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Abstract

This study investigates optimal minimax rates for specification testing when the

alternative hypothesis is built on a set of non-smooth functions. The set consists

of bounded functions that are not necessarily differentiable with no smoothness

constraints imposed on their derivatives. In the instrumental variable regression set

up with an unknown error variance structure, we find that the optimal minimax rate

is n−1/4, where n is the sample size. The rate is achieved by a simple test based on

the difference between non-parametric and parametric variance estimators.

Keywords: optimal minimax rate; specification test; instrumental variable regression

model; nearest neighbor method
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1 Introduction

This study investigates uniform power of specification testing for a regression function

using the minimax approach. In the minimax approach, the alternative hypothesis is a
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set of functions with certain smoothness. This approach reveals how the smoothness and

model dimensionality are related to the achievable uniform power (optimal minimax rate)

of tests. The optimal minimax rate against smooth alternatives is investigated by Guerre

and Lavergne (2002) and subsequent works, such as Horowitz and Spokoiny (2001) and

H. Li, Li, and Liu (2016). While these tests achieve the fastest possible uniform power

against smooth alternatives, they may not perform well when the alternative includes

non-smooth functions.The optimal minimax rate against such non-smooth alternatives

is an open question.

In economics, there are several important applications in which a smooth model is

applied to a possibly non-smooth function. For example, in empirical estimations of

aggregate demand curves (see, e.g., Ball, Mankiw, & Romer, 1988), price level may be

modeled as a smooth function of output (real GDP), although the true curve might

be non-differentiable in the presence of a liquidity trap or if investment is not elastic to

changes in the interest rate. Another example is kinked demand curves in an oligopolistic

market with price rigidity (Sweezy, 1939). In the estimation of demand curves, how-

ever, the price of a good may be modeled as a smooth function of its quantity. Kinks

in demand curves are also caused by consumer behavior, such as asymmetric consumer

reactions to price increases and decreases (see Dossche, Heylen, & Van den Poel, 2010

for empirical evidence). Another important example is Engel curve estimation. If pref-

erences are structured in a hierarchical manner, the resulting Engel curve will exhibit a

kink at points that reflect changes in the capacity of a good to satisfy needs as income

increases (Drakopoulos, 1994). For example, basic food expenditure increases as income

increases, but after the basic need is satisfied, a higher proportion of income may be

spent on less-necessary goods. In this case, the commonly used Working–Leser Engel

curve specification may not fit the data well.

Alternative hypotheses in this study include non-differentiable functions and func-

tions such that no smoothness constraints are imposed on their derivatives. We find that
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the optimal minimax rate against such non-smooth alternatives is n−1/4 in the frame-

work of instrumental variable (IV) regression with an unknown error variance structure,

where n is the sample size. The rate is achieved by a simple test based on the difference

between non-parametric and parametric variance estimators. Simulation studies illus-

trate that the test has reasonable power against various non-smooth alternatives. The

power performance is compared with that of a kernel smoothing test that is rate optimal

against smooth alternatives (Zheng, 1996, Hitomi, Iwasawa, & Nishiyama, 2020). The

empirical application to Engel curves for food emphasizes the good applicability of the

test. The alternative hypothesis in this study is called a non-smooth alternative because

it includes less-smooth functions compared with the existing alternative.

The literature on the minimax approach is focused on testing signals in a Gaus-

sian white noise model.1 Ermakov (1991), Ingster (1993), and Lepski and Tsybakov

(2000) show the optimal minimax rates against alternatives within a Hölder class, while

Spokoiny (1996) and Lepski and Spokoiny (1999) do so against alternatives within a

Besov class. Ingster and Sapatinas (2009) extend this approach to testing a multivari-

ate non-parametric regression model with Gaussian noise against alternatives within an

ellipsoid in the Hilbert space with respect to the tensor product of the Fourier basis.

Other studies, such as Abramovich, Feis, Italia, and Theofanis (2009), show the opti-

mal minimax rate of testing the additivity assumption of a response function against

alternatives within a Besov class.

The optimal minimax rates of specification testing for a non-linear regression model

against alternatives within a Hölder class is provided by Guerre and Lavergne (2002). Let

us denote the dimension of the regressor by l. The alternative consists of k-times differen-

tiable functions with its kth derivative being Hölder continuous with index s. Then, the

optimal minimax rate against the smooth alternative (s+ k > l/4) is n−2(s+k)/[l+4(s+k)].

In addition to the test of Guerre and Lavergne (2002), this rate is achieved by the

1For a recent review of specification tests for regression models, see González-Manteiga and Crujeiras
(2013).
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K-nearest neighbor tests proposed by H. Li et al. (2016).

When the alternative is not smooth relative to the model dimensionality (s+k ≤ l/4),

no tests have non-trivial uniform power against the alternative that approaches the null

faster than n−1/4 (lower bound). Guerre and Lavergne (2002) point out the difficulty

of dealing with such irregular non-smooth alternatives. A test that achieves the lower

bound may exist if the structure of the error variance conditional on the regressor is

known. Without this additional structure, however, it is not known whether any test

exists that has non-trivial uniform power against the non-smooth alternative. This study

contributes to the literature by showing the set of non-smooth functions against which

the optimal minimax rate is n−1/4. The non-smooth alternative in this study differs

from those considered previously.

The rest of this paper is organized as follows. Section 2 describes the model and

testing framework. Assumptions are given in Section 3. The main results for the optimal

minimax rate are summarized in Section 4. Section 5 presents Monte Carlo experiments.

Section 6 describes the application of the proposed test to Engel curve specifications.

Section 7 concludes the text. The proofs of the primary results are provided in the

Appendix.

2 Framework

Let {Yi, Xi, Zi}ni=1 be a sample from a random variable (Y,X,Z) ∈ R×Rlx×Rl. Consider

a parametric model

Yi = g(Xi, θ) + ui, (1)

where g(Xi, θ) is a known function up to parameters θ ∈ Θ and Θ is a compact subset

of Rlθ . A vector of regressors Xi may include endogenous variables that are correlated

with ui, where ui is an error term.

Let m(Zi) = E(Yi|Zi) and ωi = Yi −m(Zi), where E(ωi|Zi) = 0 by definition. We
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set the following assumptions on observations at hand.

Assumption 1. {Yi, Xi, Zi}ni=1 are a random sample on (Y,X,Z) ∈ R×Rlx ×Rl, where

lx and l are finite. A positive constant M < ∞ exists such that E
(
|ωi|4|Zi

)
< M with

probability 1 (w.p.1).

Assumption 2. The density of Z, denoted as f(·) : Rl → R, has compact support

(without loss of generality [0, 1]l) and at least one element of Z is continuous on [0, 1].

For any z ∈ [0, 1]l, bounds exist such that 0 < f ≤ f(z) ≤ f <∞ and ∥ ∂
∂zf(z)∥ < f

′
.

As in Assumption 2, we focus on the case in which at least one element of Z is

continuous. The primary reason to assume continuity comes from the minimax approach,

in which alternatives consist of functions with some smoothness. When a model is

discrete, its support is concentrated on some points, implying that it makes less sense to

restrict the shape of the model outside its support. Thus, investigating power properties

using the minimax approach is inappropriate for models with only discrete variables.

The compactness of the instruments in Assumption 2 is not restrictive at all because it

can be achieved by an appropriate monotone transformation.

The fourth moment restriction of the error term in Assumption 1 is required to guar-

antee the consistency of estimators for the asymptotic variance of the non-standardized

test statistic. This is a standard assumption, which corresponds to, for example, the

finite fourth moments condition for the estimation of asymptotic variance of generalized

method of moments (GMM) estimators.

Let δθ(·) ≡ m(·)− E[g(Xi, θ)|·]. The null hypotheses is

H0 : θ0 ∈ Θ exists such that δθ0(Zi) = 0 w.p.1.

Note that the test considered in this study is the specification of E[g(Xi, θ)|·] rather

than that of g(·, θ).
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The alternative hypothesis is defined as a set of functions belonging to a smoothness

class. Let Mϵ be a class of bounded functions f(·) : Rl → R such that:

Mϵ =
{
f(·) : for ϵ such that ∥x− y∥ < ϵ, |f(x)− f(y)| = o(ϵ

l
4
−1∥x− y∥) as ϵ→ 0

}
,

where we suppress the subscript and denote Mϵ = M if no confusions occur. Then, the

alternative is

Hn,1 : M(ρn) =

{
m(·) ∈ Mϵ : inf

θ∈Θ
E
[
δθ(Zi)

2
]
≥ ρ2n

}
.

Functions in M(ρn) are separated from the parametric model by L2-distance but

the distance can approach 0 at a rate ρ2n. The alternative hypothesis Hn,1 enables us to

investigate the uniform power of testing, which is called the minimax approach (Ingster,

1993). The minimax approach finds the fastest rate at which ρn approaches 0 while

assuring the test uniformly detects alternatives. A test is called rate optimal when it

has prescribed minimax power uniformly against a set of alternatives that approaches

the null hypothesis at a rate faster than any other tests can detect. This rate is then

called the optimal minimax rate.2

The class M restricts the smoothness of functions depending on the dimension l of

instruments. To see this, let us consider a function f ∈ M : Rl → R. This function

satisfies that |f(x)−f(y)|/∥x−y∥ = o(ϵ
l
4
−1). Thus, f is differentiable when l ≥ 4 and it it

not necessarily differentiable when l < 4. Indeed, without changing the results below, the

smoothness condition in the class M can be replaced with |f(x)− f(y)| = o(∥x− y∥l/4)

as x→ y for the case of l ≥ 4.

To the best of our knowledge, this is the first study that investigates the optimal

minimax rate against such non-smooth functions. Let [s] be the greatest integer less

2A formal definition of the optimal minimax rate is given in Definition 1 of Guerre and Lavergne
(2002).
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than or equal to s. The optimal minimax rate for the non-linear regression model is

close to n−1/2 when alternative consists of functions that are at least [l/4] times differ-

entiable and [l/4]th derivative of these functions are Lipschitz of order l/4− [l/4], where

l, now, indicates the dimension of the regression model (see, Guerre & Lavergne, 2002).

In literature, however, the optimal minimax rate is not investigated when alternative

includes any functions whose [l/4]th derivatives are not Lipschitz of order l/4 − [l/4].

Furthermore, although the lower bound against set of functions that are not [l/4] times

differentiable is shown to be n−1/4, it is not known whether any test exists that has

non-trivial uniform power against such non-smooth alternative. Not all but some of

non-smooth functions that are not considered in literature are covered in this study,

such as non-differentiable functions with l < 4 and functions whose first derivatives may

not Lipschitz. To emphasize the difference, Hn,1 in this study is called non-smooth

alternative.

3 Assumptions

Assumptions are imposed on the parametric model g(x, θ). The following Assumptions

are standard in literature (Guerre & Lavergne, 2002, Hitomi et al., 2020).

Assumption 3. For all x, g(x, θ) is twice continuously differentiable with respect to

θ ∈ Θ, where Θ is a compact subset of Rlθ .

Assumption 4. E[supθ∈Θ ∥ ∂
∂θg(Xi, θ)∥2] <∞.

Assumption 5. E[supθ∈Θ ∥ ∂
∂θ∂θ′ g(Xi, θ)∥2] <∞.

Assumption 6. For each θ ∈ Θ, E[∥ ∂
∂θg(Xi, θ)∥2|Zi] <∞ w.p.1.

Assumption 7. For each θ ∈ Θ, E[g(Xi, θ)
2|Zi] <∞ w.p.1.

Assumption 8. For each θ ∈ Θ, E[g(Xi, θ)|Zi = z] ∈ Mϵ for some constant Lg ≤ L.
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Assumption 9. For each θ ∈ Θ, Gθ ≡ E[ ∂∂θg(Xi, θ)|Zi = z] is continuous with respect

to z on the support of Z and E(GθG
′
θ) is non-singular.

Next, assumptions on parameter estimators are imposed.

Assumption 10. Under the null hypothesis, we have an
√
n-consistent estimator θ̂n ≡ θ̂

of θ0.

Assumption 11. For each m(·) ∈ M, a unique pseudo-true value θ∗m ≡ θ∗ with respect

to the estimator θ̂ exists such that

(i)
√
n(θ̂ − θ∗) = Op(1) uniformly with respect to m(·) ∈ M.

For all m(·) ∈ M, a positive constant c exists such that

(ii) ∥θ∗m − θ0∥ ≤ c|E{m(Zi)− E[g(Xi, θ0)|Zi]}|.

Assumptions 10 and 11 restrict the behavior of estimator θ̂ under the null and alter-

native hypotheses. Uniform consistency in Assumption 11 (i) is essential for developing

the minimax approach that considers uniform power of testing. When all regressors

are exogenous (regression model), non-linear least squares estimator may satisfy these

assumptions (see, Guerre & Lavergne, 2002 for a sufficient condition). When X includes

endogenous variables (IV regression model), identification assumptions as well as other

sufficient conditions for GMM estimator and estimator using continuum of unconditional

moment restrictions (Carrasco & Florens, 2000; Dominguez & Lobato, 2004) to satisfy

Assumptions 10 and 11 are considered in Hitomi et al., 2020.

Let u∗i ≡ Yi− g(Xi, θ
∗). Assumption 7 along with the boundedness of the error term

in Assumption 1 guarantees E(u2i |Zi) <∞ as well as E(u∗2i |Zi) <∞.

4 Optimal Minimax Rate

The proposition below shows a lower bound ρ̃n against which no specification tests

demonstrate non-trivial uniform power.

8



Proposition 1 (Lower Bound). Suppose Assumptions 1, 2, 3, 4, 8, and 9 hold. Let

ρ̃n = n−1/4, each ωi is N(0, 1) conditional on Zi, and Zi is uniformly distributed. For

any test tn with supm(·)∈H0
P (tn > zα) ≤ α+ o(1),

sup
m(·)∈M(ρn)

P (tn ≤ zα) ≥ 1− α+ o(1), whenever ρn = o(ρ̃n), (2)

where zα indicate the α level critical value of test tn.

Proposition 1 shows that no test has non-trivial uniform power when alternative

includes any functions in M that satisfy infθ∈ΘE[δθ(Zi)
2] = o(n−1/4).

Proposition 1 is proved by replacing the minimax problem with a Bayesian problem,

which the conventional technique to show the lower bound of the optimal minimax rate

(e.g., Ingster, 1993; Spokoiny, 1996; Lepski & Spokoiny, 1999; Lepski & Tsybakov,

2000; Guerre & Lavergne, 2002; Abramovich et al., 2009; Ingster & Sapatinas, 2009).

The proof is given in Appendix A.

We propose a test statistic that uses the feature of the nearest neighbor observations.

Let Ki,j denote the indicator function, which takes 1 if the observation j is the nearest

neighbor of observation i and 0 otherwise. Formally, Ki,j = 1(||Zi − Zj || ≤ ||Zi −

Zk||,∀k ̸= i) if i ̸= j and Ki,j = 0 if i = j, where || · || is the Euclidean norm. The

nearest neighbor i∗ of i is the observation that satisfies Ki,i∗ = 1. Let Yi∗ and Xi∗ be the

observations of individual i∗ that satisfies Ki,i∗ = 1. We also define ui∗ = Yi∗ −g(Xi∗ , θ).

Let ûi ≡ Yi − g(Xi, θ̂) be the residuals from the parametric estimation. Then, the

test statistic is

Tn =
1

µ̂
√
n

n∑
i=1

ûiûi∗ , (3)

where µ̂2 ≡ n−1
∑n

i=2

∑
j<iW

2
i,j û

2
i û

2
j appears for the standardization. The weighting

term Wi,j is defined as Wi,j = Ki,j +Kj,i.

The test statistic is the sample analogue of E(uiui∗) with normalization. Since

9



nearest neighbors are determined by instruments, ui and ui∗ are independent conditional

on Z for all i. This implies E(uiui∗) = E[E(ui|Zi)E(ui∗ |Zi∗)], which is zero under

H0. Under H1, however, E[E(ui|Zi)E(ui∗ |Zi∗)] = E[δθ(Zi)δθ(Zi∗)] ≈ E[δθ(Zi)
2] > 0,

which represents the source of testing power. The proposed test is simple and easily

implementable with small calculation cost.

The proposed test is based on the difference between non-parametric and parametric

variance estimators with bias correction. To observe this, we decompose the test statistic:

µ̂√
n
Tn = σ̂2p − σ̂2d + B̂, where σ̂2p ≡ 1

2n

∑n
i=1(û

2
i + û

2
i∗) estimates the variance of error term

in the parametric model (1) under the null hypothesis and σ̂2d ≡ 1
2n

∑n
i=1(Yi − Yi∗)

2 is

the non-parametric difference-based estimator for the variance of Yi−E(Yi|Zi), denoted

as σ2. The third term B̂ is the bias correction for the non-parametric difference-based

estimator: σ̂2d−σ2 =
1
2n

∑n
i=1(Yi−Yi∗)2−σ2 =

[
1
2n

∑n
i=1(ui − ui∗)

2 − σ2
]
+B, where B =

1
n

∑n
i=1(ui−ui∗)[g(Xi, θ)−g(Xi∗ , θ)]+

1
2n

∑n
i=1[g(Xi, θ)−g(Xi∗ , θ)]

2 . 1
2n

∑n
i=1(ui−ui∗)2

can be shown to converge to the true variance σ2 when the model is true.3 Thus, Tn is

modification of Yatchew’s (1988) test with bias correction. This feature is not shared

with the K-nearest neighbor specification test with increasing K, which is known to be

rate optimal for the regression function against smooth alternative (H. Li et al., 2016).

Since at least one instrument is assumed continuous, ties do not exist theoretically.

However, in practice, ties often exist, for example, when observed variables are rounded.

In this case, the number of nearest neighbors may be greater than one and bounded from

above, that is, 1 ≤
∑n

j ̸=iKi,j ≤ ∞. When ties exist, the proposed test can be modified

as follows

T tie
n =

1

µ̂tie
√∑n

i=1

∑
j ̸=iKi,j

n∑
i=1

n∑
j ̸=i

Ki,j ûiûj , (4)

where (µ̂tie)2 ≡ (
∑n

i=1

∑
j ̸=iKi,j)

−1
∑n

i=2

∑
j<iW

2
i,j û

2
i û

2
j . Since the number of ties are

3See, e.g., the proof of Theorem 1 of Yatchew (1988). The difference-based estimator is first provided
by Von Neumann, Kent, Bellinson, and Hart (1941) and developed by Gasser, Sroka, and Jennen-
Steinmetz (1986), Hall, Kay, and Titterinton (1990), and Munk, Bissantz, Wagner, and Freitag (2005),
among others.
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asymptotically negligible, the asymptotic distribution, size, and power of the modified

test are the same as those of Tn. Thus, in the following, discussion are focused on Tn.

The following proposition shows that the proposed test converges to the standard

normal distribution under the null hypothesis.

Proposition 2. Suppose Assumptions 1, 2, 3, 4, 5, 6, and 10 hold. Then, under the

null hypothesis,

Tn
d−→ N(0, 1). (5)

The test is asymptotically one-sided because under the alternative, the source of

testing power comes from δθ(Zi)δθ(Zi∗) = δθ(Zi)
2+[δθ(Zi∗)− δθ(Zi)]δθ(Zi), which takes

positive values when Zi = Zi∗ .
4 Thus, the null is rejected when the test statistic lies

above the (1− α) quantile of the normal distribution, where α is a significance level.

Proposition 3 below shows that the proposed test has non-trivial uniform power

against Hn,1 that approach the null hypothesis at the rate κn−1/4 for a constant κ.

Proposition 3. Suppose Assumptions 1, 2, 3, 4, 5, 6, 7, 8, and 11 hold. Let ρn = n−1/4.

For any prescribed bound β ∈ (0, 1− α) and any θ ∈ Θ, a constant κ exists such that

sup
m(·)∈M(κρn)

P (Tn ≤ zα) ≤ β + o(1). (6)

Together with the lower bound in Proposition 1, this result indicates that the pro-

posed test is rate optimal and the optimal minimax rate of the specification tests for IV

models against non-smooth alternative Hn,1 is n−1/4.

5 Monte Carlo Experiments

Simulations are used to investigate the finite-sample performance of Tn against various

non-smooth alternatives. We compare the power performance of Tn with that of a kernel

4The continuity of Z in Assumption 2 is one of the sufficient conditions to make Zi∗ approach Zi as
the sample size increases (see, e.g., Lemma 14.1 of Q. Li & Racine, 2007).
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smoothing test (Zheng, 1996). Hitomi et al. (2020) shows that the kernel test for the IV

regression model is rate optimal against the set of smooth alternatives and the power

can outperform that of other existing tests for IV regression models, including integrated

conditional moment tests of Bierens (Bierens, 1982 and Bierens & Ploberger, 1997) and

Horowitz (2006) and the exponential tilting test of Donald, Imbens, and Newey (2003).

We test null hypotheses that

g(x) = θ0 + θ1x, (7)

g(x,w1, w2) = θ0 + θ1x+ θ2w1 + θ3w2, (8)

and

g(x,w1, . . . , w10) = θ0 + θ1x+ θ2w1 + · · ·+ θ10w9. (9)

Following Horowitz (2006), we use the following data generating processes (DGP):

X = Φ
(
ρv1 + (1− ρ2)1/2v2

)
, Z = Φ(v1), and U = 0.2Φ

(
ηv2 + (1− η2)1/2v3

)
, where

Φ(·) denotes the standard normal distribution function. Realizations of (X,Z,U) are

obtained by sampling v1, v2, and v3 randomly fromN(0, 1). Included exogenous variables

W1, W2,. . . , W9 are drawn randomly from U [0, 1].

We consider three sets of DGPs, called DGP 1, DGP 2, and DGP 3: DGP 1: ρ = 0.8

and η = 0.1; DGP 2: ρ = 0.8 and η = 0.5; DGP 3: ρ = 0.7 and η = 0.1.

The outcome is generated by

Y = g(·) + βzh(Z) + U, (10)

where g(·) represents one of (7), (8), and (9). Misspecification is introduced by the

term βzh(Z), where the function h(·) is a Haar wavelet function: h(z) = δ if z ∈ (0, α],

h(z) = −δ if z ∈ (α, 2α], and h(z) = 0, otherwise. Because the form of misspecification is

determined by α and β, we run simulations for multiple values of α in the range (0, 0.5].
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Then, δ is given such that δα = 0.05. For illustrative purposes, Figure 1 shows h(·) for

α = {0.035, 0.260, 0.485}. In all experiments, θ0 = θ1 = · · · = θ10 = 1, βz = 0.5.

The parameters are estimated by an efficient GMM (two-stage least squares). In-

struments for X are Z and included exogenous variable(s) under the null model. Sample

sizes are set to n = {200, 500, 1000} and the results are based on M = 1, 000 simulation

runs.

Table 1 shows the size of Tn at the 5% significance level. The test tends to under-

reject the null hypothesis in most cases, indicating that the test is conservative. Although

under-rejection may be remarkable when the model is (9), the estimated sizes become

closer to the nominal sizes for all DGPs as the sample size increases.

Figure 2 displays the probability of rejecting the null hypothesis for several values

of α. For all DGPs, the power performance improves as the sample size grows. Overall,

power is high for all α except its boundaries. This indicates that the test has less power

when the misspecification of a function is concentrated on a narrow range (α small) or

is distributed on a wide range (α large) on its support. When α is not at its boundaries,

power is close to one even when the dimension of instruments is 10 when n = 1000 (third

row).

Figure 3 displays the power performance of the kernel smoothing test. The kernel

smoothing test and the proposed test (Figure 2) share similar features such that power

is lower at the boundary of α. A remarkable difference is that the kernel smoothing

test does not have reasonable power when the dimension of instruments is 10 (third

row). Simulation results support the theoretical results that the rate optimality of the

proposed test does not depend on the dimension of instruments, while that of the kernel

smoothing test depend on the dimension of instruments. The kernel smoothing test is

rate optimal when the alternative is smooth relative to the dimension of instrument. The

alternative models employed in this simulation may not smooth enough for the kernel

type test to have reasonable power.
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Overall, simulation results indicate that the proposed test offers an alternative choice

when true regression function might be non-smooth relative to its dimension.

6 Application

This section tests the specification of Engel curves (consumer expansion paths). Empiri-

cal analyses of Engel curves are important in understanding consumer behavior, because

the shape of it illustrates the elasticity of commodities toward total expenditure (inferior,

normal, or luxury).

The true Engel curve for foods may be non-smooth (non-differentiable). The ex-

penditure for basic foods is likely to increases as income increases but after the basic

need is satisfied, higher proportion of income may spend on less necessary goods. When

households’ preferences are structured in a hierarchical manner like this, the resulting

Engel curve is known to exhibit kinks at points that reflects the change in the capacity

of the good as income increases (Drakopoulos, 1994). In the following application, we

use the modified test statistic (4) when ties exist.

The baseline model is the Working–Leser specification of Engel curves, a structural

model originating in consumer theory (Muellbauer, 1976, Deaton & Muellbauer, 1980,

and Jorgenson, Lau, & Stoker, 1982). Let yi,j be individual i’s expenditure on good j,

Xi ≡
∑

j yi,j be total expenditures, and W be a vector of exogenous variables. Then,

the Working–Leser specification of Engel curves is

yi,j
Xi

= α0,j + α′
1,jWi,j + βj logXi + ϵi,j , (11)

where ϵ is unobserved regression error and α0, α1 and β are unknown parameters to be

estimated.

We adapts the data and application strategy of Battistin and De Nadai (2015).5 The

5When expenditure data mare measured with errors, the conventional IV approach fails to obtain
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data are the 2010 wave of the Bank of Italy’s Survey on Households’ Income and Wealth

(SHIW). To estimate Engel curves for food, the model is estimated for each demographic

group (couples without children, couples with one child, and couples with more than one

child). Exogenous variablesW are the household regional variation represented by macro

area dummies (North, Center, and South). Instruments for the total expenditure are

the average of male logged wages across micro areas (over 100). Mean wages are likely

to be uncorrelated with household unobserved characteristics and strongly correlated

with total expenditures. The detailed explanation for data sets, estimation results, and

sensitivity of the choice of instruments are given in Battistin and De Nadai (2015).

Table 2 presents Tn values. The null hypothesis is that the specification of the model

is true. The null is rejected at the 1% significance level for households with one child

and more than one children.

7 Conclusion

This study investigated the optimal minimax rate when an alternative hypothesis is

defined on the set of non-smooth functions M. The set consists of bounded functions

that are not necessarily differentiable when l < 4 with no smoothness constraints imposed

on their first derivative when l ≥ 4. The optimal minimax rate against such non-smooth

alternatives is n−1/4 for any model dimension l. The rate is lower than the optimal

minimax rate reported in literature because the set of alternatives in this study consists

of non-smooth functions.

The simple nearest neighbor test Tn is rate optimal. Simulation results show that

power of the proposed test can be higher than that of the existing kernel smoothing

test when the alternative is non-smooth relative to the model dimensionality. Empirical

consistent parameter estimates because measurement errors are non-linear in Engel curves. A consistent
estimator under the measurement error is proposed in Battistin and De Nadai (2015). In Appendix C,
the model specification of their consistent estimator is also tested.
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applications of Engel curves illustrate the good applicability of the proposed test.

A possible extension of this study, on which we are currently working, is rate optimal

specification testing under many weak instruments. The body of literature on the esti-

mation and inference of parameters in linear IV regression models with many or many

weak instruments is growing (e.g., Andrews & Stock, 2007, Newey & Windmeijer, 2009,

Anatolyev & Gospodinov, 2011, Lee & Okui, 2012, Chao, Hausman, Newey, Swanson,

& Woutersen, 2014, and references therein). For specification testing, this study shows

that the optimal minimax rate for IV regression models is n−1/4 for any dimension l of

instruments. Although the results of this study hold for any fixed l, optimal minimax

rates are not obvious under many instrument setups, in which l grows with n. Asymp-

totic properties of specification testing and rate optimality under many weak setups have

not been investigated sufficiently.
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Tables

Table 1: Size of the proposed test with 5% significance level.

DGP1 DGP2 DGP3

n (7) (8) (9) (7) (8) (9) (7) (8) (9)

200 0.041 0.040 0.015 0.034 0.030 0.019 0.034 0.031 0.018
500 0.042 0.030 0.010 0.042 0.037 0.023 0.043 0.031 0.024

1000 0.041 0.037 0.025 0.054 0.040 0.028 0.049 0.040 0.033

Note: DGP 1: {ρ, η} = {0.8, 0.1}; DGP 2: {ρ, η} = {0.8, 0.5}; DGP 3: {ρ, η} = {0.7, 0.1}.

Table 2: Test for Engel curve specification (11) using SHIW 2010 data.

No children One child More than one child

Tn 0.414 2.765 3.193
(0.339) (0.003) (0.001)

Sample size 345 709 1257

Note: Presented are the test statistics Tn in equation (3). P-values are given in parentheses.

22



Figures

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4

x

h(
x)

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4

x

h(
x)

0.0 0.2 0.4 0.6 0.8 1.0

-4
-2

0
2

4

x

h(
x)

alpha=0.035
alpha=0.26
alpha=0.485

Figure 1: Haar wavelet functions that introduces misspecification.
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Figure 2: Power functions of proposed test: Probabilities of rejecting the null hypothesis
are shown. Significance level is 5%. DGP 1: {ρ, η} = {0.8, 0.1}; DGP 2: {ρ, η} =
{0.8, 0.5}; DGP 3: {ρ, η} = {0.7, 0.1}.
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Figure 3: Power functions of kernel smoothing test: Probabilities of rejecting the null
hypothesis are shown. Significance level is 5%. DGP 1: {ρ, η} = {0.8, 0.1}; DGP 2:
{ρ, η} = {0.8, 0.5}; DGP 3: {ρ, η} = {0.7, 0.1}.

25



APPENDIX: Proofs

Appendix gives proofs of propositions. Proofs for lemmas are given in the supplemental

material A. Let the variance of ui conditioned on Zi be denoted by σ2(z) ≡ E(u2i |Zi = z).

A-1 Proofs of Proposition 1

Proof of Proposition 1.

Let ψj,κ(z) = 2lj/2Ψ(2jz − κ) = 2lj/2ψ(2jz1 − κ1) · · ·ψ(2jzl − κl) for some j ∈ Z and

κ ≡ (κ1, . . . , κl)
′ be a k-times continuously differentiable orthonormal wavelet function

defined on [0, 2p−1]l for some integer p that satisfies |ψj,κ(z)| ≤ 2lj/2C for some constant

C. The orthonormality implies that 2−ljE[ψj,κ(Z)ψj′,κ′(Z)] = 1{j = j′}1{κ = κ′},

when random variable Z is assumed to be uniformly distributed, where 1{j = j′} is an

indicator function taking 1 if j = j′ and zero otherwise.

The wavelet series ψj,κ(z) defined above can be constructed by using, for example,

Daubechies’s orthonormal wavelets (Daubechies, 1992).6 Let ψD(·) be Daubechies’s or-

thonormal wavelet with support on [−p+1, p] for some integer p ≥ 1. The wavelet func-

tion becomes ψj,κ(z) = 2lj/2ψD(2
jz1 − κ1) · · ·ψD(2

jzl − κl). By defining an appropriate

collection of κ for each j, the support of ψj,κ(z) becomes [0, 2p− 1]l. Let Kj denote the

collection of all possible distinct values for κ such that Kj = {κ ∈ Zl : κι = (p−1)+c(2p−

1), c = 0, 1, . . . , 2j − 1, ι = 1, 2, . . . , l}. Then, Kj includes 2jl elements for each j. Then

dyadic cubes, Ij,κ ≡
∏l

ι=1((−p+1+ κι)2
−j , (κι + p)2−j ], satisfy ∪κ∈KjIj,κ ⊂ [0, 2p− 1]l.

Since ψD(2
jzι−κι) is zero if zι lies outside of ((−p+1+κι)2

−j , (κι+p)2
−j ], ψj,κ(z) is zero

if z /∈ Ij,κ. Thus, the support of ψj,κ(z) with κ ∈ Kj is [0, 2p − 1]l. Any intersection of

two different cubes is always empty; that is., Ij,κ ∩ Ij,κ′ = ∅ for any κ, κ′ ∈ Kj (κ ̸= κ′),

which implies ψj,κ(z)ψj,κ′(z) = 0. Our wavelet function is orthonormal, because it is

the tensor product of Daubechies’s wavelets. Furthermore, Daubechies’s wavelets are

6Construction of a wavelet function with support [0, 1] is also possible by using, for example, the
method proposed by Cohen, Daubechies, and Vial (1993).
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known to be νp times continuously differentiable, where ν ≈ 0.2. Thus, ψj,κ(·) can

be constructed to be k-times continuously differentiable by taking p to be sufficiently

large and satisfying |ψj,κ(z)| ≤ 2lj/2C for some constant C, which implies Ψ(·) ≤ C by

definition.

Let Bκ be any random sequence with |Bκ| = 1. We define for a positive constant λ

such that

δn,θ0(·) ≡ mn(·)− E[g(X, θ0)|·], mn(·) = E[g(X, θ0)|·] + λρn2
−jl/2

∑
κ∈Kj

Bκψj,κ(·),

where E[g(X, θ0)|·] ∈ M. The resolution level of wavelets is chosen by j = ⌊log(n)/l log(2)⌋,

where ⌊·⌋ is the floor function such that ⌊x⌋ = max{z ∈ Z|z ≤ x}, implying 2jl = O(n).

Let θ̌mn satisfy infθ∈ΘE[δθ(Zi)
2] = E[δθ̌mn

(Zi)
2]. A constant C exists such that

∥θ̌mn − θ0∥ ≤ CE|δn(Zi)| under Assumptions 2, 3, and 9 (see Hitomi et al., 2020 for the

derivation). Then, we obtain the following result.

Lemma 1. Under Assumptions 1, 2, 3, 4, 8, and 9, mn(·) belongs to the class of

alternatives M(ρn) when n is sufficiently large.

We construct a Bayesian a priori measure by using the result of Lemma 1 and show

that even the optimal Bayesian test with the smallest errors does not have non-trivial

power. Replacing the minimax problem by a Bayesian problem is a standard argument

to show the lower bound of testing power (see, e.g., Ingster, 1993; Spokoiny, 1996; Lepski

& Spokoiny, 1999; Lepski & Tsybakov, 2000; Guerre & Lavergne, 2002; Abramovich et

al., 2009; Ingster & Sapatinas, 2009).

A sufficient condition of Proposition 1 is Ln ≡
∑

κ∈Kj

[
λ2ρ2n2

−jl
∑n

i=1 ψj,κ(Zi)
2
]2 p−→

0, which can be derived through straightforward calculations (for the derivation, see

Guerre & Lavergne, 2002).7

7An a priori Bayesian measure over H0∪Hn,1 can be constructed as follows. The a priori distribution
Π0 defined on H0 has Dirac mass: Π0[δθ0(·) = 0] = Π0{m(·) = E[g(X, θ0)|·]} = 1. Let Bκ be an
i.i.d. Rademacher random variable independent of the observations with P (Bκ = 1) = P (Bκ = −1) =

2



Using the orthonormality and boundedness of the wavelet function, we obtain

E(Ln)

= λ4ρ4n2
−2jl

n∑
i=1

∑
κ∈Kj

E
[
ψj,κ(Zi)

4
]
+ λ4ρ4n2

−2jl
n∑

i1=1

∑
i2 ̸=i1

∑
κ∈Kj

E
[
ψj,κ(Zi1)

2
]
E
[
ψj,κ(Zi2)

2
]

≤ λ4ρ4n2
−jl

n∑
i=1

∑
κ∈Kj

E
[
ψj,κ(Zi)

2
]
+ λ4ρ4nn(n− 1)2−2jl2jl

= λ4ρ4nn2
−jl2jl + λ4ρ4nn(n− 1)2−2jl2jl = O(ρ4nn).

Because ρn = o(ρ̃n) = o(n−1/4) by assumption, Ln converges to zero in probability.

A-2 Proof of Proposition 2

Proof of Proposition 2. The frequency that an observation is assigned to be the nearest

neighbor of other observations is finite because of the boundedness of the kissing number,

that is,
∑n

i=1Ki,j <∞. Under H0, µ̂Tn can be decomposed as follows.

1√
n

n∑
i=1

ûiûi∗ =
1√
n

n∑
i=1

[g(Xi∗ , θ0)− g(Xi∗ , θ̂)]ui +
1√
n

n∑
i=1

uiui∗ +An, (A.1)

where An is op(1), which comes from the
√
n-consistency of θ̂, the smoothness and finite

moment assumption imposed on g(·), and the boundedness of the number of nearest

neighbors,
∑n

i ̸=j Ki,j ≤ ∞.

The following lemmas show the asymptotic behaviors of the first and second terms

of equation (A.1). This result cannot be deduced from Lemma B6 of Jun and Pinkse

(2012) because the boundedness of the conditional expectation of parametric function is

not assumed.

1/2. The a priori distribution Πn,1 defined on Hn,1 is Πn,1[δθ0(·) = λρn2
−jl/2 ∑

κ∈Kj
bκψj,κ(·)] =∏

κ∈Kj
P (Bκ = bκ), bκ ∈ {−1, 1}, where Lemma 1 guarantees that Πn,1 is an a priori measure over

Hn,1. Then, Πn = Π0 +Πn,1 is the a priori Bayesian measure over H0 ∪Hn,1.

3



Lemma 2. Under Assumptions 1, 2, 3, 4, 5, and 10, we have 1√
n

∑n
i=1[g(Xi∗ , θ0) −

g(Xi∗ , θ̂)]ui = op(1).

Lemma 3. Under Assumption 1, 2, we have 1√
n

∑n
i=1 uiui∗

d−→ N(0, µ2), where µ2 is

asymptotic variance of 1√
n

∑n
i=1 uiui∗.

We show µ̂2
p−→ µ2, where µ̂2 = n−1

∑n
i=2

∑n
j<iW

2
i,j û

2
i û

2
i∗ , in the following lemma.

Lemma 4. Under Assumptions 1, 2, 3, 4, 5, 6, and 10, we have µ̂2
p−→ µ2 under the

null hypothesis.

A-3 Proof of Proposition 3

Proof of Proposition 3. The following lemma holds for the asymptotic behavior of µ̂

under Hn,1.

Lemma 5. Let Assumptions 1, 2, 3, 4, 5, 6, 7, and 11 hold. Let

µ̄ ≡ lim
n→∞

1

n

n∑
i=2

i−1∑
j=1

W 2
i,jE

(
u∗2i
∣∣Zi

)
E
(
u∗2j
∣∣Zj

)
, (A.2)

where u∗i ≡ Yi − g(Xi, θ
∗). Then, under Hn,1, µ̂

2 = µ̄ + op(1) and µ̄ is bounded from

above uniformly in m(·) ∈ Mϵ.

Next, we consider the asymptotic behavior of the test statistics under Hn,1. We

decompose µ̂Tn as follows:

µ̂Tn =
1√
n

n∑
i=1

ûiûi∗ =
1√
n

n∑
i=1

[Yi − g(Xi, θ̂)][Yi∗ − g(Xi∗ , θ̂)] = T ∗
n − C1 + C2, (A.3)

where T ∗
n ≡ 1√

n

∑n
i=1[Yi − g(Xi, θ

∗)][Yi∗ − g(Xi∗ , θ
∗)], C1 ≡ 1√

n

∑n
i=1 δθ∗(Zi)[g(Xi∗ , θ̂)−

g(Xi∗ , θ
∗)], and C2 includes terms consisting of the vanishing term g(Xi∗ , θ̂)− g(Xi∗ , θ

∗)

times a random variable whose expectation conditioned on instruments is zero. It is

4



straightforward to show that C2 = op(1) uniformly in m(·) ∈ M(κn−1/4). Lemma 6

below shows that C1 = Op(1).

Lemma 6. Under Assumptions 1, 3, 5, 6, 8, and 11, supm(·)∈M(κn−1/4)C1 = Op(1).

There is a constant C > 0 such that P (Tn ≤ zα) ≤ P (T ∗
n ≤ z′α + C) + o(1), where

z′α ≡ µ̄zα is bounded uniformly by Lemma 5. Further,

P
(
T ∗
n ≤ z′α + C

)
= P

(
−[T ∗

n − E(T ∗
n)] ≥ E(T ∗

n)− z′α − C
)

≤ var(T ∗
n)

{E(T ∗
n)− z′α − C}2

,

if E(T ∗
n)− z′α − C > 0. It is then sufficient to show that κ can be chosen so that

E(T ∗
n)− z′α − C > 0, (A.4)

var(T ∗′
n )

{E(T ∗
n)− z′α − C}2

≤ β, (A.5)

uniformly in m(·) ∈ M(κn−1/4). Since E[δ2θ∗(Zi)] ≥ infθ∈ΘE[δ2θ(Zi)] ≥ ρ2n, we obtain,

E(T ∗
n) =

√
nE [δθ∗(Zi)δθ∗(Zi∗)] ≥

√
nE
[
δθ∗(Zi)

2
]
−
√
nE[|δθ∗(Zi)− δθ∗(Zi∗)| |δθ∗(Zi)|]

≥
√
nE
[
δθ∗(Zi)

2
] 1− E[|δθ∗(Zi)− δθ∗(Zi∗)|2]1/2

E
[
|δθ∗(Zi)|2

]1/2


≥
√
nκ2ρ2n

[
1− o(n

1
l
− 1

4 )E[∥Zi − Zi∗∥2]1/2

κρn

]

= κ2 [1− o(1)] ,

where the last equation is derived from E[∥Zi − Zi∗∥] = O(n−1/l) under Assumption 2

(see, for example, Lemma 14.1 of Q. Li & Racine, 2007). Thus, E(T ∗
n,1) is positive for a

sufficiently large n. Then, we obtain

E (T ∗
n)− z′α − C

|
√
nE [δθ∗(Zi)δθ∗(Zi∗)] |

≥ 1− |z′α|+ C

κ2 {1− o(1)}
.

5



A large value of κ makes the last term in the above equation arbitrarily close to one.

Therefore, (A.4) holds by taking a sufficiently large κ.

To prove (A.5), we define T ∗
n = 1√

n

∑n
i=1 ηi, where ηi ≡

∑
j ̸=iKi,j [Yi−g(Xi, θ

∗)][Yj−

g(Xj , θ
∗)]. Let Z = {Z1, Z2, . . . , Zn}. From the law of total variance, we obtain

var (T ∗
n) =

1

n
var

(
n∑

i=1

ηi

)
=

1

n

n∑
i=1

E [var (ηi|Z)] +
1

n
var

[
n∑

i=1

E (ηi|Z)

]
,

where the last equality holds because ηi’s are uncorrelated given Z; that is, ηi’s are

i.i.d. conditional on Z. Let η̄i = E[g(Xi, θ
∗)|Zi] − g(Xi, θ

∗) + ωi. Then, it is obvi-

ous that E(η̄i|Zi) = 0 and E(η̄2i |Zi) ≤ E[g(Xi, θ
∗)|Zi]

2 + E[g(Xi, θ
∗)2|Zi] + σ2(Zi) is

bounded by Assumptions 1 and 7. By using these and the boundedness of δθ∗(Zj),

we can show that E(η2i |Zi) =
∑

j ̸=iKi,jE
{
[δθ∗(Zi) + η̄i]

2
∣∣Zi

}
E
{
[δθ∗(Zj) + η̄j ]

2
∣∣Zj

}
is bounded from above by a constant Λ. Similarly, there is a constant Λ̄ such that

1
nvar[

∑n
i=1E(ηi|Zi)] ≤ Λ̄2. This yields var(T ∗

n) ≤ Λ+ Λ̄2. For a sufficiently large n that

satisfies
[
1−O(n−1/l)

]
> 0, we obtain

var(T ∗
n)

|
√
nE [δθ∗(Zi)δθ∗(Zi∗)]|2

≤ Λ + Λ̄2∣∣κ2 {1−O(n−1/l)
}∣∣2 . (A.6)

Because this upper bound is bounded and decreasing in κ, (A.5) holds uniformly in

m(·) ∈ M(κn−1/4).
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Supplemental material for the paper entitled

”Optimal Minimax Rates against Non-smooth Alternatives”

Supplemental Material A: Proofs

S.A-1 Proof of Lemma 1

Proof. Since E[g(X, θ0)|·] ∈ M, it is enough to show (i) |δn,θ0(·)| < ∞, (ii)|δn,θ0(x) −

δn,θ0(y)|2 = o(ϵ
l
2
−2∥x− y∥2) as ϵ→ 0, and (iii) infθ∈ΘE[δn,θ(Zi)

2] ≥ ρ2n.

(i) Let z belongs to Ij,κ without loss of generality. Then,

|δn,θ0(z)| = |λρn2−jl/2Bκψj,κ(z)| ≤ λρnC <∞,

where |ψj,κ(z)| ≤ 2lj/2C for some constant C is used for the derivation.

(ii) Let x belongs to Ij,κ′ and y belongs to Ij,κ′′ without loss of generality (κ′ may be

equivalent to κ′′). Then,

|δn,θ0(x)− δn,θ0(y)|2 =

∣∣∣∣∣∣λρn2−jl/2
∑
κ∈Kj

Bκ[ψj,κ(x)− ψj,κ(y)]

∣∣∣∣∣∣
2

= λ2ρ2n|Bκ′ [Ψj,κ′(2jx− κ′)−Ψj,κ′(2jy − κ′)]−Bκ′′ [Ψj,κ′′(2jy − κ′′)−Ψj,κ′′(2jx− κ′′)]|2

≤ 2λ2ρ2n2
2j∥x− y∥2O(1) = O(n

2
l ρ2n∥x− y∥2) = o(n

2
l
− 1

2 ∥x− y∥2),

where 2j = O(n1/l) and ρn = o(n−1/4). Thus, setting n = ϵ−l yields (ii).

(iii) We have infθ∈ΘE[δθ(Zi)
2] = E[δθ̌mn

(Zi)
2]. Then, Minkowski’s inequality and Tay-

lor expansion of g(Xi, θ̌mn) at θ0 under Assumptions 3 and 4 yields

{E[δθ̌mn
(Zi)

2]}1/2 ≥ {E[δn,θ0(Zi)
2]}1/2 − [E({E[g(Xi, θ0)|Zi]− E[g(Xi, θ̌mn)|Zi]}2)]1/2

≥ {E[δn,θ0(Zi)
2]}1/2 − C∥θ̌mn − θ0∥

1



≥ {E[δn,θ0(Zi)
2]}1/2 − C ′E[|δn,θ0(Zi)|]. (S.A.1)

for some positive constant C and C ′. With respect the the second term,

E[|δn,θ0(Zi)|] ≤ λρn2
−jl/2

∑
κ∈Kj

E[|ψj,κ(Zi)|]

= λρn
∑
κ∈Kj

∫ 1

0
|Ψ(2jz − κ)|f(z)dz

= λρn2
−jl

∑
κ∈Kj

∫ 2j−κ

−κ
|Ψ(u)|f

(
u+ κ

2j

)
du

≤ λρn2
−jl

∫ p

−p+1
|Ψ(u)|

∑
κ∈Kj

f

(
u+ κ

2j

)
du. (S.A.2)

Let Kj,ι be the set of ιth element in Kj for ι = 1, . . . , l. Let f ′l (z) = ∂
∂zl
f(z) be

the partial differentiation of f(z) with respect to the lth element of z, which is

bounded from above by Assumption 2. Then, we obtain for some u = (u1, . . . , ul)
′,

∑
κ∈Kj

f

(
u+ κ

2j

)
= 2jlf(0) + 2−j

∑
κ1∈Kj,1

· · ·
∑

κl∈Kj,l

[
l∑

ι=1

(uι + κι)f
′
ι(ũ)

]

≤ 2jlf(0) + 2−j max
ι∈{1,...,l}

|f ′ι(ũ)|
∑

κ1∈Kj,1

· · ·
∑

κl∈Kj,l

[
l∑

ι=1

|uι + κι|

]

≤ 2jlf(0) + 2−j f̄ ′

2jl l∑
ι=1

|uι|+
∑

κ1∈Kj,1

· · ·
∑

κl∈Kj,l

l∑
ι=1

|κι|


= 2jlf(0) + 2−j f̄ ′

2jl l∑
ι=1

|uι|+ l2j(l−1)
2j−1∑
c=0

|(p− 1) + c(2p− 1)|


= 2jlf(0) + 2j(l−1)f̄ ′

l∑
ι=1

|uι|+ l2j(l−2)f̄ ′(2p− 1)
(2j − 1)2j

2
+ l2j(l−2)f̄ ′2j(p− 1)

= 2jlf(0) + 2j(l−1)f̄ ′
l∑

ι=1

|uι|+
l(2p− 1)f̄ ′

2
(2jl − 2j(l−1)) + lf̄ ′(p− 1)2j(l−1)

2



= 2jl
[
f(0) +

l(2p− 1)f̄ ′

2

]
+ 2j(l−1)

[
f̄ ′

l∑
ι=1

|uι| −
l(2p− 1)f̄ ′

2
+ lf̄ ′(p− 1)

]
.

Substituting this into equation (S.A.2) yields

E[|δn,θ0(Zi)|] ≤ λρn2
−jl

∫ p

−p+1
|Ψ(u)|

∑
κ∈Kj

f

(
u+ κ

2j

)
du

≤ λρn

[
f(0) +

l(2p− 1)f̄ ′

2

] ∫ p

−p+1
|Ψ(u)|du

+ λρn2
−j f̄ ′

∫ p

−p+1
|Ψ(u)|

l∑
ι=1

|uι|du

− λρn2
−j

[
l(2p− 1)f̄ ′

2
+ lf̄ ′(p− 1)

] ∫ p

−p+1
|Ψ(u)|du

≤ λρnC
′′, (S.A.3)

for some positive constant C ′′ because
∫ p
−p+1 |Ψ(u)|du is bounded and 2−j shrinks

by the definition of wavelet. A positive constant f̄ ′ is defined in Assumptions 2.

Since 2−ljψj,κ(Zi) is orthonormal and Ij includes 2jl location shifts, we obtain

E[δn,θ0(Zi)
2] = λ2ρ2n2

−jl
∑
κ∈Kj

E
[
ψj,κ(Zi)

2
]
= λ2ρ2n2

jl. (S.A.4)

Equations (S.A.1), (S.A.3), and (S.A.4) yields {E[δθ̌mn
(Zi)

2]}1/2 ≥ λρn(2
jl/2 −

C ′C ′′). Thus, E[δn,θ0(Zi)
2] ≥ ρ2n when n is large enough.

S.A-2 Proof of Lemma 2

Proof. From the mean value theorem, we obtain

1√
n

n∑
i=1

[g(Xi∗ , θ0)− g(Xi∗ , θ̂)]ui

3



=
√
n(θ̂ − θ0)

′ 1

n

n∑
i=1

µ
i
+
√
n(θ̂ − θ0)

′ 1

n

n∑
i=1

µi +
√
n(θ̂ − θ0)

′µn
√
n(θ̂ − θ0),

(S.A.5)

where
√
n(θ̂ − θ0) = Op(1), µi ≡

∑
j<iKi,j

∂
∂θg(Xj , θ0)ui, µi ≡

∑
j>iKi,j

∂
∂θg(Xj , θ0)ui,

and µn ≡ 1
n
√
n

∑n
i=1

∑n
j ̸=iKi,j

∂
∂θ∂θ′ g(Xj , θ)|θ=θ̃ui for an interior point θ̃ between θ̂ and

θ0. Note that µi and µi are martingale difference sequences with respect to σ-fields gen-

erated by {X1, X2, . . . , Xi−1, Z1, Z2, . . . , Zn}, and {Xi+1, Xi+2, . . . , Xn, Z1, Z2, . . . , Zn},

respectively. The variances of 1
n

∑n
i=1 µi and

1
n

∑n
j=1 µi can be straightforwardly shown

to be O(1/n). Thus, 1
n

∑n
j=1 µi

p−→ 0 and 1
n

∑n
j=1 µi

p−→ 0 from the Chebyshev’s inequal-

ity. We can also show µn = op(1) by using the bounded second moments for uj and

∂
∂θ∂θ′ g(Xj , θ0).

S.A-3 Proof of Lemma 3

Proof. We define 1√
n

∑n
i=1 uiui∗ = 1√

n

∑n
i=2

∑i−1
j=1Wi,juiuj ≡

∑n
i=2 ϵn,i, where Wi,j ≡

Ki,j +Kj,i. Let Fn,i be a σ-field generated by {Y1, Y2, . . . , Yi, X1, . . . , Xi, Z1, . . . , Zn}. It

is obvious that Fn,i form a filtration, that is, Fn,k ⊂ Fn,k+1 holds, and ϵn,i is a martingale

difference with respect to Fn,i. Note that µ
2 ≡ limn→∞

1
n

∑n
i=2

∑i−1
j=1W

2
i,ju

2
jσ

2(Zi) <∞,

because E(u2i |Fn,i−1) = σ2(Zi) < ∞ by Assumption 1 and
∑n

i=1W
2
i,j ≤ ∞. Fur-

thermore,
∑n

i=1E[ϵ2n,i1{|ϵn,i| ≥ ϵ}] ≤ n
ϵE
[
|ϵn,i|3

]
≤ O(n−1/2), by the boundedness

of E(u4|Z). Thus, applying Theorem 35.12 of Billingsley (2012) yields
∑n

i=2 ϵn,i
d−→

N(0, µ2).

4



S.A-4 Proof of Lemma 4

Proof. We show that µ̂2 converges to µ2 defined above almost surely and µ2 is equivalent

to limn→∞
1
n

∑n
i=2

∑i−1
j=1W

2
i,jσ

2(Zj)σ
2(Zi). µ̂

2 is represented as follows:

µ̂2 =
1

n

n∑
i=2

n∑
j<i

W 2
i,ju

2
iu

2
j +B, (S.A.6)

where B includes terms that converges to zero in probability. The convergence can

be shown straightforwardly by using the
√
n-consistency of parameter estimates in As-

sumption 10, uniform convergence of the first and the second derivative of g(x, θ) with

respect to θ ∈ Θ under Assumptions 1, 3, 4, 5, and 10, and the boundedness given in

Assumptions 1 and 6.

We apply Theorem 2.17 of Hall and Heyde (1980) to show the probability limit of

the first term of equation (S.A.6). We define 1
n

∑n
i=2

∑n
j<iW

2
i,ju

2
iu

2
j =

∑n
i=2 νn,i, where

νn,i ≡ 1
n

∑i−1
j=1W

2
i,ju

2
iu

2
j is a martingale with respect to Fn,i. According to Theorem 2.17

of Hall and Heyde (1980),
∑n

i=2 νn,i converges to limn→∞
∑n

i=2E(νn,i|Fn,i−1) almost

surely because limn→∞
∑n

i=2E(|νn,i||Fn,i−1) <∞.

Let
∑n

i=2E(νn,i|Fn,i−1) =
∑n−1

j=1 vn,j , where vn,j ≡
1
n

∑n
i=j+1W

2
i,jσ

2(Zi)u
2
j . Let Fn,j

be a σ-field generated by {Yj , Yj+1, . . . , Yn, Xj , Xj+1, . . . , Xn, Z1, Z2, . . . , Zn}. Then, vn,j

is a reversed martingale with respect to Fn,j . By applying Theorem 2.17 of Hall and

Heyde (1980),
∑n−1

j=1 vn,j converges almost surely to limn→∞
∑n

i=2E(vn,j |Fn,j+1) =

limn→∞
1
n

∑n−1
j=1

∑n
i=j+1W

2
i,jσ

2(Zi)σ
2(Zj) because straightforward calculation leads to∑n

i=2E(|vn,j ||Fn,j+1) ≤ 1
n

∑n
i=2

∑n
i=j+1W

2
i,jσ

2(Zi)σ
2(Zj) <∞.

S.A-5 Proof of Lemma 5

Proof. Under the alternative, we can show

E(u∗2i |Zi) <∞, (S.A.7)

5



uniformly in m(·) ∈ Mϵ. Indeed, E(u∗2i |Zi) can be decomposed into m(Zi)
p, E (ωp

i |Zi),

E[g(X, θ)p|z] for p = 2, and cross products of them with p = 1. Since m(·) belongs to

the class of bounded functions Mϵ where m(Zi)
p is bounded uniformly m(·) ∈ Mϵ for

any n under the alternative. E (ωp
i |Zi) and E[g(X, θ)p|z] are bounded by Assumption 1

and 7, respectively. Since
∑i−1

j=1W
2
i,j is bounded by a constant, µ̄ is bounded from above

uniformly in m(·) ∈ Mϵ.

Note that we obtain µ̂2 = 1
n

∑n
i=2

∑n
j<iW

2
i,ju

∗2
i u

∗2
j + D where D includes terms

that converges to zero in probability. This equation is a version of equation (S.A.6)

in Lemma 4, and differs from (S.A.6) in points that it has θ∗ instead of θ0 and error

term under the pseudo true value u∗i instead of ui. Thus, the limiting behavior of

µ̂2 can be shown by going along with the proof of Lemma 4 except points on which

asymptotic behavior of parameter estimates under the alternative affects. Especially, the

convergence can be shown straightforwardly by using the
√
n-consistency of parameter

estimates in Assumption 11, uniform convergence of the first and the second derivative of

g(x, θ) with respect to θ ∈ Θ under Assumptions 1, 3, 4, 5, and 11, and the boundedness

in Assumptions 4 and 6. The boundedness for the conditional expectation of error terms

is now guaranteed by equation (S.A.7) under Assumptions 1 and 7.

S.A-6 Proof of Lemma 6

Proof. Since
√
n(θ̂− θ∗) = Op(1) uniformly in m(·) ∈ Mϵ from Assumption 11, we have

C1 = Op(1)(C
′
1 + C

′′
1 ), where

C
′
1 ≡

1

n

n∑
i=1

δθ∗(Zi)
∂

∂θ
g(Xi∗ , θ

∗),

C
′′
1 ≡ 1

n
√
n

n∑
i=1

δθ∗(Zi)
∂

∂θ∂θ
g(Xi∗ , θ)|θ=θ̃∗ .

First, applying the Schwarz inequality yields C
′′
1 = op(1), since E

[
|δθ∗(Zi)|2

]
is

6



bounded by Assumption 8 under Hn,1 and the second derivative of g converges to its

expectation uniformly in θ ∈ Θ under Assumptions 1, 3, 5, and 11.

Second, by Assumption 6, there is a constant c > 0 such that

E(∥C ′
1∥) ≤

∑
j ̸=i

E

{
Ki,j |δθ∗(Zi)|E

[∥∥∥∥ ∂

∂θ
g(Xj , θ

∗)

∥∥∥∥∣∣∣∣Zj

]}
≤ cE (|δθ∗(Zi)|) <∞.

(S.A.8)

From the Markov’s inequality, P (supm ∥C ′
1∥ > c) < E(supm |δθ(Zi)|) < ∞, which

indicates C
′
1 is stochastically bounded. Therefore, we yield supm(·)∈M(κn−1/4)C

′
1 =

Op(1).
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Supplemental Material B: Simulation

Tables S.B.1 and S.B.2 show Monte Carlo results for the power of the test. The results

correspond to power functions illustrated in Figures 2 and 3, respectively.
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Supplemental Material C: Empirical Application

In the estimation of Engel curves, two possible sources of endogeneity exist. First, total

expenditure seems to be simultaneously determined with expenditure for each good.

Second, expenditure data may be measured with errors. The conventional IV approach

applied to (11) fails to obtain consistent parameter estimates because measurement errors

are non-linear in (11).

IV estimator is consistent under the model specification (assumption) proposed by

Lewbel (1996) and Battistin and De Nadai (2015), In this Appendix, their approaches

are explained and their specifications are tested by the proposed test.

S.C-1 Model

Three estimation approaches are considered: IV, Lewbel’s (1996), and Battistin and

De Nadai’s (2015) approaches. Although all of these approaches aim to estimate the

same parameter βj , they differ in assumptions on the source of endogeneity, which lead

to different model specifications.

Let Zi be a vector of instruments that includes exogenous variables Wi,j . In the IV

approach, it is assumed that

E

(
yi,j
Xi

∣∣∣∣Zi

)
= α0,j + α′

1,jWi,j + βjE(logXi|Zi).

The parameters are identified through a 2SLS regression of y/X on constant W and

logX, where logX is instrumented by Z.

We assume additive measurement errors such that yi,j = ỹi,j + X̃ivj , where ỹi,j

and X̃i ≡
∑

j ỹi,j are the real expenditures, and vi is a mean zero random variable

independent of X̃i, Wi, ϵi,j , and Zi. Note that equation (11) holds under the real
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expenditures, which implies

yi,j
Xi

=
ỹi,j/X̃i + vj

V
=
α0,j + α′

1,jWi,j + βj log X̃i + ϵi,j + vj

V
, (S.C.1)

where V ≡ 1 +
∑

j vj , and thus Xi = X̃iV .

The independence and zero mean of vi implies that E(Xi|Zi) = E(X̃i|Zi)E(V ) =

E(X̃i|Zi), E(Wi,jXi|Zi) = E(Wi,jX̃i|Zi), and E(Xi logXi|Zi) = E[X̃iV (log X̃iV )|Zi] =

E[X̃i log X̃i|Zi] + E(X̃i|Zi)E(V log V |Zi). Thus, multiplying either side of equation

(S.C.1) by Xi and taking conditional expectations with respect to Zi yields

E (yi,j |Zi) = α̃0,jE(Xi|Zi) + α′
1,jE(Wi,jXi|Zi) + βjE(Xi logXi|Zi) + E(X̃iϵi,j |Zi),

where α̃0,j ≡ α0,j −βjE(V log V |Zi). In Lewbel’s (1996) approach, it is assumed that no

endogeneity caused by simultaneity exists so that E(ϵi,j |X̃i) = 0. Then, the parameters

are identified through a 2SLS regression of y on X,WX, and X logX without a constant

and Z as instruments.

To address the violation of E(X̃iϵi,j |Zi) = 0 assumed in Lewbel (1996), Battistin

and De Nadai (2015) use a control function approach. Let ηi be the residual term from

the regression of logXi on the set of instruments Zi and η̃i be the residual using log X̃i

instead of logXi. The authors set a parametric assumption that E(ϵi,j |Zi, η̃i) = ρiη̃i,

which yields E(X̃iϵi,j |Zi) = E[X̃iE(ϵi,j |Zi, η̃i)|Zi] = ρiE(X̃iη̃i|Zi).

Since E(Xiηi|Zi) = E(X̃iη̃i|Zi) + cov(V, log V ) by using ηi = η̃i + log V − E(log V ),

we obtain

E (yi,j |Zi) = α0,jE(Xi|Zi) + α′
1,jE(Wi,jXi|Zi) + βjE(Xi logXi|Zi) + ρiE(Xiηi,j |Zi),

where α0,j ≡ α0,j − βjE(V log V |Zi) − ρicov(V, log V ). By replacing η with its fitted

values η̂, parameters, including ρj , are identified through a 2SLS regression of y on X,
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WX, X logX, and Xη̂ without a constant and Z as instruments.

In summary, each of IV, Lewbel’s (1996), and Battistin and De Nadai’s (2015) ap-

proaches has its own econometric specification for Engel curves. They are represented

in the following moment restrictions:

E
(
ϵIVi,j
∣∣Zi

)
= 0, E

(
ϵLi,j
∣∣Zi

)
= 0, and E

(
ϵBN
i,j

∣∣Zi

)
= 0, (S.C.2)

where

ϵIVi,j ≡ yi,j/Xi − α0,j − α′
1,jWi,j − βj logXi

ϵLi,j ≡ yi,j − α̃0,jXi − α′
1,jWi,jXi − βjXi logXi

ϵBN
i,j ≡ yi,j − α0,jXi − α′

1,jWi,jXi − βjXi logXi − ρiXiη̂i,j .

When ϵi,j is exogenous to both Xi and Zi, all moment restrictions in (S.C.2) hold.

Consider that the source of endogeneity is only the simultaneous determination (or

omitted variables). Then, moment restriction of the IV approach holds, while that of

Battistin and De Nadai’s (2015) approach holds only if the parametric specification for

E(ϵi,j |Zi, η̃i) is correct. The moment restriction of Lewbel’s (1996) approach may not

hold, since E(ϵi,j |X̃i) = E(ϵi,j |Xi) ̸= 0. By contrast, when endogeneity arises only from

the measurement error of the form discussed above, moment restrictions of Lewbel’s

(1996) and Battistin and De Nadai’s (2015) approaches hold, while those of the IV

approach fail. When both simultaneity and measurement errors are present, only the

moment restrictions of Battistin and De Nadai’s (2015) approach hold under the correct

parametric assumption for E(ϵi,j |Zi, η̃i).
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Table S.C.1: Test for Engel curve specification using SHIW 2010 data.

IV Lewbel (1996) BN (2015)

No children 0.414 (0.339) 5.161 (0.000) 2.230 (0.013)
One child 2.765 (0.003) 3.801 (0.000) 4.929 (0.000)
More than one child 3.193 (0.001) 5.612 (0.000) 5.595 (0.000)

Note: Presented are the test statistics Tn in equation (3). Sample size for groups “No children,” “One
child,” and “More than one child” are 345, 709, and 1257, respectively. P-values are given in parentheses.
BN (2015) denotes Battistin and De Nadai (2015).

S.C-2 Test Results

Table S.C.1 presents Tn values. The null hypothesis is that the specification of the model

is true. For households without children (the first row), the test rejects Lewbel’s (1996)

specification at the 1% significance level. This result coincides with the suggestion of

Battistin and De Nadai (2015) that total expenditure endogeneity caused by simultane-

ity might be a more serious problem than measurement error, at least in these data.

For households with one child and more than one child (the second and third rows,

respectively), all model specifications are rejected even at the 1% significance level.
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