019) structural decomposition approach to decompose aggregate trade flows into the

components that shape the structural error term vdo derived in Eq. (5).

Following Hillberry and Hummels (2008), we can exploit the full potential of our micro-

level inter-city trade data to establish the extensive industry margin as the main driver behind

the previously identified centrality bias. We begin by decomposing the aggregate value of

trade Xdo =
∑Zdo

z=1 PdozQdoz from origin city o to destination city d, which is the sum over the

product of the shipment-specific price Pdoz and the shipment-specific quantity Qdoz, into the

number of unique shipments Zdo (the extensive margin) and the average value per shipment

Ȳdo ≡
∑Zdo

z=1 PdozQdoz/Zdo (the intensive margin)

Xdo = ZdoȲdo, (10)

referring to a unique shipment by subscript z.29 Decomposing the number of unique shipments

Zdo further into the number of distinct sectors Sdo across which a certain city exports its goods

and the average number of shipments per sector Z̄do ≡ Zdo/Sdo then results in

Zdo = SdoZ̄do. (11)
29As in Hillberry and Hummels (2008) a unique shipment is defined by the triplet: establishment identifier ×

commodity code × destination municipality. Repeated shipments of the same commodity by the same establish-
ment to the same destination municipality hence are treated as a single shipment, such that there is no difference
between ten shipments of one million Yen and one shipment of ten million Yen.
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In a final step the average value per shipment Ȳdo is decomposed into average price P̄do and

average quantity Q̄do per shipment

Ȳdo =
∑Zdo

z=1 PdozQdoz

Zdo
=
∑Zdo

z=1 PdozQdoz∑Zdo
z=1 Qdoz

∑Zdo
z=1 Qdoz

Zdo
= P̄doQ̄do. (12)

Substituting Zdo and Q̄do from Eqs. (11) and (12) back into Xdo from Eq. (10) allows us to

deconstruct the aggregate volume of bilateral trade

Xdo = SdoZ̄doP̄doQ̄do (13)

between origin city o and destination city d into its four components: Sdo, Z̄do, P̄do and Q̄do.

Log-linearising the Eqs. (10) and (13) then yields the first-level decomposition

ln Xdo = ln Zdo + ln Ȳdo, (14)

and the second-level decomposition

ln Xdo = ln Sdo + ln Z̄do + ln P̄do + ln Q̄do. (15)

While a decomposition analysis of bilateral inter-city is interesting in its own right (yielding

similar results as in Hillberry and Hummels (2008)), we are particularly interested in under-

standing what is responsible for the upward bias in exports from central places to their respective

hinterland cities. We therefore follow Hillberry and Hummels (2008) by treating each element in

Eqs. (14) and (15) as a dependent variable, which then is separately regressed on the trade cost

vector ln τdo = βDIST × ln DISTdo +βHOME ×HOMEdo +βISLAND ×ISLANDdo, the hierarchy vector

ln τ̃do from Eq. (9), and the complete set of origin×sector- and destination×sector-specific fixed

effects.

Making use of the OLS estimator’s linearity, we separately regress ln Xdo and all its log-

linearized components on the same set of explanatory variables to obtain coefficients with the

useful additive property: βX
v = βZ

v + βY
v with βZ

v = βS
v + βZ̄

v and βY
v = βP̄

v + βQ̄
v . While super-

scripts are used to distinguish the dependent variables: Xdo, Zdo, and Ydo as well as Sdo, Z̄do,

P̄do and Q̄do, we use the subscript v to distinguish between the explanatory variables (typically

the central place dummies EXP_CP_HC_lLYdo ∀ l = 2, . . . 5). Based on the decomposition

from Eq. (15) we can quantify each component’s contribution to the upward bias in the exports

from central places to their hinterlands.

In the first Column of Table 8 we replicate the baseline results from the Columns (2) to
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Table 8: Inter-City Trade Decomposition à la Hillberry and Hummels (2008)

Dependent Variable: ln Xdo ln Zdo ln Sdo ln Z̄do ln Ȳdo ln P̄do ln Q̄do

Column: (1) (2) (3) (4) (5) (6) (7)
CP → HC fixed effects:
Exports CP → HC (2nd layer) 0.3960∗∗∗ 0.4347∗∗∗ 0.3539∗∗∗ 0.0807∗∗∗ −0.0387 −0.2375∗∗∗ 0.1989

(.1449) (.0318) (.0290) (.0089) (.1338) (.0900) (.1557)
[.4228] [.6444] [.6320] [.2955] [.3404] [.4143] [.4075]

Exports CP → HC (3rd layer) 0.5972∗∗∗ 0.4740∗∗∗ 0.3841∗∗∗ 0.0899∗∗∗ 0.1233 −0.0897 0.2130
(.1310) (.0287) (.0262) (.0080) (.1209) (.0814) (.1408)
[.4231] [.6457] [.6330] [.2968] [.3405] [.4142] [.4076]

Exports CP → HC (4th layer) 0.6990∗∗∗ 0.4526∗∗∗ 0.3750∗∗∗ 0.0776∗∗∗ 0.2464∗∗ −0.1087 0.3551∗∗

(.1321) (.0289) (.0264) (.0081) (.1220) (.0821) (.1420)
[.4233] [.6453] [.6328] [.2958] [.3406] [.4142] [.4077]

Exports CP → HC (5th layer) 0.6224∗∗∗ 0.3561∗∗∗ 0.3092∗∗∗ 0.0469∗∗∗ 0.2663∗∗ −0.0649 0.3311∗∗

(.1393) (.0305) (.0279) (.0086) (.1285) (.0866) (.1497)
[.4231] [.6436] [.6316] [.2940] [.3406] [.4141] [.4076]

Controls:
ln Distancedo 3 3 3 3 3 3 3

Intra-city trade 3 3 3 3 3 3 3

Intra-Island trade 3 3 3 3 3 3 3

Fixed effects:
Origin (o): 3 3 3 3 3 3 3

Destination (d): 3 3 3 3 3 3 3

Summary statistics:
Number of observations: 24, 203 24, 203 24, 203 24, 203 24, 203 24, 203 24, 203

Notes: Robust standard errors in parentheses; R2 in squared brackets; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
Similar results are obtained for the 1995, 2000, 2005, and 2010 waves of the National Commodity Flow Survey. We report
these additional results in the Online Appendix.

(5) of Table 3. By decomposing the strong upward bias in the exports from central places

to their respective hinterlands into its various components from Eq. (15) we can gain a better

understanding of the relative importance that these components have for the centrality bias from

Table 3. Suppose the upward bias in central places’ exports is caused by an omitted variable,

whose trade-creating effect proportionately scales up the volume of bilateral trade (such as the

regionally concentrated business networks in Combes et al. (2005), Requena and Llano (2010),

and Wrona (2018)). The disproportionately high exports from central places to their respective

hinterlands would then materialize through an increase in the average number of shipments

per sector rather than by an increase in the number of exporting sectors. Interestingly, we

find that the average number of unique shipments per sector Z̄do contributes only moderately

to the overall effect (relative contributions βZ̄
EXP_CP/βX

EXP_CP range from 7.5% to 20.4%). It

rather seems to be the case that the disproportionately large exports from central places to

their respective hinterlands are mainly explained through a larger number of exporting sectors

– with the extensive industry margin Sdo being responsible for the by far largest contribution

to the overall effect. Accordingly, we also find that the R2 in the extensive industry margin

regressions (with outcome variable ln Sdo) are much larger than those of the other components
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of ln Xdo.30

Summing up the results from Table 8, we find that central places export more to their

hinterland cities because they serve these cities across a wider range of industries and not

because they send more shipments per industry or because these shipments are more valuable.

We interpret this result as direct evidence in favor of our theoretical prediction from Section 2:

Christaller’s (1933) hierarchy principle for industries is responsible for the upward bias in the

exports of central places to their hinterlands.

Having identified the extensive industry margin as a main driver behind the centrality bias

from Section 4, we are now taking a different perspective by applying Redding and Weinstein’s

(2019) structural decomposition approach. Substituting the structural error term vdo from Eq.

(5) into Eq. (4) yields

ln Xdo = Γdo + Λdo − Tdo + Jdo + Udo. (16)

The log of aggregate bilateral trade between origin city o and destination city d can be written

as an additively separable function of the five structural terms Γdo, Λdo, −Tdo, Jdo, and Udo

previously discussed in Section 2.

We proceed by regressing ln Xdo and each of its components from Eq. (16) on the familiar set

of controls from Eq. (8) and on the separately included 2nd-, 3rd-, 4th- and 5th-layer central place

dummies from Eq. (9), imposing the complete set of origin- and destination-specific fixed effects.

Due to the linearity of the OLS estimator, the coefficient estimates on all the components of

ln Xdo from Eq. (16) add up to the coefficient estimate from our baseline regression on ln Xdo.

This property is what allows us to theoretically decompose the effects of the central place

dummies EXP_CP_HC_lLYdo ∀ l = 2, . . . 5 on the log of aggregate bilateral trade ln Xdo.31

Following Redding and Weinstein (2019) we drop in the sectoral gravity estimations, on

which the computation of the structural terms Γdo, Λdo, −Tdo, Jdo, and Udo is based, all origin-

sector cells with less than 3 destinations and all destination-sector cells with less than 3 origins.
30In the Online Appendix we report all 4 × 7 = 28 regressions for 2015 that have been used to compile Table

8. There we also show that the discrepancy between the relatively higher distance elasticity estimates in the
aggregate gravity estimations from Table 3 and the relatively lower distance elasticity estimates in the sectoral
gravity estimations from Table 6 can be attributed to the trade-reducing effect of distance along the extensive
industry margin. Larger bilateral distances are associated with a sizable drop in the number of exporting sectors
and a rather small reduction in the average number of shipments per sector. Accounting for the combined effect
of these two channels at the extensive margin, we find that distance elasticity at the intensive margin closely
resembles the sectoral distance elasticity estimates from Table 6. Similar results are obtained for the 1995, 2000,
2005, and 2010 waves of the National Commodity Flow Survey.

31In the Online Appendix we report all 4 × 6 = 24 regressions for 2015 that have been used to compile Table
9. There we also replicate the results of Redding and Weinstein (2019), who decompose the distance elasticity
into its various components from Eq. (16). Unsurprisingly, we find that the by far largest contribution to the
distance elasticity comes from the average distance-related trade costs (captured by −Tdo) followed by a much
smaller contribution by the Jensen’s inequality correction term Jdo. Similar results are obtained from the 1995,
2000, 2005, and 2010 wave of the National Commodity Flow Survey.
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Table 9: Inter-City Trade Decomposition à la Redding and Weinstein (2019)

Dependent Variable: ln Xdo Γdo Λdo −Tdo Jdo Udo

Column: (1) (2) (3) (4) (5) (6)
CP → HC fixed effects:
Exports CP → HC (2nd layer) 0.3089∗∗ 0.0423∗ 0.0175 −0.0222 0.1090∗∗ 0.1624

(.1449) (.0227) (.0351) (.0245) (.0514) (.0997)
[.5302] [.8337] [.1088] [.7330] [.9480] [.0954]

Exports CP → HC (3rd layer) 0.6614∗∗∗ 0.0523∗ 0.0696∗∗ 0.0727∗∗∗ 0.1909∗∗∗ 0.2759∗∗∗

(.1334) (.0268) (.0312) (.0259) (.0430) (.0913)
[.5306] [.8337] [.1089] [.7331] [.9481] [.0956]

Exports CP → HC (4th layer) 0.7506∗∗∗ 0.1211∗∗∗ 0.0866∗∗ 0.0561∗∗ 0.1406∗∗∗ 0.3462∗∗∗

(.1237) (.0302) (.0350) (.0282) (.0389) (.0907)
[.5308] [.8337] [.1089] [.7330] [.9481] [.0958]

Exports CP → HC (5th layer) 0.6211∗∗∗ 0.1891∗∗∗ 0.0784∗∗ 0.0387 0.0789∗∗ 0.2360∗∗

(.1334) (.0419) (.0395) (.0363) (.0383) (.1062)
[.5305] [.8338] [.1089] [.7330] [.9480] [.0955]

Controls:
ln Distancedo 3 3 3 3 3 3

Intra-city trade 3 3 3 3 3 3

Intra-Island trade 3 3 3 3 3 3

Fixed effects:
Origin (o): 3 3 3 3 3 3

Destination (d): 3 3 3 3 3 3

Summary statistics:
Number of observations: 18, 290 18, 290 18, 290 18, 290 18, 290 18, 290

Notes: Robust standard errors in parentheses; R2 in squared brackets; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.
Similar results are obtained for the 1995, 2000, 2005, and 2010 waves of the National Commodity Flow Survey. We report
these additional results in the Online Appendix.

Doing so causes the number of observations in Table 9 to be somewhat smaller than in Table

3. Reassuringly, we find that the point estimates in Column (1) of Table 9 are not too different

from those in Columns (2) to (5) of Table 3.

To get a better understanding of why ln Xdo and each of its components Γdo, Λdo, −Tdo,

Jdo and Udo are correlated with the dummy variables EXP_CP_HC_lLYdo ∀ l = 2, . . . 5 from

Eq. (9), we also report the levels of these components together with their residuals, which

are obtained from regressing them on the trade cost vector from Eq. (8) and the complete

set of origin- and destination-specific fixed effects. We thereby distinguish between the same

eight trade relationships as in the Tables 1, 2, and 5. Descriptive statistics and the residual

diagnostics for the gravity components Γdo, Λdo, −Tdo, Jdo and Udo are summarized in Table

10, which only focuses on the results from the 3rd layer.32

All origin×sector-specific fixed effects γos for the city-pair d × o are aggregated into Γdo =

γ̄do − γ̄d. Thereby γ̄do is defined as the average origin×sector-specific fixed effect across all
32Similar results are obtained when focusing on the 2nd, 4th, and 5th layer. We have relegated these additional

results to the Online Appendix to economize on space. There we also report the results for 1995, 2000, 2005 and
2010 wave of the Japanese Commodity flow survey.
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Table 10: Descriptive Analysis and Residual Diagnostics for Γdo, Λdo, −Tdo, Udo, and Jdo

Descriptive Analysis and Residual Diagnostics
Year: 2015
Layer: 3rd Layer
Measure: Mean of Values Mean of Residuals
Direction: Destination: Destination:
Partner City: CP: OCP: HC: OHC: All: CP: OCP: HC: OHC: All:
Column: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Γdo:

CP: 1.7238 1.6339 1.8185 1.4460 1.5078 0.0614 0.1389 0.0400 −0.0133 0.0000
Origin: HC: −1.3508 −1.2595 −1.3948 −1.2497 −1.2887 −0.0056 −0.0050 0.0050 −0.0010 0.0000

All: −1.1630 −1.2595 −0.9480 −1.2497 −0.9729 0.0000 −0.0050 0.0000 −0.0010 0.0000

Λdo:
CP: −0.1908 0.0109 −0.0382 −0.1009 −0.0884 −0.3431 −0.0162 0.0532 −0.0069 0.0000

Origin: HC: 0.0563 0.0771 −0.0049 0.0117 0.0154 −0.0103 0.0043 −0.0067 0.0022 0.0000

All: 0.0707 0.0771 −0.0051 0.0117 0.0037 0.0000 0.0043 0.0000 0.0022 0.0000

−Tdo:
CP: 3.4287 −0.5107 0.6856 −0.6401 −0.4254 −0.0983 0.0832 0.0555 −0.0129 0.0000

Origin: HC: 0.9328 −0.5530 0.8410 −0.5182 −0.1560 0.0465 −0.0113 −0.0043 0.0022 0.0000

All: −0.3168 −0.5530 −0.1693 −0.5182 −0.1864 0.0000 −0.0113 0.0000 0.0022 0.0000

Udo:
CP: 0.0458 0.5782 −0.0857 −0.3936 −0.3136 0.9125 1.4878 0.2107 −0.1050 0.0000

Origin: HC: −0.5959 −0.6736 −0.1587 −0.2384 −0.2717 0.0471 −0.0745 0.0058 0.0089 0.0000

All: −0.6171 −0.6736 −0.2319 −0.2384 −0.2764 0.0000 −0.0745 0.0000 0.0089 0.0000

Jdo:
CP: 27.5459 26.7781 22.3843 22.0192 22.2598 0.7145 0.8391 0.1457 −0.0651 0.0000

Origin: HC: 25.568 25.2072 21.5749 21.7256 22.1317 −0.0203 −0.0346 0.0001 0.0065 0.0000

All: 25.3227 25.2072 21.7308 21.7256 22.1461 0.0000 −0.0346 0.0000 0.0065 0.0000
Notes: Abbreviations are defined as follows: central place (CP), other central place (OCP), hinterland city (HC) and
other hinterland city (OHC). Similar results are obtained for the 1995, 2000, 2005, and 2010 waves of the National Com-
modity Flow Survey. We report these additional results in the Online Appendix.

sectors s ∈ Sdo that exist in origin o and export to destination d. Summing γ̄do across all origins

o then yields γ̄d =
∑

o γ̄do, which is the average origin×sector-specific fixed effect across all

sectors s ∈ Sdo and all origins o ∈ Rd from which destination d imports. Intuitively, we expect

Γdo to be large if most of the sectors s ∈ Sdo across which origin o exports to destination d are

large and therefore characterized by sizable origin×sector-specific fixed effects γos.

Comparing the average values of Γdo for central places and hinterland cities as origin cities

in Column (5) of Table 10, we find indeed that central places have on average much larger

origin×sector-specific fixed effects γos than the hinterland cities in our sample. We attribute

this result to differences in city size and industry diversity, which is why we find no difference in

the averages of the residuals Γdo − Γ̂do from Column (10) of Table 10, which have been purged

from size effects by controlling for the complete set of monadic origin-specific fixed effects.

Because monadic origin-specific fixed effects can not fully account for the city-pair variation

in the dyadic gravity component Γdo, we find that the average residuals Γdo − Γ̂do in Table 10
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differ across the Columns (6)-(9), when conditioning on different sets of destination cities. The

average residual of Γdo for exports from central places is positive if the destination city is an

associated hinterland city (cf. Column (8) of Table 10) and negative if the destination city is a

hinterland city belonging to another central place (cf. Column (9) of Table 10).

The positive and significant coefficient on our central place dummies EXP_CP_HC_lLYdo ∀ l =

2, . . . , 5 from Column (2) of Table 9 picks up this variation, which in view of Figure 3 can be

rationalised as follows: Central places serve their nearby hinterland cities across a wider range of

sectors than the more distant hinterland cities of other central places. Because this difference in

industry diversity is systematically correlated with the average size of the origin×sector-specific

fixed effects γos in the different sets of exporting sectors Sdo, we find that exports from central

places to their hinterlands are characterized by larger residuals of Γdo.

There are two potential explanations for why footloose industries have larger origin×sector-

specific fixed effects γos: As theoretically shown by Anderson and van Wincoop (2004, pp.

706-708) the origin×sector-specific fixed effects γos depend on the value of sectoral output Yos

in origin city o and on the outward multilateral resistance term Πos for sector s in origin city o,

which captures origin city o’s average cost of exporting to all its partner cities.33 If industries

are of the same size as in Hsu (2012) or at least not too different in terms of total expenditure,

we would expect that footloose industries, which can only be found in a small number of origin

cities, are characterized by a relatively larger value of sectoral output Yos per origin city o than

their ubiquitously distributed counterparts.

Note that the term Λdo = λ̄do−λ̄d is analogously defined to Γdo, with the only difference that

λ̄do now is an average over all destination×sector-specific fixed effects λds. To rationalise the

positive and significant coefficients on the central place dummies in Column (3) of Table 9 we

rely again on our residual diagnostics, which for Λdo are summarised in Table 10. Most notably,

we find that imports of hinterland cities from their central place are associated with a positive

average residual Λdo − Λ̂do, that is much larger than the average residuals for the imports from

other hinterland cities or from central places to which the respective hinterland city does not

belong. Aggregate imports from these alternative sources differ in their sectoral composition

(i.e. in the share of footloose industries) from the aggregate imports that originate from the

hinterland city’s central place. These compositional differences follow directly from Christaller’s

(1933) hierarchy principle for industries, according to which small hinterland cities only host a

limited set of ubiquitous industries, and from Figure 3, according to which footloose industries
33Note that the origin×sector-specific fixed effects γos from Eq. (3) can be rewritten as γos = ln Yos + (σs −

1) ln Πos in which Yos is the value of sectoral output and Π1−σs
os =

∑
d
(τdos/Pds)1−σs Xds/Ys is the outward

multilateral resistance term with Ys =
∑

o

∑
d

xdos as the value of total sectoral output.
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have a substantially lower probability of serving the far away hinterland cities of other central

places. Because these differences in industry composition are systematically correlated with the

average size of the destination×sector-specific fixed effects λos in the different sets of importing

sectors Sdo, we find that imports from central places are characterized by larger residuals of

Λdo.

Relying again on Anderson and van Wincoop (2004), it can be shown that the destina-

tion×sector-specific fixed effects λds depend on the expenditure Xds of destination d, on com-

modities from sector s and on the inward multilateral resistance term Pds.34 The inward mul-

tilateral resistance term thereby captures the average resistance that destination d faces when

importing commodities from sector s from all possible suppliers. Intuitively, we would expect

that the flow of goods from origin o to destination d is increased by high trade costs from other

suppliers to destination d. Except for its own central place the typical hinterland city has only a

few other rather costly options (i.e. other central places) to import goods from footloose indus-

tries. We therefore expect the inward multilateral resistance terms Pds for footloose industries

to be comparably high, which would explain the positive average residuals of Λdo for imports of

hinterland cities from their central places in Table 10 and the positive correlation between the

Λdo component and our central place dummies EXP_CP_HC_lLYdo ∀ l = 2, . . . in Column (3)

of Table 9.

We proceed by discussing the role of distance-related (inverse) trade costs −Tdo. The term

Tdo thereby is defined as the difference between the average sectoral trade costs t̄do in all sectors

across which origin o exports to destination d and the average sectoral trade cost t̄d of destination

d vis-à-vis all origins. Average bilateral trade costs Tdo therefore are low if all sectors across

which destination d imports from origin o are characterized by relatively low sectoral trade costs

(σs − 1) ln τdos, whereas the trade costs across all sectors in which destination d imports from

origins other than o are relatively high. Because the association of hinterland cities with central

places is based on distance, we find that values of −Tdo in the Columns (1) to (4) of Table 10

mirror the geographical distribution of central places and their hinterlands. In particular lower-

layer hinterland cities are located in close proximity to their respective central places, which is

reflected by large average values of −Tdo. Most of this variation can be explained by regressing

−Tdo on the trade cost vector from Eq. (8). Residuals from this regression are positive, when

conditioning on exports from central places to their respective hinterlands at the 3rd, 4th, and

5th layer, which explains the positive correlations in Column (4) of Table 9. To understand why
34Note that the destination×sector-specific fixed effects λds from Eq. (3) can be rewritten as λds =

ln Xds + (σs − 1) ln Pds in which Xds is expenditure in destination d on commodities from sector s and
P 1−σs

ds =
∑

o
(τdos/Πos)1−σs Yos/Ys is the inward multilateral resistance term.

39



the trade cost −Tdo component is not perfectly explained by the trade cost vector from Eq. (8)

it is important to remember that −Tdo also reflects the sectoral composition of aggregate trade

flows. Footloose industries account for a relatively larger share in the aggregate exports from

central places to their associated hinterland cities and are expected to have lower sectoral trade

costs (σs − 1) ln τdos (cf. Fujita et al., 1999a).

The component Udo aggregates the sectoral residuals udos in a similar fashion as Tdo ag-

gregates the sectoral trade costs (σs − 1) ln τdos. The sectoral residuals udos thereby can be

interpreted to capture all unobservable sectoral trade costs, that are not included in the trade

cost vector from Eq. (8). Comparing the levels of Udo in Table 10 for hinterland cities that

import from their central place against the levels of Udo for hinterland cities that import from

other hinterland cities or from another central place, we find a systematic positive difference

in levels, which suggests that hinterlands have lower unobservable trade costs when import-

ing from their central place. Reassuringly, we find the exact same pattern in the residuals

from regressing Udo on the trade cost vector in Eq. (8) and the complete set of origin- and

destination-specific fixed effects. Lower unobservable trade costs between central places and

their hinterlands thereby can be the result of the systematic selection of footloose industries

into central places as predicted by Fujita et al. (1999a) or a consequence of multi-polar trade-

creating network structures as documented by Wrona (2018). Irrespective of what exactly is

responsible for the lower unobservable trade costs between central places and their hinterlands,

we find that Udo is responsible for the largest contribution to the upward bias in log aggregate

exports ln Xdo from central places to their hinterlands.

Finally, it is worth noting that Redding and Weinstein (2019) also identify a Jensen’s inequal-

ity correction term Jdo, which accounts for the fact that ln Xdo is defined as the log of the sum of

sectoral trade flows xdos and not as the sum of log sectoral trade flows ln xdos, which according to

Eq. (3) can be characterized through log-linear sectoral gravity equations. To understand why

Jdo is positively correlated with our central place dummies EXP_CP_HC_lLYdo ∀ l = 2, . . . 5

from Column (5) of Table 9, it is helpful to recall the definition of Jdo = ln Xd + ȳd − z̄do from Eq.

(5), in which ȳd = 1
Rd

∑
o∈Rd

1
Sdo

∑
s∈Sdo

Ydos is the average sectoral import share of destination

city d for imports from all origin cities o ∈ Rd exporting to this city, and z̄do = 1
Sdo

∑
s∈Sdo

Zdos

is the average sectoral import share of destination city d for imports from origin city o.

For a city pair that consists of a central place as origin city o and an associated hinterland

city as destination city d, we would expect the destination city d to import across a wide range

of industries from the origin city o. Splitting up aggregate imports from origin city o across a

wide range of sectors mechanically results in smaller values of Zdos. At the same time, we would
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expect that in this constellation Ydos takes rather large values across all footloose industries in

which destination city d mainly (if not exclusively) imports from its central place o. In Table

10 we find that the values of Jdo and its residuals for importing hinterland cities are indeed

larger when the origin city is the hinterland city’s central place and not another hinterland

city or another central place. Our central place dummies EXP_CP_HC_lLYdo ∀ l = 2, . . . , 5

from Column (5) of Table 9 pick up this variation, which is responsible for a non-negligible

contribution to the overall effect of the central place dummies on ln Xdo.

Summing up the evidence obtained from the decomposition exercises of Hillberry and Hum-

mels (2008), we find overwhelming support for the importance of Christaller’s (1933) hierarchy

principle for industries as an explanation for why aggregate exports from central places to their

hinterlands are systematically upward biased. Complementary evidence is obtained from Red-

ding and Weinstein’s (2019) structural decomposition approach, which shows how the system-

atic selection of (footloose) industries into central places according Christaller’s (1933) hierarchy

principle for industries is reflected in the shape of various aggregate gravity components, which

contribute at varying degrees to the centrality bias in aggregate gravity estimations.

6 Centrality Bias in US Inter-city Trade

Having identified and explained the centrality bias in Japan’s inter-city trade, we now demon-

strate that comparable results can also be found for the US based on the 2017 Commodity Flow

Survey (CFS) Public Use File (cf. United States Census Bureau, 2017a).

Figure 8: US Metropolitan Areas in 2017

Note: The figure is based on the CFS Metropolitan Areas (MAs) defined by the 2017 US CFS, and
depicts 69 continental MAs. Each blank polygon represents the “remainder” of a given state consisting
of the state area excluding the area occupied by any MA.
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As potential central places we focus on 69 CFS Metropolitan Areas (MAs) on the continental

US, defined by the 2017 US CFS. In Figure 8, we use darker colors to distinguish these MAs

according to their population size, which we depict together with “the remainders” of their

respective sates (if applicable).

We begin by showing that the distribution of 3-digit to 6-digit manufacturing industries

in the North American Industry Classification System (NAICS) among the 69 MAs obeys

Christaller’s (1933) hierarchy principle. To this end, we replicate the hierarchy test from Section

2.1 based on the 2017 County Business Patterns Series (cf. United States Census Bureau,

2017b). Figure 9 shows that the observed hierarchy share H at low levels of aggregation is

Figure 9: Testing for Christaller’s (1933) Hierarchy Principle for Manufacturing Industries
in the US
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Note: Figure 9 is based on the County Business Patterns Series (cf. United States Census Bureau,
2017b). The figure plots the observed versus the counterfactual average hierarchy shares for different
levels of disaggregation in the North American Industry Classification System (NAICS) with the number
of different industries in parenthesis.

much higher than the maximum hierarchy share Ĥ selected from 1, 000 counterfactual samples

with a randomized allocation of industries across cities. We interpret this result as suggestive

evidence in favor of Christaller’s (1933) hierarchy principle for industries, and therefore expect

to find a centrality bias in the US CFS.

Treating the 69 MAs as cities, we can apply the algorithm of Mori et al. (2020a), described

in Subsection 4.1, to identify 2nd- and 3nd-layer central places together with their associated

hinterlands. The ranking of cities in terms of population size thereby is based on county-
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level population data (cf. United States Census Bureau, 2017c), which we also use to compute

bilateral distances between cities as well as between cities and the remainder of states as a

population-weighted harmonic means of country-pair-specific real-road distances (cf. Head and

Mayer, 2009). Figure 10 depicts 2nd- and 3rd-layer central places (labeled and identified through

Figure 10: 2nd- and 3rd-layer Central Places and their Hinterlands in the US

(a) 2nd-layer Voronoi Partition (b) 3rd-layer Voronoi Partition

Note: Figure 10 depicts 2nd- and 3rd-layer Voronoi 3-partitions for central places and associated hin-
terlands in the US based on the 2017 Commodity Flow Survey (CFS).

arrows) together with their economic hinterlands (sharing the same color) based on Voronoi 3-

partitions. Each partition cell consists of one of MAs as the central place and its hinterland

comprised of smaller MAs and the surrounding “remainders” of states.

Table 11: Central Places, Hinterlands, and the Centrality Bias in the US CFS

Dependent variable: Exports from origin o to destination d

Year: 2017
Model: OLS-FE
Specification: (1) (2) (3) (4) (5) (6) (7) (8)
CP → HC fixed effects:
Exports CP → HC (2nd layer) −0.0272 −0.1032 −0.1169 −0.1179

(0.1336) (0.1376) (0.1375) (0.1375)
Exports CP → HC (3rd layer) 0.2599∗∗ 0.2823∗∗ 0.0457 0.0207

(0.1198) (0.1235) (0.1321) (0.1326)
Exports CP → HC (4th layer) 0.6384∗∗∗ 0.6328∗∗∗ 0.4730∗∗∗

(0.1172) (0.1262) (0.1482)
Exports CP → HC (5th layer) 0.5751∗∗∗ 0.3014∗∗

(0.1197) (0.1466)
Controls:
ln Distancedo −0.9932∗∗∗ −0.9936∗∗∗ −0.9874∗∗∗ −0.9791∗∗∗ −0.9835∗∗∗ −0.9883∗∗∗ −0.9798∗∗∗ −0.9788∗∗∗

(0.0166) (0.0167) (0.0168) (0.0168) (0.0167) (0.0169) (0.0170) (0.0170)
Home bias 1.6690∗∗∗ 1.6678∗∗∗ 1.6876∗∗∗ 1.7138∗∗∗ 1.7007∗∗∗ 1.6843∗∗∗ 1.7112∗∗∗ 1.7147∗∗∗

(0.1151) (0.1152) (0.1154) (0.1152) (0.1152) (0.1155) (0.1155) (0.1155)

Fixed effects:
Origin (o): 3 3 3 3 3 3 3 3

Destination (d): 3 3 3 3 3 3 3 3

Summary statistics:
Number of observations: 13, 082 13, 082 13, 082 13, 082 13, 082 13, 082 13, 082 13, 082
R2: 0.7280 0.7280 0.7281 0.7287 0.7285 0.7282 0.7287 0.7288

Notes: Robust standard errors; significance: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

Using the identified central places and associated hinterland cities, we construct 2nd-, 3rd,
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4th, and 5th-layer central place dummies as in Subsection 4.2 to estimate the centrality bias in

the aggregate trade between central places and their associated hinterlands. We thereby focus

on aggregate manufacturing trade from the 2017 US CFS, excluding all international exports

and all shipments of “Waste and Scrap”. Table 11 reports positive and significant estimates of

the centrality bias at the 3rd, 4th, and 5th, that are comparable in their magnitude to the results

from Japan’s CFS reported in Table 3.

In summary our evidence from the US suggests that the upward bias in the exports from

central places to their associated hinterlands that we have identified based on Japan’s CFS

in Subsection 4.2 is not a Japan-specific phenomena. To account for the aggregation bias that

results from the summation across city-specific sets of industries, that follow Christaller’s (1933)

hierarchy principle for industries, we therefore propose to include a set of appropriately defined

central place dummies that effectively control for the centrality bias in intra-national trade.

7 Conclusion

In this paper we have shown that aggregate shipments from central places to smaller cities in

their economic hinterland are 40% to 100% larger than predicted by the gravity equation for

aggregate inter-city trade, and that no such effect can be found in theory-consistent sectoral

gravity estimations. We argue that the centrality bias in inter-city trade is an artifact of aggre-

gating across city-specific sets of hierarchically distributed industries, which obey Christaller’s

(1933) hierarchy principle for industries. According to this principle we expect central places

to possess a wider range of industries, including a set of ubiquitous industries which can also

be found in smaller cities. Aggregation across industries results in a systematic upward bias

because industries that can only be found in central places are more likely to serve cities in the

central place’s hinterland.

By adopting the theory-consistent aggregation approach of Redding and Weinstein (2019),

we have shown that the structural error term that results from the aggregation of sectoral trade

flows systematically varies along a specific spatial dimension that follows from the hierarchical

distribution of industries into central places and hinterlands. To account for this systematic

variation in aggregate gravity residuals, we propose to include a set of straightforwardly defined

central place dummies. A theory-consistent decomposition of aggregate trade flows reveals that

these central place dummies consistently capture the non-negligible heterogeneity in sector-

specific origin and destination fixed effects as well as the substantial heterogeneity in sector-

specific observed and unobserved bilateral trade costs that is specific to exports from central

places to their hinterlands. Conveniently, these fixed effects also control for the quantitatively
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important central-place-to-hinterland-specific variation in an Jensen’s inequality correction, that

accounts for the fact that the log of aggregate trade is defined as the log of the sum of sectoral

trade flows and not as the sum of log sectoral trade flows.

To capture the key predictions of central place theory (cf. Fujita et al., 1999a; Tabuchi and

Thisse, 2011; Hsu, 2012), we have focused in our analysis on trade between cities in Japan and

the US, which both feature a hierarchical industry distribution that closely follows Christaller’s

(1933) hierarchy principle for industries. In accordance with this principle we have found that

larger and more centrally located cities disproportionately export at the extensive industry

margin to smaller cities in their economic hinterlands. Hummels and Klenow (2005) have

shown that larger economies export more in absolute terms than smaller economies, and that

the extensive goods margin accounts for 62% of the greater exports of larger economies. To what

extent the distribution of industries between countries also follows Christaller’s (1933) hierarchy

principle for industries, and whether industries that can only be found in larger economies are

also more likely to serve smaller countries in close proximity are intriguing questions that we

leave for future research.
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8 Appendix

8.1 Aggregation

From the consumption index specified in Eq. (2), the optimal expenditure on variety ωos can

be derived as

pdos(ωos)qdos(ωos) =
[

pdos(ωos)/ϕdos

Pds

]1−σs

Xds, (17)

with pdos(ωos) as the price of variety ωos and

Pds =

 ∑
o∈Rds

∫
ωos∈Ωos

[
pdos(ωos)

ϕdos

]1−σs

dωos


1

1−σs

(18)

as the corresponding ideal price index.

For a given number of firms Mos in each origin o monopolistic competition results in prices

pdos = pdos(ωos) = σs

σs − 1
τdoscos (19)
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being chosen as constant sector-specific mark-ups over marginal production costs cos > 0 times

iceberg-type trade costs τdos ≥ 1.

Substituting the price pdos from Eq. (19) back into Eq. (17) allows us to solve for total

expenditure on goods imported from origin o

xdos = Mospdosqdos =
(

σs

σs − 1
τdoscos/ϕdos

Pds

)1−σs

Xds, (20)

with

Pds =

 ∑
o∈Rds

Mos

(
σs

σs − 1
τdoscos

ϕdos

)1−σs

dωos

 1
1−σs

(21)

as the corresponding sectoral price index. We log-linearize the multiplicative sectoral gravity

equation in Eq. (20) to obtain Eq. (3).

In order to derive the aggregate gravity equation from Eq. (4) we begin by rewriting

destination d’s aggregate imports Xdo from origin o. Thereby we express Xdo as the sum over

xdos across all importing sectors s ∈ Sdo, writing xdos as the product of xdos/Xd and Xd, with

xdos/Xd being the share of sector s’ imports from origin o in destinations d’s total expenditure

Xd =
∑

j∈Rd

∑
r∈Sdj

xdjr

Xdo =
∑

s∈Sdo

xdos =
∑

s∈Sdo

xdos

Xd
Xd =

( ∑
s∈Sdo

xdos∑
j∈Rd

∑
r∈Sdj

xdjr

)
Xd. (22)

In the presence of zero sectoral trade we thereby sum over all sectors s ∈ Sdo ∈ S across which

destination d imports from origin o and all origins o ∈ Rd ∈ R from which destination d imports

at least in a single sector.

We proceed by defining Zdos, which is the share of destination d’s sectoral imports xdos from

origin o in destination d’s total imports from origin o

Zdos ≡ xdos∑
s∈Sdo

xdos
⇒

∑
s∈Sdo

xdos = Xdo = xdos

Zdos
. (23)

Since for all sectors s ∈ Sdo the ratio xdos/Zdos must be equal to the sum Xdo =
∑

r∈Sdo
xdos,

we can take logs before averaging both sides of the above equation to obtain

ln

 ∑
s∈Sdo

xdos

 =

 1
Sdo

∑
s∈Sdo

ln
(

xdos

Zdos

) , (24)

in which Sdo = |Sdo| is the number of sectors across which destination d imports from origin o.

Let us now define Ydos, which is the share of destination d’s sectoral imports xdos from origin
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o in destination d’s total imports

Ydos ≡ xdos∑
j∈Rd

∑
r∈Sdj

xdjr
⇒

∑
j∈Rd

∑
r∈Sdj

xdjr = Xd = xdos

Ydos
. (25)

Since for all sectors s ∈ Sdo and all origins o ∈ Rd the ratio xdos/Ydos must be equal to the sum

Xd =
∑

j∈Rd

∑
r∈Sdj

xdjr, we can take logs before averaging both sides of the above equation to

obtain

ln

∑
j∈Rd

∑
r∈Sdj

xdjr

 =

 1
Rd

∑
o∈Rd

1
Sdo

∑
s∈Sdo

ln
(

xdos

Ydos

) , (26)

in which Sdo = |Sdo| is the number of sectors across which destination d imports from origin o

and Rd = |Rd| is the number of origins o that export to destination d.

Finally, we can take logs of Eq. (22) to get ln Xdo = ln(
∑

s∈Sdo
xdos)−ln(

∑
j∈Rd

∑
r∈Sdj

xdjr)+

ln Xd, in which we can substitute from Eqs. (24) and (26) to derive

ln Xdo =

 1
Sdo

∑
s∈Sdo

ln
(

xdos

Zdos

)−

 1
Rd

∑
o∈Rd

1
Sdo

∑
s∈Sdo

ln
(

xdos

Ydos

)+ ln Xd. (27)

Substituting the sectoral gravity equation from Eq. (3) into the above expression then allows

us to solve for

ln Xdo = Γdo + Λdo − Tdo + Jdo + Udo, (28)

which can be rewritten to obtain the aggregate gravity equation in Eq. (4) with the components

Γdo, Λdo, Tdo, Jdo and Udo being defined in the text. This completes the proof.
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