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Abstract

This study investigates optimal minimax rates of specification testing

for linear and non-linear instrumental variable regression models. The rate

implies that the uniform power of tests reduces when the dimension of instru-

ments is large. The test constructed by non-parametric kernel techniques

can be rate optimal when bandwidths satisfy two order conditions that de-

pend on the dimensions of instruments and the smoothness of alternatives.

Since bandwidths are often chosen in a data-dependent way in empirical

studies, the rate optimality of the test with data-driven bandwidths are in-

vestigated. Bandwidths selected by the least squares cross-validation can

satisfy conditions for the rate optimality.

Keywords: optimal minimax rate; specification test; instrumental variable re-

gression; non-parametric kernel method; bandwidth selection

JEL Classification: C12; C14

4804 Words

1 Introduction

In the context of specification tests for the functional form of regression models,

the minimax approach can be used to investigate uniform power against a set of

alternatives (Ingster, 1993). In this approach, a set of alternatives can be defined

to approach the null model at a specific rate. The maximum rate at which a test

can uniformly detect any alternatives in this set is called the optimal minimax rate.

Although the investigation of uniform power provides a deeper understanding of

specification testing, research in this area is limited.
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The optimal minimax rates for regression models have been investigated by

Guerre and Lavergne (2002). Recently, a test based on the commonly used non-

parametric K-nearest neighbors technique was shown to be rate optimal (H. Li, Li,

& Liu, 2016). Hitomi, Iwasawa, and Nishiyama (2020) showed that a test based

on the distance between non-parametric and parametric variance estimators is

rate optimal against a set of non-smooth alternatives. However, optimal minimax

rates of specification testing for other models, such as instrumental variable (IV)

regression models, and rate optimality of other types of tests, such as kernel-type

tests, have not been investigated.1

This study investigates the optimal minimax rates of specification testing for

IV regression models. We find that the optimal minimax rate is n−2(s+k)/[lz+4(s+k)],

where n is the sample size, s + k represents the smoothness of alternatives, as

explained later in detail, and lz is the dimension of instrument z, when the set of

alternatives is smooth such that s + k ≥ lz/4. The rate implies that the uniform

power of tests reduces when the dimension of instruments is large.

We adapt the kernel-type test proposed by Zheng (1996) for IV regression mod-

els. This test is based on the non-parametric kernel estimator for the conditional

mean of the error term given instruments. The proposed test weakly converges

to the standard normal distribution under the null hypothesis and is rate opti-

mal when bandwidth h for the kernel satisfies hmin{qk,k+qz}/2n
s+k

lz+4(s+k) = O(1) and

h−1n
−2

lz+4(s+k) = O(1), where the density of instruments is qz-times continuously

differentiable and the qkth-order kernel is used.

In practice, bandwidths are often chosen by using data-driven methods such

1In the adaptive framework, in which the smoothness of the classes of alternatives is unknown,
Horowitz and Spokoiny (2001) showed that their test based on non-parametric kernel techniques
is rate optimal. This point will be discussed later in detail.
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as the least squares cross-validation. In the non-parametric kernel estimator for

the regression function, when the original bandwidth is replaced with one selected

by a data-driven method, asymptotic normality still holds if some additional as-

sumptions are made (see Racine & Li, 2004). However, it is not clear whether the

rate optimality of the kernel-type test remains the same when data-driven band-

widths are used. Thus, we investigate the rate optimality of the kernel-type test

when data-driven bandwidths ĥ are used instead of h. We find that some addi-

tional assumptions regarding the kernel lead to parallel conditions on bandwidths

that, in turn, ensure that the test is rate optimal. Furthermore, we show that

the conditions are satisfied by bandwidths selected by the cross-validation when

4(s+ k) ≤ lz +8 and min{qk, k+ qz}[lz +4(s+ k)] ≥ 2(lz +4)(s+ k). This implies

that bandwidths selected by the least squares cross-validation method can ensure

that the test is rate optimal, although the procedure is designed for estimation

rather than testing. In this sense, this study complements the results from Gao

and Gijbels (2008), in which a bandwidth selection method that maximizes the

power against a Pitman-type local alternative is proposed.

Specification tests for IV regression models were first developed by Donald,

Imbens, and Newey (2003) and Tripathi and Kitamura (2003).2 Tripathi and

Kitamura (2003) proposed a smoothed empirical likelihood ratio-based test. Fol-

lowing Härdle and Mammen (1993) and Aı̈t-Sahalia, Bickel, and Stoker (2001),

Holzmann (2008) proposed a test for IV regression models using the squared dis-

tance between the parametric model and its non-parametric kernel estimates. The

test proposed by Horowitz (2006) takes a form resembling the ICM test. Gørgens

2For a recent review of the development of specification testing, see González-Manteiga and
Crujeiras (2013).
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and Würtz (2012) proposed another type of test based on a sequence of Lagrange

multiplier (LM) statistics. However, optimal minimax rates for IV regression mod-

els in a framework comparable with Guerre and Lavergne (2002) have not been

investigated to date.

Specification tests that use a non-parametric kernel estimator are considered

by Härdle and Mammen (1993), Zheng (1996), and Horowitz and Spokoiny (2001),

among others. Horowitz and Spokoiny (2001) proposed a test that is adaptive to

the unknown smoothness of the set of alternatives and showed the rate optimality

of the test in the adaptive framework. The authors consider a family of test statis-

tics, say, {Tn(h), h ∈ Hn}, where Hn represents finite sets of bandwidth values,

and the test statistic is defined by T = maxh∈Hn Tn(h). The adaptiveness and the

rate optimality of their test result from its use of the set of bandwidths. The choice

of the set is important also for empirical studies, since the larger the set is, more

intensive the computation become. However, the bandwidth selection approaches

commonly used in applied research, such as the least squares cross-validation, find

a single bandwidth.3 Thus, from the practical point of view, characteristics of

the kernel-type test with a single bandwidth is of great interest. Nonetheless,

the rate optimality of these tests is yet to be formally validated in the literature.

To the best of our knowledge, this is the first study that considers the optimal

minimax rate of the kernel-type test with data-driven bandwidths. It is notable

that the rate optimality of tests with data-driven bandwidths is not trivial, even

if the optimality of tests with a deterministic sequence of bandwidths has been

investigated. The core contribution of this paper is to show that the test can be

3To the best of our knowledge, how to select an appropriate set of bandwidth values Hn is
an open question.
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rate optimal when it is evaluated with bandwidths selected using the least squares

cross-validation method.

The remainder of this paper is organized as follows. Section 2 introduces the

model and testing framework. Section 3 shows the optimal minimax rate for the

IV regression model. Section 4 proposes a kernel smoothing test and exemplifies

its rate optimality under deterministic and data-driven bandwidths. Section 5

reports simulation results that demonstrate the test’s encouraging finite sample

performance. Following Horowitz (2006), the size and power properties of the

proposed test are compared with those of various existing tests. Section 6 concludes

the paper and discusses future research avenues.

2 Framework

Let (Y,X, Z) ∈ R×Rlx×Rlz be random variables. We consider parametric models

Y = g(X, θ) + u, (1)

where g(X, θ) is a known function defined up to parameters θ ∈ Θ, Θ is a compact

subset of Rlθ with lθ ≤ lz, and u is an error term. The hypotheses to be tested are

H0 : E(u|Z) = 0.

The null hypothesis is equivalent to saying that there exists θ0 ∈ Θ that satisfies

E(Y |Z) = E[g(X, θ0)|Z] almost surely (a.s.). The null hypothesis considers regres-

sion models when Z = X, and instrumental regression models when Z includes a

subset of X, along with some other exogenous variables.
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We examine the asymptotic power properties of testing by employing the min-

imax approach of Ingster (1993), in which the alternative hypothesis is a set of

functions belonging to a smoothness class. Let ML,s,k be a class of functions

defined on a compact set Ω, such that:

ML,s,k =

{
m :

k∑

j=0

sup
|β|=j

sup
x∈Ω

∥Dβm(x)∥+ sup
|β|=k

sup
x,y∈Ω

∥Dβm(x)−Dβm(y)∥
∥x− y∥s ≤ L

}
,

This applies for some smoothness index s ∈ (0, 1], a non-negative integer k, and

a positive constant L, where ∥ · ∥ denotes the Euclidean norm. Dβm(x) indicates

|β|-times partial derivatives of m(·). Then, the alternative hypothesis is defined

as follows:

Hn,1 : M(ρn) =

{
m(·) ∈ ML,s,k : inf

θ∈Θ
E
{
[m(Z)− E[g(X, θ)|Z]]2

}
≥ ρ2n.

}
,

where m(Z) ≡ E(Y |Z). The minimax approach finds the fastest rate at which ρn

approaches 0, while assuring the uniform detection of alternatives in M(ρn). The

alternatives considered in this study are parallel to those in Guerre and Lavergne

(2002).

The following notations are used throughout the paper. The true parameter

θ0 of the parametric model is defined such that m(Z) = E[g(X, θ0)|Z]. We denote

δθ(Z) ≡ m(Z)−E[g(X, θ)|Z] and ω ≡ Y −m(Z), where E(ω|Z) = 0 by definition.

The variance of u is denoted by σ2(z) ≡ E(u2|Z = z). For any
√
n-consistent

estimator θ̂ of θ, residuals of the parametric model are denoted by û = Y −g(X, θ̂).
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3 Optimal Minimax Rate

We list the assumptions to establish the optimal minimax rate for IV regression

models.

Assumption 1. {Yi, Xi, Zi}ni=1 are a random sample on (Y,X, Z) ∈ R×Rlx×Rlz ,

where lx and lz are finite. E(ω2|Z = z) is continuously differentiable and bounded

away from zero. A positive constant M < ∞ exists such that E (|ω|4|Z) < M

almost surely.

Assumption 2. The density of Z, denoted by f(·) : lz → , has compact

support (without loss of generality [0, 1]lz), satisfies 0 < f ≤ f(z) ≤ f < ∞ for

any z ∈ [0, 1]lz , and is qz-times continuously differentiable on (0, 1)lz , where qz > 1.

Assumption 3. For each x, g(x, θ) is twice continuously differentiable with respect

to θ.

Assumption 4. For each θ ∈ Θ, E[g(X, θ)4] is bounded from above.

Assumption 5. E
[
supθ∈Θ ∥ ∂

∂θg(X, θ)∥2
]
is bounded from above.

Assumption 6. E
[
supθ∈Θ ∥ ∂

∂θ∂θ′ g(X, θ)∥4
]
is bounded from above.

Assumption 7. For each θ ∈ Θ, E[g(X, θ)2|Z] < ∞ a.s.

Assumption 8. For each θ ∈ Θ, E[g(X, θ)|Z = z] ∈ MLM,s,k for some s, k, and

LM ≤ L.

Assumption 9. For each θ ∈ Θ, Gθ ≡ ∂
∂θE[g(X, θ)|Z = z] is Lipschitz continuous

with respect to z with support on Z and E(GθG′
θ) is non-singular.
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Assumption 10. Under the null hypothesis, we have a
√
n-consistent estimator

θ̂n of θ0.

Assumption 11. (i) For each m(·) ∈ ML,s,k, there exists a unique pseudo-true

value θ∗m with respect to θ̂.

(ii)
√
n(θ̂ − θ∗m) = Op(1) uniformly with respect to m(·) ∈ ML,s,k

(iii) For each m(·) ∈ ML,s,k and a bounded function h(·, ·), a positive constant c

exists such that ∥θ∗m − θ0∥ ≤ c
∫
|E[h(·, z)δθ0(·)]|f(z)dz.

Assumptions 1 to 9 are standard in the literature (Guerre & Lavergne, 2002).

Exceptions are dominance conditions, that is, assumptions 5 and 6, which guar-

antee uniform convergence of 1
n

∑n
i=1

∥∥ ∂
∂θg(Xi, θ)

∥∥2 and 1
n

∑n
i=1

∥∥ ∂
∂θ∂θ′ g(Xi, θ)

∥∥2

together with Assumption 3. The dominance conditions do not exclude the pos-

sibility that g(·, θ) is linear, while linear models with unbounded regressors (e.g.,

normally distributed regressors) are excluded in Guerre and Lavergne (2002). The

dominance condition for the first derivative is a standard assumption required for

the asymptotic normality of commonly used estimators, such as the generalized

method of moments (GMM). Assumption 9 is a key assumption for the existence

of a parameter that satisfies infθ∈Θ E [δθ(Z)2].

Assumption 10 requires a
√
n-consistent parametric estimator θ̂n of θ0 under

the null hypothesis. Assumption 11 restricts the behavior of the estimator under

the alternative hypothesis. We illustrate these assumptions with two examples.

For notational simplicity, subscripts are omitted. That is, θ̂n = θ̂ and θ∗m = θ∗ in

all equations where no confusion will arise from this simplification.

Example 1. (GMM estimators) Note that the null model is defined in terms of
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conditional moment restrictions, while the objective function of the GMM estimator

is based on a finite number of unconditional moment restrictions. If g(·) is linear

in parameters and the dimensions of the parameter vector are equal to the dimen-

sions of the instrument, the GMM (two-stage least squares) estimator based on a

finite number of unconditional moment restrictions satisfies Assumption 10 under

regularity conditions (Hansen, 1982). When g(·) is non-linear, however, the GMM

estimator based on a finite number of unconditional moment restrictions may be

inconsistent (Dominguez & Lobato, 2004). The existence of the unique pseudo-

true value in Assumption 11 (i) implicitly demands the identification condition

that, for each m(·) ∈ ML,s,k, Qm(θ∗m) < Qm(θ) for all θ ∈ Θ\θ∗m, where Qm(θ)

is the GMM objective function in the population. The uniformity in Assumption

11 (ii) is essential for rate optimality, and a similar condition is assumed in pre-

vious studies of rate optimal testing (Guerre & Lavergne, 2002, Horowitz, 2006).

Further, the asymptotic behaviors of the GMM estimator in misspecified models

depend on the weighting matrix. For example, Hall and Inoue (2003) showed that

a fixed weighting matrix or a sequence of weighting matrices with
√
n-asymptotic

normality is required for the
√
n asymptotic normality of the GMM estimator.

To investigate Assumption 11 (iii), let us consider the first-order condition of the

minimization problem for the GMM estimator, which is H ′
θ∗m
WE(Zu∗) = 0, where

Hθ ≡ E[Z ∂
∂θ′ g(X, θ)], W is a lz × lz weighting matrix, and u∗ ≡ Y − g(X, θ∗m).

Applying the mean value theorem to the first-order condition yields

θ∗m − θ0 =
(
H ′

θ∗m
WHθ̃

)−1
H ′

θ∗m
WE [Zδθ0(Z)] , (2)

where θ̃ is a segment between θ∗m and θ0. Thus, given the existence of the inverse
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of H ′
θ∗m
WHθ̃, we obtain ∥θ∗m − θ0∥ ≤ c|E[h(Z, ·)δθ0(Z)]|, where h(Z, ·) = Z and

c = ∥(H ′
θ∗m
WHθ̃)

−1∥∥Hθ∗m∥∥W∥ < ∞.

Example 2. Estimators using a continuum of unconditional moment restrictions

such as those defined in Carrasco and Florens (2000) and Dominguez and Lobato

(2004) are known to be
√
n-consistent under the null hypothesis. Let us con-

sider the estimator described by Dominguez and Lobato (2004). The pseudo-true

value θ∗m of the estimator is defined as the minimizer θ ∈ Θ of
∫
E|[m(Z) −

g(X, θ)] {Z ≤ z}|2f(z)dx. The first-order condition of the minimization problem

is
∫
E {[m(Z)− g(X, θ∗m)] {Z ≤ z}}Hθ∗m(z)f(z)dx = 0, where we define Hθ(z) ≡

E[ ∂
∂θg(X, θ) {Z ≤ z}]. Applying the mean value theorem yields m(Z)−g(X, θ∗m) =

m(Z)− g(X, θ0)− ∂
∂θ′ g(X, θ̃)(θ∗m − θ0), where θ̃ is the segment between θ∗m and θ0,

which implies

(θ∗m − θ0) =

[∫
Hθ∗m(z)Hθ̃(z)

′f(z)dx

]−1 ∫
E[δθ0(Z) {Z ≤ z}]Hθ∗m(z)f(z)dx.

(3)

Thus, given the existence of the inverse of E[Hθ∗m(Z)Hθ̃(Z)
′], we obtain, for some

constant c > 0, ∥θ∗m − θ0∥ ≤ c
∫
|E[δθ0(Z)h(Z, z)]|f(z)dx, where h(Z, z) = {Z ≤

z}, since Hθ∗m(z) is bounded by Assumption 5.

The following Theorem shows the optimal minimax rate of specification testing

for IV regression models.

Theorem 1. (Optimal Minimax Rate) Suppose Assumptions from 1 to 11 hold.

If s+ k ≥ lz/4, the optimal minimax rate against Hn,1 is n−2(s+k)/[lz+4(s+k)].

To prove the optimal minimax rate, we first show that no test has more
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than trivial uniform power against M(ρ̃n) for any ρ̃n that approaches zero faster

than n−2(s+k)/[lz+4(s+k)]. This is called the lower bound. Then, we modify the

test proposed by Guerre and Lavergne (2002) for IV regression models and show

that the modified test has non-trivial uniform power against M(ρn), where ρn =

n−2(s+k)/[lz+4(s+k)]. The proof is given in Appendix A.

Theorem 1 shows that the optimal minimax rate n−2(s+k)/[lz+4(s+k)] depends

on the dimension of instruments and the smoothness of the set of alternatives.

The rate implies that the uniform power of tests reduces when the dimension of

instruments is large.

Theorem 1 considers the case of smooth alternatives (s+ k ≥ lz/4). When s+

k < lz/4, the lower bound is n−1/4, as shown in Appendix A. However, the optimal

minimax rate is unknown because no specification test is shown to have non-trivial

uniform power against such irregular non-smooth alternatives when evaluated with

n−1/4. Guerre and Lavergne (2002) argued that, against such irregular alternatives,

the optimal minimax rate may differ from n−1/4 and may depend on the smoothness

of alternative classes. Hitomi et al. (2020) showed the set of non-smooth functions

against which the optimal minimax rate is n−1/4. Their non-smooth alternative

consists of bounded functions, and no smoothness restrictions are imposed on those

derivatives.
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4 Smoothing-type Test

We adapt the test proposed by Zheng (1996) for IV regression models. The test

is based on the sample analogue of E[uE(u|Z)f(Z)]. We define

Tn =
1

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
ûiûj,

where K(·) is a product kernel function (e.g., a Gaussian kernel) that satisfies the

assumption below and h is the smoothing parameter (bandwidth).

Assumption 12. We have a qkth-order symmetric kernel k(·) with qk ≥ 2 that

satisfies
∫
k(u)du = 1,

∫
|k(u)|du < ∞, supu |k(u)| < ∞, and |uk(u)| → 0 if

u → ∞. The product kernel is denoted by K(·) = k(·)k(·) · · · k(·).

The asymptotic normality of the test statistic nhlz/2Tn under H0 is shown

in Theorem 1 of Zheng (1996) under the regression set up. This result can be

extended to the IV regression set up by making minor modifications to the proof.

We restate the asymptotic normality results under the current set up as follows:

Proposition 1. (Asymptotic Normality) Suppose Assumptions 1, 2, 3, 5, 6, 10,

and 12, hold. If h → 0 and nhlz → ∞, under the null hypothesis, nhlz/2Tn con-

verges weakly to N(0,Σ), where Σ ≡ 2
∫
K(u)2du

∫
[σ2(z)]2f(z)2dz. The asymp-

totic variance Σ can be consistently estimated by

Σ̂ =
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

û2
i û

2
j .

The test is one-sided. The null hypothesis is rejected when Σ̂−1/2nhlz/2Tn ≥ zα,

where zα is the 1− α quantile of the standard normal distribution.
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The null hypothesis will be rejected if there is misspecification when instru-

ments are valid. To see this, decompose the test using ûi = [Yi − g(Xi, θ∗)] +

[g(Xi, θ∗) − g(Xi, θ̂)]. The term that includes [Yi − g(Xi, θ∗)][Yj − g(Xj, θ∗)] con-

verges to the normal distribution under the null and diverges under the alternative.

The remaining terms include g(Xi, θ∗) − g(Xi, θ̂), which is asymptotically negli-

gible under Assumption 10 or 11 with differentiability of g(Xi, ·). The existence

of valid instruments is implicitly assumed. As long as instruments are valid, the

source of power comes from the L2-distance between m(Zi) and E[g(Xi, θ∗)|Zi] in

the first term. When instruments are invalid, however, biased parameter estimates

contaminate the source of power. In this case, the rejection of the null hypothesis

may be caused by invalid instruments, misspecification, or both.

The following theorem shows that the test is rate optimal when s+ k > lz/4.

Theorem 2. (Rate Optimality) Suppose Assumptions 1, 2, 3, 5, 7, 8, 11, and

12 hold. Let ρn = n−2(s+k)/[lz+4(s+k)], s + k ≥ lz/4, and the bandwidth h satisfies

nhlz → ∞, hmin{qk,k+qz}/2n
s+k

lz+4(s+k) = O(1), and h−1n
−2

lz+4(s+k) = O(1). For any

prescribed bound β ∈ (0, 1− α), a constant κ exists such that

sup
m∈M(κρn)

P (nhlz/2Σ̂−1/2Tn ≤ zα) ≤ β +O(1).

Theorem 2 shows the orders of bandwidths that ensure the rate optimality of

the proposed test. Unfortunately, however, they do not disclose the value of h, and

thus, in practice, the choice of the bandwidth may rely on data-driven methods.

Note that data-driven bandwidths are random variables. It is not trivial whether

Theorem 2 holds analogously for the test with a data-driven bandwidth ĥ.
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Let Tn(ĥ) be a version of Tn, in which h is replaced by ĥ; that is,

Tn(ĥ) =
1

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
K

(
Zj − Zi

ĥ

)
ûiûj. (4)

In the same manner, let Σ̂(ĥ) be a version of Σ̂, in which h is replaced by ĥ.

The following proposition shows that the results of Theorem 3 hold analo-

gously, even when h is replaced with a data-driven bandwidth ĥ. In the following

proposition, the s-th derivative of the kernel k is denoted by k(s).

Theorem 3. Suppose the Assumptions in Theorem 1, Proposition 1, and Theorem

2 hold. Let the kernel k be m-times differentiable. We assume that K̃(s)
(

Zj−Zi

h

)
≡

hs ∂s

∂hsK
(

Zj−Zi

h

)
satisfies

∫
|K̃(s)(u)|du < ∞, supu |K̃(s)(u)| < ∞, and |uK̃(s)(u)| →

0 if u → ∞ for all s = 1, . . . ,m. In addition, suppose that ĥ = h0 + op(h0) for

some deterministic sequence h0 that converges to zero and ĥ−lz(ĥ/h0−1)m = op(1).

Then, the test with a data-driven bandwidth Σ̂(ĥ)−1/2nĥlz/2Tn(ĥ) is rate optimal

when h0 satisfies hmin{qk,k+qz}/2
0 n

s+k
lz+4(s+k) = O(1) and h−1

0 n
−2

lz+4(s+k) = O(1).

We show that the bandwidths selected by the least squares cross-validation can

satisfy the conditions in Theorem 3. This method is one of the most widely used

selection methods, in which one selects h that minimizes

CV (h) =
n∑

i=1

[Yi − m̂−i(Zi)]
2w(Zi), (5)

where m̂−i(Zi) =
∑

j ̸=i K
(

Zj−Zi

h

)
Yj/

∑
j ̸=i K

(
Zj−Zi

h

)
is the leave-one-out kernel

estimator of m(Zi), and 0 ≤ w(·) ≤ 1 is a weight function. Let hcv denote the

value of h selected by cross-validation. It is well known that a unique, positive,

and finite sequence h0 exists such that hcv = h0+ op(h0), where h0 = O(n−1/(lz+4))
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(see Theorem 2.3 of Q. Li & Racine, 2007) and hcv/h0−1 = Op(n−min{lz/2,2}/(4+lz))

(see Theorem 2.2 of Racine & Li, 2004). Then, the following corollary holds.

Corollary 1. For a sufficiently smooth kernel such that lz < mmin{lz/2, 2} and

k ≥ 2, the bandwidth chosen by cross-validation satisfies h−lz
cv (hcv/h0 − 1)m =

op(1). Moreover, the test statistic evaluated with the bandwidth chosen by the cross-

validation method Σ̂(hcv)−1/2nĥlz/2Tn(hcv) is rate optimal when 4(s + k) ≤ lz + 8

and min{qk, k + qz}[lz + 4(s+ k)] ≥ 2(lz + 4)(s+ k).

Corollary 1 shows that the test evaluated with hcv has rate optimal uniform

power under these two conditions. Let us consider a higher-order kernel such that

min{qk, k+ qz} = k+ qz. Then, the second condition holds when the density of Zi

is sufficiently smooth, such that qz ≥ 3−k for lz = {1, 2}, qz ≥ 4−k for lz = {3, 4},

and so on. When the first condition is satisfied, the second condition is satisfied for

any lz, when qz ≥ 10 (see Appendix for the derivation of the sufficient condition).

The first condition 4(s+ k) ≤ lz + 8 implies that rate optimality is achieved only

against the set of alternatives that are not too smooth. Intuitively, this condition

arises because the optimal minimax rates depend on the smoothness of alternatives

(whereby the rate is faster for smoother alternatives), while the convergence rate

of hcv = h0 + op(n−1/(lz+4)) does not depend on this smoothness. This condition

substantially restricts the cases in which Tn(hcv) is rate optimal. In practice,

however, bandwidths selected by the cross-validation method can perform well in

terms of size and power, as shown in the simulation study below.
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5 Simulation

The simulation aims to investigate and compare the size and power of several

tests. We adapt the simulation set up of Horowitz (2006) so that the results are

comparable with existing specification tests for instrumental variable regression

models, including ICM-type tests (Bierens, 1982 and Bierens & Ploberger, 1997)

and Horowitz (2006) and the exponential tilting test of Donald et al. (2003).

We test the null hypotheses that

g(x) = β0 + β1x, (6)

and

g(x) = β0 + β1x+ β2x
2. (7)

The true models are (7) if (6) is H0 and

g(x) = β0 + β1x+ β2x
2 + β3x

3, (8)

if (6) or (7) is H0.

Data are generated by

X = Φ
(
ρv1 + (1− ρ2)1/2v2

)
,

Z = Φ(v1),

u = 0.2Φ
(
ηv2 + (1− η2)1/2v3

)
,

where Φ(·) is the standard normal distribution function. v1, v2, and v3 are drawn
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randomly from N(0, 1).

Outcomes are generated by y = g(x) + u. In all experiments, β0 = 0 and

β1 = 0.5. When (7) is the correct model, β2 = −0.5. When (8) is the correct

model, β2 = −1, β3 = 1 if (6) is H0, and β3 = 2 if (7) is H0.

There are two parameters, ρ and η, for which the values vary among experi-

ments. The parameter ρ balances the strengths of endogeneity and instrumental

relevance. η modulates the exogenous component in ui. We consider three sets of

data generating processes (DGPs), called DGP 1, DGP 2, and DGP 3: DGP 1:

ρ = 0.8 and η = 0.1; DGP 2: ρ = 0.8 and η = 0.5; DGP 3: ρ = 0.7 and η = 0.1.

In this experiment, X is endogenous and is instrumented by Z. The instru-

ments to estimate (6) and (7) are (1, Z) and (1, Z, Z2), respectively.

The kernel is Gaussian k(v) = (2π)−1/2 exp(−v2/2). Bandwidths are selected

by the least squares cross-validation, denoted by hcv. We also report results ob-

tained using the optimal bandwidth, denoted by hopt, that minimizes the leading

term of the cross-validation objective function.4 Note that using the optimal band-

width is infeasible in practice.

Critical values are obtained based on either the standard normal distribution

or using the empirical distribution from B = 1000 simulation runs, where the test

statistic in each simulation is computed using bootstrap observations, as per Gao

and Gijbels (2008).5 The sample size is n = 500 and the nominal level is 0.05.

Size and power are obtained by M = 1000 simulation runs in each experiment.

4Although we know the DGP, the explicit form of the true IV regression function is not
straightforward. Thus, optimal bandwidths are calculated using a random sample of size 150000.

5A bootstrap sample is {Xi, Zi, Y b
i }ni=1, where Y b

i is generated by Y b
i = Ŷi + σ̂2

ue
∗
i , in which

Ŷi are predicted values, σ̂u is the residual standard error from the IV estimator under the null
hypothesis, and {e∗i }ni=1 is a sequence of random samples drawn from the standard normal
distribution.
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[Table 1 near here.]

Table 1 shows the simulation results. When H0 is true, the test tends to under-

reject the null hypothesis when critical values are obtained from the standard

normal distribution. The under-rejections are severe for all set-ups, which may

come from the well-known results that asymptotic approximations of IV estimators

for linear models can be poor. In contrast, the test with hcv tends to over-reject

the null hypothesis when critical values are obtained by bootstrapping. The size

distortions reduce when the sample size is increased to n = 1000, as shown in

the supplemental material. The size is around the nominal level when optimal

bandwidths are employed.

The power of Tn with hcv is close to 1 when the null is (6). The power of testing

(7) against (8) is remarkably low when DGP 3 is applied. Table 1 of Horowitz

(2006) shows that the power of existing tests is low when DGP 3 is employed for

all cases. Since the powers of Tn is close to 1, even under DGP 3, when the null is

(6), the kernel-type test can be considered to complement other existing tests.

6 Conclusion

This study shows that the optimal minimax rate for linear and non-linear IV re-

gression models is n−2(s+k)/[lz+4(s+k)] when s+k ≥ lz/4, implying that rate optimal

results in Guerre and Lavergne (2002) hold for more general IV regression frame-

works, including linear models. The test nhlz/2Σ̂−1/2Tn based on non-parametric

kernel techniques is rate optimal when a deterministic sequence of bandwidths

satisfy hmin{qk,k+qz}/2n
s+k

lz+4(s+k) = O(1) and h−1n
−2

lz+4(s+k) = O(1). Moreover, if

the test is evaluated with a data-driven bandwidth ĥ that can be described by
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ĥ = h0+ op(h0) for some deterministic sequence h0, it is also rate optimal when h0

satisfies the conditions above. Commonly applied bandwidth selection procedures

such as the least squares cross-validation method can satisfy these conditions. A

simulation study further validates that the proposed test can complement existing

tests.

A possible future research direction is to consider the optimal minimax rate for

specification testing against non-smooth alternatives (s+ k ≤ lz/4). Against such

alternatives, Guerre and Lavergne (2002) showed that the optimal minimax rate

is n−1/4 if the structure of the error variance conditional on regressors is known.

Without this additional structure, however, it is unknown if any test exists that has

non-trivial uniform power against non-smooth alternatives. Using a different set

of non-smooth alternatives, Hitomi et al. (2020) showed that the optimal minimax

rate is n−1/4, and a test based on the difference between the non-parametric and

parametric variance estimators is rate optimal, even when the structure of the

error variance is unknown. However, research in this area is limited.

Additionally, the task of developing bandwidth selection procedures that max-

imize the uniform power of specification testing is left for future research. The

power-maximizing selection procedure of Gao and Gijbels (2008) is based on a

sequence of local alternatives that approach the null model as the sample size in-

creases. A selection procedure based on maximizing the uniform power of testing

is unknown.
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APPENDIX A: Proofs

A-1 Proof of Theorem 1

To prove Theorem 1, three propositions that complete the proof are given be-

low. Proposition A1 shows the lower bound. We modify the test proposed by

Guerre and Lavergne (2002) for IV regression models, denoted by TGL
n . Asymp-

totic normality of TGL
n under H0 is given in Proposition A2. Finally, Proposition

A3 shows that TGL
n has non-trivial uniform power against Hn,1 evaluated with

n−2(s+k)/[lz+4(s+k)]. Proofs of the propositions are given in the supplemental mate-

rial.

Proposition A1. (Lower Bound) Suppose Assumptions 1, 2, 3, 5, 8, and 9 hold.

Let ρ̃n = n−2(s+k)/[lz+4(s+k)] if s+ k ≥ lz/4, ρ̃n = n−1/4 if s+ k < lz/4. If each ωi is

N(0, 1) conditionally upon Zi, for any test tn with supm∈H0
P (tn > zα) ≤ α+o(1),

sup
m∈M(ρn)

P (tn ≤ zα) ≥ 1− α + o(1), whenever ρn = o(ρ̃n).

Let Ik =
∏lz

j=1[kjhn, (kj + 1)hn) be dyadic cubes that partition the support of

instruments Zi intoK lz
n cubes, whereKn is an integer, hn ≡ 1/Kn is the bandwidth

that determines the number of cubes, and the index k = (k1, . . . , klz)
′ ∈ K ⊂ lz

satisfies 0 ≤ kj ≤ Kn − 1 for j = 1, . . . , lz.

Following Guerre and Lavergne (2002), a test statistic is based on the average

of the estimated parametric residuals ûi in each cube:

TGL
n =

1
√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

ûiûj,
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where Nk ≡
∑n

i=1 {Zi ∈ Ik} is the number of observations of instruments in Ik.

The estimator of the variance of TGL
n is

v̂2n =
1

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

û2
i û

2
j ,

where the second summation is taken over i and j ̸= i that satisfies {Zi, Zj} ∈ Ik,

that is,
∑

Zi∈Ik Xi =
∑n

i=1 {Zi ∈ Ik}Xi.

Proposition A2. (Asymptotic Normality) Suppose Assumptions 1, 2, 3, 5, 6, and

10, hold, Kn → ∞, and n/(K lz
n logK lz

n ) → ∞. Under the null hypothesis, the test

TGL
n /v̂n converges to N(0, 1) weakly.

Proposition A3. (Rate Optimality of TGL
n ) Suppose Assumptions 1, 2, 3, 4, 5,

6, 7, 8, and 11 hold. Let ρn = n−2(s+k)/[lz+4(s+k)], s + k ≥ lz/4, and Kn = h−1
n =

(λρ1/(s+k)
n )−1 for some constant λ > 0. For any prescribed bound β ∈ (0, 1− α), a

constant κ exists such that

sup
m∈M(κρn)

P (v̂−1
n TGL

n ≤ zα) ≤ β + o(1).

A-2 Proof of Proposition 1

Proof of Proposition 1. Using ûi = Yi−g(Xi, θ̂) = g(Xi, θ)−g(Xi, θ̂)+ui, the test

statistic can be decomposed as follows:

nhlz/2Tn

=
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
uiuj
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+ 2
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
ui[g(Xj, θ0)− g(Xj, θ̂)]

+
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
[g(Xi, θ0)− g(Xi, θ̂)][g(Xj, θ0)− g(Xj, θ̂)]

≡ T1 + T2 + T3.

Under the null hypothesis, T1 converges to the normal distribution, T2 = op(1),

and T3 = op(1), as shown in Lemmas 1, 2, and 3, respectively. The proof for

the asymptotic normality of T1 is consistent with that for Lemma 3.3a of Zheng

(1996). T2 and T3 include both covariates and instruments, which make the proof

different from that for the regression set-up in Zheng (1996). Proofs are given in

the supplemental material.

Lemma 1. Under Assumptions 1, 2, and 12, T1
d−→ N(0, 2K(0)E{[σ2(Z)]2f(Z)}),

where K(0) denotes the convolution product.

Lemma 2. Under Assumptions 1, 2, 3, 6, 10, and 12, we have T2 = op(1).

Lemma 3. Under Assumptions 1, 2, 3, 5, 10, and 12, we have T3 = op(1).

Lemma 4 shows that Σ̂ is a consistent estimator for Σ under the null hypothesis.

A proof of Lemma 4 is given in the supplemental material.

Lemma 4. Under Assumptions 1, 2, 3, 5, 10, and 12, we have Σ̂ = Σ+ op(1).
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A-3 Proof of Theorem 2

Proof of Theorem 2. Proofs of all lemmas used in this proof are given in the sup-

plemental material. Under Hn,1, we have

nhlz/2Tn

=
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
[Yi − g(Xi, θ

∗)][Yj − g(Xj, θ
∗)]

+
2nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
[Yi − g(Xi, θ

∗)][g(Xj, θ
∗)− g(Xj, θ̂)]

+
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
[g(Xi, θ

∗)− g(Xi, θ̂)][g(Xj, θ
∗)− g(Xj, θ̂)]

≡ A1 + A2 + A3. (A.1)

The convergence of (θ̂− θ∗) = Op(n−1/2) in Assumption 11 and other assumptions

leads to A3 = op(1). The following lemma holds for A2.

Lemma 5. Suppose Assumptions 2, 3, 5, 8, 11, and 12 hold. Then, A2 + A3 =

Op(
√
nhlz){E[δ2θ∗(Zi)]}1/2 +Op(1).

The probability limit of Σ̂ under Hn,1 can be shown as follows.

Lemma 6. Suppose Assumptions 1, 2, 3, 5, 7, 11, and 12 hold. Let σ2
θ∗(Zi) ≡

E(u∗2
i |Zi), where u∗

i = Yi − g(Xi, θ∗). Then, under Hn,1, we obtain Σ̂ = Σ̄+ op(1),

where Σ̄ = 2
∫
K(u)2duE{[σ2

θ∗(Zi)]2f(Zi)} is uniformly bounded in m ∈ M(κρn).

These results imply, for arbitrary small ϵ, a constant C > 0 and z′α exist such
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that

sup
m∈M(κρn)

P (nhlz/2Σ
−1/2

Tn ≤ zα)

= sup
m∈M(κρn)

P (A1 ≤ Σ
1/2

zα − A2 − A3)

≤ sup
m∈M(κρn)

P (A1 ≤ z′α +
√
nhlz{E[δ2θ∗(Zi)]}1/2C) + ϵ.

When E(A1)− z′α −
√
nhlz{E[δ2θ∗(Zi)]}1/2C > 0, Chebyshev’s inequality yields

P (A1 ≤ z′α +
√
nhlz{E[δ2θ∗(Zi)]}1/2C) ≤ var(A1)

[E(A1)− z′α −
√
nhlz{E[δ2θ∗(Zi)]}1/2C]2

.

(A.2)

Thus, it suffices to show that the following inequalities hold uniformly in m ∈

M(κρn).

E(A1)− z′α −
√
nhlz{E[δ2θ∗(Zi)]}1/2C > 0, (A.3)

var(A1)

[E(A1)− z′α −
√
nhlz{E[δ2θ∗(Zi)]}1/2C]2

≤ β. (A.4)

First, we show (A.3). To this end, we decompose A1 as follows:

A1 =
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
[m(Zi)− g(Xi, θ

∗)][m(Zj)− g(Xj, θ
∗)]

+
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
[m(Zi)− g(Xi, θ

∗)]ωj

+
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
[m(Zj)− g(Xj, θ

∗)]ωi
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+
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
ωiωj

≡ A1,1 + A1,2 + A1,3 + A1,4.

Obviously, we have E(A1,2) = E(A1,3) = E(A1,4) = 0. Let q ≡ min{qk, k + qz}. A

change of variables under Assumptions 2, 8, and 12 yields6

E(A1,1) = nh−lz/2E

[
K

(
Zj − Zi

h

)
δθ∗(Zi)δθ∗(Zj)

]

= nhlz/2E[δθ∗(Zi)
2f(Zi)] +O(nhlz/2+q)E[δθ∗(Zi)]. (A.5)

Then, using the fact that E[δ2θ∗(Zi)] ≥ infθ∈Θ E[δ2θ(Zi)] ≥ ρ2n, we obtain

E(A1)− z′α −
√
nhlz{E[δ2θ∗(Zi)]}1/2C

nhlz/2E[δθ∗(Zi)2]

≥
nhlz/2E[δθ∗(Zi)2]f +O(nhlz/2+q)E[δθ∗(Zi)]− z′α −

√
nhlz{E[δ2θ∗(Zi)]}1/2C

nhlz/2E[δθ∗(Zi)2]

≥ f − 1

κ
O
(
hqn

2(s+k)
lz+4(s+k)

)
− 1

κ2
O
(
h−lz/2n

−lz
lz+4(s+k)

)
− o(1),

where ρ2n = n
−4(s+k)

lz+4(s+k) . When we chose h that satisfies both hq/2n
(s+k)

lz+4(s+k) = O(1)

and h−1n
−2

lz+4(s+k) = O(1), the lower bound is increasing in κ and positive when κ

and n are large enough, which implies equation (A.3).

Next, we show equation (A.4). A1 is a second-order U-statistic:

A1 = nh−lz/2 2

n(n− 1)

n∑

i=1

∑

j<i

K

(
Zj − Zi

h

)
[Yi − g(Xi, θ

∗)][Yj − g(Xj, θ
∗)]

≡ nh−lz/2 2

n(n− 1)

n∑

i=1

∑

j<i

Hn(Wi,Wj),

6For the derivation, see Lemma ?? in the supplemental material.
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where Wi = {Yi, Xi, Zi}. Let us define g(Wi) = Q(Wi) − Q, where Q(Wi) ≡

E[Hn(Wi,Wj)|Wi] andQ ≡ E[Hn(Wi,Wj)] and η(Wi,Wj) = Hn(Wi,Wj)−g(Wi)−

g(Wj)−Q, where E[g(Wi)] = 0, E[η(Wi,Wj)] = 0, and E[η(Wi,Wj)η(Wi,Wk)] = 0

for j ̸= k. Then, the Hoeffding decomposition of second-order U-statistics and

some calculations yield

var(A1) = n2h−lzvar

(
2

n

n∑

i=1

g(Wi)

)
+ n2h−lzvar

(
2

n(n− 1)

n∑

i=1

∑

j<i

η(Wi,Wj)

)

= O(nh−lz)E[g(Wi)
2] +O(h−lz)

(
E[Hn(Wi,Wj)

2]−Q2 − E[Q(Wi)
2]
)
.

(A.6)

Equation (A.5) implies for any i ̸= j, = O(hlz)E[δθ∗(Zi)2] + O(hlz+q)E[δθ∗(Zi)].

SinceQ(Wi) = E[Hn(Wi,Wj)|Wi] = [Yi−g(Xi, θ∗)]E{K(Zj−Zi

h )[Yj−g(Xj, θ∗)]|Wi} =

[Yi − g(Xi, θ∗)]E{K(Zj−Zi

h )δθ∗(Zj)|Wi}, we have

E[Q(Wi)
2] = E

(
[Yi − g(Xi, θ

∗)]2
{∫

K

(
z − Zi

h

)
δθ∗(z)f(z)dz

}2
)

= h2lzE
(
σ2
θ∗(Zi) {δθ∗(Zi)f(Zi) +O(hq)}2

)

= O(h2lzE[δθ∗(Zi)
2]) +O(h2lz+2q) +O(h2lz+q)E[δθ∗(Zi)]),

where σ2
θ∗(Zi) is bounded almost surely by Assumptions 1 and 7 under Hn,1 Then,

E[g(Wi)
2] = E[Q(Wi)

2 − 2Q(Wi)Q+Q2] = E[Q(Wi)
2]−Q2

≤ O(h2lzE[δθ∗(Zi)
2]) +O(h2lz+2q) +O(h2lz+q)E[δθ∗(Zi)]).
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A change of variables under Assumptions 1, 2, 7, and 12 yields

E[Hn(W1,W2)
2] =

∫
K

(
z2 − z1

h

)2

σ2
θ∗(z1)σ

2
θ∗(z2)f(z1)f(z2)dz1dz2 = O(hlz).

These results together with equation (A.6) yield

var(A1) ≤ O(nhlz)E[δθ∗(Zi)
2] +O(nhlz+2q) +O(nhlz+q)E[δθ∗(Zi)] +O(1)

+O(hlz)E[δθ∗(Zi)
2]2 +O(hlz+2q)E[δθ∗(Zi)]

2,

which implies

var(A1)

n2hlzE[δθ∗(Zi)2]2
≤ 1

κ4
O
(
n

−lz+4(s+k)
lz+4(s+k) h2q

)
+

1

κ4
O
(
n

−2lz
lz+4(s+k)h−lz

)
.

The upper bound is a decreasing function of κ, when h is chosen such that

n
−lz/4+(s+k)
lz+4(s+k) hq/2 = O(1) and n

−2
lz+4(s+k)h−1 = O(1).

Therefore, equations (A.3) and (A.4) hold if the bandwidth value satisfies the

following conditions:

n
s+k

lz+4(s+k)hq/2 = O(1) (A.7)

n
−2

lz+4(s+k)h−1 = O(1). (A.8)

The source of power, represented by the first term of the right hand side of

equation (A.5), requires that nhlz/2E[δθ∗(Zi)2] ≈ nhlz/2ρ2n = nlz/[lz+4(s+k)]hlz/2 does

not shrink, which constrains the bandwidth to converge to zero at a rate slower

than n−2/[lz+4(s+k)]. This requirement is reflected by condition (A.8). Thus, for

example, we can choose the bandwidth that is h = cn−2/[lz+4(s+k)] for some constant
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c > 0, which satisfies condition (A.8). This choice of bandwidth also satisfies

condition (A.7) when n
(s+k)−q

lz+4(s+k) = n
(s+k)−min{qk,k+qz}

lz+4(s+k) = O(1), which holds when

(s+ k) ≤ min{qk, k + qz}, which is equivalent to (s+ k) ≤ qk since s < qz.

A-4 Proof of Theorem 3

Proof. Proofs of all lemmas used in this proof are given in the supplemental mate-

rial. Theorem 2 shows the rate optimality of nhlz/2Σ̂−1/2Tn, in which h is treated

as a deterministic sequence. Since data driven bandwidths are random variables,

it is not trivial whether Theorem 2 holds analogously. Thus, we first show the rate

optimality of testing in which h is replaced by a data-driven bandwidth ĥ. To this

end, we decompose the test statistic as follows.

Lemma 7. Suppose Assumptions 1, 5, 7, 11, and 12 hold. Let ĥ be data-driven

bandwidth such that ĥ = h0 + op(h0) for some deterministic sequence h0 that con-

verges to zero and ĥ−lz(ĥ/h0 − 1)m = op(1). We assume that the kernel k be m-

times differentiable and K̃(s)
(

Zj−Zi

h

)
≡ hs ∂s

∂hsK
(

Zj−Zi

h

)
satisfies

∫
|K̃(s)(u)|du <

∞, supu |K̃(s)(u)| < ∞, and |uK̃(s)(u)| → 0 if u → ∞ for all s = 1, . . . ,m. Then,

the test statistic can be decomposed as follows.

Tn(ĥ) =

(
h0

ĥ

)lz

Tn(h0) + op (Tn(h0)) . (A.9)

Lemma 7 and equation (A.1) imply that

nĥlz/2Tn(ĥ) = Ã1 +
(
h0/ĥ

)lz
(A2 + A3) + Ã, (A.10)

32



where Ã1 =
(
h0/ĥ

)lz
A1 + op(1)A1 and Ã = op(A2 + A3).

The following lemma shows asymptotic behavior of the variance of test statistic.

Lemma 8. Suppose Assumptions 1, 2, 3, 5, 7, 11, and 12 hold let ĥ be data-

driven bandwidth such that ĥ = h0+op(h0) for some deterministic sequence h0 that

converges to zero and ĥ−lz(ĥ/h0−1)m = op(1). We assume that the kernel k be m-

times differentiable and K̃(s)
(

Zj−Zi

h

)
≡ hs ∂s

∂hsK
(

Zj−Zi

h

)
satisfies

∫
|K̃(s)(u)|du <

∞, supu |K̃(s)(u)| < ∞, and |uK̃(s)(u)| → 0 if u → ∞ for all s = 1, . . . ,m. Then,

we have

Σ̂(ĥ) =
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
K

(
Zj − Zi

ĥ

)2

û2
i û

2
j = Σ̄+ op(1).

These results and (h0/ĥ)lz(A2 +A3) = Op(
√

nhlz
0 ){E[δ2θ∗(Zi)]}1/2 by Lemma 5

imply that, for arbitrary small ϵ, a constant C > 0 and z′α exist such that

sup
m∈M(κρn)

P (nĥlz/2[Σ(ĥ)]−1/2Tn(ĥ) ≤ zα)

= sup
m∈M(κρn)

P (Ã1 ≤ [Σ(ĥ)]1/2zα −
(
h0/ĥ

)lz
(A2 + A3)− Ã)

≤ sup
m∈M(κρn)

P (Ã1 ≤ z′α +
√
nhlz{E[δ2θ∗(Zi)]}1/2C) + ϵ.

Since Ã1 = [(h0/ĥ)lz + op(1)]A1 = [1 + op(1)]A1, for arbitrary small ϵ, a constant

c > 1 exists such that

P (Ã1 ≤ z′α +
√

nhlz
0 {E[δ2θ∗(Zi)]}1/2C) ≤ P (A1 ≤ c[z′α +

√
nhlz

0 {E[δ2θ∗(Zi)]}1/2C]) + ϵ,

when n is large enough. The right hand side of the above equation is equivalent
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to the left hand side of equation (A.2) up to the constant c. Thus, the optimal

minimax rate of the test with stochastic bandwidth ĥ can be derived analogously

to that given in Theorem 2, which implies that the test is rate optimal when h0

satisfies nhlz
0 → ∞ and the following conditions:

hmin{qk,k+qz}/2
0 n

s+k
lz+4(s+k) = O(1) (A.11)

h−1
0 n

−2
lz+4(s+k) = O(1). (A.12)

A-5 Proof of Corollary 1

Proof. It is well known that a unique, positive, and finite sequence h0 exists such

that hcv = h0 + op(h0), where h0 = O(n−1/(lz+4)) (see Theorem 2.3 of Q. Li &

Racine, 2007) and hcv/h0 − 1 = Op(n−min{lz/2,2}/(4+lz)) (see Theorem 2.2 of Racine

& Li, 2004). Thus, h−lz
cv (hcv/h0− 1)m = Op

(
n

lz−mmin{lz/2,2}
lz+4

)
, which converges zero

in probability when lz ≤ mmin{lz/2, 2}.

Recall that h0 = O
(
n

−1
lz+4

)
. Then, first,

h−1
0 n

−2
lz+4(s+k) = O

(
n

−lz+4(s+k−2)
[lz+4(s+k)](lz+4)

)
, (A.13)

which is O(1), if 4(s+ k) ≤ lz + 8. Second,

h
min{qk,k+qz}

2
0 n

s+k
lz+4(s+k) = O

(
n

−min{qk,k+qz}[lz+4(s+k)]/2+(lz+4)(s+k)
[lz+4(s+k)](lz+4)

)
, (A.14)

which is O(1), if min{qk, k + qz}[lz + 4(s+ k)] ≥ 2(lz + 4)(s+ k).
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Suppose that we use a higher-order kernel such that min{qk, k + qz} = k + qz.

Then, (A.14) is O(1) if (k+ qz)[lz +4(s+ k)] ≥ 2(lz +4)(s+ k), which holds if the

density of Zi is smooth enough (qz is large enough).

For example, if qz ≥ 10, (A.14) is O(1) for any lz such that lz ≤ 4(s+k) ≤ lz+8.

To see this, we replace 4(s + k) in the left hand side of (k + qz)[lz + 4(s + k)] ≥

2(lz + 4)(s + k) with lz. This yields a sufficient condition, which is (k + qz)lz ≥

(lz+4)(s+k). Simple calculation and using 4(s+k) ≤ lz+8 yields qz ≥ 8/lz+s+1,

which holds as long as qz ≥ 8/lz + 2. Substituting lz = 1 yields qz ≥ 10.
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Table 1

Table 1: Size and power of Tn with n = 500.

Bootstrap Normal

H0 H1 ρ η hcv hopt hcv hopt

H0 is true
(6) DGP 1 0.8 0.1 0.059 0.046 0.020 0.029

DGP 2 0.8 0.5 0.062 0.042 0.025 0.029
DGP 3 0.7 0.1 0.058 0.050 0.018 0.028

(7) DGP 1 0.8 0.1 0.067 0.050 0.016 0.018
DGP 2 0.8 0.5 0.058 0.040 0.015 0.023
DGP 3 0.7 0.1 0.076 0.044 0.018 0.019

H0 is false
(6) (7) DGP 1 0.8 0.1 1.000 0.934 1.000 0.902

DGP 2 0.8 0.5 1.000 0.905 0.999 0.861
DGP 3 0.7 0.1 0.990 0.498 0.949 0.370

(6) (8) DGP 1 0.8 0.1 0.999 0.842 0.999 0.781
DGP 2 0.8 0.5 0.999 0.797 0.998 0.726
DGP 3 0.7 0.1 0.972 0.192 0.944 0.147

(7) (8) DGP 1 0.8 0.1 0.903 0.609 0.741 0.527
DGP 2 0.8 0.5 0.886 0.506 0.717 0.437
DGP 3 0.7 0.1 0.434 0.204 0.177 0.144

Note: Critical values are obtained from bootstrapping (columns labeled by
Bootstrap) and the normal distribution (columns labeled by Normal).
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Supplemental material for the paper entitled

”Optimal Minimax Rates of Specification Testing with Data-driven

Bandwidth ”

Supplemental Material: Proof of Propositions

S-1 Proof of Proposition A1

The proof of Proposition A1 goes along with that of Theorem 1 of Guerre and Lavergne

(2002).

Proof of Proposition A1. Let φ(·) be a map from lz to with support [0, p]lz for

p > 0 that is infinitely differentiable, φ(z) < ∞ for any z ∈ [0, p]lz ,
∫
φ(z)dz = 0, and

φ(·) ∈ M(L−LM)/2,s,k. Guerre and Lavergne (2002) give an example that satisfies these

conditions.

We define the dyadic cubes that partition [0, 1]lz into Kn(p)lz ≡ [1/(phn)]lz non-

overlapping cubes, where intersections of any two cubes are empty and 1/(phn) is as-

sumed to be an integer.7 To define the cubes, let Kn(p) denotes a collection of all

possible distinct values for κ ≡ (κ1, . . . ,κlz)
′ such that Kn(p) = {κ ∈ lz : 0 ≤ κj ≤

1/(phn)− 1, j = 1, 2, . . . , lz}, which indicates that Kn(p) contains Kn(p)lz elements. For

κ ∈ Kn(p), we define Iκ,p =
∏lz

j=1[pκjhn, p(κj +1)hn). Then,
⋃

κ∈Kn(p) Iκ,p = [0, 1]lz and

Iκ,p ∩ Ijp = ∅ for all κ, j ∈ Kn(p) when κ ̸= j. The number of partitions are determined

by hn, and we define that hn = (λρn)1/(s+k) for some constant λ > 0.

For κ ∈ Kn(p), let φκ(·) : lz → be a function such that φκ(z) = h−lz/2
n φ

(
z−pκhn

hn

)
.

Then, φκ(z) takes non-zero value only when z ∈ Iκ,p. Thus, the functions φκ(·)’s are

orthogonal with disjoint supports Iκ,p, namely, φκ(z)φκ′(z) = 0 as long as κ ̸= κ′. For

7When 1/(phn) is not an integer, define Kn(p) to be the maximum integer smaller than 1/(phn).
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any sequence {Bκ}κ∈Kn(p) with |Bκ| = 1, we define

mn(·) = E[g(X, θ0)|·] + δn(·), δn(·) = λρnh
lz/2
n

∑

κ∈Kn(p)

Bκφκ(·)

Let θ̌mn satisfies infθ∈ΘE[δθ(Zi)2] = E[δθ̌mn
(Zi)2]. We show that a positive constant

C and a bounded function h(·) exist such that ∥θ̌mn − θ0∥ ≤ C|E[h(Zi)δn(Zi)]|, so that

θ̌mn satisfies Assumption 11 (iii) for any n. Under Assumption 3, the definition of θ̌mn

yields

0 = E
{
Gθ̌mn

[δθ̌mn
(Zi)]

}
= E

(
Gθ̌mn

{mn(Zi)− E[g(Xi, θ̌mn)|Zi]}
)

= E
(
Gθ̌mn

{δn(Zi) + E[g(Xi, θ0)|Zi]− E[g(Xi, θ̌mn)|Zi]}
)
,

where Gθ̌mn
= ∂

∂θE[g(Xi, θ)|Zi]|θ=θ̌mn
. Taylor expansion yields

E
[
Gθ̌mn

δn(Zi)
]
= E

(
Gθ̌mn

{E[g(Xi, θ̌mn)|Zi]− E[g(Xi, θ0)|Zi]}
)

= E
(
Gθ̌mn

G′
θ̃n

)
(θ̌mn − θ0)

for some θ̃n ∈ Θ. Since θ̌mn → θ0 as n → ∞, the dominated convergence theorem under

Assumptions 2, 3, and 9 yields limn→∞E(Gθ̌mn
G′

θ̃n
) = E(Gθ0G

′
θ0
). We obtain

(θ̌mn − θ0) =
[
E
(
Gθ0G

′
θ0

)
+ o(1)

]−1
E
[
Gθ̌mn

δn(Z)
]
.

Since E(Gθ0G
′
θ0
) is invertible by Assumption 9, a constant C exists such that ∥θ̌mn −

θ0∥ < C|E[Gθ̌mn
δn(Zi)]|, where Gθ̌mn

is bounded for any n by Assumptions 2 and 9.

Lemma S.9. Under Assumptions 1, 2, 3, 5, 8, and 9, E[mn(Zi)4] is bounded and

mn(Zi) is in M(ρn) when λ and n are large enough.

Proof. it suffices to show that (i) mn(Zi) ∈ ML,s,k and (ii) infθ∈ΘE[δθ(Zi)2] ≥ ρ2n.
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(i) Since E[g(Xi, θ0)|Zi] ∈ MLM,s,k by Assumption 8, it suffices to show that δn(Zi)

is in ML−LM,s,k. For any z ∈ Iκ′,p, we have

|Dkδn(z)| = λρnh
−k
n

∣∣∣∣∣∣

∑

κ∈Kn(p)

Bκφ
(k)

(
z − pκhn

hn

)∣∣∣∣∣∣
= λρnh

−k
n

∣∣∣∣Bκ′φ(k)

(
z − pκ′hn

hn

)∣∣∣∣,

where φ(k)(Zi) is k-times derivative of φ(Zi). If z and y are in a same bin Iκ′,p,

|Dkδn(z)−Dkδn(y)| = λρnh
−k
n

∣∣∣∣Bκ′φ(k)

(
z − pκ′hn

hn

)
−Bκ′φ(k)

(
y − pκ′hn

hn

)∣∣∣∣

≤ λρnh
−k
n

∣∣∣∣φ
(k)

(
z − pκ′hn

hn

)
− φ(k)

(
y − pκ′hn

hn

)∣∣∣∣

≤ λρnh
−k
n

L− LM
2

∥∥∥∥
z − y

hn

∥∥∥∥
s

=
L− LM

2
∥z − y∥s ,

because φ ∈ M(L−LM)/2,s,k and hn = (λρn)1/(s+k). If z ∈ Iκz ,p and y ∈ Iκy ,p for

κz ̸= κy,

|Dkδn(z)−Dkδn(y)| = λρnh
−k
n

∣∣∣∣Bκzφ
(k)

(
z − pκzhn

hn

)
−Bκyφ

(k)

(
y − pκyhn

hn

)∣∣∣∣

≤ λρnh
−k
n

∣∣∣∣Bκzφ
(k)

(
z − pκzhn

hn

)
−Bκzφ

(k)

(
y − pκzhn

hn

)∣∣∣∣

+ λρnh
−k
n

∣∣∣∣Bκyφ
(k)

(
z − pκyhn

hn

)
−Bκyφ

(k)

(
y − pκyhn

hn

)∣∣∣∣

≤ (L− LM) ∥z − y∥s ,

where we use the fact that φκy(z) = 0 when z ∈ Iκz ,p. Therefore, δn(Zi) ∈

ML−LM,s,k for any n and λ.

(ii) We have infθ∈ΘE[δθ(Zi)2] = E[δθ̌mn
(Zi)2]. Then, Minkowski’s inequality yields

{E[δθ̌mn
(Zi)

2]}1/2 = [E({δn(Zi) + E[g(X, θ0)|Zi]− E[g(Xi, θ̌mn)|Zi]}2)]1/2

≥ {E[δn(Zi)
2]}1/2 − [E({E[g(Xi, θ0)|Zi]− E[g(Xi, θ̌mn)|Zi]}2)]1/2
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= {E[δn(Zi)
2]}1/2 −

{
E

(
E

[
∂g(Xi, θ)

∂θ′

∣∣∣∣
θ=θ̃

(θ̌mn − θ0)

∣∣∣∣Zi

]2)}1/2

≥ {E[δn(Zi)
2]}1/2 −

(
E

{∥∥∥∥
∂g(Xi, θ)

∂θ′

∣∣∣∣
θ=θ̃

∥∥∥∥
2
})1/2

∥θ̌mn − θ0∥

= {E[δn(Zi)
2]}1/2 −O(1)∥θ̌mn − θ0∥, (S.1)

where Assumption 3 guarantees the mean value theorem for g(Xi, ·) for an interior

point θ̃ between θ0 and θ̌mn , and the last equality holds by Assumption 5. The first

term in the right hand side of equation (S.1) is E[δn(Zi)2] = λ2ρ2np
−lzf(0)

∫
φ(u)2du+

o(1) = λ2ρ2np
−lzC2 + o(1), for some positive constant C, where the density f is

bounded by Assumption 2 and
∫
φ(u)2du is bounded by its definition. From As-

sumption 11 (iii), a positive constant C ′ exists such that ∥θ̌mn−θ0∥ = C ′|E[h(Zi)δn(Zi)]|,

where

|E[h(Zi)δn(Zi)]| =

∣∣∣∣∣∣
λρn

∑

κ∈Kn(p)

BκE

[
h(Zi)φ

(
Zi − pκhn

hn

)]∣∣∣∣∣∣

≤ λρnKn(p)
lz

∣∣∣∣
∫

h(z)φ

(
z − pκhn

hn

)
f(z)dz

∣∣∣∣

= λρnKn(p)
lz

∣∣∣∣h
lz
n f(0)h(0)

∫
φ(u)du+ o(hlzn )

∣∣∣∣

= λρnp
−lzo(1). (S.2)

The last equality holds because
∫
φ(z)dz = 0. Thus, (S.1) and (S.2) implies that

{E[δn(Zi)
2]}1/2 − C ′∥θ0 − θ̌mn∥ ≥ λρnp

−lz/2[C − p−lz/2o(1)],

which is bounded from below by ρn when λ and n are large enough.

In what follows we construct a Bayesian a priori measure by using the result of Lemma
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S.9 and show even the optimal Bayesian test that has the smallest errors of testing does

not have non-trivial power. Replacing the minimax problem by a Bayesian problem is

standard arguments to show the lower bound of testing power (see, for example, Ingster,

1993; Spokoiny, 1996; Lepski & Spokoiny, 1999; Lepski & Tsybakov, 2000; Guerre &

Lavergne, 2002; Abramovich, Feis, Italia, & Theofanis, 2009; Ingster & Sapatinas, 2009).

To prove Proposition A1, it suffices to show that

sup
m∈M(ρ̃n)

P (tn ≤ zα) + sup
m∈H0

P (tn > zα) ≥ 1 + o(1). (S.3)

To give a lower bound of the left hand side of equation (S.3), we consider a Bayesian

a priori measure over H0 and Hn,1 by regarding m(·) as a random variable defined on

H0 ∪Hn,1.

First, let Π0 be the priori distribution defined on H0 that has Dirac mass:

Π0{m(·) = E[g(X, θ0)|·]} = 1.

Second, let Bκ be an i.i.d. Rademacher random variable independent of the observations

with P (Bκ = 1) = P (Bκ = −1) = 1/2. For a sequence {bκ ∈ {−1, 1}}κ∈Kn(p), let Πn,1

be the priori distribution defined on Hn,1:

Πn,1

⎡

⎣m(·) = E[g(X, θ0)|·] + λρnh
lz/2
n

∑

κ∈Kn(p)

bκφκ(·)

⎤

⎦ =
∏

κ∈Kn(p)

P (Bκ = bκ) ,

where Lemma S.9 guarantees Πn,1 to be an a priori measure over Hn,1. Then, Πn =

Π0 +Πn,1 is an a priori Bayesian measure over H0 ∪Hn,1.

This gives the lower bound

sup
m∈M(ρ̃n)

P (tn ≤ zα)+ sup
m∈H0

P (tn > zα) ≥
∫

P (tn ≤ zα)dΠn,1+

∫
P (tn > zα)dΠ0. (S.4)
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The right hand side of the above equation is the Bayes error of the test tn that is the

sum of type I and type II errors of testing. It is known that the optimal Bayesian test

based on the likelihood ratio has the smallest error, which we now introduce.

Let Y and Z be the set of observations Y and Z, respectively, where the joint distri-

bution of Y and Z (specifically, the conditional mean of Y given Z) is described by m(·),

which suggests that the relation between Y and Z depends on m(·). Then, we denote

by pm(Y,Z) the joint density of Y and Z. Average densities under the null and al-

ternative hypotheses are p0(Y,Z) ≡
∫
pm(Y,Z)dΠ0 and pn,1(Y,Z) ≡

∫
pm(Y,Z)dΠn,1,

respectively. Let Ln denotes the likelihood ratio of the optimal Bayesian test, which is

Ln =
pn,1(Y,Z)

p0(Y,Z)
=

∫
pm(Y|Z)dΠn,1∫
pm(Y|Z)dΠ0

≡ pn,1(Y|Z)

p0(Y|Z)
.

By using the The Bayesian error of the optimal Bayes test (see, Theorem 13.3.1 of

Lehmann & Romano, 2005, p.528), Guerre and Lavergne (2002) show that (S.3) holds if

∫
L2
np0(Y|Z)dY ≡ E0(L

2
n|Z)

p−→ 1, (S.5)

where E0 is the expectation under p0.

By assumption, each ωi is standard normal conditionally upon Zi, where ωi =

Yi − m(Zi). Under Π0, the conditional density of Y given Z is normal with mean

E[g(Xi, θ0)|Zi]. Since we have n observations,

p0(Y|Z) = (2π)−n/2
∫

exp

(
−1

2

n∑

i=1

ω2
i

)
dΠ0 = (2π)−n/2 exp

(
−1

2

n∑

i=1

ω2
i,0

)
,

where ωi,0 ≡ Yi − E[g(Xi, θ0)|Zi]. Since ωi = Yi −m(Zi) = Yi −mn(Zi) almost surely

under H1,n, we yield

pn,1(Y|Z)

6



= (2π)−n/2
∫

exp

(
−1

2

n∑

i=1

[Yi −mn(Zi)]
2

)
dΠn,1(m)

= (2π)−n/2
∫

exp

(
−1

2

n∑

i=1

[Yi − E[g(Xi, θ0|Zi)] + E[g(Xi, θ0|Zi)]−mn(Zi)]
2

)
dΠn,1(m)

= (2π)−n/2
∫

exp

(
−1

2

n∑

i=1

[ωi,0 − δn(Zi)]
2

)
dΠn,1(m)

= (2π)−n/2
∫

exp

(
−1

2

n∑

i=1

ω2
i,0 +

n∑

i=1

ωi,0δn(Zi)−
1

2

n∑

i=1

δn(Zi)
2

)
dΠn,1(m)

= p0(Y|Z)

∫
exp

(
n∑

i=1

ωi,0δn(Zi)−
1

2

n∑

i=1

δn(Zi)
2

)
dΠn,1(m).

Recall that

n∑

i=1

ωi,0δn(Zi) = λρnh
lz/2
n

∑

κ∈Kn(p)

n∑

i=1

ωi,0Bκφκ(Zi),

and

n∑

i=1

δn(Zi)
2 = λ2ρ2nh

lz
n

n∑

i=1

⎡

⎣
∑

κ∈Kn(p)

Bκφκ(Zi)

⎤

⎦
2

= λ2ρ2nh
lz
n

n∑

i=1

∑

κ∈Kn(p)

φκ(Zi)
2.

Thus,

Ln

=
pn,1(Y,Z)

p0(Y,Z)

=

∫
exp

(
n∑

i=1

ωi,0δn(Zi)−
1

2

n∑

i=1

δn(Zi)
2

)
dΠn,1(m)

=

∫
exp

(
n∑

i=1

ωi,0δn(Zi)

)
exp

(
−1

2

n∑

i=1

δn(Zi)
2

)
dΠn,1(m)

=

∫
exp

⎛

⎝λρnh
lz/2
n

∑

κ∈Kn(p)

n∑

i=1

ωi,0Bκφκ(Zi)

⎞

⎠ exp

⎛

⎝−1

2
λ2ρ2nh

lz
n

n∑

i=1

∑

κ∈Kn(p)

φκ(Zi)
2

⎞

⎠ dΠn,1(m)
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= exp

⎛

⎝−λ2ρ2nh
lz
n

2

n∑

i=1

∑

κ∈Kn(p)

φκ(Zi)
2

⎞

⎠

×
∏

κ∈Kn(p)

1

2

[
exp

(
λρnh

lz/2
n

n∑

i=1

ωi,0φκ(Zi)

)
+ exp

(
−λρnh

lz/2
n

n∑

i=1

ωi,0φκ(Zi)

)]
.

Thus,

L2
n

= exp

⎛

⎝−λ2ρ2nh
lz
n

n∑

i=1

∑

κ∈Kn(p)

φκ(Zi)
2

⎞

⎠

×
∏

κ∈Kn(p)

1

4

[
exp

(
2λρnh

lz/2
n

n∑

i=1

ωi,0φκ(Zi)

)
+ 2 + exp

(
−2λρnh

lz/2
n

n∑

i=1

ωi,0φκ(Zi)

)]
.

Conditionally on Z, {2λρnhlz/2n ωi,0φκ(Zi)}ni=1 is independent centered Gaussian for

all κ ∈ Kn(p) with conditional variance given by 4λ2ρ2nh
lz
n φκ(Zi)2. Since E[exp(u)] =

exp(σ2/2) for any random variable u that follows centered gaussian with variance σ2,

we get

E0(L
2
n|Z)

= exp

⎛

⎝−λ2ρ2nh
lz
n

n∑

i=1

∑

κ∈Kn(p)

φκ(Zi)
2

⎞

⎠

×
∏

κ∈Kn(p)

1

4

[
exp

(
2λ2ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

)
+ 2 + exp

(
2λ2ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

)]

= exp

⎛

⎝−λ2ρ2nh
lz
n

n∑

i=1

∑

κ∈Kn(p)

φκ(Zi)
2

⎞

⎠
∏

κ∈Kn(p)

1

2

[
exp

(
2λ2ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

)
+ 1

]

=
∏

κ∈Kn(p)

exp

(
−λ2ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

)
1

2

[
exp

(
2λ2ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

)
+ 1

]

=
∏

κ∈Kn(p)

1

2

[
exp

(
λ2ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

)
+ exp

(
−λ2ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

)]
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=
∏

κ∈Kn(p)

cosh

(
λ2ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

)
,

where cosh(·) is the hyperbolic cosine function. By using 1 ≤ cosh(z) ≤ exp(z2), we

obtain,8

1 ≤ E0(L
2
n|Z) ≤ exp

⎛

⎝
∑

κ∈Kn(p)

[
λ2ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

]2⎞

⎠ .

Then, (S.5) holds if
∑

κ∈Kn(p)

[
ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

]2
p−→ 0.

We see this by considering the expectation of this positive random variable. We obtain

E

⎧
⎨

⎩
∑

κ∈Kn(p)

[
ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

]2⎫⎬

⎭ = ρ4nh
2lz
n

∑

κ∈Kn(p)

E

⎧
⎨

⎩

[
n∑

i=1

φκ(Zi)
2

]2⎫⎬

⎭

= ρ4nh
2lz
n

∑

κ∈Kn(p)

E

{
n∑

i1=1

n∑

i2=1

φκ(Zi1)
2φκ(Zi2)

2

}

= ρ4nh
2lz
n

∑

κ∈Kn(p)

E

⎧
⎨

⎩

n∑

i=1

φκ(Zi)
4 +

n∑

i1,i2=1

n∑

i1 ̸=i2

φκ(Zi1)
2φκ(Zi2)

2

⎫
⎬

⎭

= ρ4nh
2lz
n

∑

κ∈Kn(p)

{
nE[φκ(Z)4] + n(n− 1)E[φκ(Z)2]2

}
.

Since f < f by Assumption 2, we have E[φκ(Z)4] = h−2lz
n

∫
φ [(z − pκhn)/hn]

4 f(z)dz ≤

h−lz
n f

∫
φ(u)4du = O(h−lz

n ), and E[φκ(Z)2] = h−lz
n

∫
φ [(z − pκhn)/hn]

2 f(z)dz ≤ f
∫
φ(u)2du =

O(1). Since Kn(p) = 1/(phn) = 1/(p(λρn)1/(s+k)) = O(ρ−1/(s+k)
n ) and hn = O(ρ1/(s+k)

n ),

E

⎧
⎨

⎩
∑

κ∈Kn(p)

[
ρ2nh

lz
n

n∑

i=1

φκ(Zi)
2

]2⎫⎬

⎭ ≤
∑

κ∈Kn(p)

{
nO(ρ4nh

lz
n ) + n(n− 1)O(ρ4nh

2lz
n )
}

= O(ρ−lz/(s+k)
n )

{
nO(ρ4nρ

lz/(s+k)
n ) + n(n− 1)O(ρ4nρ

2lz/(s+k)
n )

}

8cosh(x) = 2−1[exp(x)+exp(−x)]. On the one hand Maclaurin expansion yields cosh(x) = 1+x2/2!+
x4/4!+. . . . On the other hand, Maclaurin expansion of exp(x2/2) yields exp(x2/2) = 1+x2/2!+2x4/4!+
. . . . Therefore, we yield cosh(x) ≤ exp(x2/2) ≤ exp(x2).
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= O(ρ−lz/(s+k)
n )

{
nO(ρ[4(s+k)+lz ]/(s+k)

n ) + n(n− 1)O(ρ[4(s+k)+2lz ]/(s+k)
n )

}

=
{
nO(ρ4n) + n(n− 1)O(ρ[4(s+k)+lz ]/(s+k)

n )
}
.

Then, we consider the following cases:

(i) s + k ≥ lz/4: since ρn = o(ρ̃n) = o(n−2(s+k)/[lz+4(s+k)]), it holds that nρ4n =

o(n[lz−4(s+k)]/[lz+4(s+k)]) = o(1) and n2O(ρ[4(s+k)+lz ]/(s+k)
n ) = n2o(n−2) = o(1).

(ii) s + k < lz/4: since ρn = o(ρ̃n) = o(n−1/4), we have nρ4n = no(n−1)) = o(1) and

n2O(ρ[4(s+k)+lz ]/(s+k)
n ) = n2o(n−[4(s+k)+lz ]/4(s+k)) = o(n[4(s+k)−lz ]/4(s+k)) = o(1).

S-2 Proof of Proposition A2

Proof of Proposition A2. We first show asymptotic behavior of v̂n under the null hy-

pothesis. We define v2n = 1
Klz

n

∑
k∈K

(Nk−1) {Nk>1}
Nk

[E(ω2
i |Zi ∈ Ik)]2.

Lemma S.10. Under Assumptions 1, 2, 3, 5, 6, and 10, v2n is bounded from above,

stochastically bounded from below uniformly in m ∈ ML,s,k, and satisfies v̂2n−v2n = op(1).

Proof. From Assumption 2, we have P (Zi ∈ Ik) =
∫
Zi∈Ik f(z)dz ≤ fhlzn . In the same

way, we obtain P (Zi ∈ Ik) ≥ fhlzn . Then, we obtain

v2n ≤ K−lz
n

∑

k∈K
[E(ω2

i |Zi ∈ Ik)]
2 ≤ 1

f

∑

k∈K
P (Zi ∈ Ik)[E(ω2

i |Zi ∈ Ik)]
2

≤ 1

f

∑

k∈K
P (Zi ∈ Ik)E(ω4

i |Zi ∈ Ik) = f−1E(ω4
i ),

where the right hand side is bounded by a constant by Assumption 1.

Note that (Nk − 1) {Nk > 1}/Nk = (1 − 1/Nk) {Nk ≥ 2} ≥ 1/2. It can be

shown that P (mink∈K {Nk > 1} = 1) → 1 when n/(K lz
n logK lz

n ) → ∞ under As-

sumptions 1 and 2 (see, Lemma 4 in Guerre & Lavergne, 2002). Thus, it holds that
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v2n ≥ 1
2Klz

n

∑
k∈K[E(ω2

i |Zi ∈ Ik)]2 ≥ 1
2f
P (Zi ∈ Ik)

∑
k∈K[E(ω2

i |Zi ∈ Ik)]2 ≥ 1
2f
P (Zi ∈

Ik)
∑

k∈K P (Zi ∈ Ik)2[E(ω2
i |Zi ∈ Ik)]2 = 1

2f
P (Zi ∈ Ik)[E(ω2

i )]
2 > 0 with probability

one.

Now, v̂2n is decomposed as follows

v̂2n

=
1

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

û2i û
2
j

=
1

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

[g(Xi, θ0)− g(Xi, θ̂) + ωi]
2[g(Xj , θ0)− g(Xj , θ̂) + ωj ]

2

=
1

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

{
[g(Xi, θ0)− g(Xi, θ̂)]

2[g(Xj , θ0)− g(Xj , θ̂)]
2

+4ωi[g(Xi, θ0)− g(Xi, θ̂)][g(Xj , θ0)− g(Xj , θ̂)]
2 + 2ω2

i [g(Xj , θ0)− g(Xj , θ̂)]
2

+4ω2
i ωj [g(Xj , θ0)− g(Xj , θ̂)] + 4ωiωj [g(Xi, θ0)− g(Xi, θ̂)][g(Xj , θ0)− g(Xj , θ̂)] + ω2

i ω
2
j

}

≡ 1

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

ω2
i ω

2
j

+
4

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

ω2
i ωj [g(Xj , θ0)− g(Xj , θ̂)] +Rn

≡ v̄2n +Dn +Rn,

where Rn represents smaller terms due to g(Xi, θ0)− g(Xi, θ̂) = Op(1/
√
n) by Assump-

tions 3, 5, and 10 under the null hypothesis.

First, we show that Dn = op(1). Decompose Dn =
√
n(θ0 − θ̂)′D̄n +

√
n(θ0 −

θ̂)′D̃n
√
n(θ0 − θ̂), where

D̄n =
4

K lz
n
√
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

ω2
i ωj

∂g(Xj , θ)

∂θ

D̃n =
4

K lz
n n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

ω2
i ωj

∂g(Xj , θ̃)

∂θ∂θ′
,
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for some θ̃ between θ0 and θ̂. For some positive constant C,

E(|D̄n|)

≤ 4

K lz
n
√
n

∑

k∈K
E

⎡

⎣ {Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

ω2
i |ωj |

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥

⎤

⎦

=
4

K lz
n
√
n

∑

k∈K
E

⎡

⎣ {Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

E(ω2
i |Zi)E

[
|ωj |

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥

∣∣∣∣Zj

]⎤

⎦

=
4

K lz
n
√
n

∑

k∈K
E

{
{Nk > 1}

N2
k

Nk(Nk − 1)E(ω2
i |Zi ∈ Ik)E

[
|ωj |

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥

∣∣∣∣Zj ∈ Ik

]}

≤ 4C

K lz
n
√
n

∑

k∈K
E ( {Nk > 1})E

[
|ωj |

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥

∣∣∣∣Zj ∈ Ik

]

≤ 4C

K lz
n
√
nfhlzn

∑

k∈K
P (Zj ∈ Ik)E

[
|ωj |

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥

∣∣∣∣Zj ∈ Ik

]

≤ 4C√
nf

E

[
|ωj |

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥

]
= O(1/

√
n),

where E(ω2
i |Zi ∈ Ik) = E(ω2

i {Zi ∈ Ik}) is bounded by Assumption 1 and E[|ωj |∥∂g(Xj , θ̃)/∂θ∥]
is bounded by Assumptions 1 and 5. Furthermore,

E(|D̃n|)

≤ 4

Klz
n n

∑

k∈K

E

⎡

⎣ {Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

ω2
i |ωj |

∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥

⎤

⎦

≤ 4

Klz
n n

∑

k∈K

E

⎛

⎜⎝

⎛

⎝ {Nk > 1}
N2

k

∑

Zi∈Ik

ω4
i

⎞

⎠
1/2 ⎡

⎣ {Nk > 1}
N2

k

∑

Zi∈Ik

⎧
⎨

⎩
∑

Zj∈Ik,j ̸=i

|ωj |
∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥

⎫
⎬

⎭

2⎤

⎦

1/2
⎞

⎟⎠

≤ 4

Klz
n n

∑

k∈K

⎡

⎣E

⎛

⎝ {Nk > 1}
N2

k

∑

Zi∈Ik

ω4
i

⎞

⎠

⎤

⎦
1/2⎧⎨

⎩E

⎡

⎣ {Nk > 1}
N2

k

∑

Zi∈Ik

⎛

⎝
∑

Zj∈Ik,j ̸=i

|ωj |
∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥

⎞

⎠
2⎤

⎦

⎫
⎬

⎭

1/2

=
4

Klz
n n

∑

k∈K

[
E

(
{Nk > 1}

Nk

)]1/2 [
E(ω4

i |Zi ∈ Ik)
]1/2

{
E

[
{Nk > 1}

N2
k

∑

Zi∈Ik

(
∑

Zj∈Ik,j ̸=i

|ωj |2
∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥
2

+
∑

Zj∈Ik,j ̸=i

∑

Zl∈Ik,l ̸=j

|ωj ||ωl|
∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥

∥∥∥∥
∂g(Xl, θ̃)
∂θ∂θ′

∥∥∥∥

)]}1/2

≤ C

Klz
n n

∑

k∈K

{
E

[
(Nk − 1) {Nk > 1}

Nk

]
E

[
|ωj |2

∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥
2
∣∣∣∣∣Zj ∈ Ik

]
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+ E

[
(Nk − 1)(Nk − 2) {Nk > 1}

Nk

] [
E

(
|ωj |

∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥

∣∣∣∣Zj ∈ Ik

)]2}1/2

≤ C

Klz
n n

{
∑

k∈K

E

[
(Nk − 1) {Nk > 1}

Nk

]
E

[
|ωj |2

∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥
2
∣∣∣∣∣Zj ∈ Ik

]

+
∑

k∈K

E

[
(Nk − 1)(Nk − 2) {Nk > 1}

Nk

] [
E

(
|ωj |

∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥

∣∣∣∣Zj ∈ Ik

)]2}1/2

≤ C

Klz
n n

{
1

fhlz
n

∑

k∈K

P (Zj ∈ Ik)E

[
|ωj |2

∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥
2
∣∣∣∣∣Zj ∈ Ik

]

+
∑

k∈K

E [Nk {Nk > 1}]
[
E

(
|ωj |

∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥

∣∣∣∣Zj ∈ Ik

)]2}1/2

≤ C

Klz
n n

⎧
⎨

⎩
1

fhlz
n

{
E
(
|ωj |4

)
E

[
sup
θ∈Θ

∥∥∥∥
∂g(Xj , θ)
∂θ∂θ′

∥∥∥∥
4
]}1/2

+ n

[
∑

k∈K

P (Zj ∈ Ik)E

(
|ωj |

∥∥∥∥
∂g(Xj , θ̃)
∂θ∂θ′

∥∥∥∥

∣∣∣∣Zj ∈ Ik

)]2}1/2

≤ C

Klz
n n

{
O(1)

fhlz
n

+ nE
(
|ωj |2

)
E

[
sup
θ∈Θ

∥∥∥∥
∂g(Xj , θ)
∂θ∂θ′

∥∥∥∥
2
]}1/2

=

{
O

(
1

Klz
n n2

)
+O

(
1

K2lz
n n

)}1/2

= o(1),

where E( {Nk > 1}/Nk) ≤ 1 and E(ω4
i |Zi ∈ Ik), E(|ωj |4), and E[supθ∈Θ ∥∂g(Xj , θ)/∂θ∂θ′∥4]

are bounded by Assumptions 1 and 6. Further, we use the fact that, given {Nk > 1} =

1, (Nk − 1)/Nk < 1 and (Nk − 1)(Nk − 2)/Nk < Nk. Thus, Dn = op(1).

Next, we show v̄2n − v2n = op(1). Since we have i.i.d. observation,

[E(ω2
i |Zi ∈ Ik)]

2 = [E(ω2
i {Zi ∈ Ik})]2

= E(ω2
i {Zi ∈ Ik})E(ω2

j {Zj ∈ Ik})

=
1

Nk(Nk − 1)

∑

{Zi,Zj}∈Ik,i ̸=j

E(ω2
i {Zi ∈ Ik})E(ω2

j {Zj ∈ Ik}).

Thus,

E[|v̄2n − v2n|2]

13



= E

⎧
⎪⎨

⎪⎩

∣∣∣∣∣∣
1

Klz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

{ω2
i ω

2
j − E(ω2

i |Zi ∈ Ik)E(ω2
j |Zj ∈ Ik)}

∣∣∣∣∣∣

2
⎫
⎪⎬

⎪⎭

≤ 1

K2lz
n

∑

k∈K
E

⎧
⎪⎨

⎪⎩
{Nk > 1}

N4
k

∣∣∣∣∣∣

∑

{Zi,Zj}∈Ik,i ̸=j

{ω2
i ω

2
j − E(ω2

i |Zi ∈ Ik)E(ω2
j |Zj ∈ Ik)}

∣∣∣∣∣∣

2
⎫
⎪⎬

⎪⎭

=
1

K2lz
n

∑

k∈K
E

⎧
⎪⎪⎨

⎪⎪⎩

{Nk > 1}
N4

k

∑

{Zi1 ,Zj1}∈Ik
i1 ̸=j1

∑

{Zi2 ,Zj2}∈Ik
i2 ̸=j2

ω2
i1ω

2
j1ω

2
i2ω

2
j2

⎫
⎪⎪⎬

⎪⎪⎭

− 2

K2lz
n

∑

k∈K
E

⎧
⎪⎪⎨

⎪⎪⎩

{Nk > 1}
N4

k

∑

{Zi1 ,Zj1}∈Ik
i1 ̸=j1

∑

{Zi2 ,Zj2}∈Ik
i2 ̸=j2

ω2
i1ω

2
j1E(ω2

i2 |Zi2 ∈ Ik)E(ω2
j2 |Zj2 ∈ Ik)

⎫
⎪⎪⎬

⎪⎪⎭

+
1

K2lz
n

∑

k∈K
E

{
{Nk > 1}

N4
k

∑

{Zi1 ,Zj1}∈Ik
i1 ̸=j1

∑

{Zi2 ,Zj2}∈Ik
i2 ̸=j2

E(ω2
i1 |Zi1 ∈ Ik)E(ω2

j1 |Zj1 ∈ Ik)

E(ω2
i2 |Zi2 ∈ Ik)E(ω2

j2 |Zj2 ∈ Ik)

}

=
1

K2lz
n

∑

k∈K
E

⎧
⎪⎪⎨

⎪⎪⎩

{Nk > 1}
N4

k

∑

{Zi1 ,Zj1}∈Ik
i1 ̸=j1

∑

{Zi2 ,Zj2}∈Ik
i2 ̸=j2

ω2
i1ω

2
j1ω

2
i2ω

2
j2

⎫
⎪⎪⎬

⎪⎪⎭

− 2

K2lz
n

∑

k∈K
E

⎧
⎪⎪⎨

⎪⎪⎩

{Nk > 1}
N2

k

[E(ω2
i |Zi ∈ Ik)]

2
∑

{Zi1 ,Zj1}∈Ik
i1 ̸=j1

ω2
i1ω

2
j1

⎫
⎪⎪⎬

⎪⎪⎭

+
1

K2lz
n

∑

k∈K
E

⎧
⎪⎪⎨

⎪⎪⎩

{Nk > 1}
N4

k

⎧
⎪⎪⎨

⎪⎪⎩

∑

{Zi,Zj}∈Ik
i1 ̸=j1

E(ω2
i |Zi ∈ Ik)E(ω2

j |Zj ∈ Ik)

⎫
⎪⎪⎬

⎪⎪⎭

2⎫⎪⎪⎬

⎪⎪⎭

≤ O(K−lz
n ) +O(K−lz

n )E
{
E(ω2

i1 |Zi1 ∈ Ik)E(ω2
j1 |Zj1 ∈ Ik)

}
+O(K−lz

n )

= O(hlz ) = o(1), (S.6)

where E(ω4
i |Zi ∈ Ik) = E(ω4

i {Zi ∈ Ik}) = E[E(ω4
i |Zi) {Zi ∈ Ik}] is bounded by

Assumption 1. This together with Dn = op(1) yields v̂2n − v2n = op(1).
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The test statistic can be decomposed as follows;

TGL
n

=
1

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

ûiûj

=
1

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[g(Xi, θ0)− g(Xi, θ̂) + ωi][g(Xj , θ0)− g(Xj , θ̂) + ωj ]

=
1

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[g(Xi, θ0)− g(Xi, θ̂)][g(Xj , θ0)− g(Xj , θ̂)]

+ 2
1

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[g(Xi, θ0)− g(Xi, θ̂)]ωj

+
1

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

ωiωj

≡ TGL
1 + TGL

2 + TGL
3 .

It is straightforward to show that TGL
1 = op(1) by using g(Xj , θ0)−g(Xi, θ̂) = Op(1/

√
n)

that holds by Assumptions 3, 5, and 10 under the null hypothesis. TGL
2 = op(1) can be

shown analogously to Lemma S.16 under Assumptions 1, 3, 5, 6, and 10.9 We show the

asymptotic heavier of TGL
3 .

Lemma S.11. Under Assumptions 1, 2, 3, 5, and 10, TGL
3 /v̂n

d−→ N(0, 1).

Proof. We follow and extend the proof of Theorem 2 in Guerre and Lavergne (2002)

into IV setup. Let J1, . . . , Jn be any rearrangement of the indices i = 1, . . . , n such that

XJi ∈ Ik if and only if (iff)
∑

l<k Nl < Ji ≤
∑

l≤k Nl. Let Fn,k ≡ {Y1, . . . , YJi , NK :
∑

l<k Nl < Ji ≤
∑

l≤k Nl, k ∈ K} be a increasing sequence, where NK ≡ {Nk : k ∈

K} and TGL
3,n,k ≡ 1√

2K
lz/2
n

∑
k′≤k

{Nk′>1}
Nk′

∑
{Zi,Zj}∈Ik′ ,i ̸=j ωiωj . Then, {TGL

3,n,k,Fn,k, k ∈

K, n ≥ 1} is zero-mean square integrable martingale array. Note that TGL
3,n,k −TGL

3,n,k−1 =

9Note that we consider asymptotic behavior of TGL
2 under the null hypothesis, while Lemma S.16 is

under the alternative. Thus, A1 term, that comes form misspecification, in the proof of Lemma S.16
does not appear here. Only to show is A2 with ηi replaced with ωi to be op(1).
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(2K lz
n )−1/2 {Nk>1}

Nk

∑
{Zi,Zj}∈Ik,i ̸=j ωiωj ≡ (2K lz

n )−1/2wk denotes the martingale differ-

ences. To prove TGL
3 /v̂n

d−→ N(0, 1), it suffices to show that

v̂−2
n

∑

k∈K
E[(2K lz

n )−1w2
k {|(2K lz

n )−1/2wk| > ϵv̂n}|Fn,k−1]
p−→ 0 for all ϵ > 0, (S.7)

and

v̂−2
n

∑

k∈K
E[(2K lz

n )−1w2
k|Fn,k−1]

p−→ 1, (S.8)

by Corollary 3.1 in P. Hall and Heyde (1980, p.58). Square of the left hand side of (S.7)

is bounded from above by

v̂−4
n

∑

k∈K
E
[
(2K lz

n )−2w4
k|Fn,k−1

]
=

1

v̂4n4K
2lz
n

∑

k∈K
E
[
w4
k|Fn,k−1

]
= Op(K

−lz
n ),

because v̂2n
p−→ v2n from Lemma S.10 and for some constant C, we have

E
[
w4
k|Fn,k−1

]

=
{Nk > 1}

N4
k

E

⎡

⎣

⎛

⎝
∑

{Zi,Zj}∈Ik,i ̸=j

ωiωj

⎞

⎠
4∣∣∣∣∣∣
Fn,k−1

⎤

⎦

=
{Nk > 1}

N4
k

E

⎡

⎣

⎛

⎝
∑

{Zi,Zj}∈Ik,i ̸=j

ω2
i ω

2
j

⎞

⎠
2∣∣∣∣∣∣
Fn,k−1

⎤

⎦

=
{Nk > 1}

N4
k

∑

{Zi1 ,Zj1}∈Ik,i1 ̸=j1

∑

{Zi2 ,Zj2}∈Ik,i2 ̸=j2

E
[
ω2
i1ω

2
j1ω

2
i2ω

2
j2

∣∣Fn,k−1

]

≤ {Nk > 1}
N4

k

∑

{Zi1 ,Zj1}∈Ik,i1 ̸=j1

∑

{Zi2 ,Zj2}∈Ik,i2 ̸=j2

E
(
ω4
i1

∣∣Fn,k−1

)1/2
E
(
ω4
j1

∣∣Fn,k−1

)1/2

× E
(
ω4
i2

∣∣Fn,k−1

)1/2
E
(
ω4
j2

∣∣Fn,k−1

)1/2

≤ {Nk > 1}
[
E
(
ω4
i1

∣∣Fn,k−1

)]2
< C,

where the second equality comes from the orthogonality between ωi and Zi. Thus,
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equation (S.7) holds. Equation (S.8) is implied by

∑

k∈K
E[(2K lz

n )−1w2
k|Fn,k−1] =

1

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

E[ω2
i ω

2
j |NK]

=
1

K lz
n

∑

k∈K

(Nk − 1) {Nk > 1}
Nk

[E(ω2
i |Zi ∈ Ik)]

2

= v2n

and Lemma S.10.

S-3 Proof of Proposition A3

Proof of Proposition A3. We first show asymptotic behavior of v̂n under the alternative

hypothesis. We define v∗2n = 1
Klz

n

∑
k∈K

(Nk−1) {Nk>1}
Nk

[E(u∗2i |Zi ∈ Ik)]2, where u∗i ≡

Yi − g(Xi, θ∗).

Lemma S.12. Under Assumptions 1, 2, 3, 4, 5, 7, 8, and 11, v∗2n is bounded from above,

stochastically bounded from below uniformly in m ∈ ML,s,k, and satisfies v̂2n−v∗2n = op(1).

Proof. Since E(u∗4i ) ≤ E(Y 4
i ) + 2E(Y 2

i g(Xi, θ∗)2) + E[g(Xi, θ∗)4] < ∞ by Assumptions

1 and 4, it can be show similar to Lemma S.10 that E(u∗2i |Zi ∈ Ik) is bounded from

above uniformly in m ∈ ML,s,k under the alternative by replacing ωi in Lemma S.10

with u∗i .

Similar to Lemma S.10, by applying Lemma 4 in Guerre and Lavergne (2002), we

can show that v∗2n is stochastically bounded from below uniformly in m ∈ ML,s,k.

Now, v̂2n can be decomposed as follows

v̂2n

17



=
1

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

û2i û
2
j

=
1

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

[g(Xi, θ
∗)− g(Xi, θ̂) + u∗i ]

2[g(Xj , θ
∗)− g(Xj , θ̂) + u∗j ]

2

=
1

K lz
n

∑

k∈K

{Nk > 1}
N2

k

∑

{Zi,Zj}∈Ik,i ̸=j

{
[g(Xi, θ

∗)− g(Xi, θ̂)]
2[g(Xj , θ

∗)− g(Xj , θ̂)]
2

+4u∗i [g(Xi, θ
∗)− g(Xi, θ̂)][g(Xj , θ

∗)− g(Xj , θ̂)]
2 + 2u∗2i [g(Xj , θ

∗)− g(Xj , θ̂)]
2

+4u∗iu
∗2
j [g(Xj , θ

∗)− g(Xj , θ̂)] + 4u∗iu
∗
j [g(Xi, θ

∗)− g(Xi, θ̂)][g(Xj , θ
∗)− g(Xj , θ̂)] + u∗2i u∗2j

}
,

where g(Xi, θ∗)−g(Xi, θ̂) = Op(1/
√
n) by Assumptions 3, 5, and 11. Similar to the proof

of Lemma S.10, the dominated term in v̂2n is v̄∗2n ≡ 1
Klz

n

∑
k∈K

{Nk>1}
N2

k

∑
{Zi,Zj}∈Ik,i ̸=j u

∗2
i u∗2j .

The convergence of v̄∗2n is resulted by E(|v̄∗2n −v∗2n |2) = o(1), whose proof goes along with

equation (S.6) in Lemma S.10 and replacing ω with u∗.

Under the alternative hypothesis,

TGL
n =

1
√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

ûiûj

=
1

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[Yi − g(Xi, θ
∗) + g(Xi, θ

∗)− g(Xi, θ̂)]

× [Yj − g(Xj , θ
∗) + g(Xj , θ

∗)− g(Xj , θ̂)]

=
1

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[Yi − g(Xi, θ
∗)][Yj − g(Xj , θ

∗)]

+
2

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[Yi − g(Xi, θ
∗)][g(Xj , θ

∗)− g(Xj , θ̂)] +B

≡ TGL∗
n +A+B,

where A = O(
√

nhlzn ){E[δ2θ∗(Zi)]}1/2 by Lemma S.16 in the supplemental material for

lemmas and B denotes smaller terms that is Op(1), which is shown by using |g(Xi, θ∗)−

18



g(Xi, θ̂)| = Op(n−1/2) by Assumptions 3, 5, and 11. Then, we obtain

P (TGL
n ≤ zαv̂n) = P (TGL

n ≤ zαv
∗
n) + o(1) ≤ P (TGL∗

n ≤ C + C̄

√
nhlzn {E[δ2θ∗(Zi)]}1/2) + o(1)

for some positive positive constants C and C̄. Further,

P

(
−[TGL∗

n − E(TGL∗
n )] ≥ E(TGL∗

n )− C − C̄

√
nhlzn {E[δ2θ∗(Zi)]}1/2

)
+ o(1)

≤
var

(
TGL∗
n

)

[E(TGL∗
n )− C − C̄

√
nhlzn {E[δ2θ∗(Zi)]}1/2]2

,

if E(TGL∗
n )− C − C̄

√
nhlzn {E[δ2θ∗(Zi)]}1/2 > 0. Then, it is sufficient to show that κ can

be chosen so that

E(TGL∗
n )− C − C̄

√
nhlzn {E[δ2θ∗(Zi)]}1/2 > 0 (S.9)

var
(
TGL∗
n

)

[E(TGL∗
n )− C − C̄

√
nhlzn {E[δ2θ∗(Zi)]}1/2]2

≤ β, (S.10)

uniformly in m ∈ M(κρn). Now,

TGL∗
n =

1
√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[m(Zi)− g(Xi, θ
∗) + ωi][m(Zj)− g(Xj , θ

∗) + ωj ]

=
1

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[m(Zi)− g(Xi, θ
∗)][m(Zj)− g(Xj , θ

∗)]

+
2

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

ωi[m(Zj)− g(Xj , θ
∗)]

+
1

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

ωiωj

≡ TGL∗
n,1 + TGL∗

n,2 + TGL∗
n,3 .
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It is obvious that E(TGL∗
n,2 ) = 0 and E(TGL∗

n,3 ) = 0. Then,

E(TGL∗
n ) =

1
√
2K lz/2

n

∑

k∈K
E

⎡

⎣ {Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

δθ∗(Zi)δθ∗(Zj)

⎤

⎦

=
1

√
2K lz/2

n

∑

k∈K
E [(Nk − 1) {Nk > 1}]E[δθ∗(Zi)|Zi ∈ Ik]

2

≥ C1nh
lz/2
n√
2

{E[δ2θ∗(Zi)]
1/2 − hs+k

n }2,

where the last inequality holds for large n and some constant C1 > 0 under Assumption

2 by using Proposition 7 in Guerre and Lavergne (2002). By using this, we yield

E(TGL∗
n )− C − C̄

√
nhlzn {E[δ2θ∗(Zi)]}1/2

nhlz/2n E[δ2θ∗(Zi)]

≥
C1(n− 1)hlz/2n {E[δ2θ∗(Zi)]1/2 − hs+k

n }2 − C − C̄
√
nhlzn {E[δ2θ∗(Zi)]}1/2

nhlz/2n E[δ2θ∗(Zi)]

≥ C1(n− 1)

n

{
1− hs+k

n

κρn

}2

− C

nhlz/2n κ2ρ2n
− C̄√

nκρn

=
C1(n− 1)

n

{
1− λs+k

κ

}2

− C

κ2λlz/2
−O

(
n

−lz/2
lz+4(s+k)

)
,

which is increasing in κ and positive for κ large enough.

Next, let µk ≡ {Nk>1}
Nk

∑
{Zi,Zj}∈Ik,i ̸=j [Yi − g(Xi, θ∗)][Yj − g(Xj , θ∗)] Then, we can

write TGL∗
n ≡ 1√

2K
lz/2
n

∑
k∈K µk, where µk’s are uncorrelated given NK ≡ {Nk, k ∈ K}.

Note that (Nk − 1) {Nk > 1} = Nk − 1 + {Nk = 0}, since Nk − 1 = (Nk − 1) {Nk >

1}+ (Nk − 1) {Nk ≤ 1} = (Nk − 1) {Nk > 1}− {Nk = 0}. We have

E(µk|NK) =
{Nk > 1}

Nk

∑

{Zi,Zj}∈Ik,i ̸=j

E [δθ∗(Zi)δθ∗(Zj)|NK]

= (Nk − 1) {Nk > 1}{E [δθ∗(Zi)|Zi ∈ Ik]}2
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and

E(µ2
k|NK) =

{Nk > 1}
N2

k

E

⎛

⎝

⎧
⎨

⎩
∑

{Zi,Zj}∈Ik,i ̸=j

[Yi − g(Xi, θ
∗)][Yj − g(Xj , θ

∗)]

⎫
⎬

⎭

2∣∣∣∣∣∣
NK

⎞

⎠

=
(Nk − 1)(Nk − 2)(Nk − 3)

Nk
{Nk > 1}{E [δθ∗(Zi)|Zi ∈ Ik]}4

+
4(Nk − 1)(Nk − 2)

Nk
{Nk > 1}{E [δθ∗(Zi)|Zi ∈ Ik]}2E

[
u∗2i |Zi ∈ Ik

]

+
2(Nk − 1)

Nk
{Nk > 1}[E

(
u∗2i |Zi ∈ Ik

)
]2,

which implies

var (µk|NK) = E(µ2
k|NK)− [E(µk|NK)]

2

=
−2(Nk − 1)(2Nk − 3)

Nk
{Nk > 1}{E [δθ∗(Zi)|Zi ∈ Ik]}4

+
4(Nk − 1)(Nk − 2)

Nk
{Nk > 1}{E [δθ∗(Zi)|Zi ∈ Ik]}2E

[
u∗2i |Zi ∈ Ik

]

+
2(Nk − 1)

Nk
{Nk > 1}[E

(
u∗2i |Zi ∈ Ik

)
]2.

From the law of total variance, we obtain

var
(
TGL∗
n

)
=

1

2K lz
n
var

(
∑

k∈K
µk

)
=

1

2K lz
n
E

[
var

(
∑

k∈K
µk

∣∣∣∣∣NK

)]
+

1

2K lz
n
var

[
E

(
∑

k∈K
µk

∣∣∣∣∣NK

)]

=
1

2K lz
n

∑

k∈K
E [var (µk|NK)] +

1

2K lz
n
var

[
∑

k∈K
E (µk|NK)

]
.

Note that, given {Nk > 1}, we have−(Nk − 1)(2Nk − 3)/Nk < Nk and 4(Nk − 1)(Nk − 2)/Nk <

Nk. Since E(Nk {Nk > 1}) = E(Nk)− E(Nk {Nk ≤ 1}) ≤ E(Nk), we obtain

1

2K lz
n

∑

k∈K
E [var (µk|NK)]

=
1

2K lz
n

∑

k∈K
E

(
−2(Nk − 1)(2Nk − 3)

Nk
{Nk > 1}{E [δθ∗(Zi)|Zi ∈ Ik]}4

)
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+
1

2K lz
n

∑

k∈K
E

(
4(Nk − 1)(Nk − 2)

Nk
{Nk > 1}{E [δθ∗(Zi)|Zi ∈ Ik]}2E

[
u∗2i |Zi ∈ Ik

])

+
1

2K lz
n

∑

k∈K
E

(
2(Nk − 1)

Nk
{Nk > 1}[E

(
u∗2i |Zi ∈ Ik

)
]2
)

≤ 2

K lz
n

∑

k∈K
E(Nk {Nk > 1}){E [δθ∗(Zi)|Zi ∈ Ik]}2{E [δθ∗(Zi)|Zi ∈ Ik]}2

+
2

K lz
n

∑

k∈K
E
(
Nk {Nk > 1}{E [δθ∗(Zi)|Zi ∈ Ik]}2E

[
u∗2i |Zi ∈ Ik

])
+ E

(
v∗2n
)

≤ 2n

K lz
n

∑

k∈K
P (Zi ∈ Ik)E

[
δ2θ∗(Zi)|Zi ∈ Ik

]
E
[
δ2θ∗(Zi)|Zi ∈ Ik

]

+
2O(n)

K lz
n

∑

k∈K
P (Zi ∈ Ik)E

[
δ2θ∗(Zi)|Zi ∈ Ik

]
+ E

(
v∗2n
)

≤ 2n

K lz
n

∑

k∈K
E
[
δ2θ∗(Zi)

]2
+O(1)nhlznE

[
δ2θ∗(Zi)

]
+ E

(
v∗2n
)

≤ O(n){E
[
δ2θ∗(Zi)

]
}2 +O(nhlzn )E

[
δ2θ∗(Zi)

]
+ E

(
v∗2n
)
,

where E
[
u∗2i |Zi ∈ Ik

]
is uniformly bounded by Assumptions 1 and 7 under the alterna-

tive hypothesis and v∗2n ≡ 1
Klz

n

∑
k∈K

(Nk−1) {Nk>1}
Nk

[E(u∗2i |Zi ∈ Ik)]2 is the limit of v̂n

under the alternative.

1

2K lz
n
var

[
∑

k∈K
E (µk|NK)

]

=
1

2K lz
n
var

(
∑

k∈K
(Nk − 1) {Nk > 1}{E [δθ∗(Zi)|Zi ∈ Ik]}2

)

=
1

2K lz
n

∑

k∈K
{E [δθ∗(Zi)|Zi ∈ Ik]}4var ((Nk − 1) {Nk > 1})

+
1

2K lz
n

∑

k ̸=k′

{E [δθ∗(Zi)|Zi ∈ Ik]}2{E [δθ∗(Zi)|Zi ∈ Ik′ ]}2cov ((Nk − 1) {Nk > 1}, (Nk′ − 1) {Nk′ > 1})

≤ n

K lz
n

∑

k∈K
P (Zi ∈ Ik){E [δθ∗(Zi)|Zi ∈ Ik]}4

+
n

K lz
n

∑

k ̸=k′

P (Zi ∈ Ik)P (Zi ∈ Ik′){E [δθ∗(Zi)|Zi ∈ Ik]}2{E [δθ∗(Zi)|Zi ∈ Ik′ ]}2
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≤ O(nhlzn ){E
[
δ2θ∗(Zi)

]
}+O(nhlzn ){E

[
δ2θ∗(Zi)

]
}2

where we use the results of Lemma 3 in Guerre and Lavergne (2002), that is, var((Nk −

1) {Nk > 1}) ≤ 2nP (Zi ∈ Ik) and cov ((Nk − 1) {Nk > 1}, (Nk′ − 1) {Nk′ > 1}) ≤

2nP (Zi ∈ Ik)P (Zi ∈ Ik′). The last inequality holds because δ2θ∗(Zi) = {m(Zi) −

E[g(Xi, θ)|Zi]}2 is bounded by Assumptions 2 and 8 under the alternative hypothesis.

Thus, we obtain

var
(
TGL∗
n

)
≤ O(n){E

[
δ2θ∗(Zi)

]
}2 +O(nhlzn )E

[
δ2θ∗(Zi)

]
+ E

(
v∗2n
)
,

which implies

var
(
TGL∗
n

)

n2hlznE[δ2θ∗(Zi)]2
≤ O(1)

nhlzn
+

O(1)

nκ2ρ2n
+

E
(
v∗2n
)

n2hlzn κ
4ρ4n

= O

(
1

nhlzn

)
+O

(
n

−lz
lz+4(s+k)

) 1

κ2
+

E
(
v∗2n
)

κ4
.

The upper bound is bounded and decreasing in κ.
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Supplemental Material: Proof of Lemmas

S-1 Proof of Lemma 1

First, we introduce the following lemma.

Lemma S.13. Under Assumptions 2 and 12, we have

∫
K

(
x− y

h

)
f(x)f(y)dxdy = hlz

∫
K (u) du

∫
f(y)2dy +O(hlz+1)

Proof.

∫
K

(
x− y

h

)
f(x)f(y)dxdy = hlz

∫
K (u) f(y + uh)f(y)dudy

= hlz
∫

K (u) [f(y) + hu′∆(1)f(y) +Rn]f(y)dudy

= hlz
∫

K (u) du

∫
f(y)2dy +O(hlz+1)

Proof. T1 can be written as a second order U-statistic form multiplied by nhlz/2:

T1 =
2nhlz/2

n(n− 1)

n∑

i=1

∑

j>i

1

hlz
K

(
Zj − Zi

h

)
uiuj =

2n

n(n− 1)

n∑

i=1

∑

j>i

H(Wi,Wj),

where Wi = {Zi, ui}, H(Wi,Wj) ≡ h−lz/2K
(
Zj−Zi

h

)
uiuj is symmetric by Assumption

12, centered, that is, E[H(Wi,Wj)] = 0, and degenerate, that is, E[H(Wi,Wj)|Zi, ui] =

E{E[H(Wi,Wj)|Zi, Zjui]Zi, ui} = 0. The second moment of H(Wi,Wj) is bounded

because

E[H(Wi,Wj)
2] =

1

hlz
E

[
K

(
Zj − Zi

h

)2

σ2(Zi)σ
2(Zj)

]

=
1

hlz

∫
K

(
x− y

h

)2

σ2(x)σ2(y)f(x)f(y)dxdy
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=

∫
K(u)2σ2(y + uh)σ2(y)f(y + uh)f(y)dudy

= K(0)

∫
[σ2(y)]2f(y)2dy +O(h),

where the convolution product K(0) is bounded by Assumption 12. The variance of the

error term σ2(·) and the density of instrument f(·) are bounded by Assumptions 1 and

2, respectively. The last equality is shown in Lemma S.13.

Let G(W1,W2) = E[H(W1,W3)H(W2,W3)|W1,W2]. According to the central limit

theorem for degenerate U-statistic, i.e. Q. Li and Racine (2007),

T1/
√

2E[H(Wi,Wj)2]
d−→ N(0, 1),

if
E[G(Wi,Wj)2] + n−1E[H(Wi,Wj)4]

{E[H(Wi,Wj)2]}2
→ 0, (S.1)

as n → ∞. We show that equation (S.1) holds. First, note that

G(W1,W2) = E[H(W1,W3)H(W2,W3)|W1,W2]

= h−lzE

[
K

(
Z1 − Z3

h

)
K

(
Z2 − Z3

h

)
u1u2u

2
3

∣∣∣∣Z1, Z2, u1, u2

]

= h−lzu1u2E

[
K

(
Z1 − Z3

h

)
K

(
Z2 − Z3

h

)
σ2(Z3)

∣∣∣∣Z1, Z2, u1, u2

]

= h−lzu1u2

∫
K

(
Z1 − z

h

)
K

(
Z2 − z

h

)
σ2(z)f(z)dz

= u1u2

∫
K(u)K

(
Z2 − Z1

h
+ u

)
σ2(Z1 − uh)f(Z1 − uh)du.

Then,

E[G(W1,W2)
2]

= E

{
u21u

2
2

[∫
K(u)K

(
Z2 − Z1

h
+ u

)
σ2(Z1 − uh)f(Z1 − uh)du

]2}
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=

∫
σ2(x)σ2(y)

[∫
K(u)K

(
y − x

h
+ u

)
σ2(x− uh)f(x− uh)du

]2
f(x)f(y)dxdy

= hlz
∫

σ2(x)σ2(x+ vh)

[∫
K(u)K (v + u)σ2(x− uh)f(x− uh)du

]2
f(x)f(x+ vh)dxdv

= hlz
∫

σ2(x)[σ2(x) +O(h)]

[
σ2(x)f(x)

∫
K(u)K (v + u) du+O(h)

]2
f(x)[f(x) +O(h)]dxdv

= hlz
∫

[σ2(x)]4f(x)4dx

∫ [∫
K(u)K (v + u) du

]2
dv + o(hlz)

= O(hlz). (S.2)

Second, let us define σ4(Zi) = E(ω4
i |Zi), which is bounded by Assumption 1. Then,

E[H(Wi,Wj)
4] =

1

h2lz
E

[
K

(
Zj − Zi

h

)4

σ4(Zi)σ
4(Zj)

]

≤ M2

h2lz

∫
K

(
x− y

h

)4

f(x)f(y)dxdy

=
M2

hlz

[∫
K(u)4du

∫
f(y)4dy +O(h)

]
= O(h−lz). (S.3)

Third,

{E[H(Wi,Wj)
2]}2 = 1

h2lz

{
E

[
K

(
Zj − Zi

h

)2

σ2(Zi)σ
2(Zj)

]}2

=
1

h2lz

[∫
K

(
x− y

h

)2

f(x)f(y)σ2(x)σ2(y)dxdy

]2

=

[∫
K(u)2f(y + uh)f(y)σ2(y + uh)σ2(y)dudy

]2

=

{∫
K(u)2[f(y) +O(h)]f(y)[σ2(y) +O(h)]σ2(y)dudy

}2

=

{∫
K(u)2du

∫
f(y)2[σ2(y)]2dy +O(h)

}2

= O(1). (S.4)
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Equation (S.2), (S.3), and (S.4) implies

E[G(Wi,Wj)2] + n−1E[H(Wi,Wj)4]

{E[H(Wi,Wj)2]}2
=

O(hlz) +O(n−1h−lz)

O(1)
→ 0, (S.5)

as n → ∞. Thus, equation (S.1) holds, and we obtain

T1
d−→ N(0, 2K(0)E{[σ2(y)]2f(y)}).

S-2 Proof of Lemma 2

Proof. Applying Taylor expansion to g(Xj , θ̂) around θ0 under Assumption 3 yields

T2 =
2

(n− 1)hlz/2

n∑

i=1

∑

j ̸=i

K

(
Zj − Zi

h

)
ui[g(Xj , θ0)− g(Xj , θ̂)]

=
2(θ̂ − θ0)′

(n− 1)hlz/2

n∑

i=1

∑

j ̸=i

K

(
Zj − Zi

h

)
ui

∂

∂θ
g(Xj , θ0) +Rn

≡ 2
√
n(θ̂ − θ0)′√

n(n− 1)hlz/2

n∑

i=1

∑

j<i

µi,j +
2
√
n(θ̂ − θ0)′√

n(n− 1)hlz/2

n∑

i=1

∑

j>i

µi,j +Rn,

where µi,j = K
(
Zj−Zi

h

)
ui

∂
∂θg(Xj , θ0) is a lz ×1 vector, Rn represents smaller terms un-

der Assumptions 1, 2, 6, and 12, and
√
n(θ̂ − θ) = Op(1) by Assumption 10. It is useful

that for j ̸= i, E(µi,j) = E[E(µi,j |Z,X−i)] = 0, where 0 denotes lz×1 zero vector. By us-

ing this, we obtain that
∑n

i=1

∑
j<iE(µi,j) =

∑n
i=1

∑
j<iE[E(µi,j |Z1, . . . , Zn, X1, . . . , Xi−1)] =

0, and
∑n

i=1

∑
j>iE(µi,j) = 0. Thus, to show T ′

2 = op(1), it suffices that variance for

each elements of 2√
n(n−1)hlz/2

∑n
i=1

∑
j<i µi,j and

2√
n(n−1)hlz/2

∑n
i=1

∑
j>i µi,j is o(1). To

simplify the notation, we show the case for lz = 1. Let G(z) ≡ E[ ∂∂θg(x, θ)|z] and
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G2(z) ≡ E[| ∂∂θg(x, θ)|
2|z]. Then,

var

⎛

⎝ 2√
n(n− 1)hlz/2

n∑

i=1

∑

j<i

µi,j

⎞

⎠ =
4

n(n− 1)2hlz
E

⎛

⎝
n∑

i1=1

∑

j1<i1

n∑

i2=1

∑

j2<i2

µi1,j1µi2,j2

⎞

⎠

=
4

n(n− 1)2hlz

n∑

i

∑

j<i

E
(
µ2
i,j

)
+

4

n(n− 1)2hlz

n∑

i

∑

j1<i

∑

j2<i
j2 ̸=j1

E (µi,j1µi,j2)

= O(n−1) +O(hlz),

because for all i, j1 < i, j2 < i, and j1 ̸= j2,

E (µi,j1µi,j2)

= E

[
K

(
Zj1 − Zi

h

)
K

(
Zj2 − Zi

h

)
∂g(Xj1 , θ)

∂θ

∂g(Xj2 , θ)

∂θ
σ2(Zi)

]

= E

[∫
K

(
Zj1 − z

h

)
K

(
Zj2 − z

h

)
σ2(z)f(z)dz

∂g(Xj1 , θ)

∂θ

∂g(Xj2 , θ)

∂θ

]

= hlzE

[
∂g(Xj1 , θ)

∂θ

∂g(Xj2 , θ)

∂θ

∫
K(u)K

(
Zj2 − Zj1

h
+ u

)
σ2(Zj1 − uh)f(Zj1 − uh)du

]

= hlzE

[
K2

(
Zj2 − Zj1

h

)
σ2(Zj1)f(Zj1)

∂g(Xj1 , θ)

∂θ

∂g(Xj2 , θ)

∂θ

]
+Rn

= hlzE

[
σ2(Zj1)f(Zj1)

∂g(Xj1 , θ)

∂θ

∫
K2

(
z2 − Zj1

h

)
∂g(x2, θ)

∂θ
fz,x(z2, x2)dz2dx2

]
+Rn

= h2lzE

[
σ2(Zj1)f(Zj1)

∂g(Xj1 , θ)

∂θ

∫
K2(u)

∂g(x2, θ)

∂θ
fz,x(Zj1 + uh, x2)dudx2

]
+Rn

= h2lzE

{
σ2(Zj1)f(Zj1)

2∂g(Xj1 , θ)

∂θ

∫
K2(u)duE

[
∂g(X, θ)

∂θ

]}
+Rn

= O(h2lz)E

[
σ2(Zj1)f(Zj1)

2∂g(Xj1 , θ)

∂θ

]
+Rn

= O(h2lz),

where Rn represents smaller terms, fz,x(·, ·) is joint density of Z and X, E[ ∂∂θg(X, θ)]

is bounded by Assumption 3, K2(u) is two times convolution product of kernel with
∫
K2(u)du < ∞ by Assumption 12, σ2(Z) and f(Z) are bounded by Assumptions 1 and
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2, respectively, and for all i, j = j1 = j2 < i,

E
(
µ2
i,j

)
= E

{
K

(
Zj − Zi

h

)2

σ(Zi)
2∂g(Xj , θ0)

∂θ

}

= E

{
∂g(Xj , θ0)

∂θ

∫
K

(
Zj − z

h

)2

σ(z)2f(z)dz

}

= hlzE

{
∂g(Xj , θ0)

∂θ

∫
K(u)2σ(Zj − uh)2f(Zj − uh)du

}

= hlzE

{
∂g(Xj , θ0)

∂θ
f(Zj)σ(Zj)

2
∫

K(u)2du

}

= O(hlz),

where these derivations holds under Assumptions 1, 2, 3, and 12. In the same way, we

obtain var
(

2√
n(n−1)hlz/2

∑n
i=1

∑
j>i µi,j

)
= O(hlz).

S-3 Proof of Lemma 3

Proof. From Assumption 3, we obtain

T3 =
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
(θ0 − θ̂)′

∂g(Xi, θ)

∂θ

∣∣∣∣
θ=θ̃1

∂g(Xj , θ)

∂θ′

∣∣∣∣
θ=θ̃2

(θ0 − θ̂)

=
√
n(θ0 − θ̂)′

1

n(n− 1)hlz/2

n∑

i=1

∑

j ̸=i

T ′
3

√
n(θ0 − θ̂)

where T ′
3 ≡ K

(
Zj−Zi

h

)
∂g(Xi,θ)

∂θ

∣∣∣
θ=θ̃1

∂g(Xj ,θ)
∂θ′

∣∣∣
θ=θ̃2

. We have

E(∥T ′
3∥) ≤

{
E

[
K

(
Zj − Zi

h

)2
]}1/2

⎧
⎨

⎩E

⎡

⎣
∥∥∥∥∥
∂g(Xi, θ)

∂θ

∣∣∣∣
θ=θ̃1

∥∥∥∥∥

2 ∥∥∥∥∥
∂g(Xj , θ)

∂θ′

∣∣∣∣
θ=θ̃2

∥∥∥∥∥

2
⎤

⎦

⎫
⎬

⎭

1/2

≤
[∫

K

(
z2 − z1

h

)2

f(z1)f(z2)dz1dz2

]1/2
E

[
sup
θ∈Θ

∥∥∥∥
∂g(Xi, θ)

∂θ

∥∥∥∥
2
]

=

[
hlz
∫

K(u)2f(z1)f(z1 + uh)dz1du

]1/2
O(1) = O(hlz/2),
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where these derivations hold by Assumptions 1, 2, 5, and 12. Since
√
n(θ̂− θ0) = Op(1)

by Assumption 10, we obtain T3 = Op(hlz/2) = op(1).

S-4 Proof of Lemma 4

First, we introduce the following lemma.

Lemma S.14. Let ki,j and Si be any function such that supi,j |ki,j | < ∞ and
∑n

i |Si| =

Op(n). Then,
n∑

i

n∑

j

ki,jSiSj = Op(n
2).

Proof.
∑n

i

∑n
j ki,jSiSj ≤ supi,j |ki,j |

∑n
i |Si|

∑n
j |Sj | = Op(n2).

Lemma S.14 seems straightforward but is useful. The kernel function K(·) sat-

isfies the condition for ki,j by Assumption 12. The condition for Si is satisfied by

∂
∂θl

g(Xi, θ)
∣∣∣
θ=θ̃

,
[

∂
∂θl

g(Xi, θ)
∣∣∣
θ=θ̃

]2
, and ∂

∂θl
g(Xi, θ)

∣∣∣
θ=θ̃

ui for any l = {1, . . . , lz} and

any θ̃ between θ0 and θ̂ by Assumptions 1, 3, 5, and 10, as well as u2i by Assumption 1.

Proof. Σ̂ can be decomposed as follows:

Σ̂ =
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

û2i û
2
j .

=
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

[g(Xi, θ0)− g(Xi, θ̂) + ui]
2[g(Xj , θ0)− g(Xj , θ̂) + uj ]

2

=
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

u2iu
2
j

+
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

[g(Xi, θ0)− g(Xi, θ̂)]uiu
2
j +Rn,

≡ 2Σ̂1 + Σ̂2 +Rn,

where Rn represents smaller terms that converges to zero in probability, which can be
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shown by using Lemma S.14 under Assumptions 1, 3, 5, 10, and 12. First, we show that

Σ̂2 = Op(n−1/2).

Σ̂2 =
√
n(θ0 − θ̂)′

2√
nn(n− 1)hlz

n∑

i=1

∑

j ̸=i

K

(
Zj − Zi

h

)2 ∂g(Xi, θ)

∂θ

∣∣∣∣
θ=θ̃

uiu
2
j

≡
√
n(θ0 − θ̂)′

2√
nn(n− 1)hlz

n∑

i=1

∑

j ̸=i

Si,j ,

where Si,j is a lz × 1 vector. Since
√
n(θ̂ − θ0) = Op(1) by Assumption 10, it suffices to

show that each element of n−5/2h−lz
∑n

i=1

∑
j ̸=i Si,j is op(1), which holds becuase

E(∥Si,j∥) ≤ E

[
K

(
Zj − Zi

h

)2 ∥∥∥∥
∂g(Xi, θ)

∂θ

∣∣∣∣
θ=θ̃

ui

∥∥∥∥σ(Zj)
2

]

= E

[∥∥∥∥
∂g(Xi, θ)

∂θ

∣∣∣∣
θ=θ̃

ui

∥∥∥∥
∫

K

(
z − Zi

h

)2

σ(z)2f(z)dz

]

= hlzE

[∥∥∥∥
∂g(Xi, θ)

∂θ

∣∣∣∣
θ=θ̃

ui

∥∥∥∥
∫

K(u)2σ(Zi + uh)2f(Zi + uh)du

]

= hlzE

[∥∥∥∥
∂g(Xi, θ)

∂θ

∣∣∣∣
θ=θ̃

ui

∥∥∥∥σ(Zi)
2f(Zi)

∫
K(u)2du

]

≤ O(hlz)E

[
sup
θ∈Θ

∥∥∥∥
∂g(Xi, θ)

∂θ

∥∥∥∥
2
]1/2

[σ(Zi)
2]1/2 = O(hlz),

where the last equality holds under Assumptions 1, 2, 5, and 12. Thus, Σ̂2 = Op(n−1/2).

Next, we show that Σ̂1 = Σ+op(1). Note that Σ̂1 is a second-order U statistic, where

H1(Wi,Wj) ≡ h−lzK
(
Zj−Zi

h

)2
u2iu

2
j is symmetric by Assumption 12.

E[|H1(Wi,Wj)|2] =
1

h2lz

∫
K

(
z2 − z1

h

)4

[σ2(z1)]
2[σ2(z2)]

2f(z1)f(z2)dz1dz2

=
1

hlz

∫
K(u)4[σ2(z1)]

2[σ2(z1 + uh)]2f(z1)f(z1 + uh)dz1du

=
1

hlz

∫
K(u)4du

∫
[σ2(z1)]

4f(z1)
2dz1 +O(h1−lz)

= O(h−lz) = O
( n

nhlz

)
= o(n), (S.6)
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where these derivations holds under Assumptions 1, 2, 5, and 12. Applying Lemma 3.1

of Zheng (1996) implies that Σ̂1 = E(H1(Wi,Wj)) +Op(n−1), where

E[H1(Wi,Wj)] =
1

hlz

∫
K

(
z2 − z1

h

)2

σ2(z1)σ
2(z2)f(z1)f(z2)dz1dz2

=
1

hlz

∫
K

(
z2 − z1

h

)2

σ2(z1)σ
2(z2)f(z1)f(z2)dz1dz2

=

∫
K(u)2du

∫
[σ2(z)]2f(z)2dz +O(h).

S-5 Proof of Lemma 5

Proof. From Assumption 3, there is θ̃ between θ∗ and θ̂ such that

A2 =
2nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
[Yi − g(Xi, θ

∗)][g(Xj , θ
∗)− g(Xj , θ̂)]

=
2(θ̂ − θ∗)′

(n− 1)hlz/2

n∑

i=1

∑

j ̸=i

K

(
Zj − Zi

h

)
u∗i

∂g(Xj , θ̃)

∂θ

≡ (θ̂ − θ∗)′Ã2

where (θ̂ − θ∗) = Op(n−1/2) by Assumption 11. Now, we have

var(Ã2)

≤ E(Ã2
2)

=
4

(n− 1)2hlz

n∑

i=1

∑

j ̸=i

n∑

k=1

∑

l ̸=k

E

[
K

(
Zj − Zi

h

)
K

(
Zl − Zk

h

)
u∗iu

∗
k
∂g(Xj , θ̃)

∂θ

∂g(Xl, θ̃)

∂θ

]

=
4

(n− 1)2hlz

∑

i

∑

j ̸=i

∑

k ̸=i
k ̸=j

∑

l ̸=k
l ̸=i
l ̸=j

E

[
K

(
Zj − Zi

h

)
K

(
Zl − Zk

h

)
u∗iu

∗
k
∂g(Xj , θ̃)

∂θ

∂g(Xl, θ̃)

∂θ

]
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+
8

(n− 1)2hlz

∑

i

∑

j ̸=i

∑

l ̸=j
l ̸=i

E

[
K

(
Zj − Zi

h

)
K

(
Zl − Zj

h

)
u∗iu

∗
j
∂g(Xj , θ̃)

∂θ

∂g(Xl, θ̃)

∂θ

]

+
8

(n− 1)2hlz

∑

i

∑

j ̸=i

∑

k ̸=i
k ̸=j

E

[
K

(
Zj − Zi

h

)
K

(
Zi − Zk

h

)
u∗iu

∗
k
∂g(Xj , θ̃)

∂θ

∂g(Xi, θ̃)

∂θ

]

+
4

(n− 1)2hlz

∑

i

∑

j ̸=i

E

⎡

⎣K
(
Zj − Zi

h

)2

u∗2i

∣∣∣∣∣
∂g(Xj , θ̃)

∂θ

∣∣∣∣∣

2
⎤

⎦

+
4

(n− 1)2hlz

∑

i

∑

j ̸=i

E

[
K

(
Zj − Zi

h

)
u∗i

∣∣∣∣∣
∂g(Xj , θ̃)

∂θ

∣∣∣∣∣

]2

=
4n(n− 2)(n− 3)

(n− 1)hlz
E

[
K

(
Zj − Zi

h

)
K

(
Zl − Zk

h

)
δθ∗(Zi)δθ∗(Zk)

∂g(Xj , θ̃)

∂θ

∂g(Xl, θ̃)

∂θ

]
+Rn,

(S.7)

where Rn represents small terms. Thus,

|E(Ã2
2)|

≤ 4n(n− 2)(n− 3)

(n− 1)hlz
E

[∣∣∣∣K
(
Zj − Zi

h

)∣∣∣∣

∣∣∣∣K
(
Zl − Zk

h

)∣∣∣∣|δθ∗(Zi)|

|δθ∗(Zk)| sup
θ∈Θ

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥ sup
θ∈Θ

∥∥∥∥
∂g(Xl, θ)

∂θ

∥∥∥∥

]
+Rn

=
4n(n− 2)(n− 3)

(n− 1)hlz

{
E

[∣∣∣∣K
(
Zj − Zi

h

)∣∣∣∣|δθ∗(Zi)| sup
θ∈Θ

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥

]}2

+Rn. (S.8)

From Assumptions 2, 5, 8, and 12, we obtain

E

[
sup
θ∈Θ

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥
∫ ∣∣∣∣K

(
Zj − z

h

)∣∣∣∣|δθ∗(z)| f(z)dz
]

= hlzE

[
sup
θ∈Θ

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥
∫

|K(u)||δθ∗(Zj − uh)|f(Zj − uh)du

]

= hlzE

[
sup
θ∈Θ

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥ |δθ∗(Zj)|f(Zj)

∫
|K(u)|du

]
+Rn

≤ hlzf

{
E

[
sup
θ∈Θ

∥∥∥∥
∂g(Xj , θ)

∂θ

∥∥∥∥
2
]}1/2 {

E
[
δθ∗(Zj)

2
]}1/2

+Rn
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= O(hlz)
{
E
[
δθ∗(Zj)

2
]}1/2

. (S.9)

Thus, we obtain E(Ã2
2) = O(n2hlz)E[δ2θ∗(Zi)]. Thus, Ã2 = Op(nhlz/2){E[δ2θ∗(Zi)]}1/2,

which implies A2 = Op(
√
nhlz){E[δ2θ∗(Zi)]}1/2.

Next, we show that A3 = op(A2). From Assumption 3, θ̃1 and θ̃2 exist such that

A3 =
nhlz/2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)
[g(Xi, θ

∗)− g(Xi, θ̂)][g(Xj , θ
∗)− g(Xj , θ̂)]

=
(θ̂ − θ∗)′

(n− 1)hlz/2

n∑

i=1

∑

j ̸=i

K

(
Zj − Zi

h

)
∂g(Xi, θ̃1)

∂θ

∂g(Xj , θ̃2)

∂θ′
(θ̂ − θ∗)

≡ (θ̂ − θ∗)′Ã3(θ̂ − θ∗). (S.10)

We have

E∥Ã3∥ = nh−lz/2E

∥∥∥∥∥K
(
Zj − Zi

h

)
∂g(Xi, θ̃1)

∂θ

∂g(Xj , θ̃2)

∂θ′

∥∥∥∥∥

≤ nh−lz/2E

[∣∣∣∣K
(
Zj − Zi

h

)∣∣∣∣
2
]1/2

E

⎡

⎣
∥∥∥∥∥
∂g(Xi, θ̃)

∂θ

∥∥∥∥∥

2 ∥∥∥∥∥
∂g(Xj , θ̃)

∂θ′

∥∥∥∥∥

2
⎤

⎦
1/2

≤ O(nh−lz/2)

[∫ ∣∣∣∣K
(
z1 − z2

h

)∣∣∣∣
2

f(z1)f(z2)dz1dz2

]1/2

= n

[∫
|K (u)|2 f(z2 + uh)f(z2)dudz2

]1/2

= O(n), (S.11)

where E
[
supθ∈Θ ∥ ∂

∂θg(X, θ)∥2
]
is bounded by Assumption 5 and the last equality holds

by Assumptions 2 and 12. Since (θ̂ − θ∗) = Op(n−1/2) by Assumption 11, we obtain

A3 = Op(1). Thus, we have A2 +A3 = Op(
√
nhlz){E[δ2θ∗(Zi)]}1/2 +Op(1).
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S-6 Proof of Lemma 6

Proof. It is obvious that Σ̄ is bounded uniformly in m ∈ M(κρn) by Assumptions 1, 2,

7, and 12. Let u∗i ≡ Yi − g(Xi, θ∗).

Σ̂ =
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

û2i û
2
j

=
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

[Yi − g(Xi, θ̂)]
2[Yj − g(Xj , θ̂)]

2

=
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

[g(Xi, θ
∗)− g(Xi, θ̂) + u∗i ]

2[g(Xj , θ
∗)− g(Xj , θ̂) + u∗j ]

2

=
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2 {
[g(Xi, θ

∗)− g(Xi, θ̂)]
2[g(Xj , θ

∗)− g(Xj , θ̂)]
2

+4u∗i [g(Xi, θ
∗)− g(Xi, θ̂)][g(Xj , θ

∗)− g(Xj , θ̂)]
2 + 2u∗2i [g(Xj , θ

∗)− g(Xj , θ̂)]
2

+4u∗iu
∗2
j [g(Xj , θ

∗)− g(Xj , θ̂)] + 4u∗iu
∗
j [g(Xi, θ

∗)− g(Xi, θ̂)][g(Xj , θ
∗)− g(Xj , θ̂)] + u∗2i u∗2j

}

=
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

u∗2i u∗2j

+
8

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

u∗iu
∗2
j [g(Xi, θ

∗)− g(Xi, θ̂)] +Rn,

≡ Σ̂∗
1 + Σ̂∗

2 +Rn,

where Rn represents smaller terms that is op(1), which can be shown by using Lemma

S.14 under Assumptions 1, 3, 5, 11, and 12.

Now, we show that Σ̂∗
2 = op(1). From Assumption 3, there is θ̃ between θ̂ and θ∗

such that

Σ̂∗
2 =

8(θ̂ − θ∗)′

n(n− 1)

n∑

i=1

∑

j ̸=i

1

hlz
K

(
Zj − Zi

h

)2

u∗iu
∗2
j
∂g(Xi, θ̃)

∂θ
,

where
√
n(θ̂ − θ∗) = Op(n−1/2) by Assumption 11. Since E(u∗2i |Zi) is bounded from
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Assumptions 1 and 7 and E∥ ∂
∂θg(Xi, θ̃)∥2 ≤ E[supθ∈Θ ∥ ∂

∂θg(Xi, θ̃)∥2] is bounded by

Assumption 5, there is a constant C such that

E

∥∥∥∥∥K
(
Zj − Zi

h

)2

u∗iu
∗2
j
∂g(Xi, θ̃)

∂θ

∥∥∥∥∥ ≤
[
E

∣∣∣∣∣K
(
Zj − Zi

h

)4

u∗2i E(u∗2j |Zj)
2

∣∣∣∣∣

]1/2 ⎡

⎣E

∥∥∥∥∥
∂g(Xi, θ̃)

∂θ

∥∥∥∥∥

2
⎤

⎦
1/2

≤ C

[
E

∣∣∣∣∣K
(
Zj − Zi

h

)4

u∗2i

∣∣∣∣∣

]1/2
,

where

∫
K

(
z2 − z1

h

)4

σ2
θ∗(z1)f(z1)f(z2)dz1dz2 = hlz

∫
K(u)4σ2

θ∗(z1)f(z1)f(z1 + uh)dz1du

= hlz
∫

K(u)4duE[σ2
θ∗(z1)f(z1)] + o(1)

= O(hlz),

where the last equality holds from Assumptions 1, 2, 7, and 12. Thus, Σ̂∗
2 = Op(n−1/2).

Now, similar to the proof of Lemma 4, we can show that Σ̂∗
1 is a second order U-statistic

with E[H∗
1 (Wi,Wj)2] = o(n), where H∗

1 (Wi,Wj) ≡ 1
hlz K

(
Zj−Zi

h

)2
u∗2i u∗2j . Thus, we

apply Lemma 3.1 of Zheng (1996), implying that Σ̂1 = E[H∗
1 (Wi,Wj)] + op(1), where

E[H∗
1 (Wi,Wj)] =

1

hlz

∫
K

(
z2 − z1

h

)2

σ2
θ∗(z1)σ

2
θ∗(z2)f(z1)f(z2)dz1dz2

=

∫
K(u)2σ2

θ∗(z1)σ
2
θ∗(z1 + uh)f(z1)f(z1 + uh)dz1du

=

∫
K(u)2du

∫
[σ2

θ∗(z1)]
2f(z1)

2dz1 + o(1).
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S-7 Proof of Lemma 7

Proof. First, consider the case with lz = 1. Taylor expansion of k((Zj−Zi)/ĥ) at ĥ = h0

yields

k

(
Zj − Zi

ĥ

)
= k

(
Zj − Zi

h0

)
− ĥ− h0

h0

Zj − Zi

h0
k(1)

(
Zj − Zi

h0

)

− 1

2!

(
ĥ− h0
h0

)2 [
2
Zj − Zi

h0
k(1)

(
Zj − Zi

h0

)
+

(
Zj − Zi

h0

)2

k(2)
(
Zj − Zi

h0

)]

− 1

3!

(
ĥ− h0
h0

)3 [
6
Zj − Zi

h0
k(1)

(
Zj − Zi

h0

)
+ 2

(
Zj − Zi

h0

)2

k(2)
(
Zj − Zi

h0

)

+4

(
Zj − Zi

h0

)2

k(2)
(
Zj − Zi

h0

)
+ 2

(
Zj − Zi

h0

)3

k(3)
(
Zj − Zi

h0

)]

... (S.12)

which can be described by

k

(
Zj − Zi

ĥ

)
= k

(
Zj − Zi

h0

)
+

m−1∑

s=1

1

s!

(
ĥ− h0
h0

)s

k̃(s)
(
Zj − Zi

h0

)

+
1

m!

(
ĥ− h0

h̃

)m

k̃(m)

(
Zj − Zi

h̃

)
, (S.13)

where h̃ is between ĥ and h0 and

k̃(s)
(
Zj − Zi

h

)
≡ hs

∂s

∂sh
k

(
Zj − Zi

h

)
=

s∑

l=1

cl

(
Zj − Zi

h

)l

k(l)
(
Zj − Zi

h

)
, (S.14)

for some constant cl.

A similar results hold for lz > 1, which is

K

(
Zj − Zi

ĥ

)
= K

(
Zj − Zi

h0

)
+

m−1∑

s=1

1

s!

(
ĥ− h0
h0

)s

K̃(s)

(
Zj − Zi

h0

)
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+
1

m!

(
ĥ− h0

h̃

)m

K̃(m)

(
Zj − Zi

h̃

)
, (S.15)

where

K̃(s)

(
Zj − Zi

h

)
≡ hs

∂s

∂hs
K

(
Zj − Zi

h

)

=
∑

1≤l1+···+llz≤s

lz∏

k=1

clk

(
Zkj − Zki

h

)lk

k(lk)
(
Zkj − Zki

h

)
(S.16)

for some constant clk . Since K̃(s)(v) is an even function, K̃(s)(v) can be viewed as a

second-oder kernel function. Thus, the above expansion yields

Tn(ĥ) =
1

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
K

(
Zj − Zi

ĥ

)
ûiûj

=
hlz0
ĥlz

Tn(h0) +
1

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
ûiûj

m−1∑

s=1

1

s!

(
ĥ− h0
h0

)s

K̃s

(
Zj − Zi

h0

)

+
1

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
ûiûj

1

m!

(
ĥ− h0

h̃

)m

K̃m

(
Zj − Zi

h̃

)

=
hlz0
ĥlz

Tn(h0) +

(
ĥ− h0
h0

)
Op(Tn(h0))

+
1

m!

(
ĥ− h0

h̃

)m
1

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
ûiûjK̃

m

(
Zj − Zi

h̃

)

=
hlz0
ĥlz

Tn(h0) +

(
ĥ− h0
h0

)
Op(Tn(h0)) +

1

ĥlz
Op

((
ĥ− h0
h0

)m)
(S.17)

because ĥ = h0+op(h0), ĥ/h0−1 = op(1), and E[|ûiûj ||K̃m((Zj−Zi)/h̃)|] ≤ E[E(|ûi||Zi)]2 ≤

E[E(|u∗i ||Zi)]2 < ∞ under Assumptions 1, 5, 7, 11, and the assumption that supu |K̃m(u)| <

∞, where u∗i is defined in Lemma 6. Since ĥ−lz
(
ĥ/h0 − 1

)m
= op(1) by Assumption
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and Tn(h0) = Op(1), we obtain

Tn(ĥ) =
1

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
K

(
Zj − Zi

ĥ

)
ûiûj =

hlz0
ĥlz

Tn(h0) + op(Tn(h0)). (S.18)
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S-8 Proof of Lemma 8

Proof. By the expansion of the kernel given in equation (S.13), we obtain

Σ̂(ĥ) =
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
û2i û

2
j

[
K

(
Zj − Zi

h0

)

+
m−1∑

s=1

1

s!

(
ĥ− h0
h0

)s

K̃s

(
Zj − Zi

h0

)
+

1

m!

(
ĥ− h0

h̃

)m

K̃m

(
Zj − Zi

h̃

)]2

=
hlz0
ĥlz

Σ̂(h0) +
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
û2i û

2
j

[
m−1∑

s=1

1

s!

(
ĥ− h0
h0

)s

K̃s

(
Zj − Zi

h0

)]2

+
2

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
û2i û

2
j

[
1

m!

(
ĥ− h0

h̃

)m

K̃m

(
Zj − Zi

h̃

)]2

+
4

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
û2i û

2
j

[
K

(
Zj − Zi

h0

)m−1∑

s=1

1

s!

(
ĥ− h0
h0

)s

K̃s

(
Zj − Zi

h0

)]

+
4

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
û2i û

2
j

[
K

(
Zj − Zi

h0

)
1

m!

(
ĥ− h0

h̃

)m

K̃m

(
Zj − Zi

h̃

)]

+
4

n(n− 1)

n∑

i=1

∑

j ̸=i

1

ĥlz
û2i û

2
j

[
m−1∑

s=1

1

s!m!

(
ĥ− h0
h0

)s+m

K̃s

(
Zj − Zi

h0

)
K̃m

(
Zj − Zi

h̃

)]
.

(S.19)

Under Assumptions 1, 5, 7, 11, and the assumption that supu |K̃m(u)| < ∞, we have

E[û2i û
2
jK̃

m((Zj − Zi)h̃)2] ≤ E[û2i ]
2 ≤ E[E(u∗2i |Zi)]2 < ∞. Since K̃s(v) is a second-oder

kernel function, the above expansion yields

Σ̂(ĥ) =
hlz0
ĥlz

Σ̂(h0) +

(
ĥ− h0
h0

)2

Op

(
Σ̂(h0)

)
+

1

ĥlz
Op

⎛

⎝
(
ĥ− h0

h̃

)2m
⎞

⎠

+

(
ĥ− h0
h0

)
Op

(
Σ̂(h0)

)
+

(
ĥ− h0
h0

)m

Op

(
Σ̂(h0)

)
+

1

ĥlz
Op

⎛

⎝
(
ĥ− h0

h̃

)m+1
⎞

⎠

=
hlz0
ĥlz

Σ̂(h0) + op
(
Σ̂(h0)

)
(S.20)
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because 1
ĥlz

(ĥ/h0− 1)m+1 = op(1) and Σ̂(h0) = Σ̄+ op(1) by Lemma 6. Thus, we obtain

Σ̂(ĥ) = Σ̄+ op (1).
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Supplemental Material: Lemmas

S-1 Lemma S.15

Lemma S.15. Under Assumptions 2, 8, and 12, we obtain
∫
K
(x−y

h

)
δθ∗(y)f(y)dy =

hlzδθ∗(x)f(x) +O(hlz+min{qk,k+qz}).

Proof. Note that f(·) and δθ∗(·) are qz- and k-times differentiable by Assumptions 2

and 8, respectively. For any functions g(·) : l → , let ∆(q)g(·) indicates a vector

(matrix, or cube) of q-times partial derivatives.10 We define lz dimensional vector u =

{u1, u2, . . . , ulz}′. Then,

∫
K

(
x− y

h

)
δθ∗(y)f(y)dy = hlz

∫
K(u)δθ∗(x− uh)f(x− uh)du

= hlz
∫

K(u)

[
δθ∗(x)− hu′∆(1)δθ∗(x) +

h2

2
u′∆(2)δθ∗(x)u+ . . .

]

[
f(x)− hu′∆(1)f(x) +

h2

2
u′∆(2)f(x)u+ . . .

]
du

= hlzδθ∗(x)f(x)

∫
K(u)du+O(hlz+min{qk,k+qz}),

where
∫
K(u)du = 1 by Assumption 12. The last equation holds by the feature of qkth

oder kernel in Assumption 12.

S-2 Lemma S.16

Lemma S.16. Under Assumptions 1, 2, 3, 4, 5, 6, 8, and 11, we have

A =
2

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[Yi − g(Xi, θ
∗)][g(Xj , θ

∗)− g(Xj , θ̂)]

= O(
√
nhlz){E[δ2θ∗(Zi)]}1/2 +O(hlz/2).

10For example, ∆(1)f(z) = {∂f(z)/∂z1, ∂f(z)/∂z2, . . . , ∂f(z)/∂zlz}′, and ∆(2)f(z) is a lz by lz matrix
whose (l, k) element is ∂f(z)/∂zl∂zk.
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Proof. Let ηi ≡ E[g(Xi, θ∗)|Zi] − g(Xi, θ∗) + ωi, where E(ηi) = 0 and var(ηi) =

E[g(Xi, θ∗)2] + E(ω2
i ) − E{E[g(Xi, θ∗)|Zi]2} − 2E[ωig(Xi, θ∗)] < ∞ by Assumptions

1, 2, 4, and 8, which implies ηi = Op(1). Then,

A =
2

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[m(Zi)− g(Xi, θ
∗) + ωi][g(Xj , θ

∗)− g(Xj , θ̂)]

=
2

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

[δθ∗(Zi) + ηi][g(Xj , θ
∗)− g(Xj , θ̂)]

=
2

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

δθ∗(Zi)[g(Xj , θ
∗)− g(Xj , θ̂)]

+
2

√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

ηi[g(Xj , θ
∗)− g(Xj , θ̂)]

≡ A1 +A2.

By Assumptions 3 and 11, there is θ̃ between θ∗ and θ̂ such that |g(Xj , θ∗)− g(Xj , θ̂)| =
∣∣∣ ∂∂θg(Xj , θ̃)

∣∣∣Op(n−1/2). Thus, for some positive constant C and C ′, we have

E|A1|

≤ 2
√
2K lz/2

n

∑

k∈K
E

⎡

⎣ {Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

|δθ∗(Zi)||g(Xj , θ
∗)− g(Xj , θ̂)|

⎤

⎦

≤ 2C
√
2K lz/2

n n1/2

∑

k∈K
E

⎡

⎣ {Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

|δθ∗(Zi)|

∣∣∣∣∣
∂g(Xj , θ̃)

∂θ

∣∣∣∣∣

⎤

⎦+ o(1)

=
2C

√
2K lz/2

n n1/2

∑

k∈K
E

{
{Nk > 1}

Nk

∑

{Zi,Zj}∈Ik,i ̸=j

E [ |δθ∗(Zi)||Zi ∈ Ik]

E

[∣∣∣∣∣
∂g(Xj , θ̃)

∂θ

∣∣∣∣∣

∣∣∣∣∣Zj ∈ Ik

]}
+ o(1)

=
2C

√
2K lz/2

n n1/2

∑

k∈K
E [(Nk − 1) {Nk > 1}]E [ |δθ∗(Zi)||Zi ∈ Ik]E

[∣∣∣∣∣
∂g(Xj , θ̃)

∂θ

∣∣∣∣∣

∣∣∣∣∣Zj ∈ Ik

]
+ o(1)

≤ 2C ′n1/2

√
2K lz/2

n

∑

k∈K
P (Zj ∈ Ik)E [ |δθ∗(Zi)||Zi ∈ Ik] + o(1)
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≤ 2C ′n1/2

√
2K lz/2

n

{E[δ2θ∗(Zi)]}1/2 + o(1) = O(
√
nhlz){E[δ2θ∗(Zi)]}1/2,

where E[| ∂∂θg(Xj , θ̃)||Zj ∈ Ik] is bounded by Assumption 5. Next,

A2 =
2(θ∗ − θ̂)′
√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

ηi
∂g(Xj , θ)

∂θ

+
(θ∗ − θ̂)′
√
2K lz/2

n

∑

k∈K

{Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

ηi
∂g(Xj , θ̃)

∂θ∂θ′
(θ∗ − θ̂)

≡ (θ∗ − θ̂)′A′
2 + (θ∗ − θ̂)′A′′

2(θ
∗ − θ̂) (S.1)

Since E(ηi|Zi) = 0, we have E(A′
2) = 0. For some constant C,

E(A′2
2 ) =

2

K lz
n

∑

k∈K
E

⎧
⎨

⎩
{Nk > 1}

N2
k

⎡

⎣
∑

{Zi,Zj}∈Ik,i ̸=j

ηi
∂g(Xj , θ)

∂θ

⎤

⎦
2⎫⎬

⎭

=
2

K lz
n

∑

k∈K
E

⎧
⎨

⎩
{Nk > 1}

N2
k

⎡

⎣
∑

{Zi,Zj ,Zl}∈Ik,i ̸=j,i ̸=l

η2i
∂g(Xj , θ)

∂θ

∂g(Xl, θ)

∂θ′

⎤

⎦

⎫
⎬

⎭

≤ 2C

K lz
n

∑

k∈K
E

[
(Nk − 2)2 {Nk > 1}

Nk

]
E(η2i |Zi ∈ Ik)

≤ 2C

K lz
n

∑

k∈K
E [Nk {Nk > 1}]E(η2i |Zi ∈ Ik)

≤ 2nC

K lz
n

∑

k∈K
P (Zi ∈ Ik)E(η2i |Zi ∈ Ik) = 2nChlzE(η2i ) = O(nhlz), (S.2)

by the boundedness in Assumption 5 and boundedness of E(η2i |Zi) as shown before. For

some constant C > 0,

E|A′′
2| ≤

1
√
2K lz/2

n

∑

k∈K
E

⎡

⎣ {Nk > 1}
Nk

∑

{Zi,Zj}∈Ik,i ̸=j

|ηi|

∣∣∣∣∣
∂g(Xj , θ̃)

∂θ∂θ′

∣∣∣∣∣

⎤

⎦

≤ C
√
2K lz/2

n

∑

k∈K
E [ {Nk > 1}(Nk − 1)]E(|ηi||Zi ∈ Ik)
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≤ nC
√
2K lz/2

n

∑

k∈K
P (Zi ∈ Ik)E(|ηi||Zi ∈ Ik) =

nhlz/2C√
2

E(|ηi|) = O(nhlz/2), (S.3)

where E[| ∂
∂θ∂θ′ g(Xj , θ̃)|Zj ∈ Ik] is bounded by Assumption 6 and E(|ηi||Zi) < E(|ηi|2|Zi)1/2

is bounded as shown before. From equations (S.1), (S.2), and (S.3), we obtain A2 =

O(hlz/2).
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Supplemental Material: Simulation

Table S.1 shows the simulation results with the sample size of n = 1000. All simulation

settings but sample size are the same with those in Section 5 of the paper.

Table S.1: Size and power of Tn with n = 1000.

Bootstrap Normal

H0 H1 ρ η hcv hopt hcv hopt

H0 is true
(6) DGP 1 0.8 0.1 0.054 0.047 0.020 0.033

DGP 2 0.8 0.5 0.053 0.046 0.030 0.028
DGP 3 0.7 0.1 0.052 0.045 0.021 0.031

(7) DGP 1 0.8 0.1 0.060 0.051 0.022 0.025
DGP 2 0.8 0.5 0.063 0.051 0.017 0.026
DGP 3 0.7 0.1 0.061 0.048 0.021 0.027

H0 is false
(6) (7) DGP 1 0.8 0.1 1.000 1.000 1.000 1.000

DGP 2 0.8 0.5 1.000 1.000 1.000 1.000
DGP 3 0.7 0.1 1.000 0.960 1.000 0.936

(6) (8) DGP 1 0.8 0.1 1.000 1.000 1.000 1.000
DGP 2 0.8 0.5 1.000 0.999 1.000 0.996
DGP 3 0.7 0.1 1.000 0.779 1.000 0.717

(7) (8) DGP 1 0.8 0.1 0.999 0.957 0.994 0.938
DGP 2 0.8 0.5 0.999 0.899 0.987 0.868
DGP 3 0.7 0.1 0.680 0.418 0.507 0.358

Note: Critical values are obtained from bootstrapping (columns labeled by boot-
strap) and the normal distribution (columns labeled by Normal).
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